xref: /llvm-project/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp (revision fb8038db73f893c268ab69b17c1b5b193d40797d)
1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ARMTargetTransformInfo.h"
10 #include "ARMSubtarget.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "llvm/ADT/APInt.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/Analysis/LoopInfo.h"
15 #include "llvm/CodeGen/CostTable.h"
16 #include "llvm/CodeGen/ISDOpcodes.h"
17 #include "llvm/CodeGen/ValueTypes.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/Intrinsics.h"
25 #include "llvm/IR/IntrinsicsARM.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/MC/SubtargetFeature.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MachineValueType.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Transforms/InstCombine/InstCombiner.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include "llvm/Transforms/Utils/LoopUtils.h"
36 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstdint>
40 #include <optional>
41 #include <utility>
42 
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "armtti"
46 
47 static cl::opt<bool> EnableMaskedLoadStores(
48   "enable-arm-maskedldst", cl::Hidden, cl::init(true),
49   cl::desc("Enable the generation of masked loads and stores"));
50 
51 static cl::opt<bool> DisableLowOverheadLoops(
52   "disable-arm-loloops", cl::Hidden, cl::init(false),
53   cl::desc("Disable the generation of low-overhead loops"));
54 
55 static cl::opt<bool>
56     AllowWLSLoops("allow-arm-wlsloops", cl::Hidden, cl::init(true),
57                   cl::desc("Enable the generation of WLS loops"));
58 
59 extern cl::opt<TailPredication::Mode> EnableTailPredication;
60 
61 extern cl::opt<bool> EnableMaskedGatherScatters;
62 
63 extern cl::opt<unsigned> MVEMaxSupportedInterleaveFactor;
64 
65 /// Convert a vector load intrinsic into a simple llvm load instruction.
66 /// This is beneficial when the underlying object being addressed comes
67 /// from a constant, since we get constant-folding for free.
68 static Value *simplifyNeonVld1(const IntrinsicInst &II, unsigned MemAlign,
69                                InstCombiner::BuilderTy &Builder) {
70   auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1));
71 
72   if (!IntrAlign)
73     return nullptr;
74 
75   unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign
76                            ? MemAlign
77                            : IntrAlign->getLimitedValue();
78 
79   if (!isPowerOf2_32(Alignment))
80     return nullptr;
81 
82   auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0),
83                                           PointerType::get(II.getType(), 0));
84   return Builder.CreateAlignedLoad(II.getType(), BCastInst, Align(Alignment));
85 }
86 
87 bool ARMTTIImpl::areInlineCompatible(const Function *Caller,
88                                      const Function *Callee) const {
89   const TargetMachine &TM = getTLI()->getTargetMachine();
90   const FeatureBitset &CallerBits =
91       TM.getSubtargetImpl(*Caller)->getFeatureBits();
92   const FeatureBitset &CalleeBits =
93       TM.getSubtargetImpl(*Callee)->getFeatureBits();
94 
95   // To inline a callee, all features not in the allowed list must match exactly.
96   bool MatchExact = (CallerBits & ~InlineFeaturesAllowed) ==
97                     (CalleeBits & ~InlineFeaturesAllowed);
98   // For features in the allowed list, the callee's features must be a subset of
99   // the callers'.
100   bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeaturesAllowed) ==
101                      (CalleeBits & InlineFeaturesAllowed);
102   return MatchExact && MatchSubset;
103 }
104 
105 TTI::AddressingModeKind
106 ARMTTIImpl::getPreferredAddressingMode(const Loop *L,
107                                        ScalarEvolution *SE) const {
108   if (ST->hasMVEIntegerOps())
109     return TTI::AMK_PostIndexed;
110 
111   if (L->getHeader()->getParent()->hasOptSize())
112     return TTI::AMK_None;
113 
114   if (ST->isMClass() && ST->isThumb2() &&
115       L->getNumBlocks() == 1)
116     return TTI::AMK_PreIndexed;
117 
118   return TTI::AMK_None;
119 }
120 
121 std::optional<Instruction *>
122 ARMTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
123   using namespace PatternMatch;
124   Intrinsic::ID IID = II.getIntrinsicID();
125   switch (IID) {
126   default:
127     break;
128   case Intrinsic::arm_neon_vld1: {
129     Align MemAlign =
130         getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II,
131                           &IC.getAssumptionCache(), &IC.getDominatorTree());
132     if (Value *V = simplifyNeonVld1(II, MemAlign.value(), IC.Builder)) {
133       return IC.replaceInstUsesWith(II, V);
134     }
135     break;
136   }
137 
138   case Intrinsic::arm_neon_vld2:
139   case Intrinsic::arm_neon_vld3:
140   case Intrinsic::arm_neon_vld4:
141   case Intrinsic::arm_neon_vld2lane:
142   case Intrinsic::arm_neon_vld3lane:
143   case Intrinsic::arm_neon_vld4lane:
144   case Intrinsic::arm_neon_vst1:
145   case Intrinsic::arm_neon_vst2:
146   case Intrinsic::arm_neon_vst3:
147   case Intrinsic::arm_neon_vst4:
148   case Intrinsic::arm_neon_vst2lane:
149   case Intrinsic::arm_neon_vst3lane:
150   case Intrinsic::arm_neon_vst4lane: {
151     Align MemAlign =
152         getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II,
153                           &IC.getAssumptionCache(), &IC.getDominatorTree());
154     unsigned AlignArg = II.arg_size() - 1;
155     Value *AlignArgOp = II.getArgOperand(AlignArg);
156     MaybeAlign Align = cast<ConstantInt>(AlignArgOp)->getMaybeAlignValue();
157     if (Align && *Align < MemAlign) {
158       return IC.replaceOperand(
159           II, AlignArg,
160           ConstantInt::get(Type::getInt32Ty(II.getContext()), MemAlign.value(),
161                            false));
162     }
163     break;
164   }
165 
166   case Intrinsic::arm_mve_pred_i2v: {
167     Value *Arg = II.getArgOperand(0);
168     Value *ArgArg;
169     if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(
170                        PatternMatch::m_Value(ArgArg))) &&
171         II.getType() == ArgArg->getType()) {
172       return IC.replaceInstUsesWith(II, ArgArg);
173     }
174     Constant *XorMask;
175     if (match(Arg, m_Xor(PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(
176                              PatternMatch::m_Value(ArgArg)),
177                          PatternMatch::m_Constant(XorMask))) &&
178         II.getType() == ArgArg->getType()) {
179       if (auto *CI = dyn_cast<ConstantInt>(XorMask)) {
180         if (CI->getValue().trunc(16).isAllOnes()) {
181           auto TrueVector = IC.Builder.CreateVectorSplat(
182               cast<FixedVectorType>(II.getType())->getNumElements(),
183               IC.Builder.getTrue());
184           return BinaryOperator::Create(Instruction::Xor, ArgArg, TrueVector);
185         }
186       }
187     }
188     KnownBits ScalarKnown(32);
189     if (IC.SimplifyDemandedBits(&II, 0, APInt::getLowBitsSet(32, 16),
190                                 ScalarKnown, 0)) {
191       return &II;
192     }
193     break;
194   }
195   case Intrinsic::arm_mve_pred_v2i: {
196     Value *Arg = II.getArgOperand(0);
197     Value *ArgArg;
198     if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_i2v>(
199                        PatternMatch::m_Value(ArgArg)))) {
200       return IC.replaceInstUsesWith(II, ArgArg);
201     }
202     if (!II.getMetadata(LLVMContext::MD_range)) {
203       Type *IntTy32 = Type::getInt32Ty(II.getContext());
204       Metadata *M[] = {
205           ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0)),
206           ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0x10000))};
207       II.setMetadata(LLVMContext::MD_range, MDNode::get(II.getContext(), M));
208       return &II;
209     }
210     break;
211   }
212   case Intrinsic::arm_mve_vadc:
213   case Intrinsic::arm_mve_vadc_predicated: {
214     unsigned CarryOp =
215         (II.getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated) ? 3 : 2;
216     assert(II.getArgOperand(CarryOp)->getType()->getScalarSizeInBits() == 32 &&
217            "Bad type for intrinsic!");
218 
219     KnownBits CarryKnown(32);
220     if (IC.SimplifyDemandedBits(&II, CarryOp, APInt::getOneBitSet(32, 29),
221                                 CarryKnown)) {
222       return &II;
223     }
224     break;
225   }
226   case Intrinsic::arm_mve_vmldava: {
227     Instruction *I = cast<Instruction>(&II);
228     if (I->hasOneUse()) {
229       auto *User = cast<Instruction>(*I->user_begin());
230       Value *OpZ;
231       if (match(User, m_c_Add(m_Specific(I), m_Value(OpZ))) &&
232           match(I->getOperand(3), m_Zero())) {
233         Value *OpX = I->getOperand(4);
234         Value *OpY = I->getOperand(5);
235         Type *OpTy = OpX->getType();
236 
237         IC.Builder.SetInsertPoint(User);
238         Value *V =
239             IC.Builder.CreateIntrinsic(Intrinsic::arm_mve_vmldava, {OpTy},
240                                        {I->getOperand(0), I->getOperand(1),
241                                         I->getOperand(2), OpZ, OpX, OpY});
242 
243         IC.replaceInstUsesWith(*User, V);
244         return IC.eraseInstFromFunction(*User);
245       }
246     }
247     return std::nullopt;
248   }
249   }
250   return std::nullopt;
251 }
252 
253 std::optional<Value *> ARMTTIImpl::simplifyDemandedVectorEltsIntrinsic(
254     InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts,
255     APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
256     std::function<void(Instruction *, unsigned, APInt, APInt &)>
257         SimplifyAndSetOp) const {
258 
259   // Compute the demanded bits for a narrowing MVE intrinsic. The TopOpc is the
260   // opcode specifying a Top/Bottom instruction, which can change between
261   // instructions.
262   auto SimplifyNarrowInstrTopBottom =[&](unsigned TopOpc) {
263     unsigned NumElts = cast<FixedVectorType>(II.getType())->getNumElements();
264     unsigned IsTop = cast<ConstantInt>(II.getOperand(TopOpc))->getZExtValue();
265 
266     // The only odd/even lanes of operand 0 will only be demanded depending
267     // on whether this is a top/bottom instruction.
268     APInt DemandedElts =
269         APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1)
270                                        : APInt::getHighBitsSet(2, 1));
271     SimplifyAndSetOp(&II, 0, OrigDemandedElts & DemandedElts, UndefElts);
272     // The other lanes will be defined from the inserted elements.
273     UndefElts &= APInt::getSplat(NumElts, !IsTop ? APInt::getLowBitsSet(2, 1)
274                                                  : APInt::getHighBitsSet(2, 1));
275     return std::nullopt;
276   };
277 
278   switch (II.getIntrinsicID()) {
279   default:
280     break;
281   case Intrinsic::arm_mve_vcvt_narrow:
282     SimplifyNarrowInstrTopBottom(2);
283     break;
284   case Intrinsic::arm_mve_vqmovn:
285     SimplifyNarrowInstrTopBottom(4);
286     break;
287   case Intrinsic::arm_mve_vshrn:
288     SimplifyNarrowInstrTopBottom(7);
289     break;
290   }
291 
292   return std::nullopt;
293 }
294 
295 InstructionCost ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
296                                           TTI::TargetCostKind CostKind) {
297   assert(Ty->isIntegerTy());
298 
299  unsigned Bits = Ty->getPrimitiveSizeInBits();
300  if (Bits == 0 || Imm.getActiveBits() >= 64)
301    return 4;
302 
303   int64_t SImmVal = Imm.getSExtValue();
304   uint64_t ZImmVal = Imm.getZExtValue();
305   if (!ST->isThumb()) {
306     if ((SImmVal >= 0 && SImmVal < 65536) ||
307         (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
308         (ARM_AM::getSOImmVal(~ZImmVal) != -1))
309       return 1;
310     return ST->hasV6T2Ops() ? 2 : 3;
311   }
312   if (ST->isThumb2()) {
313     if ((SImmVal >= 0 && SImmVal < 65536) ||
314         (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
315         (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
316       return 1;
317     return ST->hasV6T2Ops() ? 2 : 3;
318   }
319   // Thumb1, any i8 imm cost 1.
320   if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256))
321     return 1;
322   if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
323     return 2;
324   // Load from constantpool.
325   return 3;
326 }
327 
328 // Constants smaller than 256 fit in the immediate field of
329 // Thumb1 instructions so we return a zero cost and 1 otherwise.
330 InstructionCost ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
331                                                   const APInt &Imm, Type *Ty) {
332   if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
333     return 0;
334 
335   return 1;
336 }
337 
338 // Checks whether Inst is part of a min(max()) or max(min()) pattern
339 // that will match to an SSAT instruction. Returns the instruction being
340 // saturated, or null if no saturation pattern was found.
341 static Value *isSSATMinMaxPattern(Instruction *Inst, const APInt &Imm) {
342   Value *LHS, *RHS;
343   ConstantInt *C;
344   SelectPatternFlavor InstSPF = matchSelectPattern(Inst, LHS, RHS).Flavor;
345 
346   if (InstSPF == SPF_SMAX &&
347       PatternMatch::match(RHS, PatternMatch::m_ConstantInt(C)) &&
348       C->getValue() == Imm && Imm.isNegative() && Imm.isNegatedPowerOf2()) {
349 
350     auto isSSatMin = [&](Value *MinInst) {
351       if (isa<SelectInst>(MinInst)) {
352         Value *MinLHS, *MinRHS;
353         ConstantInt *MinC;
354         SelectPatternFlavor MinSPF =
355             matchSelectPattern(MinInst, MinLHS, MinRHS).Flavor;
356         if (MinSPF == SPF_SMIN &&
357             PatternMatch::match(MinRHS, PatternMatch::m_ConstantInt(MinC)) &&
358             MinC->getValue() == ((-Imm) - 1))
359           return true;
360       }
361       return false;
362     };
363 
364     if (isSSatMin(Inst->getOperand(1)))
365       return cast<Instruction>(Inst->getOperand(1))->getOperand(1);
366     if (Inst->hasNUses(2) &&
367         (isSSatMin(*Inst->user_begin()) || isSSatMin(*(++Inst->user_begin()))))
368       return Inst->getOperand(1);
369   }
370   return nullptr;
371 }
372 
373 // Look for a FP Saturation pattern, where the instruction can be simplified to
374 // a fptosi.sat. max(min(fptosi)). The constant in this case is always free.
375 static bool isFPSatMinMaxPattern(Instruction *Inst, const APInt &Imm) {
376   if (Imm.getBitWidth() != 64 ||
377       Imm != APInt::getHighBitsSet(64, 33)) // -2147483648
378     return false;
379   Value *FP = isSSATMinMaxPattern(Inst, Imm);
380   if (!FP && isa<ICmpInst>(Inst) && Inst->hasOneUse())
381     FP = isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm);
382   if (!FP)
383     return false;
384   return isa<FPToSIInst>(FP);
385 }
386 
387 InstructionCost ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
388                                               const APInt &Imm, Type *Ty,
389                                               TTI::TargetCostKind CostKind,
390                                               Instruction *Inst) {
391   // Division by a constant can be turned into multiplication, but only if we
392   // know it's constant. So it's not so much that the immediate is cheap (it's
393   // not), but that the alternative is worse.
394   // FIXME: this is probably unneeded with GlobalISel.
395   if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
396        Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
397       Idx == 1)
398     return 0;
399 
400   // Leave any gep offsets for the CodeGenPrepare, which will do a better job at
401   // splitting any large offsets.
402   if (Opcode == Instruction::GetElementPtr && Idx != 0)
403     return 0;
404 
405   if (Opcode == Instruction::And) {
406     // UXTB/UXTH
407     if (Imm == 255 || Imm == 65535)
408       return 0;
409     // Conversion to BIC is free, and means we can use ~Imm instead.
410     return std::min(getIntImmCost(Imm, Ty, CostKind),
411                     getIntImmCost(~Imm, Ty, CostKind));
412   }
413 
414   if (Opcode == Instruction::Add)
415     // Conversion to SUB is free, and means we can use -Imm instead.
416     return std::min(getIntImmCost(Imm, Ty, CostKind),
417                     getIntImmCost(-Imm, Ty, CostKind));
418 
419   if (Opcode == Instruction::ICmp && Imm.isNegative() &&
420       Ty->getIntegerBitWidth() == 32) {
421     int64_t NegImm = -Imm.getSExtValue();
422     if (ST->isThumb2() && NegImm < 1<<12)
423       // icmp X, #-C -> cmn X, #C
424       return 0;
425     if (ST->isThumb() && NegImm < 1<<8)
426       // icmp X, #-C -> adds X, #C
427       return 0;
428   }
429 
430   // xor a, -1 can always be folded to MVN
431   if (Opcode == Instruction::Xor && Imm.isAllOnes())
432     return 0;
433 
434   // Ensures negative constant of min(max()) or max(min()) patterns that
435   // match to SSAT instructions don't get hoisted
436   if (Inst && ((ST->hasV6Ops() && !ST->isThumb()) || ST->isThumb2()) &&
437       Ty->getIntegerBitWidth() <= 32) {
438     if (isSSATMinMaxPattern(Inst, Imm) ||
439         (isa<ICmpInst>(Inst) && Inst->hasOneUse() &&
440          isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm)))
441       return 0;
442   }
443 
444   if (Inst && ST->hasVFP2Base() && isFPSatMinMaxPattern(Inst, Imm))
445     return 0;
446 
447   // We can convert <= -1 to < 0, which is generally quite cheap.
448   if (Inst && Opcode == Instruction::ICmp && Idx == 1 && Imm.isAllOnes()) {
449     ICmpInst::Predicate Pred = cast<ICmpInst>(Inst)->getPredicate();
450     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE)
451       return std::min(getIntImmCost(Imm, Ty, CostKind),
452                       getIntImmCost(Imm + 1, Ty, CostKind));
453   }
454 
455   return getIntImmCost(Imm, Ty, CostKind);
456 }
457 
458 InstructionCost ARMTTIImpl::getCFInstrCost(unsigned Opcode,
459                                            TTI::TargetCostKind CostKind,
460                                            const Instruction *I) {
461   if (CostKind == TTI::TCK_RecipThroughput &&
462       (ST->hasNEON() || ST->hasMVEIntegerOps())) {
463     // FIXME: The vectorizer is highly sensistive to the cost of these
464     // instructions, which suggests that it may be using the costs incorrectly.
465     // But, for now, just make them free to avoid performance regressions for
466     // vector targets.
467     return 0;
468   }
469   return BaseT::getCFInstrCost(Opcode, CostKind, I);
470 }
471 
472 InstructionCost ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
473                                              Type *Src,
474                                              TTI::CastContextHint CCH,
475                                              TTI::TargetCostKind CostKind,
476                                              const Instruction *I) {
477   int ISD = TLI->InstructionOpcodeToISD(Opcode);
478   assert(ISD && "Invalid opcode");
479 
480   // TODO: Allow non-throughput costs that aren't binary.
481   auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
482     if (CostKind != TTI::TCK_RecipThroughput)
483       return Cost == 0 ? 0 : 1;
484     return Cost;
485   };
486   auto IsLegalFPType = [this](EVT VT) {
487     EVT EltVT = VT.getScalarType();
488     return (EltVT == MVT::f32 && ST->hasVFP2Base()) ||
489             (EltVT == MVT::f64 && ST->hasFP64()) ||
490             (EltVT == MVT::f16 && ST->hasFullFP16());
491   };
492 
493   EVT SrcTy = TLI->getValueType(DL, Src);
494   EVT DstTy = TLI->getValueType(DL, Dst);
495 
496   if (!SrcTy.isSimple() || !DstTy.isSimple())
497     return AdjustCost(
498         BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
499 
500   // Extending masked load/Truncating masked stores is expensive because we
501   // currently don't split them. This means that we'll likely end up
502   // loading/storing each element individually (hence the high cost).
503   if ((ST->hasMVEIntegerOps() &&
504        (Opcode == Instruction::Trunc || Opcode == Instruction::ZExt ||
505         Opcode == Instruction::SExt)) ||
506       (ST->hasMVEFloatOps() &&
507        (Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc) &&
508        IsLegalFPType(SrcTy) && IsLegalFPType(DstTy)))
509     if (CCH == TTI::CastContextHint::Masked && DstTy.getSizeInBits() > 128)
510       return 2 * DstTy.getVectorNumElements() *
511              ST->getMVEVectorCostFactor(CostKind);
512 
513   // The extend of other kinds of load is free
514   if (CCH == TTI::CastContextHint::Normal ||
515       CCH == TTI::CastContextHint::Masked) {
516     static const TypeConversionCostTblEntry LoadConversionTbl[] = {
517         {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0},
518         {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0},
519         {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0},
520         {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0},
521         {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0},
522         {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0},
523         {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1},
524         {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1},
525         {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1},
526         {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1},
527         {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1},
528         {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1},
529     };
530     if (const auto *Entry = ConvertCostTableLookup(
531             LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
532       return AdjustCost(Entry->Cost);
533 
534     static const TypeConversionCostTblEntry MVELoadConversionTbl[] = {
535         {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0},
536         {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0},
537         {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0},
538         {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0},
539         {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0},
540         {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0},
541         // The following extend from a legal type to an illegal type, so need to
542         // split the load. This introduced an extra load operation, but the
543         // extend is still "free".
544         {ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1},
545         {ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1},
546         {ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 3},
547         {ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 3},
548         {ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1},
549         {ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1},
550     };
551     if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
552       if (const auto *Entry =
553               ConvertCostTableLookup(MVELoadConversionTbl, ISD,
554                                      DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
555         return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
556     }
557 
558     static const TypeConversionCostTblEntry MVEFLoadConversionTbl[] = {
559         // FPExtends are similar but also require the VCVT instructions.
560         {ISD::FP_EXTEND, MVT::v4f32, MVT::v4f16, 1},
561         {ISD::FP_EXTEND, MVT::v8f32, MVT::v8f16, 3},
562     };
563     if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
564       if (const auto *Entry =
565               ConvertCostTableLookup(MVEFLoadConversionTbl, ISD,
566                                      DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
567         return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
568     }
569 
570     // The truncate of a store is free. This is the mirror of extends above.
571     static const TypeConversionCostTblEntry MVEStoreConversionTbl[] = {
572         {ISD::TRUNCATE, MVT::v4i32, MVT::v4i16, 0},
573         {ISD::TRUNCATE, MVT::v4i32, MVT::v4i8, 0},
574         {ISD::TRUNCATE, MVT::v8i16, MVT::v8i8, 0},
575         {ISD::TRUNCATE, MVT::v8i32, MVT::v8i16, 1},
576         {ISD::TRUNCATE, MVT::v8i32, MVT::v8i8, 1},
577         {ISD::TRUNCATE, MVT::v16i32, MVT::v16i8, 3},
578         {ISD::TRUNCATE, MVT::v16i16, MVT::v16i8, 1},
579     };
580     if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
581       if (const auto *Entry =
582               ConvertCostTableLookup(MVEStoreConversionTbl, ISD,
583                                      SrcTy.getSimpleVT(), DstTy.getSimpleVT()))
584         return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
585     }
586 
587     static const TypeConversionCostTblEntry MVEFStoreConversionTbl[] = {
588         {ISD::FP_ROUND, MVT::v4f32, MVT::v4f16, 1},
589         {ISD::FP_ROUND, MVT::v8f32, MVT::v8f16, 3},
590     };
591     if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
592       if (const auto *Entry =
593               ConvertCostTableLookup(MVEFStoreConversionTbl, ISD,
594                                      SrcTy.getSimpleVT(), DstTy.getSimpleVT()))
595         return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
596     }
597   }
598 
599   // NEON vector operations that can extend their inputs.
600   if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) &&
601       I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) {
602     static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = {
603       // vaddl
604       { ISD::ADD, MVT::v4i32, MVT::v4i16, 0 },
605       { ISD::ADD, MVT::v8i16, MVT::v8i8,  0 },
606       // vsubl
607       { ISD::SUB, MVT::v4i32, MVT::v4i16, 0 },
608       { ISD::SUB, MVT::v8i16, MVT::v8i8,  0 },
609       // vmull
610       { ISD::MUL, MVT::v4i32, MVT::v4i16, 0 },
611       { ISD::MUL, MVT::v8i16, MVT::v8i8,  0 },
612       // vshll
613       { ISD::SHL, MVT::v4i32, MVT::v4i16, 0 },
614       { ISD::SHL, MVT::v8i16, MVT::v8i8,  0 },
615     };
616 
617     auto *User = cast<Instruction>(*I->user_begin());
618     int UserISD = TLI->InstructionOpcodeToISD(User->getOpcode());
619     if (auto *Entry = ConvertCostTableLookup(NEONDoubleWidthTbl, UserISD,
620                                              DstTy.getSimpleVT(),
621                                              SrcTy.getSimpleVT())) {
622       return AdjustCost(Entry->Cost);
623     }
624   }
625 
626   // Single to/from double precision conversions.
627   if (Src->isVectorTy() && ST->hasNEON() &&
628       ((ISD == ISD::FP_ROUND && SrcTy.getScalarType() == MVT::f64 &&
629         DstTy.getScalarType() == MVT::f32) ||
630        (ISD == ISD::FP_EXTEND && SrcTy.getScalarType() == MVT::f32 &&
631         DstTy.getScalarType() == MVT::f64))) {
632     static const CostTblEntry NEONFltDblTbl[] = {
633         // Vector fptrunc/fpext conversions.
634         {ISD::FP_ROUND, MVT::v2f64, 2},
635         {ISD::FP_EXTEND, MVT::v2f32, 2},
636         {ISD::FP_EXTEND, MVT::v4f32, 4}};
637 
638     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
639     if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
640       return AdjustCost(LT.first * Entry->Cost);
641   }
642 
643   // Some arithmetic, load and store operations have specific instructions
644   // to cast up/down their types automatically at no extra cost.
645   // TODO: Get these tables to know at least what the related operations are.
646   static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
647     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
648     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
649     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
650     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
651     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
652     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },
653 
654     // The number of vmovl instructions for the extension.
655     { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8,  1 },
656     { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8,  1 },
657     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8,  2 },
658     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8,  2 },
659     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8,  3 },
660     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8,  3 },
661     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
662     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
663     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
664     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
665     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
666     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
667     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
668     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
669     { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
670     { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
671     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
672     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
673 
674     // Operations that we legalize using splitting.
675     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 },
676     { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 },
677 
678     // Vector float <-> i32 conversions.
679     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
680     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
681 
682     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
683     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
684     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
685     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
686     { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
687     { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
688     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
689     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
690     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
691     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
692     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
693     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
694     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
695     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
696     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
697     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
698     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
699     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
700     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
701     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
702 
703     { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
704     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
705     { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 },
706     { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 },
707     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 },
708     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 },
709 
710     // Vector double <-> i32 conversions.
711     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
712     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
713 
714     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
715     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
716     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
717     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
718     { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
719     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
720 
721     { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
722     { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 },
723     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 },
724     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 },
725     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 },
726     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 }
727   };
728 
729   if (SrcTy.isVector() && ST->hasNEON()) {
730     if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
731                                                    DstTy.getSimpleVT(),
732                                                    SrcTy.getSimpleVT()))
733       return AdjustCost(Entry->Cost);
734   }
735 
736   // Scalar float to integer conversions.
737   static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
738     { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
739     { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
740     { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
741     { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
742     { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
743     { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
744     { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
745     { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
746     { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
747     { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
748     { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
749     { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
750     { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
751     { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
752     { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
753     { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
754     { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
755     { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
756     { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
757     { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
758   };
759   if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
760     if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
761                                                    DstTy.getSimpleVT(),
762                                                    SrcTy.getSimpleVT()))
763       return AdjustCost(Entry->Cost);
764   }
765 
766   // Scalar integer to float conversions.
767   static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
768     { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
769     { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
770     { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
771     { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
772     { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
773     { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
774     { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
775     { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
776     { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
777     { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
778     { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
779     { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
780     { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
781     { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
782     { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
783     { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
784     { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
785     { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
786     { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
787     { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
788   };
789 
790   if (SrcTy.isInteger() && ST->hasNEON()) {
791     if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
792                                                    ISD, DstTy.getSimpleVT(),
793                                                    SrcTy.getSimpleVT()))
794       return AdjustCost(Entry->Cost);
795   }
796 
797   // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one
798   // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext
799   // are linearised so take more.
800   static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = {
801     { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
802     { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
803     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
804     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
805     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 },
806     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 },
807     { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
808     { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
809     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 },
810     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
811     { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 },
812     { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 },
813   };
814 
815   if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
816     if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl,
817                                                    ISD, DstTy.getSimpleVT(),
818                                                    SrcTy.getSimpleVT()))
819       return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
820   }
821 
822   if (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND) {
823     // As general rule, fp converts that were not matched above are scalarized
824     // and cost 1 vcvt for each lane, so long as the instruction is available.
825     // If not it will become a series of function calls.
826     const InstructionCost CallCost =
827         getCallInstrCost(nullptr, Dst, {Src}, CostKind);
828     int Lanes = 1;
829     if (SrcTy.isFixedLengthVector())
830       Lanes = SrcTy.getVectorNumElements();
831 
832     if (IsLegalFPType(SrcTy) && IsLegalFPType(DstTy))
833       return Lanes;
834     else
835       return Lanes * CallCost;
836   }
837 
838   if (ISD == ISD::TRUNCATE && ST->hasMVEIntegerOps() &&
839       SrcTy.isFixedLengthVector()) {
840     // Treat a truncate with larger than legal source (128bits for MVE) as
841     // expensive, 2 instructions per lane.
842     if ((SrcTy.getScalarType() == MVT::i8 ||
843          SrcTy.getScalarType() == MVT::i16 ||
844          SrcTy.getScalarType() == MVT::i32) &&
845         SrcTy.getSizeInBits() > 128 &&
846         SrcTy.getSizeInBits() > DstTy.getSizeInBits())
847       return SrcTy.getVectorNumElements() * 2;
848   }
849 
850   // Scalar integer conversion costs.
851   static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
852     // i16 -> i64 requires two dependent operations.
853     { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
854 
855     // Truncates on i64 are assumed to be free.
856     { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
857     { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
858     { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
859     { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
860   };
861 
862   if (SrcTy.isInteger()) {
863     if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
864                                                    DstTy.getSimpleVT(),
865                                                    SrcTy.getSimpleVT()))
866       return AdjustCost(Entry->Cost);
867   }
868 
869   int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
870                      ? ST->getMVEVectorCostFactor(CostKind)
871                      : 1;
872   return AdjustCost(
873       BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
874 }
875 
876 InstructionCost ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
877                                                TTI::TargetCostKind CostKind,
878                                                unsigned Index, Value *Op0,
879                                                Value *Op1) {
880   // Penalize inserting into an D-subregister. We end up with a three times
881   // lower estimated throughput on swift.
882   if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
883       ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
884     return 3;
885 
886   if (ST->hasNEON() && (Opcode == Instruction::InsertElement ||
887                         Opcode == Instruction::ExtractElement)) {
888     // Cross-class copies are expensive on many microarchitectures,
889     // so assume they are expensive by default.
890     if (cast<VectorType>(ValTy)->getElementType()->isIntegerTy())
891       return 3;
892 
893     // Even if it's not a cross class copy, this likely leads to mixing
894     // of NEON and VFP code and should be therefore penalized.
895     if (ValTy->isVectorTy() &&
896         ValTy->getScalarSizeInBits() <= 32)
897       return std::max<InstructionCost>(
898           BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0, Op1),
899           2U);
900   }
901 
902   if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement ||
903                                  Opcode == Instruction::ExtractElement)) {
904     // Integer cross-lane moves are more expensive than float, which can
905     // sometimes just be vmovs. Integer involve being passes to GPR registers,
906     // causing more of a delay.
907     std::pair<InstructionCost, MVT> LT =
908         getTypeLegalizationCost(ValTy->getScalarType());
909     return LT.first * (ValTy->getScalarType()->isIntegerTy() ? 4 : 1);
910   }
911 
912   return BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0, Op1);
913 }
914 
915 InstructionCost ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
916                                                Type *CondTy,
917                                                CmpInst::Predicate VecPred,
918                                                TTI::TargetCostKind CostKind,
919                                                const Instruction *I) {
920   int ISD = TLI->InstructionOpcodeToISD(Opcode);
921 
922   // Thumb scalar code size cost for select.
923   if (CostKind == TTI::TCK_CodeSize && ISD == ISD::SELECT &&
924       ST->isThumb() && !ValTy->isVectorTy()) {
925     // Assume expensive structs.
926     if (TLI->getValueType(DL, ValTy, true) == MVT::Other)
927       return TTI::TCC_Expensive;
928 
929     // Select costs can vary because they:
930     // - may require one or more conditional mov (including an IT),
931     // - can't operate directly on immediates,
932     // - require live flags, which we can't copy around easily.
933     InstructionCost Cost = getTypeLegalizationCost(ValTy).first;
934 
935     // Possible IT instruction for Thumb2, or more for Thumb1.
936     ++Cost;
937 
938     // i1 values may need rematerialising by using mov immediates and/or
939     // flag setting instructions.
940     if (ValTy->isIntegerTy(1))
941       ++Cost;
942 
943     return Cost;
944   }
945 
946   // If this is a vector min/max/abs, use the cost of that intrinsic directly
947   // instead. Hopefully when min/max intrinsics are more prevalent this code
948   // will not be needed.
949   const Instruction *Sel = I;
950   if ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && Sel &&
951       Sel->hasOneUse())
952     Sel = cast<Instruction>(Sel->user_back());
953   if (Sel && ValTy->isVectorTy() &&
954       (ValTy->isIntOrIntVectorTy() || ValTy->isFPOrFPVectorTy())) {
955     const Value *LHS, *RHS;
956     SelectPatternFlavor SPF = matchSelectPattern(Sel, LHS, RHS).Flavor;
957     unsigned IID = 0;
958     switch (SPF) {
959     case SPF_ABS:
960       IID = Intrinsic::abs;
961       break;
962     case SPF_SMIN:
963       IID = Intrinsic::smin;
964       break;
965     case SPF_SMAX:
966       IID = Intrinsic::smax;
967       break;
968     case SPF_UMIN:
969       IID = Intrinsic::umin;
970       break;
971     case SPF_UMAX:
972       IID = Intrinsic::umax;
973       break;
974     case SPF_FMINNUM:
975       IID = Intrinsic::minnum;
976       break;
977     case SPF_FMAXNUM:
978       IID = Intrinsic::maxnum;
979       break;
980     default:
981       break;
982     }
983     if (IID) {
984       // The ICmp is free, the select gets the cost of the min/max/etc
985       if (Sel != I)
986         return 0;
987       IntrinsicCostAttributes CostAttrs(IID, ValTy, {ValTy, ValTy});
988       return getIntrinsicInstrCost(CostAttrs, CostKind);
989     }
990   }
991 
992   // On NEON a vector select gets lowered to vbsl.
993   if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT && CondTy) {
994     // Lowering of some vector selects is currently far from perfect.
995     static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
996       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
997       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
998       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
999     };
1000 
1001     EVT SelCondTy = TLI->getValueType(DL, CondTy);
1002     EVT SelValTy = TLI->getValueType(DL, ValTy);
1003     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
1004       if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
1005                                                      SelCondTy.getSimpleVT(),
1006                                                      SelValTy.getSimpleVT()))
1007         return Entry->Cost;
1008     }
1009 
1010     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
1011     return LT.first;
1012   }
1013 
1014   if (ST->hasMVEIntegerOps() && ValTy->isVectorTy() &&
1015       (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
1016       cast<FixedVectorType>(ValTy)->getNumElements() > 1) {
1017     FixedVectorType *VecValTy = cast<FixedVectorType>(ValTy);
1018     FixedVectorType *VecCondTy = dyn_cast_or_null<FixedVectorType>(CondTy);
1019     if (!VecCondTy)
1020       VecCondTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(VecValTy));
1021 
1022     // If we don't have mve.fp any fp operations will need to be scalarized.
1023     if (Opcode == Instruction::FCmp && !ST->hasMVEFloatOps()) {
1024       // One scalaization insert, one scalarization extract and the cost of the
1025       // fcmps.
1026       return BaseT::getScalarizationOverhead(VecValTy, /*Insert*/ false,
1027                                              /*Extract*/ true, CostKind) +
1028              BaseT::getScalarizationOverhead(VecCondTy, /*Insert*/ true,
1029                                              /*Extract*/ false, CostKind) +
1030              VecValTy->getNumElements() *
1031                  getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
1032                                     VecCondTy->getScalarType(), VecPred,
1033                                     CostKind, I);
1034     }
1035 
1036     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
1037     int BaseCost = ST->getMVEVectorCostFactor(CostKind);
1038     // There are two types - the input that specifies the type of the compare
1039     // and the output vXi1 type. Because we don't know how the output will be
1040     // split, we may need an expensive shuffle to get two in sync. This has the
1041     // effect of making larger than legal compares (v8i32 for example)
1042     // expensive.
1043     if (LT.second.isVector() && LT.second.getVectorNumElements() > 2) {
1044       if (LT.first > 1)
1045         return LT.first * BaseCost +
1046                BaseT::getScalarizationOverhead(VecCondTy, /*Insert*/ true,
1047                                                /*Extract*/ false, CostKind);
1048       return BaseCost;
1049     }
1050   }
1051 
1052   // Default to cheap (throughput/size of 1 instruction) but adjust throughput
1053   // for "multiple beats" potentially needed by MVE instructions.
1054   int BaseCost = 1;
1055   if (ST->hasMVEIntegerOps() && ValTy->isVectorTy())
1056     BaseCost = ST->getMVEVectorCostFactor(CostKind);
1057 
1058   return BaseCost *
1059          BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
1060 }
1061 
1062 InstructionCost ARMTTIImpl::getAddressComputationCost(Type *Ty,
1063                                                       ScalarEvolution *SE,
1064                                                       const SCEV *Ptr) {
1065   // Address computations in vectorized code with non-consecutive addresses will
1066   // likely result in more instructions compared to scalar code where the
1067   // computation can more often be merged into the index mode. The resulting
1068   // extra micro-ops can significantly decrease throughput.
1069   unsigned NumVectorInstToHideOverhead = 10;
1070   int MaxMergeDistance = 64;
1071 
1072   if (ST->hasNEON()) {
1073     if (Ty->isVectorTy() && SE &&
1074         !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
1075       return NumVectorInstToHideOverhead;
1076 
1077     // In many cases the address computation is not merged into the instruction
1078     // addressing mode.
1079     return 1;
1080   }
1081   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
1082 }
1083 
1084 bool ARMTTIImpl::isProfitableLSRChainElement(Instruction *I) {
1085   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1086     // If a VCTP is part of a chain, it's already profitable and shouldn't be
1087     // optimized, else LSR may block tail-predication.
1088     switch (II->getIntrinsicID()) {
1089     case Intrinsic::arm_mve_vctp8:
1090     case Intrinsic::arm_mve_vctp16:
1091     case Intrinsic::arm_mve_vctp32:
1092     case Intrinsic::arm_mve_vctp64:
1093       return true;
1094     default:
1095       break;
1096     }
1097   }
1098   return false;
1099 }
1100 
1101 bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
1102   if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps())
1103     return false;
1104 
1105   if (auto *VecTy = dyn_cast<FixedVectorType>(DataTy)) {
1106     // Don't support v2i1 yet.
1107     if (VecTy->getNumElements() == 2)
1108       return false;
1109 
1110     // We don't support extending fp types.
1111      unsigned VecWidth = DataTy->getPrimitiveSizeInBits();
1112     if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy())
1113       return false;
1114   }
1115 
1116   unsigned EltWidth = DataTy->getScalarSizeInBits();
1117   return (EltWidth == 32 && Alignment >= 4) ||
1118          (EltWidth == 16 && Alignment >= 2) || (EltWidth == 8);
1119 }
1120 
1121 bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, Align Alignment) {
1122   if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps())
1123     return false;
1124 
1125   unsigned EltWidth = Ty->getScalarSizeInBits();
1126   return ((EltWidth == 32 && Alignment >= 4) ||
1127           (EltWidth == 16 && Alignment >= 2) || EltWidth == 8);
1128 }
1129 
1130 /// Given a memcpy/memset/memmove instruction, return the number of memory
1131 /// operations performed, via querying findOptimalMemOpLowering. Returns -1 if a
1132 /// call is used.
1133 int ARMTTIImpl::getNumMemOps(const IntrinsicInst *I) const {
1134   MemOp MOp;
1135   unsigned DstAddrSpace = ~0u;
1136   unsigned SrcAddrSpace = ~0u;
1137   const Function *F = I->getParent()->getParent();
1138 
1139   if (const auto *MC = dyn_cast<MemTransferInst>(I)) {
1140     ConstantInt *C = dyn_cast<ConstantInt>(MC->getLength());
1141     // If 'size' is not a constant, a library call will be generated.
1142     if (!C)
1143       return -1;
1144 
1145     const unsigned Size = C->getValue().getZExtValue();
1146     const Align DstAlign = *MC->getDestAlign();
1147     const Align SrcAlign = *MC->getSourceAlign();
1148 
1149     MOp = MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign,
1150                       /*IsVolatile*/ false);
1151     DstAddrSpace = MC->getDestAddressSpace();
1152     SrcAddrSpace = MC->getSourceAddressSpace();
1153   }
1154   else if (const auto *MS = dyn_cast<MemSetInst>(I)) {
1155     ConstantInt *C = dyn_cast<ConstantInt>(MS->getLength());
1156     // If 'size' is not a constant, a library call will be generated.
1157     if (!C)
1158       return -1;
1159 
1160     const unsigned Size = C->getValue().getZExtValue();
1161     const Align DstAlign = *MS->getDestAlign();
1162 
1163     MOp = MemOp::Set(Size, /*DstAlignCanChange*/ false, DstAlign,
1164                      /*IsZeroMemset*/ false, /*IsVolatile*/ false);
1165     DstAddrSpace = MS->getDestAddressSpace();
1166   }
1167   else
1168     llvm_unreachable("Expected a memcpy/move or memset!");
1169 
1170   unsigned Limit, Factor = 2;
1171   switch(I->getIntrinsicID()) {
1172     case Intrinsic::memcpy:
1173       Limit = TLI->getMaxStoresPerMemcpy(F->hasMinSize());
1174       break;
1175     case Intrinsic::memmove:
1176       Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize());
1177       break;
1178     case Intrinsic::memset:
1179       Limit = TLI->getMaxStoresPerMemset(F->hasMinSize());
1180       Factor = 1;
1181       break;
1182     default:
1183       llvm_unreachable("Expected a memcpy/move or memset!");
1184   }
1185 
1186   // MemOps will be poplulated with a list of data types that needs to be
1187   // loaded and stored. That's why we multiply the number of elements by 2 to
1188   // get the cost for this memcpy.
1189   std::vector<EVT> MemOps;
1190   if (getTLI()->findOptimalMemOpLowering(
1191           MemOps, Limit, MOp, DstAddrSpace,
1192           SrcAddrSpace, F->getAttributes()))
1193     return MemOps.size() * Factor;
1194 
1195   // If we can't find an optimal memop lowering, return the default cost
1196   return -1;
1197 }
1198 
1199 InstructionCost ARMTTIImpl::getMemcpyCost(const Instruction *I) {
1200   int NumOps = getNumMemOps(cast<IntrinsicInst>(I));
1201 
1202   // To model the cost of a library call, we assume 1 for the call, and
1203   // 3 for the argument setup.
1204   if (NumOps == -1)
1205     return 4;
1206   return NumOps;
1207 }
1208 
1209 InstructionCost ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
1210                                            VectorType *Tp, ArrayRef<int> Mask,
1211                                            TTI::TargetCostKind CostKind,
1212                                            int Index, VectorType *SubTp,
1213                                            ArrayRef<const Value *> Args) {
1214   Kind = improveShuffleKindFromMask(Kind, Mask);
1215   if (ST->hasNEON()) {
1216     if (Kind == TTI::SK_Broadcast) {
1217       static const CostTblEntry NEONDupTbl[] = {
1218           // VDUP handles these cases.
1219           {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
1220           {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
1221           {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
1222           {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
1223           {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
1224           {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
1225 
1226           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
1227           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
1228           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
1229           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}};
1230 
1231       std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
1232       if (const auto *Entry =
1233               CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second))
1234         return LT.first * Entry->Cost;
1235     }
1236     if (Kind == TTI::SK_Reverse) {
1237       static const CostTblEntry NEONShuffleTbl[] = {
1238           // Reverse shuffle cost one instruction if we are shuffling within a
1239           // double word (vrev) or two if we shuffle a quad word (vrev, vext).
1240           {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
1241           {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
1242           {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
1243           {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
1244           {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
1245           {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
1246 
1247           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
1248           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
1249           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
1250           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
1251 
1252       std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
1253       if (const auto *Entry =
1254               CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second))
1255         return LT.first * Entry->Cost;
1256     }
1257     if (Kind == TTI::SK_Select) {
1258       static const CostTblEntry NEONSelShuffleTbl[] = {
1259           // Select shuffle cost table for ARM. Cost is the number of
1260           // instructions
1261           // required to create the shuffled vector.
1262 
1263           {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
1264           {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
1265           {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
1266           {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
1267 
1268           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
1269           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
1270           {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
1271 
1272           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
1273 
1274           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
1275 
1276       std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
1277       if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl,
1278                                               ISD::VECTOR_SHUFFLE, LT.second))
1279         return LT.first * Entry->Cost;
1280     }
1281   }
1282   if (ST->hasMVEIntegerOps()) {
1283     if (Kind == TTI::SK_Broadcast) {
1284       static const CostTblEntry MVEDupTbl[] = {
1285           // VDUP handles these cases.
1286           {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
1287           {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
1288           {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1},
1289           {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
1290           {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}};
1291 
1292       std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
1293       if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE,
1294                                               LT.second))
1295         return LT.first * Entry->Cost *
1296                ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput);
1297     }
1298 
1299     if (!Mask.empty()) {
1300       std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
1301       if (LT.second.isVector() &&
1302           Mask.size() <= LT.second.getVectorNumElements() &&
1303           (isVREVMask(Mask, LT.second, 16) || isVREVMask(Mask, LT.second, 32) ||
1304            isVREVMask(Mask, LT.second, 64)))
1305         return ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) * LT.first;
1306     }
1307   }
1308 
1309   int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy()
1310                      ? ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput)
1311                      : 1;
1312   return BaseCost *
1313          BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp);
1314 }
1315 
1316 InstructionCost ARMTTIImpl::getArithmeticInstrCost(
1317     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
1318     TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
1319     ArrayRef<const Value *> Args,
1320     const Instruction *CxtI) {
1321   int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
1322   if (ST->isThumb() && CostKind == TTI::TCK_CodeSize && Ty->isIntegerTy(1)) {
1323     // Make operations on i1 relatively expensive as this often involves
1324     // combining predicates. AND and XOR should be easier to handle with IT
1325     // blocks.
1326     switch (ISDOpcode) {
1327     default:
1328       break;
1329     case ISD::AND:
1330     case ISD::XOR:
1331       return 2;
1332     case ISD::OR:
1333       return 3;
1334     }
1335   }
1336 
1337   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
1338 
1339   if (ST->hasNEON()) {
1340     const unsigned FunctionCallDivCost = 20;
1341     const unsigned ReciprocalDivCost = 10;
1342     static const CostTblEntry CostTbl[] = {
1343       // Division.
1344       // These costs are somewhat random. Choose a cost of 20 to indicate that
1345       // vectorizing devision (added function call) is going to be very expensive.
1346       // Double registers types.
1347       { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
1348       { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
1349       { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
1350       { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
1351       { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
1352       { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
1353       { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
1354       { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
1355       { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost},
1356       { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost},
1357       { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
1358       { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
1359       { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost},
1360       { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost},
1361       { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost},
1362       { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost},
1363       // Quad register types.
1364       { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
1365       { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
1366       { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
1367       { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
1368       { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
1369       { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
1370       { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
1371       { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
1372       { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
1373       { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
1374       { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
1375       { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
1376       { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
1377       { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
1378       { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
1379       { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
1380       // Multiplication.
1381     };
1382 
1383     if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
1384       return LT.first * Entry->Cost;
1385 
1386     InstructionCost Cost = BaseT::getArithmeticInstrCost(
1387         Opcode, Ty, CostKind, Op1Info, Op2Info);
1388 
1389     // This is somewhat of a hack. The problem that we are facing is that SROA
1390     // creates a sequence of shift, and, or instructions to construct values.
1391     // These sequences are recognized by the ISel and have zero-cost. Not so for
1392     // the vectorized code. Because we have support for v2i64 but not i64 those
1393     // sequences look particularly beneficial to vectorize.
1394     // To work around this we increase the cost of v2i64 operations to make them
1395     // seem less beneficial.
1396     if (LT.second == MVT::v2i64 && Op2Info.isUniform() && Op2Info.isConstant())
1397       Cost += 4;
1398 
1399     return Cost;
1400   }
1401 
1402   // If this operation is a shift on arm/thumb2, it might well be folded into
1403   // the following instruction, hence having a cost of 0.
1404   auto LooksLikeAFreeShift = [&]() {
1405     if (ST->isThumb1Only() || Ty->isVectorTy())
1406       return false;
1407 
1408     if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift())
1409       return false;
1410     if (!Op2Info.isUniform() || !Op2Info.isConstant())
1411       return false;
1412 
1413     // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB
1414     switch (cast<Instruction>(CxtI->user_back())->getOpcode()) {
1415     case Instruction::Add:
1416     case Instruction::Sub:
1417     case Instruction::And:
1418     case Instruction::Xor:
1419     case Instruction::Or:
1420     case Instruction::ICmp:
1421       return true;
1422     default:
1423       return false;
1424     }
1425   };
1426   if (LooksLikeAFreeShift())
1427     return 0;
1428 
1429   // Default to cheap (throughput/size of 1 instruction) but adjust throughput
1430   // for "multiple beats" potentially needed by MVE instructions.
1431   int BaseCost = 1;
1432   if (ST->hasMVEIntegerOps() && Ty->isVectorTy())
1433     BaseCost = ST->getMVEVectorCostFactor(CostKind);
1434 
1435   // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost,
1436   // without treating floats as more expensive that scalars or increasing the
1437   // costs for custom operations. The results is also multiplied by the
1438   // MVEVectorCostFactor where appropriate.
1439   if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second))
1440     return LT.first * BaseCost;
1441 
1442   // Else this is expand, assume that we need to scalarize this op.
1443   if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
1444     unsigned Num = VTy->getNumElements();
1445     InstructionCost Cost =
1446         getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind);
1447     // Return the cost of multiple scalar invocation plus the cost of
1448     // inserting and extracting the values.
1449     SmallVector<Type *> Tys(Args.size(), Ty);
1450     return BaseT::getScalarizationOverhead(VTy, Args, Tys, CostKind) +
1451            Num * Cost;
1452   }
1453 
1454   return BaseCost;
1455 }
1456 
1457 InstructionCost ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
1458                                             MaybeAlign Alignment,
1459                                             unsigned AddressSpace,
1460                                             TTI::TargetCostKind CostKind,
1461                                             TTI::OperandValueInfo OpInfo,
1462                                             const Instruction *I) {
1463   // TODO: Handle other cost kinds.
1464   if (CostKind != TTI::TCK_RecipThroughput)
1465     return 1;
1466 
1467   // Type legalization can't handle structs
1468   if (TLI->getValueType(DL, Src, true) == MVT::Other)
1469     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1470                                   CostKind);
1471 
1472   if (ST->hasNEON() && Src->isVectorTy() &&
1473       (Alignment && *Alignment != Align(16)) &&
1474       cast<VectorType>(Src)->getElementType()->isDoubleTy()) {
1475     // Unaligned loads/stores are extremely inefficient.
1476     // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
1477     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
1478     return LT.first * 4;
1479   }
1480 
1481   // MVE can optimize a fpext(load(4xhalf)) using an extending integer load.
1482   // Same for stores.
1483   if (ST->hasMVEFloatOps() && isa<FixedVectorType>(Src) && I &&
1484       ((Opcode == Instruction::Load && I->hasOneUse() &&
1485         isa<FPExtInst>(*I->user_begin())) ||
1486        (Opcode == Instruction::Store && isa<FPTruncInst>(I->getOperand(0))))) {
1487     FixedVectorType *SrcVTy = cast<FixedVectorType>(Src);
1488     Type *DstTy =
1489         Opcode == Instruction::Load
1490             ? (*I->user_begin())->getType()
1491             : cast<Instruction>(I->getOperand(0))->getOperand(0)->getType();
1492     if (SrcVTy->getNumElements() == 4 && SrcVTy->getScalarType()->isHalfTy() &&
1493         DstTy->getScalarType()->isFloatTy())
1494       return ST->getMVEVectorCostFactor(CostKind);
1495   }
1496 
1497   int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
1498                      ? ST->getMVEVectorCostFactor(CostKind)
1499                      : 1;
1500   return BaseCost * BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1501                                            CostKind, OpInfo, I);
1502 }
1503 
1504 InstructionCost
1505 ARMTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1506                                   unsigned AddressSpace,
1507                                   TTI::TargetCostKind CostKind) {
1508   if (ST->hasMVEIntegerOps()) {
1509     if (Opcode == Instruction::Load && isLegalMaskedLoad(Src, Alignment))
1510       return ST->getMVEVectorCostFactor(CostKind);
1511     if (Opcode == Instruction::Store && isLegalMaskedStore(Src, Alignment))
1512       return ST->getMVEVectorCostFactor(CostKind);
1513   }
1514   if (!isa<FixedVectorType>(Src))
1515     return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1516                                         CostKind);
1517   // Scalar cost, which is currently very high due to the efficiency of the
1518   // generated code.
1519   return cast<FixedVectorType>(Src)->getNumElements() * 8;
1520 }
1521 
1522 InstructionCost ARMTTIImpl::getInterleavedMemoryOpCost(
1523     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1524     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1525     bool UseMaskForCond, bool UseMaskForGaps) {
1526   assert(Factor >= 2 && "Invalid interleave factor");
1527   assert(isa<VectorType>(VecTy) && "Expect a vector type");
1528 
1529   // vldN/vstN doesn't support vector types of i64/f64 element.
1530   bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
1531 
1532   if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits &&
1533       !UseMaskForCond && !UseMaskForGaps) {
1534     unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements();
1535     auto *SubVecTy =
1536         FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);
1537 
1538     // vldN/vstN only support legal vector types of size 64 or 128 in bits.
1539     // Accesses having vector types that are a multiple of 128 bits can be
1540     // matched to more than one vldN/vstN instruction.
1541     int BaseCost =
1542         ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor(CostKind) : 1;
1543     if (NumElts % Factor == 0 &&
1544         TLI->isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL))
1545       return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL);
1546 
1547     // Some smaller than legal interleaved patterns are cheap as we can make
1548     // use of the vmovn or vrev patterns to interleave a standard load. This is
1549     // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is
1550     // promoted differently). The cost of 2 here is then a load and vrev or
1551     // vmovn.
1552     if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 &&
1553         VecTy->isIntOrIntVectorTy() &&
1554         DL.getTypeSizeInBits(SubVecTy).getFixedValue() <= 64)
1555       return 2 * BaseCost;
1556   }
1557 
1558   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1559                                            Alignment, AddressSpace, CostKind,
1560                                            UseMaskForCond, UseMaskForGaps);
1561 }
1562 
1563 InstructionCost ARMTTIImpl::getGatherScatterOpCost(
1564     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1565     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
1566   using namespace PatternMatch;
1567   if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters)
1568     return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
1569                                          Alignment, CostKind, I);
1570 
1571   assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!");
1572   auto *VTy = cast<FixedVectorType>(DataTy);
1573 
1574   // TODO: Splitting, once we do that.
1575 
1576   unsigned NumElems = VTy->getNumElements();
1577   unsigned EltSize = VTy->getScalarSizeInBits();
1578   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(DataTy);
1579 
1580   // For now, it is assumed that for the MVE gather instructions the loads are
1581   // all effectively serialised. This means the cost is the scalar cost
1582   // multiplied by the number of elements being loaded. This is possibly very
1583   // conservative, but even so we still end up vectorising loops because the
1584   // cost per iteration for many loops is lower than for scalar loops.
1585   InstructionCost VectorCost =
1586       NumElems * LT.first * ST->getMVEVectorCostFactor(CostKind);
1587   // The scalarization cost should be a lot higher. We use the number of vector
1588   // elements plus the scalarization overhead. If masking is required then a lot
1589   // of little blocks will be needed and potentially a scalarized p0 mask,
1590   // greatly increasing the cost.
1591   InstructionCost ScalarCost =
1592       NumElems * LT.first + (VariableMask ? NumElems * 5 : 0) +
1593       BaseT::getScalarizationOverhead(VTy, /*Insert*/ true, /*Extract*/ false,
1594                                       CostKind) +
1595       BaseT::getScalarizationOverhead(VTy, /*Insert*/ false, /*Extract*/ true,
1596                                       CostKind);
1597 
1598   if (EltSize < 8 || Alignment < EltSize / 8)
1599     return ScalarCost;
1600 
1601   unsigned ExtSize = EltSize;
1602   // Check whether there's a single user that asks for an extended type
1603   if (I != nullptr) {
1604     // Dependent of the caller of this function, a gather instruction will
1605     // either have opcode Instruction::Load or be a call to the masked_gather
1606     // intrinsic
1607     if ((I->getOpcode() == Instruction::Load ||
1608          match(I, m_Intrinsic<Intrinsic::masked_gather>())) &&
1609         I->hasOneUse()) {
1610       const User *Us = *I->users().begin();
1611       if (isa<ZExtInst>(Us) || isa<SExtInst>(Us)) {
1612         // only allow valid type combinations
1613         unsigned TypeSize =
1614             cast<Instruction>(Us)->getType()->getScalarSizeInBits();
1615         if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) ||
1616              (TypeSize == 16 && EltSize == 8)) &&
1617             TypeSize * NumElems == 128) {
1618           ExtSize = TypeSize;
1619         }
1620       }
1621     }
1622     // Check whether the input data needs to be truncated
1623     TruncInst *T;
1624     if ((I->getOpcode() == Instruction::Store ||
1625          match(I, m_Intrinsic<Intrinsic::masked_scatter>())) &&
1626         (T = dyn_cast<TruncInst>(I->getOperand(0)))) {
1627       // Only allow valid type combinations
1628       unsigned TypeSize = T->getOperand(0)->getType()->getScalarSizeInBits();
1629       if (((EltSize == 16 && TypeSize == 32) ||
1630            (EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) &&
1631           TypeSize * NumElems == 128)
1632         ExtSize = TypeSize;
1633     }
1634   }
1635 
1636   if (ExtSize * NumElems != 128 || NumElems < 4)
1637     return ScalarCost;
1638 
1639   // Any (aligned) i32 gather will not need to be scalarised.
1640   if (ExtSize == 32)
1641     return VectorCost;
1642   // For smaller types, we need to ensure that the gep's inputs are correctly
1643   // extended from a small enough value. Other sizes (including i64) are
1644   // scalarized for now.
1645   if (ExtSize != 8 && ExtSize != 16)
1646     return ScalarCost;
1647 
1648   if (const auto *BC = dyn_cast<BitCastInst>(Ptr))
1649     Ptr = BC->getOperand(0);
1650   if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1651     if (GEP->getNumOperands() != 2)
1652       return ScalarCost;
1653     unsigned Scale = DL.getTypeAllocSize(GEP->getResultElementType());
1654     // Scale needs to be correct (which is only relevant for i16s).
1655     if (Scale != 1 && Scale * 8 != ExtSize)
1656       return ScalarCost;
1657     // And we need to zext (not sext) the indexes from a small enough type.
1658     if (const auto *ZExt = dyn_cast<ZExtInst>(GEP->getOperand(1))) {
1659       if (ZExt->getOperand(0)->getType()->getScalarSizeInBits() <= ExtSize)
1660         return VectorCost;
1661     }
1662     return ScalarCost;
1663   }
1664   return ScalarCost;
1665 }
1666 
1667 InstructionCost
1668 ARMTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
1669                                        std::optional<FastMathFlags> FMF,
1670                                        TTI::TargetCostKind CostKind) {
1671   if (TTI::requiresOrderedReduction(FMF))
1672     return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
1673 
1674   EVT ValVT = TLI->getValueType(DL, ValTy);
1675   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1676   if (!ST->hasMVEIntegerOps() || !ValVT.isSimple() || ISD != ISD::ADD)
1677     return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
1678 
1679   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
1680 
1681   static const CostTblEntry CostTblAdd[]{
1682       {ISD::ADD, MVT::v16i8, 1},
1683       {ISD::ADD, MVT::v8i16, 1},
1684       {ISD::ADD, MVT::v4i32, 1},
1685   };
1686   if (const auto *Entry = CostTableLookup(CostTblAdd, ISD, LT.second))
1687     return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first;
1688 
1689   return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
1690 }
1691 
1692 InstructionCost ARMTTIImpl::getExtendedReductionCost(
1693     unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy,
1694     FastMathFlags FMF, TTI::TargetCostKind CostKind) {
1695   EVT ValVT = TLI->getValueType(DL, ValTy);
1696   EVT ResVT = TLI->getValueType(DL, ResTy);
1697 
1698   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1699 
1700   switch (ISD) {
1701   case ISD::ADD:
1702     if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) {
1703       std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
1704 
1705       // The legal cases are:
1706       //   VADDV u/s 8/16/32
1707       //   VADDLV u/s 32
1708       // Codegen currently cannot always handle larger than legal vectors very
1709       // well, especially for predicated reductions where the mask needs to be
1710       // split, so restrict to 128bit or smaller input types.
1711       unsigned RevVTSize = ResVT.getSizeInBits();
1712       if (ValVT.getSizeInBits() <= 128 &&
1713           ((LT.second == MVT::v16i8 && RevVTSize <= 32) ||
1714            (LT.second == MVT::v8i16 && RevVTSize <= 32) ||
1715            (LT.second == MVT::v4i32 && RevVTSize <= 64)))
1716         return ST->getMVEVectorCostFactor(CostKind) * LT.first;
1717     }
1718     break;
1719   default:
1720     break;
1721   }
1722   return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy, FMF,
1723                                          CostKind);
1724 }
1725 
1726 InstructionCost
1727 ARMTTIImpl::getMulAccReductionCost(bool IsUnsigned, Type *ResTy,
1728                                    VectorType *ValTy,
1729                                    TTI::TargetCostKind CostKind) {
1730   EVT ValVT = TLI->getValueType(DL, ValTy);
1731   EVT ResVT = TLI->getValueType(DL, ResTy);
1732 
1733   if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) {
1734     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
1735 
1736     // The legal cases are:
1737     //   VMLAV u/s 8/16/32
1738     //   VMLALV u/s 16/32
1739     // Codegen currently cannot always handle larger than legal vectors very
1740     // well, especially for predicated reductions where the mask needs to be
1741     // split, so restrict to 128bit or smaller input types.
1742     unsigned RevVTSize = ResVT.getSizeInBits();
1743     if (ValVT.getSizeInBits() <= 128 &&
1744         ((LT.second == MVT::v16i8 && RevVTSize <= 32) ||
1745          (LT.second == MVT::v8i16 && RevVTSize <= 64) ||
1746          (LT.second == MVT::v4i32 && RevVTSize <= 64)))
1747       return ST->getMVEVectorCostFactor(CostKind) * LT.first;
1748   }
1749 
1750   return BaseT::getMulAccReductionCost(IsUnsigned, ResTy, ValTy, CostKind);
1751 }
1752 
1753 InstructionCost
1754 ARMTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1755                                   TTI::TargetCostKind CostKind) {
1756   switch (ICA.getID()) {
1757   case Intrinsic::get_active_lane_mask:
1758     // Currently we make a somewhat optimistic assumption that
1759     // active_lane_mask's are always free. In reality it may be freely folded
1760     // into a tail predicated loop, expanded into a VCPT or expanded into a lot
1761     // of add/icmp code. We may need to improve this in the future, but being
1762     // able to detect if it is free or not involves looking at a lot of other
1763     // code. We currently assume that the vectorizer inserted these, and knew
1764     // what it was doing in adding one.
1765     if (ST->hasMVEIntegerOps())
1766       return 0;
1767     break;
1768   case Intrinsic::sadd_sat:
1769   case Intrinsic::ssub_sat:
1770   case Intrinsic::uadd_sat:
1771   case Intrinsic::usub_sat: {
1772     if (!ST->hasMVEIntegerOps())
1773       break;
1774     Type *VT = ICA.getReturnType();
1775 
1776     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VT);
1777     if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 ||
1778         LT.second == MVT::v16i8) {
1779       // This is a base cost of 1 for the vqadd, plus 3 extract shifts if we
1780       // need to extend the type, as it uses shr(qadd(shl, shl)).
1781       unsigned Instrs =
1782           LT.second.getScalarSizeInBits() == VT->getScalarSizeInBits() ? 1 : 4;
1783       return LT.first * ST->getMVEVectorCostFactor(CostKind) * Instrs;
1784     }
1785     break;
1786   }
1787   case Intrinsic::abs:
1788   case Intrinsic::smin:
1789   case Intrinsic::smax:
1790   case Intrinsic::umin:
1791   case Intrinsic::umax: {
1792     if (!ST->hasMVEIntegerOps())
1793       break;
1794     Type *VT = ICA.getReturnType();
1795 
1796     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VT);
1797     if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 ||
1798         LT.second == MVT::v16i8)
1799       return LT.first * ST->getMVEVectorCostFactor(CostKind);
1800     break;
1801   }
1802   case Intrinsic::minnum:
1803   case Intrinsic::maxnum: {
1804     if (!ST->hasMVEFloatOps())
1805       break;
1806     Type *VT = ICA.getReturnType();
1807     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VT);
1808     if (LT.second == MVT::v4f32 || LT.second == MVT::v8f16)
1809       return LT.first * ST->getMVEVectorCostFactor(CostKind);
1810     break;
1811   }
1812   case Intrinsic::fptosi_sat:
1813   case Intrinsic::fptoui_sat: {
1814     if (ICA.getArgTypes().empty())
1815       break;
1816     bool IsSigned = ICA.getID() == Intrinsic::fptosi_sat;
1817     auto LT = getTypeLegalizationCost(ICA.getArgTypes()[0]);
1818     EVT MTy = TLI->getValueType(DL, ICA.getReturnType());
1819     // Check for the legal types, with the corect subtarget features.
1820     if ((ST->hasVFP2Base() && LT.second == MVT::f32 && MTy == MVT::i32) ||
1821         (ST->hasFP64() && LT.second == MVT::f64 && MTy == MVT::i32) ||
1822         (ST->hasFullFP16() && LT.second == MVT::f16 && MTy == MVT::i32))
1823       return LT.first;
1824 
1825     // Equally for MVE vector types
1826     if (ST->hasMVEFloatOps() &&
1827         (LT.second == MVT::v4f32 || LT.second == MVT::v8f16) &&
1828         LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits())
1829       return LT.first * ST->getMVEVectorCostFactor(CostKind);
1830 
1831     // Otherwise we use a legal convert followed by a min+max
1832     if (((ST->hasVFP2Base() && LT.second == MVT::f32) ||
1833          (ST->hasFP64() && LT.second == MVT::f64) ||
1834          (ST->hasFullFP16() && LT.second == MVT::f16) ||
1835          (ST->hasMVEFloatOps() &&
1836           (LT.second == MVT::v4f32 || LT.second == MVT::v8f16))) &&
1837         LT.second.getScalarSizeInBits() >= MTy.getScalarSizeInBits()) {
1838       Type *LegalTy = Type::getIntNTy(ICA.getReturnType()->getContext(),
1839                                       LT.second.getScalarSizeInBits());
1840       InstructionCost Cost =
1841           LT.second.isVector() ? ST->getMVEVectorCostFactor(CostKind) : 1;
1842       IntrinsicCostAttributes Attrs1(IsSigned ? Intrinsic::smin
1843                                               : Intrinsic::umin,
1844                                      LegalTy, {LegalTy, LegalTy});
1845       Cost += getIntrinsicInstrCost(Attrs1, CostKind);
1846       IntrinsicCostAttributes Attrs2(IsSigned ? Intrinsic::smax
1847                                               : Intrinsic::umax,
1848                                      LegalTy, {LegalTy, LegalTy});
1849       Cost += getIntrinsicInstrCost(Attrs2, CostKind);
1850       return LT.first * Cost;
1851     }
1852     break;
1853   }
1854   }
1855 
1856   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
1857 }
1858 
1859 bool ARMTTIImpl::isLoweredToCall(const Function *F) {
1860   if (!F->isIntrinsic())
1861     return BaseT::isLoweredToCall(F);
1862 
1863   // Assume all Arm-specific intrinsics map to an instruction.
1864   if (F->getName().startswith("llvm.arm"))
1865     return false;
1866 
1867   switch (F->getIntrinsicID()) {
1868   default: break;
1869   case Intrinsic::powi:
1870   case Intrinsic::sin:
1871   case Intrinsic::cos:
1872   case Intrinsic::pow:
1873   case Intrinsic::log:
1874   case Intrinsic::log10:
1875   case Intrinsic::log2:
1876   case Intrinsic::exp:
1877   case Intrinsic::exp2:
1878     return true;
1879   case Intrinsic::sqrt:
1880   case Intrinsic::fabs:
1881   case Intrinsic::copysign:
1882   case Intrinsic::floor:
1883   case Intrinsic::ceil:
1884   case Intrinsic::trunc:
1885   case Intrinsic::rint:
1886   case Intrinsic::nearbyint:
1887   case Intrinsic::round:
1888   case Intrinsic::canonicalize:
1889   case Intrinsic::lround:
1890   case Intrinsic::llround:
1891   case Intrinsic::lrint:
1892   case Intrinsic::llrint:
1893     if (F->getReturnType()->isDoubleTy() && !ST->hasFP64())
1894       return true;
1895     if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16())
1896       return true;
1897     // Some operations can be handled by vector instructions and assume
1898     // unsupported vectors will be expanded into supported scalar ones.
1899     // TODO Handle scalar operations properly.
1900     return !ST->hasFPARMv8Base() && !ST->hasVFP2Base();
1901   case Intrinsic::masked_store:
1902   case Intrinsic::masked_load:
1903   case Intrinsic::masked_gather:
1904   case Intrinsic::masked_scatter:
1905     return !ST->hasMVEIntegerOps();
1906   case Intrinsic::sadd_with_overflow:
1907   case Intrinsic::uadd_with_overflow:
1908   case Intrinsic::ssub_with_overflow:
1909   case Intrinsic::usub_with_overflow:
1910   case Intrinsic::sadd_sat:
1911   case Intrinsic::uadd_sat:
1912   case Intrinsic::ssub_sat:
1913   case Intrinsic::usub_sat:
1914     return false;
1915   }
1916 
1917   return BaseT::isLoweredToCall(F);
1918 }
1919 
1920 bool ARMTTIImpl::maybeLoweredToCall(Instruction &I) {
1921   unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode());
1922   EVT VT = TLI->getValueType(DL, I.getType(), true);
1923   if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall)
1924     return true;
1925 
1926   // Check if an intrinsic will be lowered to a call and assume that any
1927   // other CallInst will generate a bl.
1928   if (auto *Call = dyn_cast<CallInst>(&I)) {
1929     if (auto *II = dyn_cast<IntrinsicInst>(Call)) {
1930       switch(II->getIntrinsicID()) {
1931         case Intrinsic::memcpy:
1932         case Intrinsic::memset:
1933         case Intrinsic::memmove:
1934           return getNumMemOps(II) == -1;
1935         default:
1936           if (const Function *F = Call->getCalledFunction())
1937             return isLoweredToCall(F);
1938       }
1939     }
1940     return true;
1941   }
1942 
1943   // FPv5 provides conversions between integer, double-precision,
1944   // single-precision, and half-precision formats.
1945   switch (I.getOpcode()) {
1946   default:
1947     break;
1948   case Instruction::FPToSI:
1949   case Instruction::FPToUI:
1950   case Instruction::SIToFP:
1951   case Instruction::UIToFP:
1952   case Instruction::FPTrunc:
1953   case Instruction::FPExt:
1954     return !ST->hasFPARMv8Base();
1955   }
1956 
1957   // FIXME: Unfortunately the approach of checking the Operation Action does
1958   // not catch all cases of Legalization that use library calls. Our
1959   // Legalization step categorizes some transformations into library calls as
1960   // Custom, Expand or even Legal when doing type legalization. So for now
1961   // we have to special case for instance the SDIV of 64bit integers and the
1962   // use of floating point emulation.
1963   if (VT.isInteger() && VT.getSizeInBits() >= 64) {
1964     switch (ISD) {
1965     default:
1966       break;
1967     case ISD::SDIV:
1968     case ISD::UDIV:
1969     case ISD::SREM:
1970     case ISD::UREM:
1971     case ISD::SDIVREM:
1972     case ISD::UDIVREM:
1973       return true;
1974     }
1975   }
1976 
1977   // Assume all other non-float operations are supported.
1978   if (!VT.isFloatingPoint())
1979     return false;
1980 
1981   // We'll need a library call to handle most floats when using soft.
1982   if (TLI->useSoftFloat()) {
1983     switch (I.getOpcode()) {
1984     default:
1985       return true;
1986     case Instruction::Alloca:
1987     case Instruction::Load:
1988     case Instruction::Store:
1989     case Instruction::Select:
1990     case Instruction::PHI:
1991       return false;
1992     }
1993   }
1994 
1995   // We'll need a libcall to perform double precision operations on a single
1996   // precision only FPU.
1997   if (I.getType()->isDoubleTy() && !ST->hasFP64())
1998     return true;
1999 
2000   // Likewise for half precision arithmetic.
2001   if (I.getType()->isHalfTy() && !ST->hasFullFP16())
2002     return true;
2003 
2004   return false;
2005 }
2006 
2007 bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
2008                                           AssumptionCache &AC,
2009                                           TargetLibraryInfo *LibInfo,
2010                                           HardwareLoopInfo &HWLoopInfo) {
2011   // Low-overhead branches are only supported in the 'low-overhead branch'
2012   // extension of v8.1-m.
2013   if (!ST->hasLOB() || DisableLowOverheadLoops) {
2014     LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n");
2015     return false;
2016   }
2017 
2018   if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
2019     LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n");
2020     return false;
2021   }
2022 
2023   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2024   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2025     LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n");
2026     return false;
2027   }
2028 
2029   const SCEV *TripCountSCEV =
2030     SE.getAddExpr(BackedgeTakenCount,
2031                   SE.getOne(BackedgeTakenCount->getType()));
2032 
2033   // We need to store the trip count in LR, a 32-bit register.
2034   if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) {
2035     LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n");
2036     return false;
2037   }
2038 
2039   // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little
2040   // point in generating a hardware loop if that's going to happen.
2041 
2042   auto IsHardwareLoopIntrinsic = [](Instruction &I) {
2043     if (auto *Call = dyn_cast<IntrinsicInst>(&I)) {
2044       switch (Call->getIntrinsicID()) {
2045       default:
2046         break;
2047       case Intrinsic::start_loop_iterations:
2048       case Intrinsic::test_start_loop_iterations:
2049       case Intrinsic::loop_decrement:
2050       case Intrinsic::loop_decrement_reg:
2051         return true;
2052       }
2053     }
2054     return false;
2055   };
2056 
2057   // Scan the instructions to see if there's any that we know will turn into a
2058   // call or if this loop is already a low-overhead loop or will become a tail
2059   // predicated loop.
2060   bool IsTailPredLoop = false;
2061   auto ScanLoop = [&](Loop *L) {
2062     for (auto *BB : L->getBlocks()) {
2063       for (auto &I : *BB) {
2064         if (maybeLoweredToCall(I) || IsHardwareLoopIntrinsic(I) ||
2065             isa<InlineAsm>(I)) {
2066           LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n");
2067           return false;
2068         }
2069         if (auto *II = dyn_cast<IntrinsicInst>(&I))
2070           IsTailPredLoop |=
2071               II->getIntrinsicID() == Intrinsic::get_active_lane_mask ||
2072               II->getIntrinsicID() == Intrinsic::arm_mve_vctp8 ||
2073               II->getIntrinsicID() == Intrinsic::arm_mve_vctp16 ||
2074               II->getIntrinsicID() == Intrinsic::arm_mve_vctp32 ||
2075               II->getIntrinsicID() == Intrinsic::arm_mve_vctp64;
2076       }
2077     }
2078     return true;
2079   };
2080 
2081   // Visit inner loops.
2082   for (auto *Inner : *L)
2083     if (!ScanLoop(Inner))
2084       return false;
2085 
2086   if (!ScanLoop(L))
2087     return false;
2088 
2089   // TODO: Check whether the trip count calculation is expensive. If L is the
2090   // inner loop but we know it has a low trip count, calculating that trip
2091   // count (in the parent loop) may be detrimental.
2092 
2093   LLVMContext &C = L->getHeader()->getContext();
2094   HWLoopInfo.CounterInReg = true;
2095   HWLoopInfo.IsNestingLegal = false;
2096   HWLoopInfo.PerformEntryTest = AllowWLSLoops && !IsTailPredLoop;
2097   HWLoopInfo.CountType = Type::getInt32Ty(C);
2098   HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
2099   return true;
2100 }
2101 
2102 static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) {
2103   // We don't allow icmp's, and because we only look at single block loops,
2104   // we simply count the icmps, i.e. there should only be 1 for the backedge.
2105   if (isa<ICmpInst>(&I) && ++ICmpCount > 1)
2106     return false;
2107   // FIXME: This is a workaround for poor cost modelling. Min/Max intrinsics are
2108   // not currently canonical, but soon will be. Code without them uses icmp, and
2109   // so is not tail predicated as per the condition above. In order to get the
2110   // same performance we treat min and max the same as an icmp for tailpred
2111   // purposes for the moment (we often rely on non-tailpred and higher VF's to
2112   // pick more optimial instructions like VQDMULH. They need to be recognized
2113   // directly by the vectorizer).
2114   if (auto *II = dyn_cast<IntrinsicInst>(&I))
2115     if ((II->getIntrinsicID() == Intrinsic::smin ||
2116          II->getIntrinsicID() == Intrinsic::smax ||
2117          II->getIntrinsicID() == Intrinsic::umin ||
2118          II->getIntrinsicID() == Intrinsic::umax) &&
2119         ++ICmpCount > 1)
2120       return false;
2121 
2122   if (isa<FCmpInst>(&I))
2123     return false;
2124 
2125   // We could allow extending/narrowing FP loads/stores, but codegen is
2126   // too inefficient so reject this for now.
2127   if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I))
2128     return false;
2129 
2130   // Extends have to be extending-loads
2131   if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) )
2132     if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0)))
2133       return false;
2134 
2135   // Truncs have to be narrowing-stores
2136   if (isa<TruncInst>(&I) )
2137     if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin()))
2138       return false;
2139 
2140   return true;
2141 }
2142 
2143 // To set up a tail-predicated loop, we need to know the total number of
2144 // elements processed by that loop. Thus, we need to determine the element
2145 // size and:
2146 // 1) it should be uniform for all operations in the vector loop, so we
2147 //    e.g. don't want any widening/narrowing operations.
2148 // 2) it should be smaller than i64s because we don't have vector operations
2149 //    that work on i64s.
2150 // 3) we don't want elements to be reversed or shuffled, to make sure the
2151 //    tail-predication masks/predicates the right lanes.
2152 //
2153 static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
2154                                  const DataLayout &DL,
2155                                  const LoopAccessInfo *LAI) {
2156   LLVM_DEBUG(dbgs() << "Tail-predication: checking allowed instructions\n");
2157 
2158   // If there are live-out values, it is probably a reduction. We can predicate
2159   // most reduction operations freely under MVE using a combination of
2160   // prefer-predicated-reduction-select and inloop reductions. We limit this to
2161   // floating point and integer reductions, but don't check for operators
2162   // specifically here. If the value ends up not being a reduction (and so the
2163   // vectorizer cannot tailfold the loop), we should fall back to standard
2164   // vectorization automatically.
2165   SmallVector< Instruction *, 8 > LiveOuts;
2166   LiveOuts = llvm::findDefsUsedOutsideOfLoop(L);
2167   bool ReductionsDisabled =
2168       EnableTailPredication == TailPredication::EnabledNoReductions ||
2169       EnableTailPredication == TailPredication::ForceEnabledNoReductions;
2170 
2171   for (auto *I : LiveOuts) {
2172     if (!I->getType()->isIntegerTy() && !I->getType()->isFloatTy() &&
2173         !I->getType()->isHalfTy()) {
2174       LLVM_DEBUG(dbgs() << "Don't tail-predicate loop with non-integer/float "
2175                            "live-out value\n");
2176       return false;
2177     }
2178     if (ReductionsDisabled) {
2179       LLVM_DEBUG(dbgs() << "Reductions not enabled\n");
2180       return false;
2181     }
2182   }
2183 
2184   // Next, check that all instructions can be tail-predicated.
2185   PredicatedScalarEvolution PSE = LAI->getPSE();
2186   SmallVector<Instruction *, 16> LoadStores;
2187   int ICmpCount = 0;
2188 
2189   for (BasicBlock *BB : L->blocks()) {
2190     for (Instruction &I : BB->instructionsWithoutDebug()) {
2191       if (isa<PHINode>(&I))
2192         continue;
2193       if (!canTailPredicateInstruction(I, ICmpCount)) {
2194         LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump());
2195         return false;
2196       }
2197 
2198       Type *T  = I.getType();
2199       if (T->getScalarSizeInBits() > 32) {
2200         LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump());
2201         return false;
2202       }
2203       if (isa<StoreInst>(I) || isa<LoadInst>(I)) {
2204         Value *Ptr = getLoadStorePointerOperand(&I);
2205         Type *AccessTy = getLoadStoreType(&I);
2206         int64_t NextStride = getPtrStride(PSE, AccessTy, Ptr, L).value_or(0);
2207         if (NextStride == 1) {
2208           // TODO: for now only allow consecutive strides of 1. We could support
2209           // other strides as long as it is uniform, but let's keep it simple
2210           // for now.
2211           continue;
2212         } else if (NextStride == -1 ||
2213                    (NextStride == 2 && MVEMaxSupportedInterleaveFactor >= 2) ||
2214                    (NextStride == 4 && MVEMaxSupportedInterleaveFactor >= 4)) {
2215           LLVM_DEBUG(dbgs()
2216                      << "Consecutive strides of 2 found, vld2/vstr2 can't "
2217                         "be tail-predicated\n.");
2218           return false;
2219           // TODO: don't tail predicate if there is a reversed load?
2220         } else if (EnableMaskedGatherScatters) {
2221           // Gather/scatters do allow loading from arbitrary strides, at
2222           // least if they are loop invariant.
2223           // TODO: Loop variant strides should in theory work, too, but
2224           // this requires further testing.
2225           const SCEV *PtrScev = PSE.getSE()->getSCEV(Ptr);
2226           if (auto AR = dyn_cast<SCEVAddRecExpr>(PtrScev)) {
2227             const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
2228             if (PSE.getSE()->isLoopInvariant(Step, L))
2229               continue;
2230           }
2231         }
2232         LLVM_DEBUG(dbgs() << "Bad stride found, can't "
2233                              "tail-predicate\n.");
2234         return false;
2235       }
2236     }
2237   }
2238 
2239   LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n");
2240   return true;
2241 }
2242 
2243 bool ARMTTIImpl::preferPredicateOverEpilogue(TailFoldingInfo *TFI) {
2244   if (!EnableTailPredication) {
2245     LLVM_DEBUG(dbgs() << "Tail-predication not enabled.\n");
2246     return false;
2247   }
2248 
2249   // Creating a predicated vector loop is the first step for generating a
2250   // tail-predicated hardware loop, for which we need the MVE masked
2251   // load/stores instructions:
2252   if (!ST->hasMVEIntegerOps())
2253     return false;
2254 
2255   LoopVectorizationLegality *LVL = TFI->LVL;
2256   Loop *L = LVL->getLoop();
2257 
2258   // For now, restrict this to single block loops.
2259   if (L->getNumBlocks() > 1) {
2260     LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block "
2261                          "loop.\n");
2262     return false;
2263   }
2264 
2265   assert(L->isInnermost() && "preferPredicateOverEpilogue: inner-loop expected");
2266 
2267   LoopInfo *LI = LVL->getLoopInfo();
2268   HardwareLoopInfo HWLoopInfo(L);
2269   if (!HWLoopInfo.canAnalyze(*LI)) {
2270     LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2271                          "analyzable.\n");
2272     return false;
2273   }
2274 
2275   AssumptionCache *AC = LVL->getAssumptionCache();
2276   ScalarEvolution *SE = LVL->getScalarEvolution();
2277 
2278   // This checks if we have the low-overhead branch architecture
2279   // extension, and if we will create a hardware-loop:
2280   if (!isHardwareLoopProfitable(L, *SE, *AC, TFI->TLI, HWLoopInfo)) {
2281     LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2282                          "profitable.\n");
2283     return false;
2284   }
2285 
2286   DominatorTree *DT = LVL->getDominatorTree();
2287   if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT)) {
2288     LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2289                          "a candidate.\n");
2290     return false;
2291   }
2292 
2293   return canTailPredicateLoop(L, LI, *SE, DL, LVL->getLAI());
2294 }
2295 
2296 TailFoldingStyle
2297 ARMTTIImpl::getPreferredTailFoldingStyle(bool IVUpdateMayOverflow) const {
2298   if (!ST->hasMVEIntegerOps() || !EnableTailPredication)
2299     return TailFoldingStyle::DataWithoutLaneMask;
2300 
2301   // Intrinsic @llvm.get.active.lane.mask is supported.
2302   // It is used in the MVETailPredication pass, which requires the number of
2303   // elements processed by this vector loop to setup the tail-predicated
2304   // loop.
2305   return TailFoldingStyle::Data;
2306 }
2307 void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
2308                                          TTI::UnrollingPreferences &UP,
2309                                          OptimizationRemarkEmitter *ORE) {
2310   // Enable Upper bound unrolling universally, not dependant upon the conditions
2311   // below.
2312   UP.UpperBound = true;
2313 
2314   // Only currently enable these preferences for M-Class cores.
2315   if (!ST->isMClass())
2316     return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE);
2317 
2318   // Disable loop unrolling for Oz and Os.
2319   UP.OptSizeThreshold = 0;
2320   UP.PartialOptSizeThreshold = 0;
2321   if (L->getHeader()->getParent()->hasOptSize())
2322     return;
2323 
2324   SmallVector<BasicBlock*, 4> ExitingBlocks;
2325   L->getExitingBlocks(ExitingBlocks);
2326   LLVM_DEBUG(dbgs() << "Loop has:\n"
2327                     << "Blocks: " << L->getNumBlocks() << "\n"
2328                     << "Exit blocks: " << ExitingBlocks.size() << "\n");
2329 
2330   // Only allow another exit other than the latch. This acts as an early exit
2331   // as it mirrors the profitability calculation of the runtime unroller.
2332   if (ExitingBlocks.size() > 2)
2333     return;
2334 
2335   // Limit the CFG of the loop body for targets with a branch predictor.
2336   // Allowing 4 blocks permits if-then-else diamonds in the body.
2337   if (ST->hasBranchPredictor() && L->getNumBlocks() > 4)
2338     return;
2339 
2340   // Don't unroll vectorized loops, including the remainder loop
2341   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
2342     return;
2343 
2344   // Scan the loop: don't unroll loops with calls as this could prevent
2345   // inlining.
2346   InstructionCost Cost = 0;
2347   for (auto *BB : L->getBlocks()) {
2348     for (auto &I : *BB) {
2349       // Don't unroll vectorised loop. MVE does not benefit from it as much as
2350       // scalar code.
2351       if (I.getType()->isVectorTy())
2352         return;
2353 
2354       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
2355         if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
2356           if (!isLoweredToCall(F))
2357             continue;
2358         }
2359         return;
2360       }
2361 
2362       SmallVector<const Value*, 4> Operands(I.operand_values());
2363       Cost += getInstructionCost(&I, Operands,
2364                                  TargetTransformInfo::TCK_SizeAndLatency);
2365     }
2366   }
2367 
2368   // On v6m cores, there are very few registers available. We can easily end up
2369   // spilling and reloading more registers in an unrolled loop. Look at the
2370   // number of LCSSA phis as a rough measure of how many registers will need to
2371   // be live out of the loop, reducing the default unroll count if more than 1
2372   // value is needed.  In the long run, all of this should be being learnt by a
2373   // machine.
2374   unsigned UnrollCount = 4;
2375   if (ST->isThumb1Only()) {
2376     unsigned ExitingValues = 0;
2377     SmallVector<BasicBlock *, 4> ExitBlocks;
2378     L->getExitBlocks(ExitBlocks);
2379     for (auto *Exit : ExitBlocks) {
2380       // Count the number of LCSSA phis. Exclude values coming from GEP's as
2381       // only the last is expected to be needed for address operands.
2382       unsigned LiveOuts = count_if(Exit->phis(), [](auto &PH) {
2383         return PH.getNumOperands() != 1 ||
2384                !isa<GetElementPtrInst>(PH.getOperand(0));
2385       });
2386       ExitingValues = ExitingValues < LiveOuts ? LiveOuts : ExitingValues;
2387     }
2388     if (ExitingValues)
2389       UnrollCount /= ExitingValues;
2390     if (UnrollCount <= 1)
2391       return;
2392   }
2393 
2394   LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
2395   LLVM_DEBUG(dbgs() << "Default Runtime Unroll Count: " << UnrollCount << "\n");
2396 
2397   UP.Partial = true;
2398   UP.Runtime = true;
2399   UP.UnrollRemainder = true;
2400   UP.DefaultUnrollRuntimeCount = UnrollCount;
2401   UP.UnrollAndJam = true;
2402   UP.UnrollAndJamInnerLoopThreshold = 60;
2403 
2404   // Force unrolling small loops can be very useful because of the branch
2405   // taken cost of the backedge.
2406   if (Cost < 12)
2407     UP.Force = true;
2408 }
2409 
2410 void ARMTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
2411                                        TTI::PeelingPreferences &PP) {
2412   BaseT::getPeelingPreferences(L, SE, PP);
2413 }
2414 
2415 bool ARMTTIImpl::preferInLoopReduction(unsigned Opcode, Type *Ty,
2416                                        TTI::ReductionFlags Flags) const {
2417   if (!ST->hasMVEIntegerOps())
2418     return false;
2419 
2420   unsigned ScalarBits = Ty->getScalarSizeInBits();
2421   switch (Opcode) {
2422   case Instruction::Add:
2423     return ScalarBits <= 64;
2424   default:
2425     return false;
2426   }
2427 }
2428 
2429 bool ARMTTIImpl::preferPredicatedReductionSelect(
2430     unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const {
2431   if (!ST->hasMVEIntegerOps())
2432     return false;
2433   return true;
2434 }
2435 
2436 InstructionCost ARMTTIImpl::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
2437                                                  int64_t BaseOffset,
2438                                                  bool HasBaseReg, int64_t Scale,
2439                                                  unsigned AddrSpace) const {
2440   TargetLoweringBase::AddrMode AM;
2441   AM.BaseGV = BaseGV;
2442   AM.BaseOffs = BaseOffset;
2443   AM.HasBaseReg = HasBaseReg;
2444   AM.Scale = Scale;
2445   if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace)) {
2446     if (ST->hasFPAO())
2447       return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
2448     return 0;
2449   }
2450   return -1;
2451 }
2452 
2453 bool ARMTTIImpl::hasArmWideBranch(bool Thumb) const {
2454   if (Thumb) {
2455     // B.W is available in any Thumb2-supporting target, and also in every
2456     // version of Armv8-M, even Baseline which does not include the rest of
2457     // Thumb2.
2458     return ST->isThumb2() || ST->hasV8MBaselineOps();
2459   } else {
2460     // B is available in all versions of the Arm ISA, so the only question is
2461     // whether that ISA is available at all.
2462     return ST->hasARMOps();
2463   }
2464 }
2465