1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMTargetTransformInfo.h" 10 #include "ARMSubtarget.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "llvm/ADT/APInt.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Analysis/LoopInfo.h" 15 #include "llvm/CodeGen/CostTable.h" 16 #include "llvm/CodeGen/ISDOpcodes.h" 17 #include "llvm/CodeGen/ValueTypes.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Instruction.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/Intrinsics.h" 25 #include "llvm/IR/IntrinsicsARM.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/MC/SubtargetFeature.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MachineValueType.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Transforms/InstCombine/InstCombiner.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/Transforms/Utils/LoopUtils.h" 36 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 37 #include <algorithm> 38 #include <cassert> 39 #include <cstdint> 40 #include <utility> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "armtti" 45 46 static cl::opt<bool> EnableMaskedLoadStores( 47 "enable-arm-maskedldst", cl::Hidden, cl::init(true), 48 cl::desc("Enable the generation of masked loads and stores")); 49 50 static cl::opt<bool> DisableLowOverheadLoops( 51 "disable-arm-loloops", cl::Hidden, cl::init(false), 52 cl::desc("Disable the generation of low-overhead loops")); 53 54 static cl::opt<bool> 55 AllowWLSLoops("allow-arm-wlsloops", cl::Hidden, cl::init(true), 56 cl::desc("Enable the generation of WLS loops")); 57 58 extern cl::opt<TailPredication::Mode> EnableTailPredication; 59 60 extern cl::opt<bool> EnableMaskedGatherScatters; 61 62 extern cl::opt<unsigned> MVEMaxSupportedInterleaveFactor; 63 64 /// Convert a vector load intrinsic into a simple llvm load instruction. 65 /// This is beneficial when the underlying object being addressed comes 66 /// from a constant, since we get constant-folding for free. 67 static Value *simplifyNeonVld1(const IntrinsicInst &II, unsigned MemAlign, 68 InstCombiner::BuilderTy &Builder) { 69 auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1)); 70 71 if (!IntrAlign) 72 return nullptr; 73 74 unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign 75 ? MemAlign 76 : IntrAlign->getLimitedValue(); 77 78 if (!isPowerOf2_32(Alignment)) 79 return nullptr; 80 81 auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0), 82 PointerType::get(II.getType(), 0)); 83 return Builder.CreateAlignedLoad(II.getType(), BCastInst, Align(Alignment)); 84 } 85 86 bool ARMTTIImpl::areInlineCompatible(const Function *Caller, 87 const Function *Callee) const { 88 const TargetMachine &TM = getTLI()->getTargetMachine(); 89 const FeatureBitset &CallerBits = 90 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 91 const FeatureBitset &CalleeBits = 92 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 93 94 // To inline a callee, all features not in the allowed list must match exactly. 95 bool MatchExact = (CallerBits & ~InlineFeaturesAllowed) == 96 (CalleeBits & ~InlineFeaturesAllowed); 97 // For features in the allowed list, the callee's features must be a subset of 98 // the callers'. 99 bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeaturesAllowed) == 100 (CalleeBits & InlineFeaturesAllowed); 101 return MatchExact && MatchSubset; 102 } 103 104 TTI::AddressingModeKind 105 ARMTTIImpl::getPreferredAddressingMode(const Loop *L, 106 ScalarEvolution *SE) const { 107 if (ST->hasMVEIntegerOps()) 108 return TTI::AMK_PostIndexed; 109 110 if (L->getHeader()->getParent()->hasOptSize()) 111 return TTI::AMK_None; 112 113 if (ST->isMClass() && ST->isThumb2() && 114 L->getNumBlocks() == 1) 115 return TTI::AMK_PreIndexed; 116 117 return TTI::AMK_None; 118 } 119 120 Optional<Instruction *> 121 ARMTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { 122 using namespace PatternMatch; 123 Intrinsic::ID IID = II.getIntrinsicID(); 124 switch (IID) { 125 default: 126 break; 127 case Intrinsic::arm_neon_vld1: { 128 Align MemAlign = 129 getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II, 130 &IC.getAssumptionCache(), &IC.getDominatorTree()); 131 if (Value *V = simplifyNeonVld1(II, MemAlign.value(), IC.Builder)) { 132 return IC.replaceInstUsesWith(II, V); 133 } 134 break; 135 } 136 137 case Intrinsic::arm_neon_vld2: 138 case Intrinsic::arm_neon_vld3: 139 case Intrinsic::arm_neon_vld4: 140 case Intrinsic::arm_neon_vld2lane: 141 case Intrinsic::arm_neon_vld3lane: 142 case Intrinsic::arm_neon_vld4lane: 143 case Intrinsic::arm_neon_vst1: 144 case Intrinsic::arm_neon_vst2: 145 case Intrinsic::arm_neon_vst3: 146 case Intrinsic::arm_neon_vst4: 147 case Intrinsic::arm_neon_vst2lane: 148 case Intrinsic::arm_neon_vst3lane: 149 case Intrinsic::arm_neon_vst4lane: { 150 Align MemAlign = 151 getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II, 152 &IC.getAssumptionCache(), &IC.getDominatorTree()); 153 unsigned AlignArg = II.arg_size() - 1; 154 Value *AlignArgOp = II.getArgOperand(AlignArg); 155 MaybeAlign Align = cast<ConstantInt>(AlignArgOp)->getMaybeAlignValue(); 156 if (Align && *Align < MemAlign) { 157 return IC.replaceOperand( 158 II, AlignArg, 159 ConstantInt::get(Type::getInt32Ty(II.getContext()), MemAlign.value(), 160 false)); 161 } 162 break; 163 } 164 165 case Intrinsic::arm_mve_pred_i2v: { 166 Value *Arg = II.getArgOperand(0); 167 Value *ArgArg; 168 if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>( 169 PatternMatch::m_Value(ArgArg))) && 170 II.getType() == ArgArg->getType()) { 171 return IC.replaceInstUsesWith(II, ArgArg); 172 } 173 Constant *XorMask; 174 if (match(Arg, m_Xor(PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>( 175 PatternMatch::m_Value(ArgArg)), 176 PatternMatch::m_Constant(XorMask))) && 177 II.getType() == ArgArg->getType()) { 178 if (auto *CI = dyn_cast<ConstantInt>(XorMask)) { 179 if (CI->getValue().trunc(16).isAllOnes()) { 180 auto TrueVector = IC.Builder.CreateVectorSplat( 181 cast<FixedVectorType>(II.getType())->getNumElements(), 182 IC.Builder.getTrue()); 183 return BinaryOperator::Create(Instruction::Xor, ArgArg, TrueVector); 184 } 185 } 186 } 187 KnownBits ScalarKnown(32); 188 if (IC.SimplifyDemandedBits(&II, 0, APInt::getLowBitsSet(32, 16), 189 ScalarKnown, 0)) { 190 return &II; 191 } 192 break; 193 } 194 case Intrinsic::arm_mve_pred_v2i: { 195 Value *Arg = II.getArgOperand(0); 196 Value *ArgArg; 197 if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_i2v>( 198 PatternMatch::m_Value(ArgArg)))) { 199 return IC.replaceInstUsesWith(II, ArgArg); 200 } 201 if (!II.getMetadata(LLVMContext::MD_range)) { 202 Type *IntTy32 = Type::getInt32Ty(II.getContext()); 203 Metadata *M[] = { 204 ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0)), 205 ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0x10000))}; 206 II.setMetadata(LLVMContext::MD_range, MDNode::get(II.getContext(), M)); 207 return &II; 208 } 209 break; 210 } 211 case Intrinsic::arm_mve_vadc: 212 case Intrinsic::arm_mve_vadc_predicated: { 213 unsigned CarryOp = 214 (II.getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated) ? 3 : 2; 215 assert(II.getArgOperand(CarryOp)->getType()->getScalarSizeInBits() == 32 && 216 "Bad type for intrinsic!"); 217 218 KnownBits CarryKnown(32); 219 if (IC.SimplifyDemandedBits(&II, CarryOp, APInt::getOneBitSet(32, 29), 220 CarryKnown)) { 221 return &II; 222 } 223 break; 224 } 225 case Intrinsic::arm_mve_vmldava: { 226 Instruction *I = cast<Instruction>(&II); 227 if (I->hasOneUse()) { 228 auto *User = cast<Instruction>(*I->user_begin()); 229 Value *OpZ; 230 if (match(User, m_c_Add(m_Specific(I), m_Value(OpZ))) && 231 match(I->getOperand(3), m_Zero())) { 232 Value *OpX = I->getOperand(4); 233 Value *OpY = I->getOperand(5); 234 Type *OpTy = OpX->getType(); 235 236 IC.Builder.SetInsertPoint(User); 237 Value *V = 238 IC.Builder.CreateIntrinsic(Intrinsic::arm_mve_vmldava, {OpTy}, 239 {I->getOperand(0), I->getOperand(1), 240 I->getOperand(2), OpZ, OpX, OpY}); 241 242 IC.replaceInstUsesWith(*User, V); 243 return IC.eraseInstFromFunction(*User); 244 } 245 } 246 return None; 247 } 248 } 249 return None; 250 } 251 252 Optional<Value *> ARMTTIImpl::simplifyDemandedVectorEltsIntrinsic( 253 InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts, 254 APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, 255 std::function<void(Instruction *, unsigned, APInt, APInt &)> 256 SimplifyAndSetOp) const { 257 258 // Compute the demanded bits for a narrowing MVE intrinsic. The TopOpc is the 259 // opcode specifying a Top/Bottom instruction, which can change between 260 // instructions. 261 auto SimplifyNarrowInstrTopBottom =[&](unsigned TopOpc) { 262 unsigned NumElts = cast<FixedVectorType>(II.getType())->getNumElements(); 263 unsigned IsTop = cast<ConstantInt>(II.getOperand(TopOpc))->getZExtValue(); 264 265 // The only odd/even lanes of operand 0 will only be demanded depending 266 // on whether this is a top/bottom instruction. 267 APInt DemandedElts = 268 APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1) 269 : APInt::getHighBitsSet(2, 1)); 270 SimplifyAndSetOp(&II, 0, OrigDemandedElts & DemandedElts, UndefElts); 271 // The other lanes will be defined from the inserted elements. 272 UndefElts &= APInt::getSplat(NumElts, !IsTop ? APInt::getLowBitsSet(2, 1) 273 : APInt::getHighBitsSet(2, 1)); 274 return None; 275 }; 276 277 switch (II.getIntrinsicID()) { 278 default: 279 break; 280 case Intrinsic::arm_mve_vcvt_narrow: 281 SimplifyNarrowInstrTopBottom(2); 282 break; 283 case Intrinsic::arm_mve_vqmovn: 284 SimplifyNarrowInstrTopBottom(4); 285 break; 286 case Intrinsic::arm_mve_vshrn: 287 SimplifyNarrowInstrTopBottom(7); 288 break; 289 } 290 291 return None; 292 } 293 294 InstructionCost ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 295 TTI::TargetCostKind CostKind) { 296 assert(Ty->isIntegerTy()); 297 298 unsigned Bits = Ty->getPrimitiveSizeInBits(); 299 if (Bits == 0 || Imm.getActiveBits() >= 64) 300 return 4; 301 302 int64_t SImmVal = Imm.getSExtValue(); 303 uint64_t ZImmVal = Imm.getZExtValue(); 304 if (!ST->isThumb()) { 305 if ((SImmVal >= 0 && SImmVal < 65536) || 306 (ARM_AM::getSOImmVal(ZImmVal) != -1) || 307 (ARM_AM::getSOImmVal(~ZImmVal) != -1)) 308 return 1; 309 return ST->hasV6T2Ops() ? 2 : 3; 310 } 311 if (ST->isThumb2()) { 312 if ((SImmVal >= 0 && SImmVal < 65536) || 313 (ARM_AM::getT2SOImmVal(ZImmVal) != -1) || 314 (ARM_AM::getT2SOImmVal(~ZImmVal) != -1)) 315 return 1; 316 return ST->hasV6T2Ops() ? 2 : 3; 317 } 318 // Thumb1, any i8 imm cost 1. 319 if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256)) 320 return 1; 321 if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal)) 322 return 2; 323 // Load from constantpool. 324 return 3; 325 } 326 327 // Constants smaller than 256 fit in the immediate field of 328 // Thumb1 instructions so we return a zero cost and 1 otherwise. 329 InstructionCost ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 330 const APInt &Imm, Type *Ty) { 331 if (Imm.isNonNegative() && Imm.getLimitedValue() < 256) 332 return 0; 333 334 return 1; 335 } 336 337 // Checks whether Inst is part of a min(max()) or max(min()) pattern 338 // that will match to an SSAT instruction. Returns the instruction being 339 // saturated, or null if no saturation pattern was found. 340 static Value *isSSATMinMaxPattern(Instruction *Inst, const APInt &Imm) { 341 Value *LHS, *RHS; 342 ConstantInt *C; 343 SelectPatternFlavor InstSPF = matchSelectPattern(Inst, LHS, RHS).Flavor; 344 345 if (InstSPF == SPF_SMAX && 346 PatternMatch::match(RHS, PatternMatch::m_ConstantInt(C)) && 347 C->getValue() == Imm && Imm.isNegative() && Imm.isNegatedPowerOf2()) { 348 349 auto isSSatMin = [&](Value *MinInst) { 350 if (isa<SelectInst>(MinInst)) { 351 Value *MinLHS, *MinRHS; 352 ConstantInt *MinC; 353 SelectPatternFlavor MinSPF = 354 matchSelectPattern(MinInst, MinLHS, MinRHS).Flavor; 355 if (MinSPF == SPF_SMIN && 356 PatternMatch::match(MinRHS, PatternMatch::m_ConstantInt(MinC)) && 357 MinC->getValue() == ((-Imm) - 1)) 358 return true; 359 } 360 return false; 361 }; 362 363 if (isSSatMin(Inst->getOperand(1))) 364 return cast<Instruction>(Inst->getOperand(1))->getOperand(1); 365 if (Inst->hasNUses(2) && 366 (isSSatMin(*Inst->user_begin()) || isSSatMin(*(++Inst->user_begin())))) 367 return Inst->getOperand(1); 368 } 369 return nullptr; 370 } 371 372 // Look for a FP Saturation pattern, where the instruction can be simplified to 373 // a fptosi.sat. max(min(fptosi)). The constant in this case is always free. 374 static bool isFPSatMinMaxPattern(Instruction *Inst, const APInt &Imm) { 375 if (Imm.getBitWidth() != 64 || 376 Imm != APInt::getHighBitsSet(64, 33)) // -2147483648 377 return false; 378 Value *FP = isSSATMinMaxPattern(Inst, Imm); 379 if (!FP && isa<ICmpInst>(Inst) && Inst->hasOneUse()) 380 FP = isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm); 381 if (!FP) 382 return false; 383 return isa<FPToSIInst>(FP); 384 } 385 386 InstructionCost ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 387 const APInt &Imm, Type *Ty, 388 TTI::TargetCostKind CostKind, 389 Instruction *Inst) { 390 // Division by a constant can be turned into multiplication, but only if we 391 // know it's constant. So it's not so much that the immediate is cheap (it's 392 // not), but that the alternative is worse. 393 // FIXME: this is probably unneeded with GlobalISel. 394 if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv || 395 Opcode == Instruction::SRem || Opcode == Instruction::URem) && 396 Idx == 1) 397 return 0; 398 399 // Leave any gep offsets for the CodeGenPrepare, which will do a better job at 400 // splitting any large offsets. 401 if (Opcode == Instruction::GetElementPtr && Idx != 0) 402 return 0; 403 404 if (Opcode == Instruction::And) { 405 // UXTB/UXTH 406 if (Imm == 255 || Imm == 65535) 407 return 0; 408 // Conversion to BIC is free, and means we can use ~Imm instead. 409 return std::min(getIntImmCost(Imm, Ty, CostKind), 410 getIntImmCost(~Imm, Ty, CostKind)); 411 } 412 413 if (Opcode == Instruction::Add) 414 // Conversion to SUB is free, and means we can use -Imm instead. 415 return std::min(getIntImmCost(Imm, Ty, CostKind), 416 getIntImmCost(-Imm, Ty, CostKind)); 417 418 if (Opcode == Instruction::ICmp && Imm.isNegative() && 419 Ty->getIntegerBitWidth() == 32) { 420 int64_t NegImm = -Imm.getSExtValue(); 421 if (ST->isThumb2() && NegImm < 1<<12) 422 // icmp X, #-C -> cmn X, #C 423 return 0; 424 if (ST->isThumb() && NegImm < 1<<8) 425 // icmp X, #-C -> adds X, #C 426 return 0; 427 } 428 429 // xor a, -1 can always be folded to MVN 430 if (Opcode == Instruction::Xor && Imm.isAllOnes()) 431 return 0; 432 433 // Ensures negative constant of min(max()) or max(min()) patterns that 434 // match to SSAT instructions don't get hoisted 435 if (Inst && ((ST->hasV6Ops() && !ST->isThumb()) || ST->isThumb2()) && 436 Ty->getIntegerBitWidth() <= 32) { 437 if (isSSATMinMaxPattern(Inst, Imm) || 438 (isa<ICmpInst>(Inst) && Inst->hasOneUse() && 439 isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm))) 440 return 0; 441 } 442 443 if (Inst && ST->hasVFP2Base() && isFPSatMinMaxPattern(Inst, Imm)) 444 return 0; 445 446 // We can convert <= -1 to < 0, which is generally quite cheap. 447 if (Inst && Opcode == Instruction::ICmp && Idx == 1 && Imm.isAllOnesValue()) { 448 ICmpInst::Predicate Pred = cast<ICmpInst>(Inst)->getPredicate(); 449 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) 450 return std::min(getIntImmCost(Imm, Ty, CostKind), 451 getIntImmCost(Imm + 1, Ty, CostKind)); 452 } 453 454 return getIntImmCost(Imm, Ty, CostKind); 455 } 456 457 InstructionCost ARMTTIImpl::getCFInstrCost(unsigned Opcode, 458 TTI::TargetCostKind CostKind, 459 const Instruction *I) { 460 if (CostKind == TTI::TCK_RecipThroughput && 461 (ST->hasNEON() || ST->hasMVEIntegerOps())) { 462 // FIXME: The vectorizer is highly sensistive to the cost of these 463 // instructions, which suggests that it may be using the costs incorrectly. 464 // But, for now, just make them free to avoid performance regressions for 465 // vector targets. 466 return 0; 467 } 468 return BaseT::getCFInstrCost(Opcode, CostKind, I); 469 } 470 471 InstructionCost ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 472 Type *Src, 473 TTI::CastContextHint CCH, 474 TTI::TargetCostKind CostKind, 475 const Instruction *I) { 476 int ISD = TLI->InstructionOpcodeToISD(Opcode); 477 assert(ISD && "Invalid opcode"); 478 479 // TODO: Allow non-throughput costs that aren't binary. 480 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost { 481 if (CostKind != TTI::TCK_RecipThroughput) 482 return Cost == 0 ? 0 : 1; 483 return Cost; 484 }; 485 auto IsLegalFPType = [this](EVT VT) { 486 EVT EltVT = VT.getScalarType(); 487 return (EltVT == MVT::f32 && ST->hasVFP2Base()) || 488 (EltVT == MVT::f64 && ST->hasFP64()) || 489 (EltVT == MVT::f16 && ST->hasFullFP16()); 490 }; 491 492 EVT SrcTy = TLI->getValueType(DL, Src); 493 EVT DstTy = TLI->getValueType(DL, Dst); 494 495 if (!SrcTy.isSimple() || !DstTy.isSimple()) 496 return AdjustCost( 497 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 498 499 // Extending masked load/Truncating masked stores is expensive because we 500 // currently don't split them. This means that we'll likely end up 501 // loading/storing each element individually (hence the high cost). 502 if ((ST->hasMVEIntegerOps() && 503 (Opcode == Instruction::Trunc || Opcode == Instruction::ZExt || 504 Opcode == Instruction::SExt)) || 505 (ST->hasMVEFloatOps() && 506 (Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc) && 507 IsLegalFPType(SrcTy) && IsLegalFPType(DstTy))) 508 if (CCH == TTI::CastContextHint::Masked && DstTy.getSizeInBits() > 128) 509 return 2 * DstTy.getVectorNumElements() * 510 ST->getMVEVectorCostFactor(CostKind); 511 512 // The extend of other kinds of load is free 513 if (CCH == TTI::CastContextHint::Normal || 514 CCH == TTI::CastContextHint::Masked) { 515 static const TypeConversionCostTblEntry LoadConversionTbl[] = { 516 {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0}, 517 {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0}, 518 {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0}, 519 {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0}, 520 {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0}, 521 {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0}, 522 {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1}, 523 {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1}, 524 {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1}, 525 {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1}, 526 {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1}, 527 {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1}, 528 }; 529 if (const auto *Entry = ConvertCostTableLookup( 530 LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 531 return AdjustCost(Entry->Cost); 532 533 static const TypeConversionCostTblEntry MVELoadConversionTbl[] = { 534 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0}, 535 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0}, 536 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0}, 537 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0}, 538 {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0}, 539 {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0}, 540 // The following extend from a legal type to an illegal type, so need to 541 // split the load. This introduced an extra load operation, but the 542 // extend is still "free". 543 {ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1}, 544 {ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1}, 545 {ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 3}, 546 {ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 3}, 547 {ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1}, 548 {ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1}, 549 }; 550 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 551 if (const auto *Entry = 552 ConvertCostTableLookup(MVELoadConversionTbl, ISD, 553 DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 554 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 555 } 556 557 static const TypeConversionCostTblEntry MVEFLoadConversionTbl[] = { 558 // FPExtends are similar but also require the VCVT instructions. 559 {ISD::FP_EXTEND, MVT::v4f32, MVT::v4f16, 1}, 560 {ISD::FP_EXTEND, MVT::v8f32, MVT::v8f16, 3}, 561 }; 562 if (SrcTy.isVector() && ST->hasMVEFloatOps()) { 563 if (const auto *Entry = 564 ConvertCostTableLookup(MVEFLoadConversionTbl, ISD, 565 DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 566 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 567 } 568 569 // The truncate of a store is free. This is the mirror of extends above. 570 static const TypeConversionCostTblEntry MVEStoreConversionTbl[] = { 571 {ISD::TRUNCATE, MVT::v4i32, MVT::v4i16, 0}, 572 {ISD::TRUNCATE, MVT::v4i32, MVT::v4i8, 0}, 573 {ISD::TRUNCATE, MVT::v8i16, MVT::v8i8, 0}, 574 {ISD::TRUNCATE, MVT::v8i32, MVT::v8i16, 1}, 575 {ISD::TRUNCATE, MVT::v8i32, MVT::v8i8, 1}, 576 {ISD::TRUNCATE, MVT::v16i32, MVT::v16i8, 3}, 577 {ISD::TRUNCATE, MVT::v16i16, MVT::v16i8, 1}, 578 }; 579 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 580 if (const auto *Entry = 581 ConvertCostTableLookup(MVEStoreConversionTbl, ISD, 582 SrcTy.getSimpleVT(), DstTy.getSimpleVT())) 583 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 584 } 585 586 static const TypeConversionCostTblEntry MVEFStoreConversionTbl[] = { 587 {ISD::FP_ROUND, MVT::v4f32, MVT::v4f16, 1}, 588 {ISD::FP_ROUND, MVT::v8f32, MVT::v8f16, 3}, 589 }; 590 if (SrcTy.isVector() && ST->hasMVEFloatOps()) { 591 if (const auto *Entry = 592 ConvertCostTableLookup(MVEFStoreConversionTbl, ISD, 593 SrcTy.getSimpleVT(), DstTy.getSimpleVT())) 594 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 595 } 596 } 597 598 // NEON vector operations that can extend their inputs. 599 if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) && 600 I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) { 601 static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = { 602 // vaddl 603 { ISD::ADD, MVT::v4i32, MVT::v4i16, 0 }, 604 { ISD::ADD, MVT::v8i16, MVT::v8i8, 0 }, 605 // vsubl 606 { ISD::SUB, MVT::v4i32, MVT::v4i16, 0 }, 607 { ISD::SUB, MVT::v8i16, MVT::v8i8, 0 }, 608 // vmull 609 { ISD::MUL, MVT::v4i32, MVT::v4i16, 0 }, 610 { ISD::MUL, MVT::v8i16, MVT::v8i8, 0 }, 611 // vshll 612 { ISD::SHL, MVT::v4i32, MVT::v4i16, 0 }, 613 { ISD::SHL, MVT::v8i16, MVT::v8i8, 0 }, 614 }; 615 616 auto *User = cast<Instruction>(*I->user_begin()); 617 int UserISD = TLI->InstructionOpcodeToISD(User->getOpcode()); 618 if (auto *Entry = ConvertCostTableLookup(NEONDoubleWidthTbl, UserISD, 619 DstTy.getSimpleVT(), 620 SrcTy.getSimpleVT())) { 621 return AdjustCost(Entry->Cost); 622 } 623 } 624 625 // Single to/from double precision conversions. 626 if (Src->isVectorTy() && ST->hasNEON() && 627 ((ISD == ISD::FP_ROUND && SrcTy.getScalarType() == MVT::f64 && 628 DstTy.getScalarType() == MVT::f32) || 629 (ISD == ISD::FP_EXTEND && SrcTy.getScalarType() == MVT::f32 && 630 DstTy.getScalarType() == MVT::f64))) { 631 static const CostTblEntry NEONFltDblTbl[] = { 632 // Vector fptrunc/fpext conversions. 633 {ISD::FP_ROUND, MVT::v2f64, 2}, 634 {ISD::FP_EXTEND, MVT::v2f32, 2}, 635 {ISD::FP_EXTEND, MVT::v4f32, 4}}; 636 637 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src); 638 if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second)) 639 return AdjustCost(LT.first * Entry->Cost); 640 } 641 642 // Some arithmetic, load and store operations have specific instructions 643 // to cast up/down their types automatically at no extra cost. 644 // TODO: Get these tables to know at least what the related operations are. 645 static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = { 646 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 647 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 648 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 649 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 650 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 651 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 652 653 // The number of vmovl instructions for the extension. 654 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 655 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 656 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 657 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 658 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 3 }, 659 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 3 }, 660 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 661 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 662 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 663 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 664 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 665 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 666 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 667 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 668 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 669 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 670 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 671 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 672 673 // Operations that we legalize using splitting. 674 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 675 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 676 677 // Vector float <-> i32 conversions. 678 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 679 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 680 681 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 682 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 683 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, 684 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, 685 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 686 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 687 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 688 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 689 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 690 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 691 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 692 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 693 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 694 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 695 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 696 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 697 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, 698 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, 699 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, 700 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, 701 702 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 703 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 704 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 }, 705 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 }, 706 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 707 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 708 709 // Vector double <-> i32 conversions. 710 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 711 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 712 713 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 714 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 715 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, 716 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, 717 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 718 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 719 720 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 721 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 722 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 }, 723 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 }, 724 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 }, 725 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 } 726 }; 727 728 if (SrcTy.isVector() && ST->hasNEON()) { 729 if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD, 730 DstTy.getSimpleVT(), 731 SrcTy.getSimpleVT())) 732 return AdjustCost(Entry->Cost); 733 } 734 735 // Scalar float to integer conversions. 736 static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = { 737 { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 }, 738 { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 }, 739 { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 }, 740 { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 }, 741 { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 }, 742 { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 }, 743 { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 }, 744 { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 }, 745 { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 }, 746 { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 }, 747 { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 }, 748 { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 }, 749 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 }, 750 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 }, 751 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 }, 752 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 }, 753 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 }, 754 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 }, 755 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 }, 756 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 } 757 }; 758 if (SrcTy.isFloatingPoint() && ST->hasNEON()) { 759 if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD, 760 DstTy.getSimpleVT(), 761 SrcTy.getSimpleVT())) 762 return AdjustCost(Entry->Cost); 763 } 764 765 // Scalar integer to float conversions. 766 static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = { 767 { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 }, 768 { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 }, 769 { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 }, 770 { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 }, 771 { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 }, 772 { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 }, 773 { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 }, 774 { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 }, 775 { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 }, 776 { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 }, 777 { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 }, 778 { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 }, 779 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 }, 780 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 }, 781 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 }, 782 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 }, 783 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 }, 784 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 }, 785 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 }, 786 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 } 787 }; 788 789 if (SrcTy.isInteger() && ST->hasNEON()) { 790 if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl, 791 ISD, DstTy.getSimpleVT(), 792 SrcTy.getSimpleVT())) 793 return AdjustCost(Entry->Cost); 794 } 795 796 // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one 797 // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext 798 // are linearised so take more. 799 static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = { 800 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 801 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 802 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 803 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 804 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 }, 805 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 }, 806 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 807 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 808 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 }, 809 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 810 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 }, 811 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 }, 812 }; 813 814 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 815 if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl, 816 ISD, DstTy.getSimpleVT(), 817 SrcTy.getSimpleVT())) 818 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 819 } 820 821 if (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND) { 822 // As general rule, fp converts that were not matched above are scalarized 823 // and cost 1 vcvt for each lane, so long as the instruction is available. 824 // If not it will become a series of function calls. 825 const InstructionCost CallCost = 826 getCallInstrCost(nullptr, Dst, {Src}, CostKind); 827 int Lanes = 1; 828 if (SrcTy.isFixedLengthVector()) 829 Lanes = SrcTy.getVectorNumElements(); 830 831 if (IsLegalFPType(SrcTy) && IsLegalFPType(DstTy)) 832 return Lanes; 833 else 834 return Lanes * CallCost; 835 } 836 837 if (ISD == ISD::TRUNCATE && ST->hasMVEIntegerOps() && 838 SrcTy.isFixedLengthVector()) { 839 // Treat a truncate with larger than legal source (128bits for MVE) as 840 // expensive, 2 instructions per lane. 841 if ((SrcTy.getScalarType() == MVT::i8 || 842 SrcTy.getScalarType() == MVT::i16 || 843 SrcTy.getScalarType() == MVT::i32) && 844 SrcTy.getSizeInBits() > 128 && 845 SrcTy.getSizeInBits() > DstTy.getSizeInBits()) 846 return SrcTy.getVectorNumElements() * 2; 847 } 848 849 // Scalar integer conversion costs. 850 static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = { 851 // i16 -> i64 requires two dependent operations. 852 { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 }, 853 854 // Truncates on i64 are assumed to be free. 855 { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 }, 856 { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 }, 857 { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 }, 858 { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 } 859 }; 860 861 if (SrcTy.isInteger()) { 862 if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD, 863 DstTy.getSimpleVT(), 864 SrcTy.getSimpleVT())) 865 return AdjustCost(Entry->Cost); 866 } 867 868 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() 869 ? ST->getMVEVectorCostFactor(CostKind) 870 : 1; 871 return AdjustCost( 872 BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 873 } 874 875 InstructionCost ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 876 unsigned Index) { 877 // Penalize inserting into an D-subregister. We end up with a three times 878 // lower estimated throughput on swift. 879 if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement && 880 ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32) 881 return 3; 882 883 if (ST->hasNEON() && (Opcode == Instruction::InsertElement || 884 Opcode == Instruction::ExtractElement)) { 885 // Cross-class copies are expensive on many microarchitectures, 886 // so assume they are expensive by default. 887 if (cast<VectorType>(ValTy)->getElementType()->isIntegerTy()) 888 return 3; 889 890 // Even if it's not a cross class copy, this likely leads to mixing 891 // of NEON and VFP code and should be therefore penalized. 892 if (ValTy->isVectorTy() && 893 ValTy->getScalarSizeInBits() <= 32) 894 return std::max<InstructionCost>( 895 BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U); 896 } 897 898 if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement || 899 Opcode == Instruction::ExtractElement)) { 900 // Integer cross-lane moves are more expensive than float, which can 901 // sometimes just be vmovs. Integer involve being passes to GPR registers, 902 // causing more of a delay. 903 std::pair<InstructionCost, MVT> LT = 904 getTypeLegalizationCost(ValTy->getScalarType()); 905 return LT.first * (ValTy->getScalarType()->isIntegerTy() ? 4 : 1); 906 } 907 908 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 909 } 910 911 InstructionCost ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 912 Type *CondTy, 913 CmpInst::Predicate VecPred, 914 TTI::TargetCostKind CostKind, 915 const Instruction *I) { 916 int ISD = TLI->InstructionOpcodeToISD(Opcode); 917 918 // Thumb scalar code size cost for select. 919 if (CostKind == TTI::TCK_CodeSize && ISD == ISD::SELECT && 920 ST->isThumb() && !ValTy->isVectorTy()) { 921 // Assume expensive structs. 922 if (TLI->getValueType(DL, ValTy, true) == MVT::Other) 923 return TTI::TCC_Expensive; 924 925 // Select costs can vary because they: 926 // - may require one or more conditional mov (including an IT), 927 // - can't operate directly on immediates, 928 // - require live flags, which we can't copy around easily. 929 InstructionCost Cost = getTypeLegalizationCost(ValTy).first; 930 931 // Possible IT instruction for Thumb2, or more for Thumb1. 932 ++Cost; 933 934 // i1 values may need rematerialising by using mov immediates and/or 935 // flag setting instructions. 936 if (ValTy->isIntegerTy(1)) 937 ++Cost; 938 939 return Cost; 940 } 941 942 // If this is a vector min/max/abs, use the cost of that intrinsic directly 943 // instead. Hopefully when min/max intrinsics are more prevalent this code 944 // will not be needed. 945 const Instruction *Sel = I; 946 if ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && Sel && 947 Sel->hasOneUse()) 948 Sel = cast<Instruction>(Sel->user_back()); 949 if (Sel && ValTy->isVectorTy() && 950 (ValTy->isIntOrIntVectorTy() || ValTy->isFPOrFPVectorTy())) { 951 const Value *LHS, *RHS; 952 SelectPatternFlavor SPF = matchSelectPattern(Sel, LHS, RHS).Flavor; 953 unsigned IID = 0; 954 switch (SPF) { 955 case SPF_ABS: 956 IID = Intrinsic::abs; 957 break; 958 case SPF_SMIN: 959 IID = Intrinsic::smin; 960 break; 961 case SPF_SMAX: 962 IID = Intrinsic::smax; 963 break; 964 case SPF_UMIN: 965 IID = Intrinsic::umin; 966 break; 967 case SPF_UMAX: 968 IID = Intrinsic::umax; 969 break; 970 case SPF_FMINNUM: 971 IID = Intrinsic::minnum; 972 break; 973 case SPF_FMAXNUM: 974 IID = Intrinsic::maxnum; 975 break; 976 default: 977 break; 978 } 979 if (IID) { 980 // The ICmp is free, the select gets the cost of the min/max/etc 981 if (Sel != I) 982 return 0; 983 IntrinsicCostAttributes CostAttrs(IID, ValTy, {ValTy, ValTy}); 984 return getIntrinsicInstrCost(CostAttrs, CostKind); 985 } 986 } 987 988 // On NEON a vector select gets lowered to vbsl. 989 if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT && CondTy) { 990 // Lowering of some vector selects is currently far from perfect. 991 static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = { 992 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 }, 993 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 }, 994 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 } 995 }; 996 997 EVT SelCondTy = TLI->getValueType(DL, CondTy); 998 EVT SelValTy = TLI->getValueType(DL, ValTy); 999 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 1000 if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD, 1001 SelCondTy.getSimpleVT(), 1002 SelValTy.getSimpleVT())) 1003 return Entry->Cost; 1004 } 1005 1006 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy); 1007 return LT.first; 1008 } 1009 1010 if (ST->hasMVEIntegerOps() && ValTy->isVectorTy() && 1011 (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 1012 cast<FixedVectorType>(ValTy)->getNumElements() > 1) { 1013 FixedVectorType *VecValTy = cast<FixedVectorType>(ValTy); 1014 FixedVectorType *VecCondTy = dyn_cast_or_null<FixedVectorType>(CondTy); 1015 if (!VecCondTy) 1016 VecCondTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(VecValTy)); 1017 1018 // If we don't have mve.fp any fp operations will need to be scalarized. 1019 if (Opcode == Instruction::FCmp && !ST->hasMVEFloatOps()) { 1020 // One scalaization insert, one scalarization extract and the cost of the 1021 // fcmps. 1022 return BaseT::getScalarizationOverhead(VecValTy, false, true) + 1023 BaseT::getScalarizationOverhead(VecCondTy, true, false) + 1024 VecValTy->getNumElements() * 1025 getCmpSelInstrCost(Opcode, ValTy->getScalarType(), 1026 VecCondTy->getScalarType(), VecPred, CostKind, 1027 I); 1028 } 1029 1030 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy); 1031 int BaseCost = ST->getMVEVectorCostFactor(CostKind); 1032 // There are two types - the input that specifies the type of the compare 1033 // and the output vXi1 type. Because we don't know how the output will be 1034 // split, we may need an expensive shuffle to get two in sync. This has the 1035 // effect of making larger than legal compares (v8i32 for example) 1036 // expensive. 1037 if (LT.second.getVectorNumElements() > 2) { 1038 if (LT.first > 1) 1039 return LT.first * BaseCost + 1040 BaseT::getScalarizationOverhead(VecCondTy, true, false); 1041 return BaseCost; 1042 } 1043 } 1044 1045 // Default to cheap (throughput/size of 1 instruction) but adjust throughput 1046 // for "multiple beats" potentially needed by MVE instructions. 1047 int BaseCost = 1; 1048 if (ST->hasMVEIntegerOps() && ValTy->isVectorTy()) 1049 BaseCost = ST->getMVEVectorCostFactor(CostKind); 1050 1051 return BaseCost * 1052 BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 1053 } 1054 1055 InstructionCost ARMTTIImpl::getAddressComputationCost(Type *Ty, 1056 ScalarEvolution *SE, 1057 const SCEV *Ptr) { 1058 // Address computations in vectorized code with non-consecutive addresses will 1059 // likely result in more instructions compared to scalar code where the 1060 // computation can more often be merged into the index mode. The resulting 1061 // extra micro-ops can significantly decrease throughput. 1062 unsigned NumVectorInstToHideOverhead = 10; 1063 int MaxMergeDistance = 64; 1064 1065 if (ST->hasNEON()) { 1066 if (Ty->isVectorTy() && SE && 1067 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 1068 return NumVectorInstToHideOverhead; 1069 1070 // In many cases the address computation is not merged into the instruction 1071 // addressing mode. 1072 return 1; 1073 } 1074 return BaseT::getAddressComputationCost(Ty, SE, Ptr); 1075 } 1076 1077 bool ARMTTIImpl::isProfitableLSRChainElement(Instruction *I) { 1078 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1079 // If a VCTP is part of a chain, it's already profitable and shouldn't be 1080 // optimized, else LSR may block tail-predication. 1081 switch (II->getIntrinsicID()) { 1082 case Intrinsic::arm_mve_vctp8: 1083 case Intrinsic::arm_mve_vctp16: 1084 case Intrinsic::arm_mve_vctp32: 1085 case Intrinsic::arm_mve_vctp64: 1086 return true; 1087 default: 1088 break; 1089 } 1090 } 1091 return false; 1092 } 1093 1094 bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) { 1095 if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps()) 1096 return false; 1097 1098 if (auto *VecTy = dyn_cast<FixedVectorType>(DataTy)) { 1099 // Don't support v2i1 yet. 1100 if (VecTy->getNumElements() == 2) 1101 return false; 1102 1103 // We don't support extending fp types. 1104 unsigned VecWidth = DataTy->getPrimitiveSizeInBits(); 1105 if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy()) 1106 return false; 1107 } 1108 1109 unsigned EltWidth = DataTy->getScalarSizeInBits(); 1110 return (EltWidth == 32 && Alignment >= 4) || 1111 (EltWidth == 16 && Alignment >= 2) || (EltWidth == 8); 1112 } 1113 1114 bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, Align Alignment) { 1115 if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps()) 1116 return false; 1117 1118 unsigned EltWidth = Ty->getScalarSizeInBits(); 1119 return ((EltWidth == 32 && Alignment >= 4) || 1120 (EltWidth == 16 && Alignment >= 2) || EltWidth == 8); 1121 } 1122 1123 /// Given a memcpy/memset/memmove instruction, return the number of memory 1124 /// operations performed, via querying findOptimalMemOpLowering. Returns -1 if a 1125 /// call is used. 1126 int ARMTTIImpl::getNumMemOps(const IntrinsicInst *I) const { 1127 MemOp MOp; 1128 unsigned DstAddrSpace = ~0u; 1129 unsigned SrcAddrSpace = ~0u; 1130 const Function *F = I->getParent()->getParent(); 1131 1132 if (const auto *MC = dyn_cast<MemTransferInst>(I)) { 1133 ConstantInt *C = dyn_cast<ConstantInt>(MC->getLength()); 1134 // If 'size' is not a constant, a library call will be generated. 1135 if (!C) 1136 return -1; 1137 1138 const unsigned Size = C->getValue().getZExtValue(); 1139 const Align DstAlign = *MC->getDestAlign(); 1140 const Align SrcAlign = *MC->getSourceAlign(); 1141 1142 MOp = MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign, 1143 /*IsVolatile*/ false); 1144 DstAddrSpace = MC->getDestAddressSpace(); 1145 SrcAddrSpace = MC->getSourceAddressSpace(); 1146 } 1147 else if (const auto *MS = dyn_cast<MemSetInst>(I)) { 1148 ConstantInt *C = dyn_cast<ConstantInt>(MS->getLength()); 1149 // If 'size' is not a constant, a library call will be generated. 1150 if (!C) 1151 return -1; 1152 1153 const unsigned Size = C->getValue().getZExtValue(); 1154 const Align DstAlign = *MS->getDestAlign(); 1155 1156 MOp = MemOp::Set(Size, /*DstAlignCanChange*/ false, DstAlign, 1157 /*IsZeroMemset*/ false, /*IsVolatile*/ false); 1158 DstAddrSpace = MS->getDestAddressSpace(); 1159 } 1160 else 1161 llvm_unreachable("Expected a memcpy/move or memset!"); 1162 1163 unsigned Limit, Factor = 2; 1164 switch(I->getIntrinsicID()) { 1165 case Intrinsic::memcpy: 1166 Limit = TLI->getMaxStoresPerMemcpy(F->hasMinSize()); 1167 break; 1168 case Intrinsic::memmove: 1169 Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize()); 1170 break; 1171 case Intrinsic::memset: 1172 Limit = TLI->getMaxStoresPerMemset(F->hasMinSize()); 1173 Factor = 1; 1174 break; 1175 default: 1176 llvm_unreachable("Expected a memcpy/move or memset!"); 1177 } 1178 1179 // MemOps will be poplulated with a list of data types that needs to be 1180 // loaded and stored. That's why we multiply the number of elements by 2 to 1181 // get the cost for this memcpy. 1182 std::vector<EVT> MemOps; 1183 if (getTLI()->findOptimalMemOpLowering( 1184 MemOps, Limit, MOp, DstAddrSpace, 1185 SrcAddrSpace, F->getAttributes())) 1186 return MemOps.size() * Factor; 1187 1188 // If we can't find an optimal memop lowering, return the default cost 1189 return -1; 1190 } 1191 1192 InstructionCost ARMTTIImpl::getMemcpyCost(const Instruction *I) { 1193 int NumOps = getNumMemOps(cast<IntrinsicInst>(I)); 1194 1195 // To model the cost of a library call, we assume 1 for the call, and 1196 // 3 for the argument setup. 1197 if (NumOps == -1) 1198 return 4; 1199 return NumOps; 1200 } 1201 1202 InstructionCost ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 1203 VectorType *Tp, ArrayRef<int> Mask, 1204 TTI::TargetCostKind CostKind, 1205 int Index, VectorType *SubTp, 1206 ArrayRef<const Value *> Args) { 1207 Kind = improveShuffleKindFromMask(Kind, Mask); 1208 if (ST->hasNEON()) { 1209 if (Kind == TTI::SK_Broadcast) { 1210 static const CostTblEntry NEONDupTbl[] = { 1211 // VDUP handles these cases. 1212 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 1213 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 1214 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 1215 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 1216 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, 1217 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, 1218 1219 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, 1220 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, 1221 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, 1222 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}}; 1223 1224 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp); 1225 if (const auto *Entry = 1226 CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second)) 1227 return LT.first * Entry->Cost; 1228 } 1229 if (Kind == TTI::SK_Reverse) { 1230 static const CostTblEntry NEONShuffleTbl[] = { 1231 // Reverse shuffle cost one instruction if we are shuffling within a 1232 // double word (vrev) or two if we shuffle a quad word (vrev, vext). 1233 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 1234 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 1235 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 1236 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 1237 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, 1238 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, 1239 1240 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 1241 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 1242 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2}, 1243 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}}; 1244 1245 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp); 1246 if (const auto *Entry = 1247 CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second)) 1248 return LT.first * Entry->Cost; 1249 } 1250 if (Kind == TTI::SK_Select) { 1251 static const CostTblEntry NEONSelShuffleTbl[] = { 1252 // Select shuffle cost table for ARM. Cost is the number of 1253 // instructions 1254 // required to create the shuffled vector. 1255 1256 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 1257 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 1258 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 1259 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 1260 1261 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 1262 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 1263 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2}, 1264 1265 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16}, 1266 1267 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}}; 1268 1269 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp); 1270 if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl, 1271 ISD::VECTOR_SHUFFLE, LT.second)) 1272 return LT.first * Entry->Cost; 1273 } 1274 } 1275 if (ST->hasMVEIntegerOps()) { 1276 if (Kind == TTI::SK_Broadcast) { 1277 static const CostTblEntry MVEDupTbl[] = { 1278 // VDUP handles these cases. 1279 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, 1280 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, 1281 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}, 1282 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, 1283 {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}}; 1284 1285 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp); 1286 if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE, 1287 LT.second)) 1288 return LT.first * Entry->Cost * 1289 ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput); 1290 } 1291 1292 if (!Mask.empty()) { 1293 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp); 1294 if (LT.second.isVector() && 1295 Mask.size() <= LT.second.getVectorNumElements() && 1296 (isVREVMask(Mask, LT.second, 16) || isVREVMask(Mask, LT.second, 32) || 1297 isVREVMask(Mask, LT.second, 64))) 1298 return ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) * LT.first; 1299 } 1300 } 1301 1302 int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy() 1303 ? ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) 1304 : 1; 1305 return BaseCost * 1306 BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp); 1307 } 1308 1309 InstructionCost ARMTTIImpl::getArithmeticInstrCost( 1310 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 1311 TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info, 1312 ArrayRef<const Value *> Args, 1313 const Instruction *CxtI) { 1314 int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); 1315 if (ST->isThumb() && CostKind == TTI::TCK_CodeSize && Ty->isIntegerTy(1)) { 1316 // Make operations on i1 relatively expensive as this often involves 1317 // combining predicates. AND and XOR should be easier to handle with IT 1318 // blocks. 1319 switch (ISDOpcode) { 1320 default: 1321 break; 1322 case ISD::AND: 1323 case ISD::XOR: 1324 return 2; 1325 case ISD::OR: 1326 return 3; 1327 } 1328 } 1329 1330 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty); 1331 1332 if (ST->hasNEON()) { 1333 const unsigned FunctionCallDivCost = 20; 1334 const unsigned ReciprocalDivCost = 10; 1335 static const CostTblEntry CostTbl[] = { 1336 // Division. 1337 // These costs are somewhat random. Choose a cost of 20 to indicate that 1338 // vectorizing devision (added function call) is going to be very expensive. 1339 // Double registers types. 1340 { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost}, 1341 { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost}, 1342 { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost}, 1343 { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost}, 1344 { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost}, 1345 { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost}, 1346 { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost}, 1347 { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost}, 1348 { ISD::SDIV, MVT::v4i16, ReciprocalDivCost}, 1349 { ISD::UDIV, MVT::v4i16, ReciprocalDivCost}, 1350 { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost}, 1351 { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost}, 1352 { ISD::SDIV, MVT::v8i8, ReciprocalDivCost}, 1353 { ISD::UDIV, MVT::v8i8, ReciprocalDivCost}, 1354 { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost}, 1355 { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost}, 1356 // Quad register types. 1357 { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost}, 1358 { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost}, 1359 { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost}, 1360 { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost}, 1361 { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost}, 1362 { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost}, 1363 { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost}, 1364 { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost}, 1365 { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost}, 1366 { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost}, 1367 { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost}, 1368 { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost}, 1369 { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost}, 1370 { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost}, 1371 { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost}, 1372 { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost}, 1373 // Multiplication. 1374 }; 1375 1376 if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second)) 1377 return LT.first * Entry->Cost; 1378 1379 InstructionCost Cost = BaseT::getArithmeticInstrCost( 1380 Opcode, Ty, CostKind, Op1Info, Op2Info); 1381 1382 // This is somewhat of a hack. The problem that we are facing is that SROA 1383 // creates a sequence of shift, and, or instructions to construct values. 1384 // These sequences are recognized by the ISel and have zero-cost. Not so for 1385 // the vectorized code. Because we have support for v2i64 but not i64 those 1386 // sequences look particularly beneficial to vectorize. 1387 // To work around this we increase the cost of v2i64 operations to make them 1388 // seem less beneficial. 1389 if (LT.second == MVT::v2i64 && Op2Info.isUniform() && Op2Info.isConstant()) 1390 Cost += 4; 1391 1392 return Cost; 1393 } 1394 1395 // If this operation is a shift on arm/thumb2, it might well be folded into 1396 // the following instruction, hence having a cost of 0. 1397 auto LooksLikeAFreeShift = [&]() { 1398 if (ST->isThumb1Only() || Ty->isVectorTy()) 1399 return false; 1400 1401 if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift()) 1402 return false; 1403 if (!Op2Info.isUniform() || !Op2Info.isConstant()) 1404 return false; 1405 1406 // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB 1407 switch (cast<Instruction>(CxtI->user_back())->getOpcode()) { 1408 case Instruction::Add: 1409 case Instruction::Sub: 1410 case Instruction::And: 1411 case Instruction::Xor: 1412 case Instruction::Or: 1413 case Instruction::ICmp: 1414 return true; 1415 default: 1416 return false; 1417 } 1418 }; 1419 if (LooksLikeAFreeShift()) 1420 return 0; 1421 1422 // Default to cheap (throughput/size of 1 instruction) but adjust throughput 1423 // for "multiple beats" potentially needed by MVE instructions. 1424 int BaseCost = 1; 1425 if (ST->hasMVEIntegerOps() && Ty->isVectorTy()) 1426 BaseCost = ST->getMVEVectorCostFactor(CostKind); 1427 1428 // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost, 1429 // without treating floats as more expensive that scalars or increasing the 1430 // costs for custom operations. The results is also multiplied by the 1431 // MVEVectorCostFactor where appropriate. 1432 if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second)) 1433 return LT.first * BaseCost; 1434 1435 // Else this is expand, assume that we need to scalarize this op. 1436 if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) { 1437 unsigned Num = VTy->getNumElements(); 1438 InstructionCost Cost = 1439 getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind); 1440 // Return the cost of multiple scalar invocation plus the cost of 1441 // inserting and extracting the values. 1442 SmallVector<Type *> Tys(Args.size(), Ty); 1443 return BaseT::getScalarizationOverhead(VTy, Args, Tys) + Num * Cost; 1444 } 1445 1446 return BaseCost; 1447 } 1448 1449 InstructionCost ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 1450 MaybeAlign Alignment, 1451 unsigned AddressSpace, 1452 TTI::TargetCostKind CostKind, 1453 TTI::OperandValueInfo OpInfo, 1454 const Instruction *I) { 1455 // TODO: Handle other cost kinds. 1456 if (CostKind != TTI::TCK_RecipThroughput) 1457 return 1; 1458 1459 // Type legalization can't handle structs 1460 if (TLI->getValueType(DL, Src, true) == MVT::Other) 1461 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1462 CostKind); 1463 1464 if (ST->hasNEON() && Src->isVectorTy() && 1465 (Alignment && *Alignment != Align(16)) && 1466 cast<VectorType>(Src)->getElementType()->isDoubleTy()) { 1467 // Unaligned loads/stores are extremely inefficient. 1468 // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr. 1469 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src); 1470 return LT.first * 4; 1471 } 1472 1473 // MVE can optimize a fpext(load(4xhalf)) using an extending integer load. 1474 // Same for stores. 1475 if (ST->hasMVEFloatOps() && isa<FixedVectorType>(Src) && I && 1476 ((Opcode == Instruction::Load && I->hasOneUse() && 1477 isa<FPExtInst>(*I->user_begin())) || 1478 (Opcode == Instruction::Store && isa<FPTruncInst>(I->getOperand(0))))) { 1479 FixedVectorType *SrcVTy = cast<FixedVectorType>(Src); 1480 Type *DstTy = 1481 Opcode == Instruction::Load 1482 ? (*I->user_begin())->getType() 1483 : cast<Instruction>(I->getOperand(0))->getOperand(0)->getType(); 1484 if (SrcVTy->getNumElements() == 4 && SrcVTy->getScalarType()->isHalfTy() && 1485 DstTy->getScalarType()->isFloatTy()) 1486 return ST->getMVEVectorCostFactor(CostKind); 1487 } 1488 1489 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() 1490 ? ST->getMVEVectorCostFactor(CostKind) 1491 : 1; 1492 return BaseCost * BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1493 CostKind, OpInfo, I); 1494 } 1495 1496 InstructionCost 1497 ARMTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, 1498 unsigned AddressSpace, 1499 TTI::TargetCostKind CostKind) { 1500 if (ST->hasMVEIntegerOps()) { 1501 if (Opcode == Instruction::Load && isLegalMaskedLoad(Src, Alignment)) 1502 return ST->getMVEVectorCostFactor(CostKind); 1503 if (Opcode == Instruction::Store && isLegalMaskedStore(Src, Alignment)) 1504 return ST->getMVEVectorCostFactor(CostKind); 1505 } 1506 if (!isa<FixedVectorType>(Src)) 1507 return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1508 CostKind); 1509 // Scalar cost, which is currently very high due to the efficiency of the 1510 // generated code. 1511 return cast<FixedVectorType>(Src)->getNumElements() * 8; 1512 } 1513 1514 InstructionCost ARMTTIImpl::getInterleavedMemoryOpCost( 1515 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 1516 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 1517 bool UseMaskForCond, bool UseMaskForGaps) { 1518 assert(Factor >= 2 && "Invalid interleave factor"); 1519 assert(isa<VectorType>(VecTy) && "Expect a vector type"); 1520 1521 // vldN/vstN doesn't support vector types of i64/f64 element. 1522 bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64; 1523 1524 if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits && 1525 !UseMaskForCond && !UseMaskForGaps) { 1526 unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements(); 1527 auto *SubVecTy = 1528 FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor); 1529 1530 // vldN/vstN only support legal vector types of size 64 or 128 in bits. 1531 // Accesses having vector types that are a multiple of 128 bits can be 1532 // matched to more than one vldN/vstN instruction. 1533 int BaseCost = 1534 ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor(CostKind) : 1; 1535 if (NumElts % Factor == 0 && 1536 TLI->isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL)) 1537 return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL); 1538 1539 // Some smaller than legal interleaved patterns are cheap as we can make 1540 // use of the vmovn or vrev patterns to interleave a standard load. This is 1541 // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is 1542 // promoted differently). The cost of 2 here is then a load and vrev or 1543 // vmovn. 1544 if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 && 1545 VecTy->isIntOrIntVectorTy() && 1546 DL.getTypeSizeInBits(SubVecTy).getFixedSize() <= 64) 1547 return 2 * BaseCost; 1548 } 1549 1550 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1551 Alignment, AddressSpace, CostKind, 1552 UseMaskForCond, UseMaskForGaps); 1553 } 1554 1555 InstructionCost ARMTTIImpl::getGatherScatterOpCost( 1556 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 1557 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) { 1558 using namespace PatternMatch; 1559 if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters) 1560 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 1561 Alignment, CostKind, I); 1562 1563 assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!"); 1564 auto *VTy = cast<FixedVectorType>(DataTy); 1565 1566 // TODO: Splitting, once we do that. 1567 1568 unsigned NumElems = VTy->getNumElements(); 1569 unsigned EltSize = VTy->getScalarSizeInBits(); 1570 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(DataTy); 1571 1572 // For now, it is assumed that for the MVE gather instructions the loads are 1573 // all effectively serialised. This means the cost is the scalar cost 1574 // multiplied by the number of elements being loaded. This is possibly very 1575 // conservative, but even so we still end up vectorising loops because the 1576 // cost per iteration for many loops is lower than for scalar loops. 1577 InstructionCost VectorCost = 1578 NumElems * LT.first * ST->getMVEVectorCostFactor(CostKind); 1579 // The scalarization cost should be a lot higher. We use the number of vector 1580 // elements plus the scalarization overhead. 1581 InstructionCost ScalarCost = 1582 NumElems * LT.first + BaseT::getScalarizationOverhead(VTy, true, false) + 1583 BaseT::getScalarizationOverhead(VTy, false, true); 1584 1585 if (EltSize < 8 || Alignment < EltSize / 8) 1586 return ScalarCost; 1587 1588 unsigned ExtSize = EltSize; 1589 // Check whether there's a single user that asks for an extended type 1590 if (I != nullptr) { 1591 // Dependent of the caller of this function, a gather instruction will 1592 // either have opcode Instruction::Load or be a call to the masked_gather 1593 // intrinsic 1594 if ((I->getOpcode() == Instruction::Load || 1595 match(I, m_Intrinsic<Intrinsic::masked_gather>())) && 1596 I->hasOneUse()) { 1597 const User *Us = *I->users().begin(); 1598 if (isa<ZExtInst>(Us) || isa<SExtInst>(Us)) { 1599 // only allow valid type combinations 1600 unsigned TypeSize = 1601 cast<Instruction>(Us)->getType()->getScalarSizeInBits(); 1602 if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) || 1603 (TypeSize == 16 && EltSize == 8)) && 1604 TypeSize * NumElems == 128) { 1605 ExtSize = TypeSize; 1606 } 1607 } 1608 } 1609 // Check whether the input data needs to be truncated 1610 TruncInst *T; 1611 if ((I->getOpcode() == Instruction::Store || 1612 match(I, m_Intrinsic<Intrinsic::masked_scatter>())) && 1613 (T = dyn_cast<TruncInst>(I->getOperand(0)))) { 1614 // Only allow valid type combinations 1615 unsigned TypeSize = T->getOperand(0)->getType()->getScalarSizeInBits(); 1616 if (((EltSize == 16 && TypeSize == 32) || 1617 (EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) && 1618 TypeSize * NumElems == 128) 1619 ExtSize = TypeSize; 1620 } 1621 } 1622 1623 if (ExtSize * NumElems != 128 || NumElems < 4) 1624 return ScalarCost; 1625 1626 // Any (aligned) i32 gather will not need to be scalarised. 1627 if (ExtSize == 32) 1628 return VectorCost; 1629 // For smaller types, we need to ensure that the gep's inputs are correctly 1630 // extended from a small enough value. Other sizes (including i64) are 1631 // scalarized for now. 1632 if (ExtSize != 8 && ExtSize != 16) 1633 return ScalarCost; 1634 1635 if (const auto *BC = dyn_cast<BitCastInst>(Ptr)) 1636 Ptr = BC->getOperand(0); 1637 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1638 if (GEP->getNumOperands() != 2) 1639 return ScalarCost; 1640 unsigned Scale = DL.getTypeAllocSize(GEP->getResultElementType()); 1641 // Scale needs to be correct (which is only relevant for i16s). 1642 if (Scale != 1 && Scale * 8 != ExtSize) 1643 return ScalarCost; 1644 // And we need to zext (not sext) the indexes from a small enough type. 1645 if (const auto *ZExt = dyn_cast<ZExtInst>(GEP->getOperand(1))) { 1646 if (ZExt->getOperand(0)->getType()->getScalarSizeInBits() <= ExtSize) 1647 return VectorCost; 1648 } 1649 return ScalarCost; 1650 } 1651 return ScalarCost; 1652 } 1653 1654 InstructionCost 1655 ARMTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy, 1656 Optional<FastMathFlags> FMF, 1657 TTI::TargetCostKind CostKind) { 1658 if (TTI::requiresOrderedReduction(FMF)) 1659 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 1660 1661 EVT ValVT = TLI->getValueType(DL, ValTy); 1662 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1663 if (!ST->hasMVEIntegerOps() || !ValVT.isSimple() || ISD != ISD::ADD) 1664 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 1665 1666 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy); 1667 1668 static const CostTblEntry CostTblAdd[]{ 1669 {ISD::ADD, MVT::v16i8, 1}, 1670 {ISD::ADD, MVT::v8i16, 1}, 1671 {ISD::ADD, MVT::v4i32, 1}, 1672 }; 1673 if (const auto *Entry = CostTableLookup(CostTblAdd, ISD, LT.second)) 1674 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first; 1675 1676 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 1677 } 1678 1679 InstructionCost ARMTTIImpl::getExtendedReductionCost( 1680 unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy, 1681 Optional<FastMathFlags> FMF, TTI::TargetCostKind CostKind) { 1682 EVT ValVT = TLI->getValueType(DL, ValTy); 1683 EVT ResVT = TLI->getValueType(DL, ResTy); 1684 1685 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1686 1687 switch (ISD) { 1688 case ISD::ADD: 1689 if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) { 1690 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy); 1691 1692 // The legal cases are: 1693 // VADDV u/s 8/16/32 1694 // VADDLV u/s 32 1695 // Codegen currently cannot always handle larger than legal vectors very 1696 // well, especially for predicated reductions where the mask needs to be 1697 // split, so restrict to 128bit or smaller input types. 1698 unsigned RevVTSize = ResVT.getSizeInBits(); 1699 if (ValVT.getSizeInBits() <= 128 && 1700 ((LT.second == MVT::v16i8 && RevVTSize <= 32) || 1701 (LT.second == MVT::v8i16 && RevVTSize <= 32) || 1702 (LT.second == MVT::v4i32 && RevVTSize <= 64))) 1703 return ST->getMVEVectorCostFactor(CostKind) * LT.first; 1704 } 1705 break; 1706 default: 1707 break; 1708 } 1709 return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy, FMF, 1710 CostKind); 1711 } 1712 1713 InstructionCost 1714 ARMTTIImpl::getMulAccReductionCost(bool IsUnsigned, Type *ResTy, 1715 VectorType *ValTy, 1716 TTI::TargetCostKind CostKind) { 1717 EVT ValVT = TLI->getValueType(DL, ValTy); 1718 EVT ResVT = TLI->getValueType(DL, ResTy); 1719 1720 if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) { 1721 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy); 1722 1723 // The legal cases are: 1724 // VMLAV u/s 8/16/32 1725 // VMLALV u/s 16/32 1726 // Codegen currently cannot always handle larger than legal vectors very 1727 // well, especially for predicated reductions where the mask needs to be 1728 // split, so restrict to 128bit or smaller input types. 1729 unsigned RevVTSize = ResVT.getSizeInBits(); 1730 if (ValVT.getSizeInBits() <= 128 && 1731 ((LT.second == MVT::v16i8 && RevVTSize <= 32) || 1732 (LT.second == MVT::v8i16 && RevVTSize <= 64) || 1733 (LT.second == MVT::v4i32 && RevVTSize <= 64))) 1734 return ST->getMVEVectorCostFactor(CostKind) * LT.first; 1735 } 1736 1737 return BaseT::getMulAccReductionCost(IsUnsigned, ResTy, ValTy, CostKind); 1738 } 1739 1740 InstructionCost 1741 ARMTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 1742 TTI::TargetCostKind CostKind) { 1743 switch (ICA.getID()) { 1744 case Intrinsic::get_active_lane_mask: 1745 // Currently we make a somewhat optimistic assumption that 1746 // active_lane_mask's are always free. In reality it may be freely folded 1747 // into a tail predicated loop, expanded into a VCPT or expanded into a lot 1748 // of add/icmp code. We may need to improve this in the future, but being 1749 // able to detect if it is free or not involves looking at a lot of other 1750 // code. We currently assume that the vectorizer inserted these, and knew 1751 // what it was doing in adding one. 1752 if (ST->hasMVEIntegerOps()) 1753 return 0; 1754 break; 1755 case Intrinsic::sadd_sat: 1756 case Intrinsic::ssub_sat: 1757 case Intrinsic::uadd_sat: 1758 case Intrinsic::usub_sat: { 1759 if (!ST->hasMVEIntegerOps()) 1760 break; 1761 Type *VT = ICA.getReturnType(); 1762 1763 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VT); 1764 if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 || 1765 LT.second == MVT::v16i8) { 1766 // This is a base cost of 1 for the vqadd, plus 3 extract shifts if we 1767 // need to extend the type, as it uses shr(qadd(shl, shl)). 1768 unsigned Instrs = 1769 LT.second.getScalarSizeInBits() == VT->getScalarSizeInBits() ? 1 : 4; 1770 return LT.first * ST->getMVEVectorCostFactor(CostKind) * Instrs; 1771 } 1772 break; 1773 } 1774 case Intrinsic::abs: 1775 case Intrinsic::smin: 1776 case Intrinsic::smax: 1777 case Intrinsic::umin: 1778 case Intrinsic::umax: { 1779 if (!ST->hasMVEIntegerOps()) 1780 break; 1781 Type *VT = ICA.getReturnType(); 1782 1783 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VT); 1784 if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 || 1785 LT.second == MVT::v16i8) 1786 return LT.first * ST->getMVEVectorCostFactor(CostKind); 1787 break; 1788 } 1789 case Intrinsic::minnum: 1790 case Intrinsic::maxnum: { 1791 if (!ST->hasMVEFloatOps()) 1792 break; 1793 Type *VT = ICA.getReturnType(); 1794 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VT); 1795 if (LT.second == MVT::v4f32 || LT.second == MVT::v8f16) 1796 return LT.first * ST->getMVEVectorCostFactor(CostKind); 1797 break; 1798 } 1799 case Intrinsic::fptosi_sat: 1800 case Intrinsic::fptoui_sat: { 1801 if (ICA.getArgTypes().empty()) 1802 break; 1803 bool IsSigned = ICA.getID() == Intrinsic::fptosi_sat; 1804 auto LT = getTypeLegalizationCost(ICA.getArgTypes()[0]); 1805 EVT MTy = TLI->getValueType(DL, ICA.getReturnType()); 1806 // Check for the legal types, with the corect subtarget features. 1807 if ((ST->hasVFP2Base() && LT.second == MVT::f32 && MTy == MVT::i32) || 1808 (ST->hasFP64() && LT.second == MVT::f64 && MTy == MVT::i32) || 1809 (ST->hasFullFP16() && LT.second == MVT::f16 && MTy == MVT::i32)) 1810 return LT.first; 1811 1812 // Equally for MVE vector types 1813 if (ST->hasMVEFloatOps() && 1814 (LT.second == MVT::v4f32 || LT.second == MVT::v8f16) && 1815 LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits()) 1816 return LT.first * ST->getMVEVectorCostFactor(CostKind); 1817 1818 // Otherwise we use a legal convert followed by a min+max 1819 if (((ST->hasVFP2Base() && LT.second == MVT::f32) || 1820 (ST->hasFP64() && LT.second == MVT::f64) || 1821 (ST->hasFullFP16() && LT.second == MVT::f16) || 1822 (ST->hasMVEFloatOps() && 1823 (LT.second == MVT::v4f32 || LT.second == MVT::v8f16))) && 1824 LT.second.getScalarSizeInBits() >= MTy.getScalarSizeInBits()) { 1825 Type *LegalTy = Type::getIntNTy(ICA.getReturnType()->getContext(), 1826 LT.second.getScalarSizeInBits()); 1827 InstructionCost Cost = 1828 LT.second.isVector() ? ST->getMVEVectorCostFactor(CostKind) : 1; 1829 IntrinsicCostAttributes Attrs1(IsSigned ? Intrinsic::smin 1830 : Intrinsic::umin, 1831 LegalTy, {LegalTy, LegalTy}); 1832 Cost += getIntrinsicInstrCost(Attrs1, CostKind); 1833 IntrinsicCostAttributes Attrs2(IsSigned ? Intrinsic::smax 1834 : Intrinsic::umax, 1835 LegalTy, {LegalTy, LegalTy}); 1836 Cost += getIntrinsicInstrCost(Attrs2, CostKind); 1837 return LT.first * Cost; 1838 } 1839 break; 1840 } 1841 } 1842 1843 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 1844 } 1845 1846 bool ARMTTIImpl::isLoweredToCall(const Function *F) { 1847 if (!F->isIntrinsic()) 1848 return BaseT::isLoweredToCall(F); 1849 1850 // Assume all Arm-specific intrinsics map to an instruction. 1851 if (F->getName().startswith("llvm.arm")) 1852 return false; 1853 1854 switch (F->getIntrinsicID()) { 1855 default: break; 1856 case Intrinsic::powi: 1857 case Intrinsic::sin: 1858 case Intrinsic::cos: 1859 case Intrinsic::pow: 1860 case Intrinsic::log: 1861 case Intrinsic::log10: 1862 case Intrinsic::log2: 1863 case Intrinsic::exp: 1864 case Intrinsic::exp2: 1865 return true; 1866 case Intrinsic::sqrt: 1867 case Intrinsic::fabs: 1868 case Intrinsic::copysign: 1869 case Intrinsic::floor: 1870 case Intrinsic::ceil: 1871 case Intrinsic::trunc: 1872 case Intrinsic::rint: 1873 case Intrinsic::nearbyint: 1874 case Intrinsic::round: 1875 case Intrinsic::canonicalize: 1876 case Intrinsic::lround: 1877 case Intrinsic::llround: 1878 case Intrinsic::lrint: 1879 case Intrinsic::llrint: 1880 if (F->getReturnType()->isDoubleTy() && !ST->hasFP64()) 1881 return true; 1882 if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16()) 1883 return true; 1884 // Some operations can be handled by vector instructions and assume 1885 // unsupported vectors will be expanded into supported scalar ones. 1886 // TODO Handle scalar operations properly. 1887 return !ST->hasFPARMv8Base() && !ST->hasVFP2Base(); 1888 case Intrinsic::masked_store: 1889 case Intrinsic::masked_load: 1890 case Intrinsic::masked_gather: 1891 case Intrinsic::masked_scatter: 1892 return !ST->hasMVEIntegerOps(); 1893 case Intrinsic::sadd_with_overflow: 1894 case Intrinsic::uadd_with_overflow: 1895 case Intrinsic::ssub_with_overflow: 1896 case Intrinsic::usub_with_overflow: 1897 case Intrinsic::sadd_sat: 1898 case Intrinsic::uadd_sat: 1899 case Intrinsic::ssub_sat: 1900 case Intrinsic::usub_sat: 1901 return false; 1902 } 1903 1904 return BaseT::isLoweredToCall(F); 1905 } 1906 1907 bool ARMTTIImpl::maybeLoweredToCall(Instruction &I) { 1908 unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode()); 1909 EVT VT = TLI->getValueType(DL, I.getType(), true); 1910 if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall) 1911 return true; 1912 1913 // Check if an intrinsic will be lowered to a call and assume that any 1914 // other CallInst will generate a bl. 1915 if (auto *Call = dyn_cast<CallInst>(&I)) { 1916 if (auto *II = dyn_cast<IntrinsicInst>(Call)) { 1917 switch(II->getIntrinsicID()) { 1918 case Intrinsic::memcpy: 1919 case Intrinsic::memset: 1920 case Intrinsic::memmove: 1921 return getNumMemOps(II) == -1; 1922 default: 1923 if (const Function *F = Call->getCalledFunction()) 1924 return isLoweredToCall(F); 1925 } 1926 } 1927 return true; 1928 } 1929 1930 // FPv5 provides conversions between integer, double-precision, 1931 // single-precision, and half-precision formats. 1932 switch (I.getOpcode()) { 1933 default: 1934 break; 1935 case Instruction::FPToSI: 1936 case Instruction::FPToUI: 1937 case Instruction::SIToFP: 1938 case Instruction::UIToFP: 1939 case Instruction::FPTrunc: 1940 case Instruction::FPExt: 1941 return !ST->hasFPARMv8Base(); 1942 } 1943 1944 // FIXME: Unfortunately the approach of checking the Operation Action does 1945 // not catch all cases of Legalization that use library calls. Our 1946 // Legalization step categorizes some transformations into library calls as 1947 // Custom, Expand or even Legal when doing type legalization. So for now 1948 // we have to special case for instance the SDIV of 64bit integers and the 1949 // use of floating point emulation. 1950 if (VT.isInteger() && VT.getSizeInBits() >= 64) { 1951 switch (ISD) { 1952 default: 1953 break; 1954 case ISD::SDIV: 1955 case ISD::UDIV: 1956 case ISD::SREM: 1957 case ISD::UREM: 1958 case ISD::SDIVREM: 1959 case ISD::UDIVREM: 1960 return true; 1961 } 1962 } 1963 1964 // Assume all other non-float operations are supported. 1965 if (!VT.isFloatingPoint()) 1966 return false; 1967 1968 // We'll need a library call to handle most floats when using soft. 1969 if (TLI->useSoftFloat()) { 1970 switch (I.getOpcode()) { 1971 default: 1972 return true; 1973 case Instruction::Alloca: 1974 case Instruction::Load: 1975 case Instruction::Store: 1976 case Instruction::Select: 1977 case Instruction::PHI: 1978 return false; 1979 } 1980 } 1981 1982 // We'll need a libcall to perform double precision operations on a single 1983 // precision only FPU. 1984 if (I.getType()->isDoubleTy() && !ST->hasFP64()) 1985 return true; 1986 1987 // Likewise for half precision arithmetic. 1988 if (I.getType()->isHalfTy() && !ST->hasFullFP16()) 1989 return true; 1990 1991 return false; 1992 } 1993 1994 bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, 1995 AssumptionCache &AC, 1996 TargetLibraryInfo *LibInfo, 1997 HardwareLoopInfo &HWLoopInfo) { 1998 // Low-overhead branches are only supported in the 'low-overhead branch' 1999 // extension of v8.1-m. 2000 if (!ST->hasLOB() || DisableLowOverheadLoops) { 2001 LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n"); 2002 return false; 2003 } 2004 2005 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { 2006 LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n"); 2007 return false; 2008 } 2009 2010 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2011 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2012 LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n"); 2013 return false; 2014 } 2015 2016 const SCEV *TripCountSCEV = 2017 SE.getAddExpr(BackedgeTakenCount, 2018 SE.getOne(BackedgeTakenCount->getType())); 2019 2020 // We need to store the trip count in LR, a 32-bit register. 2021 if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) { 2022 LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n"); 2023 return false; 2024 } 2025 2026 // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little 2027 // point in generating a hardware loop if that's going to happen. 2028 2029 auto IsHardwareLoopIntrinsic = [](Instruction &I) { 2030 if (auto *Call = dyn_cast<IntrinsicInst>(&I)) { 2031 switch (Call->getIntrinsicID()) { 2032 default: 2033 break; 2034 case Intrinsic::start_loop_iterations: 2035 case Intrinsic::test_start_loop_iterations: 2036 case Intrinsic::loop_decrement: 2037 case Intrinsic::loop_decrement_reg: 2038 return true; 2039 } 2040 } 2041 return false; 2042 }; 2043 2044 // Scan the instructions to see if there's any that we know will turn into a 2045 // call or if this loop is already a low-overhead loop or will become a tail 2046 // predicated loop. 2047 bool IsTailPredLoop = false; 2048 auto ScanLoop = [&](Loop *L) { 2049 for (auto *BB : L->getBlocks()) { 2050 for (auto &I : *BB) { 2051 if (maybeLoweredToCall(I) || IsHardwareLoopIntrinsic(I) || 2052 isa<InlineAsm>(I)) { 2053 LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n"); 2054 return false; 2055 } 2056 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2057 IsTailPredLoop |= 2058 II->getIntrinsicID() == Intrinsic::get_active_lane_mask || 2059 II->getIntrinsicID() == Intrinsic::arm_mve_vctp8 || 2060 II->getIntrinsicID() == Intrinsic::arm_mve_vctp16 || 2061 II->getIntrinsicID() == Intrinsic::arm_mve_vctp32 || 2062 II->getIntrinsicID() == Intrinsic::arm_mve_vctp64; 2063 } 2064 } 2065 return true; 2066 }; 2067 2068 // Visit inner loops. 2069 for (auto Inner : *L) 2070 if (!ScanLoop(Inner)) 2071 return false; 2072 2073 if (!ScanLoop(L)) 2074 return false; 2075 2076 // TODO: Check whether the trip count calculation is expensive. If L is the 2077 // inner loop but we know it has a low trip count, calculating that trip 2078 // count (in the parent loop) may be detrimental. 2079 2080 LLVMContext &C = L->getHeader()->getContext(); 2081 HWLoopInfo.CounterInReg = true; 2082 HWLoopInfo.IsNestingLegal = false; 2083 HWLoopInfo.PerformEntryTest = AllowWLSLoops && !IsTailPredLoop; 2084 HWLoopInfo.CountType = Type::getInt32Ty(C); 2085 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1); 2086 return true; 2087 } 2088 2089 static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) { 2090 // We don't allow icmp's, and because we only look at single block loops, 2091 // we simply count the icmps, i.e. there should only be 1 for the backedge. 2092 if (isa<ICmpInst>(&I) && ++ICmpCount > 1) 2093 return false; 2094 // FIXME: This is a workaround for poor cost modelling. Min/Max intrinsics are 2095 // not currently canonical, but soon will be. Code without them uses icmp, and 2096 // so is not tail predicated as per the condition above. In order to get the 2097 // same performance we treat min and max the same as an icmp for tailpred 2098 // purposes for the moment (we often rely on non-tailpred and higher VF's to 2099 // pick more optimial instructions like VQDMULH. They need to be recognized 2100 // directly by the vectorizer). 2101 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2102 if ((II->getIntrinsicID() == Intrinsic::smin || 2103 II->getIntrinsicID() == Intrinsic::smax || 2104 II->getIntrinsicID() == Intrinsic::umin || 2105 II->getIntrinsicID() == Intrinsic::umax) && 2106 ++ICmpCount > 1) 2107 return false; 2108 2109 if (isa<FCmpInst>(&I)) 2110 return false; 2111 2112 // We could allow extending/narrowing FP loads/stores, but codegen is 2113 // too inefficient so reject this for now. 2114 if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I)) 2115 return false; 2116 2117 // Extends have to be extending-loads 2118 if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) ) 2119 if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0))) 2120 return false; 2121 2122 // Truncs have to be narrowing-stores 2123 if (isa<TruncInst>(&I) ) 2124 if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin())) 2125 return false; 2126 2127 return true; 2128 } 2129 2130 // To set up a tail-predicated loop, we need to know the total number of 2131 // elements processed by that loop. Thus, we need to determine the element 2132 // size and: 2133 // 1) it should be uniform for all operations in the vector loop, so we 2134 // e.g. don't want any widening/narrowing operations. 2135 // 2) it should be smaller than i64s because we don't have vector operations 2136 // that work on i64s. 2137 // 3) we don't want elements to be reversed or shuffled, to make sure the 2138 // tail-predication masks/predicates the right lanes. 2139 // 2140 static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE, 2141 const DataLayout &DL, 2142 const LoopAccessInfo *LAI) { 2143 LLVM_DEBUG(dbgs() << "Tail-predication: checking allowed instructions\n"); 2144 2145 // If there are live-out values, it is probably a reduction. We can predicate 2146 // most reduction operations freely under MVE using a combination of 2147 // prefer-predicated-reduction-select and inloop reductions. We limit this to 2148 // floating point and integer reductions, but don't check for operators 2149 // specifically here. If the value ends up not being a reduction (and so the 2150 // vectorizer cannot tailfold the loop), we should fall back to standard 2151 // vectorization automatically. 2152 SmallVector< Instruction *, 8 > LiveOuts; 2153 LiveOuts = llvm::findDefsUsedOutsideOfLoop(L); 2154 bool ReductionsDisabled = 2155 EnableTailPredication == TailPredication::EnabledNoReductions || 2156 EnableTailPredication == TailPredication::ForceEnabledNoReductions; 2157 2158 for (auto *I : LiveOuts) { 2159 if (!I->getType()->isIntegerTy() && !I->getType()->isFloatTy() && 2160 !I->getType()->isHalfTy()) { 2161 LLVM_DEBUG(dbgs() << "Don't tail-predicate loop with non-integer/float " 2162 "live-out value\n"); 2163 return false; 2164 } 2165 if (ReductionsDisabled) { 2166 LLVM_DEBUG(dbgs() << "Reductions not enabled\n"); 2167 return false; 2168 } 2169 } 2170 2171 // Next, check that all instructions can be tail-predicated. 2172 PredicatedScalarEvolution PSE = LAI->getPSE(); 2173 SmallVector<Instruction *, 16> LoadStores; 2174 int ICmpCount = 0; 2175 2176 for (BasicBlock *BB : L->blocks()) { 2177 for (Instruction &I : BB->instructionsWithoutDebug()) { 2178 if (isa<PHINode>(&I)) 2179 continue; 2180 if (!canTailPredicateInstruction(I, ICmpCount)) { 2181 LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump()); 2182 return false; 2183 } 2184 2185 Type *T = I.getType(); 2186 if (T->getScalarSizeInBits() > 32) { 2187 LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump()); 2188 return false; 2189 } 2190 if (isa<StoreInst>(I) || isa<LoadInst>(I)) { 2191 Value *Ptr = getLoadStorePointerOperand(&I); 2192 Type *AccessTy = getLoadStoreType(&I); 2193 int64_t NextStride = getPtrStride(PSE, AccessTy, Ptr, L); 2194 if (NextStride == 1) { 2195 // TODO: for now only allow consecutive strides of 1. We could support 2196 // other strides as long as it is uniform, but let's keep it simple 2197 // for now. 2198 continue; 2199 } else if (NextStride == -1 || 2200 (NextStride == 2 && MVEMaxSupportedInterleaveFactor >= 2) || 2201 (NextStride == 4 && MVEMaxSupportedInterleaveFactor >= 4)) { 2202 LLVM_DEBUG(dbgs() 2203 << "Consecutive strides of 2 found, vld2/vstr2 can't " 2204 "be tail-predicated\n."); 2205 return false; 2206 // TODO: don't tail predicate if there is a reversed load? 2207 } else if (EnableMaskedGatherScatters) { 2208 // Gather/scatters do allow loading from arbitrary strides, at 2209 // least if they are loop invariant. 2210 // TODO: Loop variant strides should in theory work, too, but 2211 // this requires further testing. 2212 const SCEV *PtrScev = PSE.getSE()->getSCEV(Ptr); 2213 if (auto AR = dyn_cast<SCEVAddRecExpr>(PtrScev)) { 2214 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 2215 if (PSE.getSE()->isLoopInvariant(Step, L)) 2216 continue; 2217 } 2218 } 2219 LLVM_DEBUG(dbgs() << "Bad stride found, can't " 2220 "tail-predicate\n."); 2221 return false; 2222 } 2223 } 2224 } 2225 2226 LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n"); 2227 return true; 2228 } 2229 2230 bool ARMTTIImpl::preferPredicateOverEpilogue( 2231 Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC, 2232 TargetLibraryInfo *TLI, DominatorTree *DT, LoopVectorizationLegality *LVL, 2233 InterleavedAccessInfo *IAI) { 2234 if (!EnableTailPredication) { 2235 LLVM_DEBUG(dbgs() << "Tail-predication not enabled.\n"); 2236 return false; 2237 } 2238 2239 // Creating a predicated vector loop is the first step for generating a 2240 // tail-predicated hardware loop, for which we need the MVE masked 2241 // load/stores instructions: 2242 if (!ST->hasMVEIntegerOps()) 2243 return false; 2244 2245 // For now, restrict this to single block loops. 2246 if (L->getNumBlocks() > 1) { 2247 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block " 2248 "loop.\n"); 2249 return false; 2250 } 2251 2252 assert(L->isInnermost() && "preferPredicateOverEpilogue: inner-loop expected"); 2253 2254 HardwareLoopInfo HWLoopInfo(L); 2255 if (!HWLoopInfo.canAnalyze(*LI)) { 2256 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 2257 "analyzable.\n"); 2258 return false; 2259 } 2260 2261 // This checks if we have the low-overhead branch architecture 2262 // extension, and if we will create a hardware-loop: 2263 if (!isHardwareLoopProfitable(L, SE, AC, TLI, HWLoopInfo)) { 2264 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 2265 "profitable.\n"); 2266 return false; 2267 } 2268 2269 if (!HWLoopInfo.isHardwareLoopCandidate(SE, *LI, *DT)) { 2270 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 2271 "a candidate.\n"); 2272 return false; 2273 } 2274 2275 return canTailPredicateLoop(L, LI, SE, DL, LVL->getLAI()); 2276 } 2277 2278 PredicationStyle ARMTTIImpl::emitGetActiveLaneMask() const { 2279 if (!ST->hasMVEIntegerOps() || !EnableTailPredication) 2280 return PredicationStyle::None; 2281 2282 // Intrinsic @llvm.get.active.lane.mask is supported. 2283 // It is used in the MVETailPredication pass, which requires the number of 2284 // elements processed by this vector loop to setup the tail-predicated 2285 // loop. 2286 return PredicationStyle::Data; 2287 } 2288 void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 2289 TTI::UnrollingPreferences &UP, 2290 OptimizationRemarkEmitter *ORE) { 2291 // Enable Upper bound unrolling universally, not dependant upon the conditions 2292 // below. 2293 UP.UpperBound = true; 2294 2295 // Only currently enable these preferences for M-Class cores. 2296 if (!ST->isMClass()) 2297 return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE); 2298 2299 // Disable loop unrolling for Oz and Os. 2300 UP.OptSizeThreshold = 0; 2301 UP.PartialOptSizeThreshold = 0; 2302 if (L->getHeader()->getParent()->hasOptSize()) 2303 return; 2304 2305 SmallVector<BasicBlock*, 4> ExitingBlocks; 2306 L->getExitingBlocks(ExitingBlocks); 2307 LLVM_DEBUG(dbgs() << "Loop has:\n" 2308 << "Blocks: " << L->getNumBlocks() << "\n" 2309 << "Exit blocks: " << ExitingBlocks.size() << "\n"); 2310 2311 // Only allow another exit other than the latch. This acts as an early exit 2312 // as it mirrors the profitability calculation of the runtime unroller. 2313 if (ExitingBlocks.size() > 2) 2314 return; 2315 2316 // Limit the CFG of the loop body for targets with a branch predictor. 2317 // Allowing 4 blocks permits if-then-else diamonds in the body. 2318 if (ST->hasBranchPredictor() && L->getNumBlocks() > 4) 2319 return; 2320 2321 // Don't unroll vectorized loops, including the remainder loop 2322 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 2323 return; 2324 2325 // Scan the loop: don't unroll loops with calls as this could prevent 2326 // inlining. 2327 InstructionCost Cost = 0; 2328 for (auto *BB : L->getBlocks()) { 2329 for (auto &I : *BB) { 2330 // Don't unroll vectorised loop. MVE does not benefit from it as much as 2331 // scalar code. 2332 if (I.getType()->isVectorTy()) 2333 return; 2334 2335 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 2336 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 2337 if (!isLoweredToCall(F)) 2338 continue; 2339 } 2340 return; 2341 } 2342 2343 SmallVector<const Value*, 4> Operands(I.operand_values()); 2344 Cost += getInstructionCost(&I, Operands, 2345 TargetTransformInfo::TCK_SizeAndLatency); 2346 } 2347 } 2348 2349 // On v6m cores, there are very few registers available. We can easily end up 2350 // spilling and reloading more registers in an unrolled loop. Look at the 2351 // number of LCSSA phis as a rough measure of how many registers will need to 2352 // be live out of the loop, reducing the default unroll count if more than 1 2353 // value is needed. In the long run, all of this should be being learnt by a 2354 // machine. 2355 unsigned UnrollCount = 4; 2356 if (ST->isThumb1Only()) { 2357 unsigned ExitingValues = 0; 2358 SmallVector<BasicBlock *, 4> ExitBlocks; 2359 L->getExitBlocks(ExitBlocks); 2360 for (auto *Exit : ExitBlocks) { 2361 // Count the number of LCSSA phis. Exclude values coming from GEP's as 2362 // only the last is expected to be needed for address operands. 2363 unsigned LiveOuts = count_if(Exit->phis(), [](auto &PH) { 2364 return PH.getNumOperands() != 1 || 2365 !isa<GetElementPtrInst>(PH.getOperand(0)); 2366 }); 2367 ExitingValues = ExitingValues < LiveOuts ? LiveOuts : ExitingValues; 2368 } 2369 if (ExitingValues) 2370 UnrollCount /= ExitingValues; 2371 if (UnrollCount <= 1) 2372 return; 2373 } 2374 2375 LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n"); 2376 LLVM_DEBUG(dbgs() << "Default Runtime Unroll Count: " << UnrollCount << "\n"); 2377 2378 UP.Partial = true; 2379 UP.Runtime = true; 2380 UP.UnrollRemainder = true; 2381 UP.DefaultUnrollRuntimeCount = UnrollCount; 2382 UP.UnrollAndJam = true; 2383 UP.UnrollAndJamInnerLoopThreshold = 60; 2384 2385 // Force unrolling small loops can be very useful because of the branch 2386 // taken cost of the backedge. 2387 if (Cost < 12) 2388 UP.Force = true; 2389 } 2390 2391 void ARMTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 2392 TTI::PeelingPreferences &PP) { 2393 BaseT::getPeelingPreferences(L, SE, PP); 2394 } 2395 2396 bool ARMTTIImpl::preferInLoopReduction(unsigned Opcode, Type *Ty, 2397 TTI::ReductionFlags Flags) const { 2398 if (!ST->hasMVEIntegerOps()) 2399 return false; 2400 2401 unsigned ScalarBits = Ty->getScalarSizeInBits(); 2402 switch (Opcode) { 2403 case Instruction::Add: 2404 return ScalarBits <= 64; 2405 default: 2406 return false; 2407 } 2408 } 2409 2410 bool ARMTTIImpl::preferPredicatedReductionSelect( 2411 unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const { 2412 if (!ST->hasMVEIntegerOps()) 2413 return false; 2414 return true; 2415 } 2416 2417 InstructionCost ARMTTIImpl::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 2418 int64_t BaseOffset, 2419 bool HasBaseReg, int64_t Scale, 2420 unsigned AddrSpace) const { 2421 TargetLoweringBase::AddrMode AM; 2422 AM.BaseGV = BaseGV; 2423 AM.BaseOffs = BaseOffset; 2424 AM.HasBaseReg = HasBaseReg; 2425 AM.Scale = Scale; 2426 if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace)) { 2427 if (ST->hasFPAO()) 2428 return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster 2429 return 0; 2430 } 2431 return -1; 2432 } 2433