1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMTargetTransformInfo.h" 10 #include "ARMSubtarget.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "llvm/ADT/APInt.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Analysis/LoopInfo.h" 15 #include "llvm/CodeGen/CostTable.h" 16 #include "llvm/CodeGen/ISDOpcodes.h" 17 #include "llvm/CodeGen/ValueTypes.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Instruction.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/Intrinsics.h" 25 #include "llvm/IR/IntrinsicsARM.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/IR/Type.h" 28 #include "llvm/MC/SubtargetFeature.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MachineValueType.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Transforms/InstCombine/InstCombiner.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/Transforms/Utils/LoopUtils.h" 36 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 37 #include <algorithm> 38 #include <cassert> 39 #include <cstdint> 40 #include <optional> 41 #include <utility> 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "armtti" 46 47 static cl::opt<bool> EnableMaskedLoadStores( 48 "enable-arm-maskedldst", cl::Hidden, cl::init(true), 49 cl::desc("Enable the generation of masked loads and stores")); 50 51 static cl::opt<bool> DisableLowOverheadLoops( 52 "disable-arm-loloops", cl::Hidden, cl::init(false), 53 cl::desc("Disable the generation of low-overhead loops")); 54 55 static cl::opt<bool> 56 AllowWLSLoops("allow-arm-wlsloops", cl::Hidden, cl::init(true), 57 cl::desc("Enable the generation of WLS loops")); 58 59 extern cl::opt<TailPredication::Mode> EnableTailPredication; 60 61 extern cl::opt<bool> EnableMaskedGatherScatters; 62 63 extern cl::opt<unsigned> MVEMaxSupportedInterleaveFactor; 64 65 /// Convert a vector load intrinsic into a simple llvm load instruction. 66 /// This is beneficial when the underlying object being addressed comes 67 /// from a constant, since we get constant-folding for free. 68 static Value *simplifyNeonVld1(const IntrinsicInst &II, unsigned MemAlign, 69 InstCombiner::BuilderTy &Builder) { 70 auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1)); 71 72 if (!IntrAlign) 73 return nullptr; 74 75 unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign 76 ? MemAlign 77 : IntrAlign->getLimitedValue(); 78 79 if (!isPowerOf2_32(Alignment)) 80 return nullptr; 81 82 auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0), 83 PointerType::get(II.getType(), 0)); 84 return Builder.CreateAlignedLoad(II.getType(), BCastInst, Align(Alignment)); 85 } 86 87 bool ARMTTIImpl::areInlineCompatible(const Function *Caller, 88 const Function *Callee) const { 89 const TargetMachine &TM = getTLI()->getTargetMachine(); 90 const FeatureBitset &CallerBits = 91 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 92 const FeatureBitset &CalleeBits = 93 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 94 95 // To inline a callee, all features not in the allowed list must match exactly. 96 bool MatchExact = (CallerBits & ~InlineFeaturesAllowed) == 97 (CalleeBits & ~InlineFeaturesAllowed); 98 // For features in the allowed list, the callee's features must be a subset of 99 // the callers'. 100 bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeaturesAllowed) == 101 (CalleeBits & InlineFeaturesAllowed); 102 return MatchExact && MatchSubset; 103 } 104 105 TTI::AddressingModeKind 106 ARMTTIImpl::getPreferredAddressingMode(const Loop *L, 107 ScalarEvolution *SE) const { 108 if (ST->hasMVEIntegerOps()) 109 return TTI::AMK_PostIndexed; 110 111 if (L->getHeader()->getParent()->hasOptSize()) 112 return TTI::AMK_None; 113 114 if (ST->isMClass() && ST->isThumb2() && 115 L->getNumBlocks() == 1) 116 return TTI::AMK_PreIndexed; 117 118 return TTI::AMK_None; 119 } 120 121 std::optional<Instruction *> 122 ARMTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { 123 using namespace PatternMatch; 124 Intrinsic::ID IID = II.getIntrinsicID(); 125 switch (IID) { 126 default: 127 break; 128 case Intrinsic::arm_neon_vld1: { 129 Align MemAlign = 130 getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II, 131 &IC.getAssumptionCache(), &IC.getDominatorTree()); 132 if (Value *V = simplifyNeonVld1(II, MemAlign.value(), IC.Builder)) { 133 return IC.replaceInstUsesWith(II, V); 134 } 135 break; 136 } 137 138 case Intrinsic::arm_neon_vld2: 139 case Intrinsic::arm_neon_vld3: 140 case Intrinsic::arm_neon_vld4: 141 case Intrinsic::arm_neon_vld2lane: 142 case Intrinsic::arm_neon_vld3lane: 143 case Intrinsic::arm_neon_vld4lane: 144 case Intrinsic::arm_neon_vst1: 145 case Intrinsic::arm_neon_vst2: 146 case Intrinsic::arm_neon_vst3: 147 case Intrinsic::arm_neon_vst4: 148 case Intrinsic::arm_neon_vst2lane: 149 case Intrinsic::arm_neon_vst3lane: 150 case Intrinsic::arm_neon_vst4lane: { 151 Align MemAlign = 152 getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II, 153 &IC.getAssumptionCache(), &IC.getDominatorTree()); 154 unsigned AlignArg = II.arg_size() - 1; 155 Value *AlignArgOp = II.getArgOperand(AlignArg); 156 MaybeAlign Align = cast<ConstantInt>(AlignArgOp)->getMaybeAlignValue(); 157 if (Align && *Align < MemAlign) { 158 return IC.replaceOperand( 159 II, AlignArg, 160 ConstantInt::get(Type::getInt32Ty(II.getContext()), MemAlign.value(), 161 false)); 162 } 163 break; 164 } 165 166 case Intrinsic::arm_mve_pred_i2v: { 167 Value *Arg = II.getArgOperand(0); 168 Value *ArgArg; 169 if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>( 170 PatternMatch::m_Value(ArgArg))) && 171 II.getType() == ArgArg->getType()) { 172 return IC.replaceInstUsesWith(II, ArgArg); 173 } 174 Constant *XorMask; 175 if (match(Arg, m_Xor(PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>( 176 PatternMatch::m_Value(ArgArg)), 177 PatternMatch::m_Constant(XorMask))) && 178 II.getType() == ArgArg->getType()) { 179 if (auto *CI = dyn_cast<ConstantInt>(XorMask)) { 180 if (CI->getValue().trunc(16).isAllOnes()) { 181 auto TrueVector = IC.Builder.CreateVectorSplat( 182 cast<FixedVectorType>(II.getType())->getNumElements(), 183 IC.Builder.getTrue()); 184 return BinaryOperator::Create(Instruction::Xor, ArgArg, TrueVector); 185 } 186 } 187 } 188 KnownBits ScalarKnown(32); 189 if (IC.SimplifyDemandedBits(&II, 0, APInt::getLowBitsSet(32, 16), 190 ScalarKnown, 0)) { 191 return &II; 192 } 193 break; 194 } 195 case Intrinsic::arm_mve_pred_v2i: { 196 Value *Arg = II.getArgOperand(0); 197 Value *ArgArg; 198 if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_i2v>( 199 PatternMatch::m_Value(ArgArg)))) { 200 return IC.replaceInstUsesWith(II, ArgArg); 201 } 202 if (!II.getMetadata(LLVMContext::MD_range)) { 203 Type *IntTy32 = Type::getInt32Ty(II.getContext()); 204 Metadata *M[] = { 205 ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0)), 206 ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0x10000))}; 207 II.setMetadata(LLVMContext::MD_range, MDNode::get(II.getContext(), M)); 208 return &II; 209 } 210 break; 211 } 212 case Intrinsic::arm_mve_vadc: 213 case Intrinsic::arm_mve_vadc_predicated: { 214 unsigned CarryOp = 215 (II.getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated) ? 3 : 2; 216 assert(II.getArgOperand(CarryOp)->getType()->getScalarSizeInBits() == 32 && 217 "Bad type for intrinsic!"); 218 219 KnownBits CarryKnown(32); 220 if (IC.SimplifyDemandedBits(&II, CarryOp, APInt::getOneBitSet(32, 29), 221 CarryKnown)) { 222 return &II; 223 } 224 break; 225 } 226 case Intrinsic::arm_mve_vmldava: { 227 Instruction *I = cast<Instruction>(&II); 228 if (I->hasOneUse()) { 229 auto *User = cast<Instruction>(*I->user_begin()); 230 Value *OpZ; 231 if (match(User, m_c_Add(m_Specific(I), m_Value(OpZ))) && 232 match(I->getOperand(3), m_Zero())) { 233 Value *OpX = I->getOperand(4); 234 Value *OpY = I->getOperand(5); 235 Type *OpTy = OpX->getType(); 236 237 IC.Builder.SetInsertPoint(User); 238 Value *V = 239 IC.Builder.CreateIntrinsic(Intrinsic::arm_mve_vmldava, {OpTy}, 240 {I->getOperand(0), I->getOperand(1), 241 I->getOperand(2), OpZ, OpX, OpY}); 242 243 IC.replaceInstUsesWith(*User, V); 244 return IC.eraseInstFromFunction(*User); 245 } 246 } 247 return std::nullopt; 248 } 249 } 250 return std::nullopt; 251 } 252 253 std::optional<Value *> ARMTTIImpl::simplifyDemandedVectorEltsIntrinsic( 254 InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts, 255 APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, 256 std::function<void(Instruction *, unsigned, APInt, APInt &)> 257 SimplifyAndSetOp) const { 258 259 // Compute the demanded bits for a narrowing MVE intrinsic. The TopOpc is the 260 // opcode specifying a Top/Bottom instruction, which can change between 261 // instructions. 262 auto SimplifyNarrowInstrTopBottom =[&](unsigned TopOpc) { 263 unsigned NumElts = cast<FixedVectorType>(II.getType())->getNumElements(); 264 unsigned IsTop = cast<ConstantInt>(II.getOperand(TopOpc))->getZExtValue(); 265 266 // The only odd/even lanes of operand 0 will only be demanded depending 267 // on whether this is a top/bottom instruction. 268 APInt DemandedElts = 269 APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1) 270 : APInt::getHighBitsSet(2, 1)); 271 SimplifyAndSetOp(&II, 0, OrigDemandedElts & DemandedElts, UndefElts); 272 // The other lanes will be defined from the inserted elements. 273 UndefElts &= APInt::getSplat(NumElts, !IsTop ? APInt::getLowBitsSet(2, 1) 274 : APInt::getHighBitsSet(2, 1)); 275 return std::nullopt; 276 }; 277 278 switch (II.getIntrinsicID()) { 279 default: 280 break; 281 case Intrinsic::arm_mve_vcvt_narrow: 282 SimplifyNarrowInstrTopBottom(2); 283 break; 284 case Intrinsic::arm_mve_vqmovn: 285 SimplifyNarrowInstrTopBottom(4); 286 break; 287 case Intrinsic::arm_mve_vshrn: 288 SimplifyNarrowInstrTopBottom(7); 289 break; 290 } 291 292 return std::nullopt; 293 } 294 295 InstructionCost ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 296 TTI::TargetCostKind CostKind) { 297 assert(Ty->isIntegerTy()); 298 299 unsigned Bits = Ty->getPrimitiveSizeInBits(); 300 if (Bits == 0 || Imm.getActiveBits() >= 64) 301 return 4; 302 303 int64_t SImmVal = Imm.getSExtValue(); 304 uint64_t ZImmVal = Imm.getZExtValue(); 305 if (!ST->isThumb()) { 306 if ((SImmVal >= 0 && SImmVal < 65536) || 307 (ARM_AM::getSOImmVal(ZImmVal) != -1) || 308 (ARM_AM::getSOImmVal(~ZImmVal) != -1)) 309 return 1; 310 return ST->hasV6T2Ops() ? 2 : 3; 311 } 312 if (ST->isThumb2()) { 313 if ((SImmVal >= 0 && SImmVal < 65536) || 314 (ARM_AM::getT2SOImmVal(ZImmVal) != -1) || 315 (ARM_AM::getT2SOImmVal(~ZImmVal) != -1)) 316 return 1; 317 return ST->hasV6T2Ops() ? 2 : 3; 318 } 319 // Thumb1, any i8 imm cost 1. 320 if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256)) 321 return 1; 322 if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal)) 323 return 2; 324 // Load from constantpool. 325 return 3; 326 } 327 328 // Constants smaller than 256 fit in the immediate field of 329 // Thumb1 instructions so we return a zero cost and 1 otherwise. 330 InstructionCost ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, 331 const APInt &Imm, Type *Ty) { 332 if (Imm.isNonNegative() && Imm.getLimitedValue() < 256) 333 return 0; 334 335 return 1; 336 } 337 338 // Checks whether Inst is part of a min(max()) or max(min()) pattern 339 // that will match to an SSAT instruction. Returns the instruction being 340 // saturated, or null if no saturation pattern was found. 341 static Value *isSSATMinMaxPattern(Instruction *Inst, const APInt &Imm) { 342 Value *LHS, *RHS; 343 ConstantInt *C; 344 SelectPatternFlavor InstSPF = matchSelectPattern(Inst, LHS, RHS).Flavor; 345 346 if (InstSPF == SPF_SMAX && 347 PatternMatch::match(RHS, PatternMatch::m_ConstantInt(C)) && 348 C->getValue() == Imm && Imm.isNegative() && Imm.isNegatedPowerOf2()) { 349 350 auto isSSatMin = [&](Value *MinInst) { 351 if (isa<SelectInst>(MinInst)) { 352 Value *MinLHS, *MinRHS; 353 ConstantInt *MinC; 354 SelectPatternFlavor MinSPF = 355 matchSelectPattern(MinInst, MinLHS, MinRHS).Flavor; 356 if (MinSPF == SPF_SMIN && 357 PatternMatch::match(MinRHS, PatternMatch::m_ConstantInt(MinC)) && 358 MinC->getValue() == ((-Imm) - 1)) 359 return true; 360 } 361 return false; 362 }; 363 364 if (isSSatMin(Inst->getOperand(1))) 365 return cast<Instruction>(Inst->getOperand(1))->getOperand(1); 366 if (Inst->hasNUses(2) && 367 (isSSatMin(*Inst->user_begin()) || isSSatMin(*(++Inst->user_begin())))) 368 return Inst->getOperand(1); 369 } 370 return nullptr; 371 } 372 373 // Look for a FP Saturation pattern, where the instruction can be simplified to 374 // a fptosi.sat. max(min(fptosi)). The constant in this case is always free. 375 static bool isFPSatMinMaxPattern(Instruction *Inst, const APInt &Imm) { 376 if (Imm.getBitWidth() != 64 || 377 Imm != APInt::getHighBitsSet(64, 33)) // -2147483648 378 return false; 379 Value *FP = isSSATMinMaxPattern(Inst, Imm); 380 if (!FP && isa<ICmpInst>(Inst) && Inst->hasOneUse()) 381 FP = isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm); 382 if (!FP) 383 return false; 384 return isa<FPToSIInst>(FP); 385 } 386 387 InstructionCost ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 388 const APInt &Imm, Type *Ty, 389 TTI::TargetCostKind CostKind, 390 Instruction *Inst) { 391 // Division by a constant can be turned into multiplication, but only if we 392 // know it's constant. So it's not so much that the immediate is cheap (it's 393 // not), but that the alternative is worse. 394 // FIXME: this is probably unneeded with GlobalISel. 395 if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv || 396 Opcode == Instruction::SRem || Opcode == Instruction::URem) && 397 Idx == 1) 398 return 0; 399 400 // Leave any gep offsets for the CodeGenPrepare, which will do a better job at 401 // splitting any large offsets. 402 if (Opcode == Instruction::GetElementPtr && Idx != 0) 403 return 0; 404 405 if (Opcode == Instruction::And) { 406 // UXTB/UXTH 407 if (Imm == 255 || Imm == 65535) 408 return 0; 409 // Conversion to BIC is free, and means we can use ~Imm instead. 410 return std::min(getIntImmCost(Imm, Ty, CostKind), 411 getIntImmCost(~Imm, Ty, CostKind)); 412 } 413 414 if (Opcode == Instruction::Add) 415 // Conversion to SUB is free, and means we can use -Imm instead. 416 return std::min(getIntImmCost(Imm, Ty, CostKind), 417 getIntImmCost(-Imm, Ty, CostKind)); 418 419 if (Opcode == Instruction::ICmp && Imm.isNegative() && 420 Ty->getIntegerBitWidth() == 32) { 421 int64_t NegImm = -Imm.getSExtValue(); 422 if (ST->isThumb2() && NegImm < 1<<12) 423 // icmp X, #-C -> cmn X, #C 424 return 0; 425 if (ST->isThumb() && NegImm < 1<<8) 426 // icmp X, #-C -> adds X, #C 427 return 0; 428 } 429 430 // xor a, -1 can always be folded to MVN 431 if (Opcode == Instruction::Xor && Imm.isAllOnes()) 432 return 0; 433 434 // Ensures negative constant of min(max()) or max(min()) patterns that 435 // match to SSAT instructions don't get hoisted 436 if (Inst && ((ST->hasV6Ops() && !ST->isThumb()) || ST->isThumb2()) && 437 Ty->getIntegerBitWidth() <= 32) { 438 if (isSSATMinMaxPattern(Inst, Imm) || 439 (isa<ICmpInst>(Inst) && Inst->hasOneUse() && 440 isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm))) 441 return 0; 442 } 443 444 if (Inst && ST->hasVFP2Base() && isFPSatMinMaxPattern(Inst, Imm)) 445 return 0; 446 447 // We can convert <= -1 to < 0, which is generally quite cheap. 448 if (Inst && Opcode == Instruction::ICmp && Idx == 1 && Imm.isAllOnesValue()) { 449 ICmpInst::Predicate Pred = cast<ICmpInst>(Inst)->getPredicate(); 450 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) 451 return std::min(getIntImmCost(Imm, Ty, CostKind), 452 getIntImmCost(Imm + 1, Ty, CostKind)); 453 } 454 455 return getIntImmCost(Imm, Ty, CostKind); 456 } 457 458 InstructionCost ARMTTIImpl::getCFInstrCost(unsigned Opcode, 459 TTI::TargetCostKind CostKind, 460 const Instruction *I) { 461 if (CostKind == TTI::TCK_RecipThroughput && 462 (ST->hasNEON() || ST->hasMVEIntegerOps())) { 463 // FIXME: The vectorizer is highly sensistive to the cost of these 464 // instructions, which suggests that it may be using the costs incorrectly. 465 // But, for now, just make them free to avoid performance regressions for 466 // vector targets. 467 return 0; 468 } 469 return BaseT::getCFInstrCost(Opcode, CostKind, I); 470 } 471 472 InstructionCost ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 473 Type *Src, 474 TTI::CastContextHint CCH, 475 TTI::TargetCostKind CostKind, 476 const Instruction *I) { 477 int ISD = TLI->InstructionOpcodeToISD(Opcode); 478 assert(ISD && "Invalid opcode"); 479 480 // TODO: Allow non-throughput costs that aren't binary. 481 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost { 482 if (CostKind != TTI::TCK_RecipThroughput) 483 return Cost == 0 ? 0 : 1; 484 return Cost; 485 }; 486 auto IsLegalFPType = [this](EVT VT) { 487 EVT EltVT = VT.getScalarType(); 488 return (EltVT == MVT::f32 && ST->hasVFP2Base()) || 489 (EltVT == MVT::f64 && ST->hasFP64()) || 490 (EltVT == MVT::f16 && ST->hasFullFP16()); 491 }; 492 493 EVT SrcTy = TLI->getValueType(DL, Src); 494 EVT DstTy = TLI->getValueType(DL, Dst); 495 496 if (!SrcTy.isSimple() || !DstTy.isSimple()) 497 return AdjustCost( 498 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 499 500 // Extending masked load/Truncating masked stores is expensive because we 501 // currently don't split them. This means that we'll likely end up 502 // loading/storing each element individually (hence the high cost). 503 if ((ST->hasMVEIntegerOps() && 504 (Opcode == Instruction::Trunc || Opcode == Instruction::ZExt || 505 Opcode == Instruction::SExt)) || 506 (ST->hasMVEFloatOps() && 507 (Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc) && 508 IsLegalFPType(SrcTy) && IsLegalFPType(DstTy))) 509 if (CCH == TTI::CastContextHint::Masked && DstTy.getSizeInBits() > 128) 510 return 2 * DstTy.getVectorNumElements() * 511 ST->getMVEVectorCostFactor(CostKind); 512 513 // The extend of other kinds of load is free 514 if (CCH == TTI::CastContextHint::Normal || 515 CCH == TTI::CastContextHint::Masked) { 516 static const TypeConversionCostTblEntry LoadConversionTbl[] = { 517 {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0}, 518 {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0}, 519 {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0}, 520 {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0}, 521 {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0}, 522 {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0}, 523 {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1}, 524 {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1}, 525 {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1}, 526 {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1}, 527 {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1}, 528 {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1}, 529 }; 530 if (const auto *Entry = ConvertCostTableLookup( 531 LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 532 return AdjustCost(Entry->Cost); 533 534 static const TypeConversionCostTblEntry MVELoadConversionTbl[] = { 535 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0}, 536 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0}, 537 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0}, 538 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0}, 539 {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0}, 540 {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0}, 541 // The following extend from a legal type to an illegal type, so need to 542 // split the load. This introduced an extra load operation, but the 543 // extend is still "free". 544 {ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1}, 545 {ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1}, 546 {ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 3}, 547 {ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 3}, 548 {ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1}, 549 {ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1}, 550 }; 551 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 552 if (const auto *Entry = 553 ConvertCostTableLookup(MVELoadConversionTbl, ISD, 554 DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 555 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 556 } 557 558 static const TypeConversionCostTblEntry MVEFLoadConversionTbl[] = { 559 // FPExtends are similar but also require the VCVT instructions. 560 {ISD::FP_EXTEND, MVT::v4f32, MVT::v4f16, 1}, 561 {ISD::FP_EXTEND, MVT::v8f32, MVT::v8f16, 3}, 562 }; 563 if (SrcTy.isVector() && ST->hasMVEFloatOps()) { 564 if (const auto *Entry = 565 ConvertCostTableLookup(MVEFLoadConversionTbl, ISD, 566 DstTy.getSimpleVT(), SrcTy.getSimpleVT())) 567 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 568 } 569 570 // The truncate of a store is free. This is the mirror of extends above. 571 static const TypeConversionCostTblEntry MVEStoreConversionTbl[] = { 572 {ISD::TRUNCATE, MVT::v4i32, MVT::v4i16, 0}, 573 {ISD::TRUNCATE, MVT::v4i32, MVT::v4i8, 0}, 574 {ISD::TRUNCATE, MVT::v8i16, MVT::v8i8, 0}, 575 {ISD::TRUNCATE, MVT::v8i32, MVT::v8i16, 1}, 576 {ISD::TRUNCATE, MVT::v8i32, MVT::v8i8, 1}, 577 {ISD::TRUNCATE, MVT::v16i32, MVT::v16i8, 3}, 578 {ISD::TRUNCATE, MVT::v16i16, MVT::v16i8, 1}, 579 }; 580 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 581 if (const auto *Entry = 582 ConvertCostTableLookup(MVEStoreConversionTbl, ISD, 583 SrcTy.getSimpleVT(), DstTy.getSimpleVT())) 584 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 585 } 586 587 static const TypeConversionCostTblEntry MVEFStoreConversionTbl[] = { 588 {ISD::FP_ROUND, MVT::v4f32, MVT::v4f16, 1}, 589 {ISD::FP_ROUND, MVT::v8f32, MVT::v8f16, 3}, 590 }; 591 if (SrcTy.isVector() && ST->hasMVEFloatOps()) { 592 if (const auto *Entry = 593 ConvertCostTableLookup(MVEFStoreConversionTbl, ISD, 594 SrcTy.getSimpleVT(), DstTy.getSimpleVT())) 595 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 596 } 597 } 598 599 // NEON vector operations that can extend their inputs. 600 if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) && 601 I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) { 602 static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = { 603 // vaddl 604 { ISD::ADD, MVT::v4i32, MVT::v4i16, 0 }, 605 { ISD::ADD, MVT::v8i16, MVT::v8i8, 0 }, 606 // vsubl 607 { ISD::SUB, MVT::v4i32, MVT::v4i16, 0 }, 608 { ISD::SUB, MVT::v8i16, MVT::v8i8, 0 }, 609 // vmull 610 { ISD::MUL, MVT::v4i32, MVT::v4i16, 0 }, 611 { ISD::MUL, MVT::v8i16, MVT::v8i8, 0 }, 612 // vshll 613 { ISD::SHL, MVT::v4i32, MVT::v4i16, 0 }, 614 { ISD::SHL, MVT::v8i16, MVT::v8i8, 0 }, 615 }; 616 617 auto *User = cast<Instruction>(*I->user_begin()); 618 int UserISD = TLI->InstructionOpcodeToISD(User->getOpcode()); 619 if (auto *Entry = ConvertCostTableLookup(NEONDoubleWidthTbl, UserISD, 620 DstTy.getSimpleVT(), 621 SrcTy.getSimpleVT())) { 622 return AdjustCost(Entry->Cost); 623 } 624 } 625 626 // Single to/from double precision conversions. 627 if (Src->isVectorTy() && ST->hasNEON() && 628 ((ISD == ISD::FP_ROUND && SrcTy.getScalarType() == MVT::f64 && 629 DstTy.getScalarType() == MVT::f32) || 630 (ISD == ISD::FP_EXTEND && SrcTy.getScalarType() == MVT::f32 && 631 DstTy.getScalarType() == MVT::f64))) { 632 static const CostTblEntry NEONFltDblTbl[] = { 633 // Vector fptrunc/fpext conversions. 634 {ISD::FP_ROUND, MVT::v2f64, 2}, 635 {ISD::FP_EXTEND, MVT::v2f32, 2}, 636 {ISD::FP_EXTEND, MVT::v4f32, 4}}; 637 638 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src); 639 if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second)) 640 return AdjustCost(LT.first * Entry->Cost); 641 } 642 643 // Some arithmetic, load and store operations have specific instructions 644 // to cast up/down their types automatically at no extra cost. 645 // TODO: Get these tables to know at least what the related operations are. 646 static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = { 647 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 648 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 649 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 650 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, 651 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 652 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 653 654 // The number of vmovl instructions for the extension. 655 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 656 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 657 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 658 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 659 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 3 }, 660 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 3 }, 661 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 662 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 663 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 664 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 665 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 666 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 667 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 668 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 669 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 670 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 671 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 672 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 673 674 // Operations that we legalize using splitting. 675 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 676 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 677 678 // Vector float <-> i32 conversions. 679 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 680 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 681 682 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 683 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 684 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, 685 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, 686 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 687 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 688 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 689 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, 690 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 691 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 692 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 693 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 694 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 695 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 696 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 697 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, 698 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, 699 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, 700 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, 701 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, 702 703 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 704 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 705 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 }, 706 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 }, 707 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 708 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 709 710 // Vector double <-> i32 conversions. 711 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 712 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 713 714 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 715 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 716 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, 717 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, 718 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 719 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 720 721 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 722 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 723 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 }, 724 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 }, 725 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 }, 726 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 } 727 }; 728 729 if (SrcTy.isVector() && ST->hasNEON()) { 730 if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD, 731 DstTy.getSimpleVT(), 732 SrcTy.getSimpleVT())) 733 return AdjustCost(Entry->Cost); 734 } 735 736 // Scalar float to integer conversions. 737 static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = { 738 { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 }, 739 { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 }, 740 { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 }, 741 { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 }, 742 { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 }, 743 { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 }, 744 { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 }, 745 { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 }, 746 { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 }, 747 { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 }, 748 { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 }, 749 { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 }, 750 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 }, 751 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 }, 752 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 }, 753 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 }, 754 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 }, 755 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 }, 756 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 }, 757 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 } 758 }; 759 if (SrcTy.isFloatingPoint() && ST->hasNEON()) { 760 if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD, 761 DstTy.getSimpleVT(), 762 SrcTy.getSimpleVT())) 763 return AdjustCost(Entry->Cost); 764 } 765 766 // Scalar integer to float conversions. 767 static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = { 768 { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 }, 769 { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 }, 770 { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 }, 771 { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 }, 772 { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 }, 773 { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 }, 774 { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 }, 775 { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 }, 776 { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 }, 777 { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 }, 778 { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 }, 779 { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 }, 780 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 }, 781 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 }, 782 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 }, 783 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 }, 784 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 }, 785 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 }, 786 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 }, 787 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 } 788 }; 789 790 if (SrcTy.isInteger() && ST->hasNEON()) { 791 if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl, 792 ISD, DstTy.getSimpleVT(), 793 SrcTy.getSimpleVT())) 794 return AdjustCost(Entry->Cost); 795 } 796 797 // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one 798 // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext 799 // are linearised so take more. 800 static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = { 801 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 802 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, 803 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 804 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, 805 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 }, 806 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 }, 807 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 808 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, 809 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 }, 810 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 }, 811 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 }, 812 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 }, 813 }; 814 815 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) { 816 if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl, 817 ISD, DstTy.getSimpleVT(), 818 SrcTy.getSimpleVT())) 819 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind); 820 } 821 822 if (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND) { 823 // As general rule, fp converts that were not matched above are scalarized 824 // and cost 1 vcvt for each lane, so long as the instruction is available. 825 // If not it will become a series of function calls. 826 const InstructionCost CallCost = 827 getCallInstrCost(nullptr, Dst, {Src}, CostKind); 828 int Lanes = 1; 829 if (SrcTy.isFixedLengthVector()) 830 Lanes = SrcTy.getVectorNumElements(); 831 832 if (IsLegalFPType(SrcTy) && IsLegalFPType(DstTy)) 833 return Lanes; 834 else 835 return Lanes * CallCost; 836 } 837 838 if (ISD == ISD::TRUNCATE && ST->hasMVEIntegerOps() && 839 SrcTy.isFixedLengthVector()) { 840 // Treat a truncate with larger than legal source (128bits for MVE) as 841 // expensive, 2 instructions per lane. 842 if ((SrcTy.getScalarType() == MVT::i8 || 843 SrcTy.getScalarType() == MVT::i16 || 844 SrcTy.getScalarType() == MVT::i32) && 845 SrcTy.getSizeInBits() > 128 && 846 SrcTy.getSizeInBits() > DstTy.getSizeInBits()) 847 return SrcTy.getVectorNumElements() * 2; 848 } 849 850 // Scalar integer conversion costs. 851 static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = { 852 // i16 -> i64 requires two dependent operations. 853 { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 }, 854 855 // Truncates on i64 are assumed to be free. 856 { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 }, 857 { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 }, 858 { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 }, 859 { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 } 860 }; 861 862 if (SrcTy.isInteger()) { 863 if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD, 864 DstTy.getSimpleVT(), 865 SrcTy.getSimpleVT())) 866 return AdjustCost(Entry->Cost); 867 } 868 869 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() 870 ? ST->getMVEVectorCostFactor(CostKind) 871 : 1; 872 return AdjustCost( 873 BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 874 } 875 876 InstructionCost ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 877 unsigned Index) { 878 // Penalize inserting into an D-subregister. We end up with a three times 879 // lower estimated throughput on swift. 880 if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement && 881 ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32) 882 return 3; 883 884 if (ST->hasNEON() && (Opcode == Instruction::InsertElement || 885 Opcode == Instruction::ExtractElement)) { 886 // Cross-class copies are expensive on many microarchitectures, 887 // so assume they are expensive by default. 888 if (cast<VectorType>(ValTy)->getElementType()->isIntegerTy()) 889 return 3; 890 891 // Even if it's not a cross class copy, this likely leads to mixing 892 // of NEON and VFP code and should be therefore penalized. 893 if (ValTy->isVectorTy() && 894 ValTy->getScalarSizeInBits() <= 32) 895 return std::max<InstructionCost>( 896 BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U); 897 } 898 899 if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement || 900 Opcode == Instruction::ExtractElement)) { 901 // Integer cross-lane moves are more expensive than float, which can 902 // sometimes just be vmovs. Integer involve being passes to GPR registers, 903 // causing more of a delay. 904 std::pair<InstructionCost, MVT> LT = 905 getTypeLegalizationCost(ValTy->getScalarType()); 906 return LT.first * (ValTy->getScalarType()->isIntegerTy() ? 4 : 1); 907 } 908 909 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 910 } 911 912 InstructionCost ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 913 Type *CondTy, 914 CmpInst::Predicate VecPred, 915 TTI::TargetCostKind CostKind, 916 const Instruction *I) { 917 int ISD = TLI->InstructionOpcodeToISD(Opcode); 918 919 // Thumb scalar code size cost for select. 920 if (CostKind == TTI::TCK_CodeSize && ISD == ISD::SELECT && 921 ST->isThumb() && !ValTy->isVectorTy()) { 922 // Assume expensive structs. 923 if (TLI->getValueType(DL, ValTy, true) == MVT::Other) 924 return TTI::TCC_Expensive; 925 926 // Select costs can vary because they: 927 // - may require one or more conditional mov (including an IT), 928 // - can't operate directly on immediates, 929 // - require live flags, which we can't copy around easily. 930 InstructionCost Cost = getTypeLegalizationCost(ValTy).first; 931 932 // Possible IT instruction for Thumb2, or more for Thumb1. 933 ++Cost; 934 935 // i1 values may need rematerialising by using mov immediates and/or 936 // flag setting instructions. 937 if (ValTy->isIntegerTy(1)) 938 ++Cost; 939 940 return Cost; 941 } 942 943 // If this is a vector min/max/abs, use the cost of that intrinsic directly 944 // instead. Hopefully when min/max intrinsics are more prevalent this code 945 // will not be needed. 946 const Instruction *Sel = I; 947 if ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && Sel && 948 Sel->hasOneUse()) 949 Sel = cast<Instruction>(Sel->user_back()); 950 if (Sel && ValTy->isVectorTy() && 951 (ValTy->isIntOrIntVectorTy() || ValTy->isFPOrFPVectorTy())) { 952 const Value *LHS, *RHS; 953 SelectPatternFlavor SPF = matchSelectPattern(Sel, LHS, RHS).Flavor; 954 unsigned IID = 0; 955 switch (SPF) { 956 case SPF_ABS: 957 IID = Intrinsic::abs; 958 break; 959 case SPF_SMIN: 960 IID = Intrinsic::smin; 961 break; 962 case SPF_SMAX: 963 IID = Intrinsic::smax; 964 break; 965 case SPF_UMIN: 966 IID = Intrinsic::umin; 967 break; 968 case SPF_UMAX: 969 IID = Intrinsic::umax; 970 break; 971 case SPF_FMINNUM: 972 IID = Intrinsic::minnum; 973 break; 974 case SPF_FMAXNUM: 975 IID = Intrinsic::maxnum; 976 break; 977 default: 978 break; 979 } 980 if (IID) { 981 // The ICmp is free, the select gets the cost of the min/max/etc 982 if (Sel != I) 983 return 0; 984 IntrinsicCostAttributes CostAttrs(IID, ValTy, {ValTy, ValTy}); 985 return getIntrinsicInstrCost(CostAttrs, CostKind); 986 } 987 } 988 989 // On NEON a vector select gets lowered to vbsl. 990 if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT && CondTy) { 991 // Lowering of some vector selects is currently far from perfect. 992 static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = { 993 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 }, 994 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 }, 995 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 } 996 }; 997 998 EVT SelCondTy = TLI->getValueType(DL, CondTy); 999 EVT SelValTy = TLI->getValueType(DL, ValTy); 1000 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 1001 if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD, 1002 SelCondTy.getSimpleVT(), 1003 SelValTy.getSimpleVT())) 1004 return Entry->Cost; 1005 } 1006 1007 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy); 1008 return LT.first; 1009 } 1010 1011 if (ST->hasMVEIntegerOps() && ValTy->isVectorTy() && 1012 (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 1013 cast<FixedVectorType>(ValTy)->getNumElements() > 1) { 1014 FixedVectorType *VecValTy = cast<FixedVectorType>(ValTy); 1015 FixedVectorType *VecCondTy = dyn_cast_or_null<FixedVectorType>(CondTy); 1016 if (!VecCondTy) 1017 VecCondTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(VecValTy)); 1018 1019 // If we don't have mve.fp any fp operations will need to be scalarized. 1020 if (Opcode == Instruction::FCmp && !ST->hasMVEFloatOps()) { 1021 // One scalaization insert, one scalarization extract and the cost of the 1022 // fcmps. 1023 return BaseT::getScalarizationOverhead(VecValTy, false, true) + 1024 BaseT::getScalarizationOverhead(VecCondTy, true, false) + 1025 VecValTy->getNumElements() * 1026 getCmpSelInstrCost(Opcode, ValTy->getScalarType(), 1027 VecCondTy->getScalarType(), VecPred, CostKind, 1028 I); 1029 } 1030 1031 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy); 1032 int BaseCost = ST->getMVEVectorCostFactor(CostKind); 1033 // There are two types - the input that specifies the type of the compare 1034 // and the output vXi1 type. Because we don't know how the output will be 1035 // split, we may need an expensive shuffle to get two in sync. This has the 1036 // effect of making larger than legal compares (v8i32 for example) 1037 // expensive. 1038 if (LT.second.isVector() && LT.second.getVectorNumElements() > 2) { 1039 if (LT.first > 1) 1040 return LT.first * BaseCost + 1041 BaseT::getScalarizationOverhead(VecCondTy, true, false); 1042 return BaseCost; 1043 } 1044 } 1045 1046 // Default to cheap (throughput/size of 1 instruction) but adjust throughput 1047 // for "multiple beats" potentially needed by MVE instructions. 1048 int BaseCost = 1; 1049 if (ST->hasMVEIntegerOps() && ValTy->isVectorTy()) 1050 BaseCost = ST->getMVEVectorCostFactor(CostKind); 1051 1052 return BaseCost * 1053 BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 1054 } 1055 1056 InstructionCost ARMTTIImpl::getAddressComputationCost(Type *Ty, 1057 ScalarEvolution *SE, 1058 const SCEV *Ptr) { 1059 // Address computations in vectorized code with non-consecutive addresses will 1060 // likely result in more instructions compared to scalar code where the 1061 // computation can more often be merged into the index mode. The resulting 1062 // extra micro-ops can significantly decrease throughput. 1063 unsigned NumVectorInstToHideOverhead = 10; 1064 int MaxMergeDistance = 64; 1065 1066 if (ST->hasNEON()) { 1067 if (Ty->isVectorTy() && SE && 1068 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 1069 return NumVectorInstToHideOverhead; 1070 1071 // In many cases the address computation is not merged into the instruction 1072 // addressing mode. 1073 return 1; 1074 } 1075 return BaseT::getAddressComputationCost(Ty, SE, Ptr); 1076 } 1077 1078 bool ARMTTIImpl::isProfitableLSRChainElement(Instruction *I) { 1079 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1080 // If a VCTP is part of a chain, it's already profitable and shouldn't be 1081 // optimized, else LSR may block tail-predication. 1082 switch (II->getIntrinsicID()) { 1083 case Intrinsic::arm_mve_vctp8: 1084 case Intrinsic::arm_mve_vctp16: 1085 case Intrinsic::arm_mve_vctp32: 1086 case Intrinsic::arm_mve_vctp64: 1087 return true; 1088 default: 1089 break; 1090 } 1091 } 1092 return false; 1093 } 1094 1095 bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) { 1096 if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps()) 1097 return false; 1098 1099 if (auto *VecTy = dyn_cast<FixedVectorType>(DataTy)) { 1100 // Don't support v2i1 yet. 1101 if (VecTy->getNumElements() == 2) 1102 return false; 1103 1104 // We don't support extending fp types. 1105 unsigned VecWidth = DataTy->getPrimitiveSizeInBits(); 1106 if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy()) 1107 return false; 1108 } 1109 1110 unsigned EltWidth = DataTy->getScalarSizeInBits(); 1111 return (EltWidth == 32 && Alignment >= 4) || 1112 (EltWidth == 16 && Alignment >= 2) || (EltWidth == 8); 1113 } 1114 1115 bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, Align Alignment) { 1116 if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps()) 1117 return false; 1118 1119 unsigned EltWidth = Ty->getScalarSizeInBits(); 1120 return ((EltWidth == 32 && Alignment >= 4) || 1121 (EltWidth == 16 && Alignment >= 2) || EltWidth == 8); 1122 } 1123 1124 /// Given a memcpy/memset/memmove instruction, return the number of memory 1125 /// operations performed, via querying findOptimalMemOpLowering. Returns -1 if a 1126 /// call is used. 1127 int ARMTTIImpl::getNumMemOps(const IntrinsicInst *I) const { 1128 MemOp MOp; 1129 unsigned DstAddrSpace = ~0u; 1130 unsigned SrcAddrSpace = ~0u; 1131 const Function *F = I->getParent()->getParent(); 1132 1133 if (const auto *MC = dyn_cast<MemTransferInst>(I)) { 1134 ConstantInt *C = dyn_cast<ConstantInt>(MC->getLength()); 1135 // If 'size' is not a constant, a library call will be generated. 1136 if (!C) 1137 return -1; 1138 1139 const unsigned Size = C->getValue().getZExtValue(); 1140 const Align DstAlign = *MC->getDestAlign(); 1141 const Align SrcAlign = *MC->getSourceAlign(); 1142 1143 MOp = MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign, 1144 /*IsVolatile*/ false); 1145 DstAddrSpace = MC->getDestAddressSpace(); 1146 SrcAddrSpace = MC->getSourceAddressSpace(); 1147 } 1148 else if (const auto *MS = dyn_cast<MemSetInst>(I)) { 1149 ConstantInt *C = dyn_cast<ConstantInt>(MS->getLength()); 1150 // If 'size' is not a constant, a library call will be generated. 1151 if (!C) 1152 return -1; 1153 1154 const unsigned Size = C->getValue().getZExtValue(); 1155 const Align DstAlign = *MS->getDestAlign(); 1156 1157 MOp = MemOp::Set(Size, /*DstAlignCanChange*/ false, DstAlign, 1158 /*IsZeroMemset*/ false, /*IsVolatile*/ false); 1159 DstAddrSpace = MS->getDestAddressSpace(); 1160 } 1161 else 1162 llvm_unreachable("Expected a memcpy/move or memset!"); 1163 1164 unsigned Limit, Factor = 2; 1165 switch(I->getIntrinsicID()) { 1166 case Intrinsic::memcpy: 1167 Limit = TLI->getMaxStoresPerMemcpy(F->hasMinSize()); 1168 break; 1169 case Intrinsic::memmove: 1170 Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize()); 1171 break; 1172 case Intrinsic::memset: 1173 Limit = TLI->getMaxStoresPerMemset(F->hasMinSize()); 1174 Factor = 1; 1175 break; 1176 default: 1177 llvm_unreachable("Expected a memcpy/move or memset!"); 1178 } 1179 1180 // MemOps will be poplulated with a list of data types that needs to be 1181 // loaded and stored. That's why we multiply the number of elements by 2 to 1182 // get the cost for this memcpy. 1183 std::vector<EVT> MemOps; 1184 if (getTLI()->findOptimalMemOpLowering( 1185 MemOps, Limit, MOp, DstAddrSpace, 1186 SrcAddrSpace, F->getAttributes())) 1187 return MemOps.size() * Factor; 1188 1189 // If we can't find an optimal memop lowering, return the default cost 1190 return -1; 1191 } 1192 1193 InstructionCost ARMTTIImpl::getMemcpyCost(const Instruction *I) { 1194 int NumOps = getNumMemOps(cast<IntrinsicInst>(I)); 1195 1196 // To model the cost of a library call, we assume 1 for the call, and 1197 // 3 for the argument setup. 1198 if (NumOps == -1) 1199 return 4; 1200 return NumOps; 1201 } 1202 1203 InstructionCost ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 1204 VectorType *Tp, ArrayRef<int> Mask, 1205 TTI::TargetCostKind CostKind, 1206 int Index, VectorType *SubTp, 1207 ArrayRef<const Value *> Args) { 1208 Kind = improveShuffleKindFromMask(Kind, Mask); 1209 if (ST->hasNEON()) { 1210 if (Kind == TTI::SK_Broadcast) { 1211 static const CostTblEntry NEONDupTbl[] = { 1212 // VDUP handles these cases. 1213 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 1214 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 1215 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 1216 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 1217 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, 1218 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, 1219 1220 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, 1221 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, 1222 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, 1223 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}}; 1224 1225 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp); 1226 if (const auto *Entry = 1227 CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second)) 1228 return LT.first * Entry->Cost; 1229 } 1230 if (Kind == TTI::SK_Reverse) { 1231 static const CostTblEntry NEONShuffleTbl[] = { 1232 // Reverse shuffle cost one instruction if we are shuffling within a 1233 // double word (vrev) or two if we shuffle a quad word (vrev, vext). 1234 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 1235 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 1236 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 1237 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 1238 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1}, 1239 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1}, 1240 1241 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 1242 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 1243 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2}, 1244 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}}; 1245 1246 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp); 1247 if (const auto *Entry = 1248 CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second)) 1249 return LT.first * Entry->Cost; 1250 } 1251 if (Kind == TTI::SK_Select) { 1252 static const CostTblEntry NEONSelShuffleTbl[] = { 1253 // Select shuffle cost table for ARM. Cost is the number of 1254 // instructions 1255 // required to create the shuffled vector. 1256 1257 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, 1258 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, 1259 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, 1260 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, 1261 1262 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, 1263 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, 1264 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2}, 1265 1266 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16}, 1267 1268 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}}; 1269 1270 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp); 1271 if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl, 1272 ISD::VECTOR_SHUFFLE, LT.second)) 1273 return LT.first * Entry->Cost; 1274 } 1275 } 1276 if (ST->hasMVEIntegerOps()) { 1277 if (Kind == TTI::SK_Broadcast) { 1278 static const CostTblEntry MVEDupTbl[] = { 1279 // VDUP handles these cases. 1280 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1}, 1281 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1}, 1282 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}, 1283 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1}, 1284 {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}}; 1285 1286 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp); 1287 if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE, 1288 LT.second)) 1289 return LT.first * Entry->Cost * 1290 ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput); 1291 } 1292 1293 if (!Mask.empty()) { 1294 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp); 1295 if (LT.second.isVector() && 1296 Mask.size() <= LT.second.getVectorNumElements() && 1297 (isVREVMask(Mask, LT.second, 16) || isVREVMask(Mask, LT.second, 32) || 1298 isVREVMask(Mask, LT.second, 64))) 1299 return ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) * LT.first; 1300 } 1301 } 1302 1303 int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy() 1304 ? ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) 1305 : 1; 1306 return BaseCost * 1307 BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp); 1308 } 1309 1310 InstructionCost ARMTTIImpl::getArithmeticInstrCost( 1311 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 1312 TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info, 1313 ArrayRef<const Value *> Args, 1314 const Instruction *CxtI) { 1315 int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); 1316 if (ST->isThumb() && CostKind == TTI::TCK_CodeSize && Ty->isIntegerTy(1)) { 1317 // Make operations on i1 relatively expensive as this often involves 1318 // combining predicates. AND and XOR should be easier to handle with IT 1319 // blocks. 1320 switch (ISDOpcode) { 1321 default: 1322 break; 1323 case ISD::AND: 1324 case ISD::XOR: 1325 return 2; 1326 case ISD::OR: 1327 return 3; 1328 } 1329 } 1330 1331 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty); 1332 1333 if (ST->hasNEON()) { 1334 const unsigned FunctionCallDivCost = 20; 1335 const unsigned ReciprocalDivCost = 10; 1336 static const CostTblEntry CostTbl[] = { 1337 // Division. 1338 // These costs are somewhat random. Choose a cost of 20 to indicate that 1339 // vectorizing devision (added function call) is going to be very expensive. 1340 // Double registers types. 1341 { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost}, 1342 { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost}, 1343 { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost}, 1344 { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost}, 1345 { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost}, 1346 { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost}, 1347 { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost}, 1348 { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost}, 1349 { ISD::SDIV, MVT::v4i16, ReciprocalDivCost}, 1350 { ISD::UDIV, MVT::v4i16, ReciprocalDivCost}, 1351 { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost}, 1352 { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost}, 1353 { ISD::SDIV, MVT::v8i8, ReciprocalDivCost}, 1354 { ISD::UDIV, MVT::v8i8, ReciprocalDivCost}, 1355 { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost}, 1356 { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost}, 1357 // Quad register types. 1358 { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost}, 1359 { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost}, 1360 { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost}, 1361 { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost}, 1362 { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost}, 1363 { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost}, 1364 { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost}, 1365 { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost}, 1366 { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost}, 1367 { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost}, 1368 { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost}, 1369 { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost}, 1370 { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost}, 1371 { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost}, 1372 { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost}, 1373 { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost}, 1374 // Multiplication. 1375 }; 1376 1377 if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second)) 1378 return LT.first * Entry->Cost; 1379 1380 InstructionCost Cost = BaseT::getArithmeticInstrCost( 1381 Opcode, Ty, CostKind, Op1Info, Op2Info); 1382 1383 // This is somewhat of a hack. The problem that we are facing is that SROA 1384 // creates a sequence of shift, and, or instructions to construct values. 1385 // These sequences are recognized by the ISel and have zero-cost. Not so for 1386 // the vectorized code. Because we have support for v2i64 but not i64 those 1387 // sequences look particularly beneficial to vectorize. 1388 // To work around this we increase the cost of v2i64 operations to make them 1389 // seem less beneficial. 1390 if (LT.second == MVT::v2i64 && Op2Info.isUniform() && Op2Info.isConstant()) 1391 Cost += 4; 1392 1393 return Cost; 1394 } 1395 1396 // If this operation is a shift on arm/thumb2, it might well be folded into 1397 // the following instruction, hence having a cost of 0. 1398 auto LooksLikeAFreeShift = [&]() { 1399 if (ST->isThumb1Only() || Ty->isVectorTy()) 1400 return false; 1401 1402 if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift()) 1403 return false; 1404 if (!Op2Info.isUniform() || !Op2Info.isConstant()) 1405 return false; 1406 1407 // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB 1408 switch (cast<Instruction>(CxtI->user_back())->getOpcode()) { 1409 case Instruction::Add: 1410 case Instruction::Sub: 1411 case Instruction::And: 1412 case Instruction::Xor: 1413 case Instruction::Or: 1414 case Instruction::ICmp: 1415 return true; 1416 default: 1417 return false; 1418 } 1419 }; 1420 if (LooksLikeAFreeShift()) 1421 return 0; 1422 1423 // Default to cheap (throughput/size of 1 instruction) but adjust throughput 1424 // for "multiple beats" potentially needed by MVE instructions. 1425 int BaseCost = 1; 1426 if (ST->hasMVEIntegerOps() && Ty->isVectorTy()) 1427 BaseCost = ST->getMVEVectorCostFactor(CostKind); 1428 1429 // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost, 1430 // without treating floats as more expensive that scalars or increasing the 1431 // costs for custom operations. The results is also multiplied by the 1432 // MVEVectorCostFactor where appropriate. 1433 if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second)) 1434 return LT.first * BaseCost; 1435 1436 // Else this is expand, assume that we need to scalarize this op. 1437 if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) { 1438 unsigned Num = VTy->getNumElements(); 1439 InstructionCost Cost = 1440 getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind); 1441 // Return the cost of multiple scalar invocation plus the cost of 1442 // inserting and extracting the values. 1443 SmallVector<Type *> Tys(Args.size(), Ty); 1444 return BaseT::getScalarizationOverhead(VTy, Args, Tys) + Num * Cost; 1445 } 1446 1447 return BaseCost; 1448 } 1449 1450 InstructionCost ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, 1451 MaybeAlign Alignment, 1452 unsigned AddressSpace, 1453 TTI::TargetCostKind CostKind, 1454 TTI::OperandValueInfo OpInfo, 1455 const Instruction *I) { 1456 // TODO: Handle other cost kinds. 1457 if (CostKind != TTI::TCK_RecipThroughput) 1458 return 1; 1459 1460 // Type legalization can't handle structs 1461 if (TLI->getValueType(DL, Src, true) == MVT::Other) 1462 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1463 CostKind); 1464 1465 if (ST->hasNEON() && Src->isVectorTy() && 1466 (Alignment && *Alignment != Align(16)) && 1467 cast<VectorType>(Src)->getElementType()->isDoubleTy()) { 1468 // Unaligned loads/stores are extremely inefficient. 1469 // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr. 1470 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src); 1471 return LT.first * 4; 1472 } 1473 1474 // MVE can optimize a fpext(load(4xhalf)) using an extending integer load. 1475 // Same for stores. 1476 if (ST->hasMVEFloatOps() && isa<FixedVectorType>(Src) && I && 1477 ((Opcode == Instruction::Load && I->hasOneUse() && 1478 isa<FPExtInst>(*I->user_begin())) || 1479 (Opcode == Instruction::Store && isa<FPTruncInst>(I->getOperand(0))))) { 1480 FixedVectorType *SrcVTy = cast<FixedVectorType>(Src); 1481 Type *DstTy = 1482 Opcode == Instruction::Load 1483 ? (*I->user_begin())->getType() 1484 : cast<Instruction>(I->getOperand(0))->getOperand(0)->getType(); 1485 if (SrcVTy->getNumElements() == 4 && SrcVTy->getScalarType()->isHalfTy() && 1486 DstTy->getScalarType()->isFloatTy()) 1487 return ST->getMVEVectorCostFactor(CostKind); 1488 } 1489 1490 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy() 1491 ? ST->getMVEVectorCostFactor(CostKind) 1492 : 1; 1493 return BaseCost * BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1494 CostKind, OpInfo, I); 1495 } 1496 1497 InstructionCost 1498 ARMTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, 1499 unsigned AddressSpace, 1500 TTI::TargetCostKind CostKind) { 1501 if (ST->hasMVEIntegerOps()) { 1502 if (Opcode == Instruction::Load && isLegalMaskedLoad(Src, Alignment)) 1503 return ST->getMVEVectorCostFactor(CostKind); 1504 if (Opcode == Instruction::Store && isLegalMaskedStore(Src, Alignment)) 1505 return ST->getMVEVectorCostFactor(CostKind); 1506 } 1507 if (!isa<FixedVectorType>(Src)) 1508 return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1509 CostKind); 1510 // Scalar cost, which is currently very high due to the efficiency of the 1511 // generated code. 1512 return cast<FixedVectorType>(Src)->getNumElements() * 8; 1513 } 1514 1515 InstructionCost ARMTTIImpl::getInterleavedMemoryOpCost( 1516 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 1517 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 1518 bool UseMaskForCond, bool UseMaskForGaps) { 1519 assert(Factor >= 2 && "Invalid interleave factor"); 1520 assert(isa<VectorType>(VecTy) && "Expect a vector type"); 1521 1522 // vldN/vstN doesn't support vector types of i64/f64 element. 1523 bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64; 1524 1525 if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits && 1526 !UseMaskForCond && !UseMaskForGaps) { 1527 unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements(); 1528 auto *SubVecTy = 1529 FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor); 1530 1531 // vldN/vstN only support legal vector types of size 64 or 128 in bits. 1532 // Accesses having vector types that are a multiple of 128 bits can be 1533 // matched to more than one vldN/vstN instruction. 1534 int BaseCost = 1535 ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor(CostKind) : 1; 1536 if (NumElts % Factor == 0 && 1537 TLI->isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL)) 1538 return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL); 1539 1540 // Some smaller than legal interleaved patterns are cheap as we can make 1541 // use of the vmovn or vrev patterns to interleave a standard load. This is 1542 // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is 1543 // promoted differently). The cost of 2 here is then a load and vrev or 1544 // vmovn. 1545 if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 && 1546 VecTy->isIntOrIntVectorTy() && 1547 DL.getTypeSizeInBits(SubVecTy).getFixedSize() <= 64) 1548 return 2 * BaseCost; 1549 } 1550 1551 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1552 Alignment, AddressSpace, CostKind, 1553 UseMaskForCond, UseMaskForGaps); 1554 } 1555 1556 InstructionCost ARMTTIImpl::getGatherScatterOpCost( 1557 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 1558 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) { 1559 using namespace PatternMatch; 1560 if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters) 1561 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 1562 Alignment, CostKind, I); 1563 1564 assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!"); 1565 auto *VTy = cast<FixedVectorType>(DataTy); 1566 1567 // TODO: Splitting, once we do that. 1568 1569 unsigned NumElems = VTy->getNumElements(); 1570 unsigned EltSize = VTy->getScalarSizeInBits(); 1571 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(DataTy); 1572 1573 // For now, it is assumed that for the MVE gather instructions the loads are 1574 // all effectively serialised. This means the cost is the scalar cost 1575 // multiplied by the number of elements being loaded. This is possibly very 1576 // conservative, but even so we still end up vectorising loops because the 1577 // cost per iteration for many loops is lower than for scalar loops. 1578 InstructionCost VectorCost = 1579 NumElems * LT.first * ST->getMVEVectorCostFactor(CostKind); 1580 // The scalarization cost should be a lot higher. We use the number of vector 1581 // elements plus the scalarization overhead. 1582 InstructionCost ScalarCost = 1583 NumElems * LT.first + BaseT::getScalarizationOverhead(VTy, true, false) + 1584 BaseT::getScalarizationOverhead(VTy, false, true); 1585 1586 if (EltSize < 8 || Alignment < EltSize / 8) 1587 return ScalarCost; 1588 1589 unsigned ExtSize = EltSize; 1590 // Check whether there's a single user that asks for an extended type 1591 if (I != nullptr) { 1592 // Dependent of the caller of this function, a gather instruction will 1593 // either have opcode Instruction::Load or be a call to the masked_gather 1594 // intrinsic 1595 if ((I->getOpcode() == Instruction::Load || 1596 match(I, m_Intrinsic<Intrinsic::masked_gather>())) && 1597 I->hasOneUse()) { 1598 const User *Us = *I->users().begin(); 1599 if (isa<ZExtInst>(Us) || isa<SExtInst>(Us)) { 1600 // only allow valid type combinations 1601 unsigned TypeSize = 1602 cast<Instruction>(Us)->getType()->getScalarSizeInBits(); 1603 if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) || 1604 (TypeSize == 16 && EltSize == 8)) && 1605 TypeSize * NumElems == 128) { 1606 ExtSize = TypeSize; 1607 } 1608 } 1609 } 1610 // Check whether the input data needs to be truncated 1611 TruncInst *T; 1612 if ((I->getOpcode() == Instruction::Store || 1613 match(I, m_Intrinsic<Intrinsic::masked_scatter>())) && 1614 (T = dyn_cast<TruncInst>(I->getOperand(0)))) { 1615 // Only allow valid type combinations 1616 unsigned TypeSize = T->getOperand(0)->getType()->getScalarSizeInBits(); 1617 if (((EltSize == 16 && TypeSize == 32) || 1618 (EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) && 1619 TypeSize * NumElems == 128) 1620 ExtSize = TypeSize; 1621 } 1622 } 1623 1624 if (ExtSize * NumElems != 128 || NumElems < 4) 1625 return ScalarCost; 1626 1627 // Any (aligned) i32 gather will not need to be scalarised. 1628 if (ExtSize == 32) 1629 return VectorCost; 1630 // For smaller types, we need to ensure that the gep's inputs are correctly 1631 // extended from a small enough value. Other sizes (including i64) are 1632 // scalarized for now. 1633 if (ExtSize != 8 && ExtSize != 16) 1634 return ScalarCost; 1635 1636 if (const auto *BC = dyn_cast<BitCastInst>(Ptr)) 1637 Ptr = BC->getOperand(0); 1638 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1639 if (GEP->getNumOperands() != 2) 1640 return ScalarCost; 1641 unsigned Scale = DL.getTypeAllocSize(GEP->getResultElementType()); 1642 // Scale needs to be correct (which is only relevant for i16s). 1643 if (Scale != 1 && Scale * 8 != ExtSize) 1644 return ScalarCost; 1645 // And we need to zext (not sext) the indexes from a small enough type. 1646 if (const auto *ZExt = dyn_cast<ZExtInst>(GEP->getOperand(1))) { 1647 if (ZExt->getOperand(0)->getType()->getScalarSizeInBits() <= ExtSize) 1648 return VectorCost; 1649 } 1650 return ScalarCost; 1651 } 1652 return ScalarCost; 1653 } 1654 1655 InstructionCost 1656 ARMTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy, 1657 std::optional<FastMathFlags> FMF, 1658 TTI::TargetCostKind CostKind) { 1659 if (TTI::requiresOrderedReduction(FMF)) 1660 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 1661 1662 EVT ValVT = TLI->getValueType(DL, ValTy); 1663 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1664 if (!ST->hasMVEIntegerOps() || !ValVT.isSimple() || ISD != ISD::ADD) 1665 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 1666 1667 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy); 1668 1669 static const CostTblEntry CostTblAdd[]{ 1670 {ISD::ADD, MVT::v16i8, 1}, 1671 {ISD::ADD, MVT::v8i16, 1}, 1672 {ISD::ADD, MVT::v4i32, 1}, 1673 }; 1674 if (const auto *Entry = CostTableLookup(CostTblAdd, ISD, LT.second)) 1675 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first; 1676 1677 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 1678 } 1679 1680 InstructionCost ARMTTIImpl::getExtendedReductionCost( 1681 unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy, 1682 std::optional<FastMathFlags> FMF, TTI::TargetCostKind CostKind) { 1683 EVT ValVT = TLI->getValueType(DL, ValTy); 1684 EVT ResVT = TLI->getValueType(DL, ResTy); 1685 1686 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1687 1688 switch (ISD) { 1689 case ISD::ADD: 1690 if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) { 1691 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy); 1692 1693 // The legal cases are: 1694 // VADDV u/s 8/16/32 1695 // VADDLV u/s 32 1696 // Codegen currently cannot always handle larger than legal vectors very 1697 // well, especially for predicated reductions where the mask needs to be 1698 // split, so restrict to 128bit or smaller input types. 1699 unsigned RevVTSize = ResVT.getSizeInBits(); 1700 if (ValVT.getSizeInBits() <= 128 && 1701 ((LT.second == MVT::v16i8 && RevVTSize <= 32) || 1702 (LT.second == MVT::v8i16 && RevVTSize <= 32) || 1703 (LT.second == MVT::v4i32 && RevVTSize <= 64))) 1704 return ST->getMVEVectorCostFactor(CostKind) * LT.first; 1705 } 1706 break; 1707 default: 1708 break; 1709 } 1710 return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy, FMF, 1711 CostKind); 1712 } 1713 1714 InstructionCost 1715 ARMTTIImpl::getMulAccReductionCost(bool IsUnsigned, Type *ResTy, 1716 VectorType *ValTy, 1717 TTI::TargetCostKind CostKind) { 1718 EVT ValVT = TLI->getValueType(DL, ValTy); 1719 EVT ResVT = TLI->getValueType(DL, ResTy); 1720 1721 if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) { 1722 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy); 1723 1724 // The legal cases are: 1725 // VMLAV u/s 8/16/32 1726 // VMLALV u/s 16/32 1727 // Codegen currently cannot always handle larger than legal vectors very 1728 // well, especially for predicated reductions where the mask needs to be 1729 // split, so restrict to 128bit or smaller input types. 1730 unsigned RevVTSize = ResVT.getSizeInBits(); 1731 if (ValVT.getSizeInBits() <= 128 && 1732 ((LT.second == MVT::v16i8 && RevVTSize <= 32) || 1733 (LT.second == MVT::v8i16 && RevVTSize <= 64) || 1734 (LT.second == MVT::v4i32 && RevVTSize <= 64))) 1735 return ST->getMVEVectorCostFactor(CostKind) * LT.first; 1736 } 1737 1738 return BaseT::getMulAccReductionCost(IsUnsigned, ResTy, ValTy, CostKind); 1739 } 1740 1741 InstructionCost 1742 ARMTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 1743 TTI::TargetCostKind CostKind) { 1744 switch (ICA.getID()) { 1745 case Intrinsic::get_active_lane_mask: 1746 // Currently we make a somewhat optimistic assumption that 1747 // active_lane_mask's are always free. In reality it may be freely folded 1748 // into a tail predicated loop, expanded into a VCPT or expanded into a lot 1749 // of add/icmp code. We may need to improve this in the future, but being 1750 // able to detect if it is free or not involves looking at a lot of other 1751 // code. We currently assume that the vectorizer inserted these, and knew 1752 // what it was doing in adding one. 1753 if (ST->hasMVEIntegerOps()) 1754 return 0; 1755 break; 1756 case Intrinsic::sadd_sat: 1757 case Intrinsic::ssub_sat: 1758 case Intrinsic::uadd_sat: 1759 case Intrinsic::usub_sat: { 1760 if (!ST->hasMVEIntegerOps()) 1761 break; 1762 Type *VT = ICA.getReturnType(); 1763 1764 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VT); 1765 if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 || 1766 LT.second == MVT::v16i8) { 1767 // This is a base cost of 1 for the vqadd, plus 3 extract shifts if we 1768 // need to extend the type, as it uses shr(qadd(shl, shl)). 1769 unsigned Instrs = 1770 LT.second.getScalarSizeInBits() == VT->getScalarSizeInBits() ? 1 : 4; 1771 return LT.first * ST->getMVEVectorCostFactor(CostKind) * Instrs; 1772 } 1773 break; 1774 } 1775 case Intrinsic::abs: 1776 case Intrinsic::smin: 1777 case Intrinsic::smax: 1778 case Intrinsic::umin: 1779 case Intrinsic::umax: { 1780 if (!ST->hasMVEIntegerOps()) 1781 break; 1782 Type *VT = ICA.getReturnType(); 1783 1784 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VT); 1785 if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 || 1786 LT.second == MVT::v16i8) 1787 return LT.first * ST->getMVEVectorCostFactor(CostKind); 1788 break; 1789 } 1790 case Intrinsic::minnum: 1791 case Intrinsic::maxnum: { 1792 if (!ST->hasMVEFloatOps()) 1793 break; 1794 Type *VT = ICA.getReturnType(); 1795 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VT); 1796 if (LT.second == MVT::v4f32 || LT.second == MVT::v8f16) 1797 return LT.first * ST->getMVEVectorCostFactor(CostKind); 1798 break; 1799 } 1800 case Intrinsic::fptosi_sat: 1801 case Intrinsic::fptoui_sat: { 1802 if (ICA.getArgTypes().empty()) 1803 break; 1804 bool IsSigned = ICA.getID() == Intrinsic::fptosi_sat; 1805 auto LT = getTypeLegalizationCost(ICA.getArgTypes()[0]); 1806 EVT MTy = TLI->getValueType(DL, ICA.getReturnType()); 1807 // Check for the legal types, with the corect subtarget features. 1808 if ((ST->hasVFP2Base() && LT.second == MVT::f32 && MTy == MVT::i32) || 1809 (ST->hasFP64() && LT.second == MVT::f64 && MTy == MVT::i32) || 1810 (ST->hasFullFP16() && LT.second == MVT::f16 && MTy == MVT::i32)) 1811 return LT.first; 1812 1813 // Equally for MVE vector types 1814 if (ST->hasMVEFloatOps() && 1815 (LT.second == MVT::v4f32 || LT.second == MVT::v8f16) && 1816 LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits()) 1817 return LT.first * ST->getMVEVectorCostFactor(CostKind); 1818 1819 // Otherwise we use a legal convert followed by a min+max 1820 if (((ST->hasVFP2Base() && LT.second == MVT::f32) || 1821 (ST->hasFP64() && LT.second == MVT::f64) || 1822 (ST->hasFullFP16() && LT.second == MVT::f16) || 1823 (ST->hasMVEFloatOps() && 1824 (LT.second == MVT::v4f32 || LT.second == MVT::v8f16))) && 1825 LT.second.getScalarSizeInBits() >= MTy.getScalarSizeInBits()) { 1826 Type *LegalTy = Type::getIntNTy(ICA.getReturnType()->getContext(), 1827 LT.second.getScalarSizeInBits()); 1828 InstructionCost Cost = 1829 LT.second.isVector() ? ST->getMVEVectorCostFactor(CostKind) : 1; 1830 IntrinsicCostAttributes Attrs1(IsSigned ? Intrinsic::smin 1831 : Intrinsic::umin, 1832 LegalTy, {LegalTy, LegalTy}); 1833 Cost += getIntrinsicInstrCost(Attrs1, CostKind); 1834 IntrinsicCostAttributes Attrs2(IsSigned ? Intrinsic::smax 1835 : Intrinsic::umax, 1836 LegalTy, {LegalTy, LegalTy}); 1837 Cost += getIntrinsicInstrCost(Attrs2, CostKind); 1838 return LT.first * Cost; 1839 } 1840 break; 1841 } 1842 } 1843 1844 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 1845 } 1846 1847 bool ARMTTIImpl::isLoweredToCall(const Function *F) { 1848 if (!F->isIntrinsic()) 1849 return BaseT::isLoweredToCall(F); 1850 1851 // Assume all Arm-specific intrinsics map to an instruction. 1852 if (F->getName().startswith("llvm.arm")) 1853 return false; 1854 1855 switch (F->getIntrinsicID()) { 1856 default: break; 1857 case Intrinsic::powi: 1858 case Intrinsic::sin: 1859 case Intrinsic::cos: 1860 case Intrinsic::pow: 1861 case Intrinsic::log: 1862 case Intrinsic::log10: 1863 case Intrinsic::log2: 1864 case Intrinsic::exp: 1865 case Intrinsic::exp2: 1866 return true; 1867 case Intrinsic::sqrt: 1868 case Intrinsic::fabs: 1869 case Intrinsic::copysign: 1870 case Intrinsic::floor: 1871 case Intrinsic::ceil: 1872 case Intrinsic::trunc: 1873 case Intrinsic::rint: 1874 case Intrinsic::nearbyint: 1875 case Intrinsic::round: 1876 case Intrinsic::canonicalize: 1877 case Intrinsic::lround: 1878 case Intrinsic::llround: 1879 case Intrinsic::lrint: 1880 case Intrinsic::llrint: 1881 if (F->getReturnType()->isDoubleTy() && !ST->hasFP64()) 1882 return true; 1883 if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16()) 1884 return true; 1885 // Some operations can be handled by vector instructions and assume 1886 // unsupported vectors will be expanded into supported scalar ones. 1887 // TODO Handle scalar operations properly. 1888 return !ST->hasFPARMv8Base() && !ST->hasVFP2Base(); 1889 case Intrinsic::masked_store: 1890 case Intrinsic::masked_load: 1891 case Intrinsic::masked_gather: 1892 case Intrinsic::masked_scatter: 1893 return !ST->hasMVEIntegerOps(); 1894 case Intrinsic::sadd_with_overflow: 1895 case Intrinsic::uadd_with_overflow: 1896 case Intrinsic::ssub_with_overflow: 1897 case Intrinsic::usub_with_overflow: 1898 case Intrinsic::sadd_sat: 1899 case Intrinsic::uadd_sat: 1900 case Intrinsic::ssub_sat: 1901 case Intrinsic::usub_sat: 1902 return false; 1903 } 1904 1905 return BaseT::isLoweredToCall(F); 1906 } 1907 1908 bool ARMTTIImpl::maybeLoweredToCall(Instruction &I) { 1909 unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode()); 1910 EVT VT = TLI->getValueType(DL, I.getType(), true); 1911 if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall) 1912 return true; 1913 1914 // Check if an intrinsic will be lowered to a call and assume that any 1915 // other CallInst will generate a bl. 1916 if (auto *Call = dyn_cast<CallInst>(&I)) { 1917 if (auto *II = dyn_cast<IntrinsicInst>(Call)) { 1918 switch(II->getIntrinsicID()) { 1919 case Intrinsic::memcpy: 1920 case Intrinsic::memset: 1921 case Intrinsic::memmove: 1922 return getNumMemOps(II) == -1; 1923 default: 1924 if (const Function *F = Call->getCalledFunction()) 1925 return isLoweredToCall(F); 1926 } 1927 } 1928 return true; 1929 } 1930 1931 // FPv5 provides conversions between integer, double-precision, 1932 // single-precision, and half-precision formats. 1933 switch (I.getOpcode()) { 1934 default: 1935 break; 1936 case Instruction::FPToSI: 1937 case Instruction::FPToUI: 1938 case Instruction::SIToFP: 1939 case Instruction::UIToFP: 1940 case Instruction::FPTrunc: 1941 case Instruction::FPExt: 1942 return !ST->hasFPARMv8Base(); 1943 } 1944 1945 // FIXME: Unfortunately the approach of checking the Operation Action does 1946 // not catch all cases of Legalization that use library calls. Our 1947 // Legalization step categorizes some transformations into library calls as 1948 // Custom, Expand or even Legal when doing type legalization. So for now 1949 // we have to special case for instance the SDIV of 64bit integers and the 1950 // use of floating point emulation. 1951 if (VT.isInteger() && VT.getSizeInBits() >= 64) { 1952 switch (ISD) { 1953 default: 1954 break; 1955 case ISD::SDIV: 1956 case ISD::UDIV: 1957 case ISD::SREM: 1958 case ISD::UREM: 1959 case ISD::SDIVREM: 1960 case ISD::UDIVREM: 1961 return true; 1962 } 1963 } 1964 1965 // Assume all other non-float operations are supported. 1966 if (!VT.isFloatingPoint()) 1967 return false; 1968 1969 // We'll need a library call to handle most floats when using soft. 1970 if (TLI->useSoftFloat()) { 1971 switch (I.getOpcode()) { 1972 default: 1973 return true; 1974 case Instruction::Alloca: 1975 case Instruction::Load: 1976 case Instruction::Store: 1977 case Instruction::Select: 1978 case Instruction::PHI: 1979 return false; 1980 } 1981 } 1982 1983 // We'll need a libcall to perform double precision operations on a single 1984 // precision only FPU. 1985 if (I.getType()->isDoubleTy() && !ST->hasFP64()) 1986 return true; 1987 1988 // Likewise for half precision arithmetic. 1989 if (I.getType()->isHalfTy() && !ST->hasFullFP16()) 1990 return true; 1991 1992 return false; 1993 } 1994 1995 bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, 1996 AssumptionCache &AC, 1997 TargetLibraryInfo *LibInfo, 1998 HardwareLoopInfo &HWLoopInfo) { 1999 // Low-overhead branches are only supported in the 'low-overhead branch' 2000 // extension of v8.1-m. 2001 if (!ST->hasLOB() || DisableLowOverheadLoops) { 2002 LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n"); 2003 return false; 2004 } 2005 2006 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { 2007 LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n"); 2008 return false; 2009 } 2010 2011 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2012 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2013 LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n"); 2014 return false; 2015 } 2016 2017 const SCEV *TripCountSCEV = 2018 SE.getAddExpr(BackedgeTakenCount, 2019 SE.getOne(BackedgeTakenCount->getType())); 2020 2021 // We need to store the trip count in LR, a 32-bit register. 2022 if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) { 2023 LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n"); 2024 return false; 2025 } 2026 2027 // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little 2028 // point in generating a hardware loop if that's going to happen. 2029 2030 auto IsHardwareLoopIntrinsic = [](Instruction &I) { 2031 if (auto *Call = dyn_cast<IntrinsicInst>(&I)) { 2032 switch (Call->getIntrinsicID()) { 2033 default: 2034 break; 2035 case Intrinsic::start_loop_iterations: 2036 case Intrinsic::test_start_loop_iterations: 2037 case Intrinsic::loop_decrement: 2038 case Intrinsic::loop_decrement_reg: 2039 return true; 2040 } 2041 } 2042 return false; 2043 }; 2044 2045 // Scan the instructions to see if there's any that we know will turn into a 2046 // call or if this loop is already a low-overhead loop or will become a tail 2047 // predicated loop. 2048 bool IsTailPredLoop = false; 2049 auto ScanLoop = [&](Loop *L) { 2050 for (auto *BB : L->getBlocks()) { 2051 for (auto &I : *BB) { 2052 if (maybeLoweredToCall(I) || IsHardwareLoopIntrinsic(I) || 2053 isa<InlineAsm>(I)) { 2054 LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n"); 2055 return false; 2056 } 2057 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2058 IsTailPredLoop |= 2059 II->getIntrinsicID() == Intrinsic::get_active_lane_mask || 2060 II->getIntrinsicID() == Intrinsic::arm_mve_vctp8 || 2061 II->getIntrinsicID() == Intrinsic::arm_mve_vctp16 || 2062 II->getIntrinsicID() == Intrinsic::arm_mve_vctp32 || 2063 II->getIntrinsicID() == Intrinsic::arm_mve_vctp64; 2064 } 2065 } 2066 return true; 2067 }; 2068 2069 // Visit inner loops. 2070 for (auto *Inner : *L) 2071 if (!ScanLoop(Inner)) 2072 return false; 2073 2074 if (!ScanLoop(L)) 2075 return false; 2076 2077 // TODO: Check whether the trip count calculation is expensive. If L is the 2078 // inner loop but we know it has a low trip count, calculating that trip 2079 // count (in the parent loop) may be detrimental. 2080 2081 LLVMContext &C = L->getHeader()->getContext(); 2082 HWLoopInfo.CounterInReg = true; 2083 HWLoopInfo.IsNestingLegal = false; 2084 HWLoopInfo.PerformEntryTest = AllowWLSLoops && !IsTailPredLoop; 2085 HWLoopInfo.CountType = Type::getInt32Ty(C); 2086 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1); 2087 return true; 2088 } 2089 2090 static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) { 2091 // We don't allow icmp's, and because we only look at single block loops, 2092 // we simply count the icmps, i.e. there should only be 1 for the backedge. 2093 if (isa<ICmpInst>(&I) && ++ICmpCount > 1) 2094 return false; 2095 // FIXME: This is a workaround for poor cost modelling. Min/Max intrinsics are 2096 // not currently canonical, but soon will be. Code without them uses icmp, and 2097 // so is not tail predicated as per the condition above. In order to get the 2098 // same performance we treat min and max the same as an icmp for tailpred 2099 // purposes for the moment (we often rely on non-tailpred and higher VF's to 2100 // pick more optimial instructions like VQDMULH. They need to be recognized 2101 // directly by the vectorizer). 2102 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2103 if ((II->getIntrinsicID() == Intrinsic::smin || 2104 II->getIntrinsicID() == Intrinsic::smax || 2105 II->getIntrinsicID() == Intrinsic::umin || 2106 II->getIntrinsicID() == Intrinsic::umax) && 2107 ++ICmpCount > 1) 2108 return false; 2109 2110 if (isa<FCmpInst>(&I)) 2111 return false; 2112 2113 // We could allow extending/narrowing FP loads/stores, but codegen is 2114 // too inefficient so reject this for now. 2115 if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I)) 2116 return false; 2117 2118 // Extends have to be extending-loads 2119 if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) ) 2120 if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0))) 2121 return false; 2122 2123 // Truncs have to be narrowing-stores 2124 if (isa<TruncInst>(&I) ) 2125 if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin())) 2126 return false; 2127 2128 return true; 2129 } 2130 2131 // To set up a tail-predicated loop, we need to know the total number of 2132 // elements processed by that loop. Thus, we need to determine the element 2133 // size and: 2134 // 1) it should be uniform for all operations in the vector loop, so we 2135 // e.g. don't want any widening/narrowing operations. 2136 // 2) it should be smaller than i64s because we don't have vector operations 2137 // that work on i64s. 2138 // 3) we don't want elements to be reversed or shuffled, to make sure the 2139 // tail-predication masks/predicates the right lanes. 2140 // 2141 static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE, 2142 const DataLayout &DL, 2143 const LoopAccessInfo *LAI) { 2144 LLVM_DEBUG(dbgs() << "Tail-predication: checking allowed instructions\n"); 2145 2146 // If there are live-out values, it is probably a reduction. We can predicate 2147 // most reduction operations freely under MVE using a combination of 2148 // prefer-predicated-reduction-select and inloop reductions. We limit this to 2149 // floating point and integer reductions, but don't check for operators 2150 // specifically here. If the value ends up not being a reduction (and so the 2151 // vectorizer cannot tailfold the loop), we should fall back to standard 2152 // vectorization automatically. 2153 SmallVector< Instruction *, 8 > LiveOuts; 2154 LiveOuts = llvm::findDefsUsedOutsideOfLoop(L); 2155 bool ReductionsDisabled = 2156 EnableTailPredication == TailPredication::EnabledNoReductions || 2157 EnableTailPredication == TailPredication::ForceEnabledNoReductions; 2158 2159 for (auto *I : LiveOuts) { 2160 if (!I->getType()->isIntegerTy() && !I->getType()->isFloatTy() && 2161 !I->getType()->isHalfTy()) { 2162 LLVM_DEBUG(dbgs() << "Don't tail-predicate loop with non-integer/float " 2163 "live-out value\n"); 2164 return false; 2165 } 2166 if (ReductionsDisabled) { 2167 LLVM_DEBUG(dbgs() << "Reductions not enabled\n"); 2168 return false; 2169 } 2170 } 2171 2172 // Next, check that all instructions can be tail-predicated. 2173 PredicatedScalarEvolution PSE = LAI->getPSE(); 2174 SmallVector<Instruction *, 16> LoadStores; 2175 int ICmpCount = 0; 2176 2177 for (BasicBlock *BB : L->blocks()) { 2178 for (Instruction &I : BB->instructionsWithoutDebug()) { 2179 if (isa<PHINode>(&I)) 2180 continue; 2181 if (!canTailPredicateInstruction(I, ICmpCount)) { 2182 LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump()); 2183 return false; 2184 } 2185 2186 Type *T = I.getType(); 2187 if (T->getScalarSizeInBits() > 32) { 2188 LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump()); 2189 return false; 2190 } 2191 if (isa<StoreInst>(I) || isa<LoadInst>(I)) { 2192 Value *Ptr = getLoadStorePointerOperand(&I); 2193 Type *AccessTy = getLoadStoreType(&I); 2194 int64_t NextStride = getPtrStride(PSE, AccessTy, Ptr, L).value_or(0); 2195 if (NextStride == 1) { 2196 // TODO: for now only allow consecutive strides of 1. We could support 2197 // other strides as long as it is uniform, but let's keep it simple 2198 // for now. 2199 continue; 2200 } else if (NextStride == -1 || 2201 (NextStride == 2 && MVEMaxSupportedInterleaveFactor >= 2) || 2202 (NextStride == 4 && MVEMaxSupportedInterleaveFactor >= 4)) { 2203 LLVM_DEBUG(dbgs() 2204 << "Consecutive strides of 2 found, vld2/vstr2 can't " 2205 "be tail-predicated\n."); 2206 return false; 2207 // TODO: don't tail predicate if there is a reversed load? 2208 } else if (EnableMaskedGatherScatters) { 2209 // Gather/scatters do allow loading from arbitrary strides, at 2210 // least if they are loop invariant. 2211 // TODO: Loop variant strides should in theory work, too, but 2212 // this requires further testing. 2213 const SCEV *PtrScev = PSE.getSE()->getSCEV(Ptr); 2214 if (auto AR = dyn_cast<SCEVAddRecExpr>(PtrScev)) { 2215 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 2216 if (PSE.getSE()->isLoopInvariant(Step, L)) 2217 continue; 2218 } 2219 } 2220 LLVM_DEBUG(dbgs() << "Bad stride found, can't " 2221 "tail-predicate\n."); 2222 return false; 2223 } 2224 } 2225 } 2226 2227 LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n"); 2228 return true; 2229 } 2230 2231 bool ARMTTIImpl::preferPredicateOverEpilogue( 2232 Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC, 2233 TargetLibraryInfo *TLI, DominatorTree *DT, LoopVectorizationLegality *LVL, 2234 InterleavedAccessInfo *IAI) { 2235 if (!EnableTailPredication) { 2236 LLVM_DEBUG(dbgs() << "Tail-predication not enabled.\n"); 2237 return false; 2238 } 2239 2240 // Creating a predicated vector loop is the first step for generating a 2241 // tail-predicated hardware loop, for which we need the MVE masked 2242 // load/stores instructions: 2243 if (!ST->hasMVEIntegerOps()) 2244 return false; 2245 2246 // For now, restrict this to single block loops. 2247 if (L->getNumBlocks() > 1) { 2248 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block " 2249 "loop.\n"); 2250 return false; 2251 } 2252 2253 assert(L->isInnermost() && "preferPredicateOverEpilogue: inner-loop expected"); 2254 2255 HardwareLoopInfo HWLoopInfo(L); 2256 if (!HWLoopInfo.canAnalyze(*LI)) { 2257 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 2258 "analyzable.\n"); 2259 return false; 2260 } 2261 2262 // This checks if we have the low-overhead branch architecture 2263 // extension, and if we will create a hardware-loop: 2264 if (!isHardwareLoopProfitable(L, SE, AC, TLI, HWLoopInfo)) { 2265 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 2266 "profitable.\n"); 2267 return false; 2268 } 2269 2270 if (!HWLoopInfo.isHardwareLoopCandidate(SE, *LI, *DT)) { 2271 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not " 2272 "a candidate.\n"); 2273 return false; 2274 } 2275 2276 return canTailPredicateLoop(L, LI, SE, DL, LVL->getLAI()); 2277 } 2278 2279 PredicationStyle ARMTTIImpl::emitGetActiveLaneMask() const { 2280 if (!ST->hasMVEIntegerOps() || !EnableTailPredication) 2281 return PredicationStyle::None; 2282 2283 // Intrinsic @llvm.get.active.lane.mask is supported. 2284 // It is used in the MVETailPredication pass, which requires the number of 2285 // elements processed by this vector loop to setup the tail-predicated 2286 // loop. 2287 return PredicationStyle::Data; 2288 } 2289 void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 2290 TTI::UnrollingPreferences &UP, 2291 OptimizationRemarkEmitter *ORE) { 2292 // Enable Upper bound unrolling universally, not dependant upon the conditions 2293 // below. 2294 UP.UpperBound = true; 2295 2296 // Only currently enable these preferences for M-Class cores. 2297 if (!ST->isMClass()) 2298 return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE); 2299 2300 // Disable loop unrolling for Oz and Os. 2301 UP.OptSizeThreshold = 0; 2302 UP.PartialOptSizeThreshold = 0; 2303 if (L->getHeader()->getParent()->hasOptSize()) 2304 return; 2305 2306 SmallVector<BasicBlock*, 4> ExitingBlocks; 2307 L->getExitingBlocks(ExitingBlocks); 2308 LLVM_DEBUG(dbgs() << "Loop has:\n" 2309 << "Blocks: " << L->getNumBlocks() << "\n" 2310 << "Exit blocks: " << ExitingBlocks.size() << "\n"); 2311 2312 // Only allow another exit other than the latch. This acts as an early exit 2313 // as it mirrors the profitability calculation of the runtime unroller. 2314 if (ExitingBlocks.size() > 2) 2315 return; 2316 2317 // Limit the CFG of the loop body for targets with a branch predictor. 2318 // Allowing 4 blocks permits if-then-else diamonds in the body. 2319 if (ST->hasBranchPredictor() && L->getNumBlocks() > 4) 2320 return; 2321 2322 // Don't unroll vectorized loops, including the remainder loop 2323 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) 2324 return; 2325 2326 // Scan the loop: don't unroll loops with calls as this could prevent 2327 // inlining. 2328 InstructionCost Cost = 0; 2329 for (auto *BB : L->getBlocks()) { 2330 for (auto &I : *BB) { 2331 // Don't unroll vectorised loop. MVE does not benefit from it as much as 2332 // scalar code. 2333 if (I.getType()->isVectorTy()) 2334 return; 2335 2336 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 2337 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 2338 if (!isLoweredToCall(F)) 2339 continue; 2340 } 2341 return; 2342 } 2343 2344 SmallVector<const Value*, 4> Operands(I.operand_values()); 2345 Cost += getInstructionCost(&I, Operands, 2346 TargetTransformInfo::TCK_SizeAndLatency); 2347 } 2348 } 2349 2350 // On v6m cores, there are very few registers available. We can easily end up 2351 // spilling and reloading more registers in an unrolled loop. Look at the 2352 // number of LCSSA phis as a rough measure of how many registers will need to 2353 // be live out of the loop, reducing the default unroll count if more than 1 2354 // value is needed. In the long run, all of this should be being learnt by a 2355 // machine. 2356 unsigned UnrollCount = 4; 2357 if (ST->isThumb1Only()) { 2358 unsigned ExitingValues = 0; 2359 SmallVector<BasicBlock *, 4> ExitBlocks; 2360 L->getExitBlocks(ExitBlocks); 2361 for (auto *Exit : ExitBlocks) { 2362 // Count the number of LCSSA phis. Exclude values coming from GEP's as 2363 // only the last is expected to be needed for address operands. 2364 unsigned LiveOuts = count_if(Exit->phis(), [](auto &PH) { 2365 return PH.getNumOperands() != 1 || 2366 !isa<GetElementPtrInst>(PH.getOperand(0)); 2367 }); 2368 ExitingValues = ExitingValues < LiveOuts ? LiveOuts : ExitingValues; 2369 } 2370 if (ExitingValues) 2371 UnrollCount /= ExitingValues; 2372 if (UnrollCount <= 1) 2373 return; 2374 } 2375 2376 LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n"); 2377 LLVM_DEBUG(dbgs() << "Default Runtime Unroll Count: " << UnrollCount << "\n"); 2378 2379 UP.Partial = true; 2380 UP.Runtime = true; 2381 UP.UnrollRemainder = true; 2382 UP.DefaultUnrollRuntimeCount = UnrollCount; 2383 UP.UnrollAndJam = true; 2384 UP.UnrollAndJamInnerLoopThreshold = 60; 2385 2386 // Force unrolling small loops can be very useful because of the branch 2387 // taken cost of the backedge. 2388 if (Cost < 12) 2389 UP.Force = true; 2390 } 2391 2392 void ARMTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 2393 TTI::PeelingPreferences &PP) { 2394 BaseT::getPeelingPreferences(L, SE, PP); 2395 } 2396 2397 bool ARMTTIImpl::preferInLoopReduction(unsigned Opcode, Type *Ty, 2398 TTI::ReductionFlags Flags) const { 2399 if (!ST->hasMVEIntegerOps()) 2400 return false; 2401 2402 unsigned ScalarBits = Ty->getScalarSizeInBits(); 2403 switch (Opcode) { 2404 case Instruction::Add: 2405 return ScalarBits <= 64; 2406 default: 2407 return false; 2408 } 2409 } 2410 2411 bool ARMTTIImpl::preferPredicatedReductionSelect( 2412 unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const { 2413 if (!ST->hasMVEIntegerOps()) 2414 return false; 2415 return true; 2416 } 2417 2418 InstructionCost ARMTTIImpl::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 2419 int64_t BaseOffset, 2420 bool HasBaseReg, int64_t Scale, 2421 unsigned AddrSpace) const { 2422 TargetLoweringBase::AddrMode AM; 2423 AM.BaseGV = BaseGV; 2424 AM.BaseOffs = BaseOffset; 2425 AM.HasBaseReg = HasBaseReg; 2426 AM.Scale = Scale; 2427 if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace)) { 2428 if (ST->hasFPAO()) 2429 return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster 2430 return 0; 2431 } 2432 return -1; 2433 } 2434