1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 //===----------------------------------------------------------------------===// 39 40 #include "ARM.h" 41 #include "ARMBaseInstrInfo.h" 42 #include "ARMBaseRegisterInfo.h" 43 #include "ARMBasicBlockInfo.h" 44 #include "ARMSubtarget.h" 45 #include "Thumb2InstrInfo.h" 46 #include "llvm/ADT/SetOperations.h" 47 #include "llvm/ADT/SmallSet.h" 48 #include "llvm/CodeGen/LivePhysRegs.h" 49 #include "llvm/CodeGen/MachineFunctionPass.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineLoopUtils.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/Passes.h" 54 #include "llvm/CodeGen/ReachingDefAnalysis.h" 55 #include "llvm/MC/MCInstrDesc.h" 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "arm-low-overhead-loops" 60 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 61 62 namespace { 63 64 class PostOrderLoopTraversal { 65 MachineLoop &ML; 66 MachineLoopInfo &MLI; 67 SmallPtrSet<MachineBasicBlock*, 4> Visited; 68 SmallVector<MachineBasicBlock*, 4> Order; 69 70 public: 71 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 72 : ML(ML), MLI(MLI) { } 73 74 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 75 return Order; 76 } 77 78 // Visit all the blocks within the loop, as well as exit blocks and any 79 // blocks properly dominating the header. 80 void ProcessLoop() { 81 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 82 (MachineBasicBlock *MBB) -> void { 83 if (Visited.count(MBB)) 84 return; 85 86 Visited.insert(MBB); 87 for (auto *Succ : MBB->successors()) { 88 if (!ML.contains(Succ)) 89 continue; 90 Search(Succ); 91 } 92 Order.push_back(MBB); 93 }; 94 95 // Insert exit blocks. 96 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 97 ML.getExitBlocks(ExitBlocks); 98 for (auto *MBB : ExitBlocks) 99 Order.push_back(MBB); 100 101 // Then add the loop body. 102 Search(ML.getHeader()); 103 104 // Then try the preheader and its predecessors. 105 std::function<void(MachineBasicBlock*)> GetPredecessor = 106 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 107 Order.push_back(MBB); 108 if (MBB->pred_size() == 1) 109 GetPredecessor(*MBB->pred_begin()); 110 }; 111 112 if (auto *Preheader = ML.getLoopPreheader()) 113 GetPredecessor(Preheader); 114 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true)) 115 GetPredecessor(Preheader); 116 } 117 }; 118 119 struct PredicatedMI { 120 MachineInstr *MI = nullptr; 121 SetVector<MachineInstr*> Predicates; 122 123 public: 124 PredicatedMI(MachineInstr *I, SetVector<MachineInstr*> &Preds) : 125 MI(I) { Predicates.insert(Preds.begin(), Preds.end()); } 126 }; 127 128 // Represent a VPT block, a list of instructions that begins with a VPST and 129 // has a maximum of four proceeding instructions. All instructions within the 130 // block are predicated upon the vpr and we allow instructions to define the 131 // vpr within in the block too. 132 class VPTBlock { 133 std::unique_ptr<PredicatedMI> VPST; 134 PredicatedMI *Divergent = nullptr; 135 SmallVector<PredicatedMI, 4> Insts; 136 137 public: 138 VPTBlock(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { 139 VPST = std::make_unique<PredicatedMI>(MI, Preds); 140 } 141 142 void addInst(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { 143 LLVM_DEBUG(dbgs() << "ARM Loops: Adding predicated MI: " << *MI); 144 if (!Divergent && !set_difference(Preds, VPST->Predicates).empty()) { 145 Divergent = &Insts.back(); 146 LLVM_DEBUG(dbgs() << " - has divergent predicate: " << *Divergent->MI); 147 } 148 Insts.emplace_back(MI, Preds); 149 assert(Insts.size() <= 4 && "Too many instructions in VPT block!"); 150 } 151 152 // Have we found an instruction within the block which defines the vpr? If 153 // so, not all the instructions in the block will have the same predicate. 154 bool HasNonUniformPredicate() const { 155 return Divergent != nullptr; 156 } 157 158 // Is the given instruction part of the predicate set controlling the entry 159 // to the block. 160 bool IsPredicatedOn(MachineInstr *MI) const { 161 return VPST->Predicates.count(MI); 162 } 163 164 // Is the given instruction the only predicate which controls the entry to 165 // the block. 166 bool IsOnlyPredicatedOn(MachineInstr *MI) const { 167 return IsPredicatedOn(MI) && VPST->Predicates.size() == 1; 168 } 169 170 unsigned size() const { return Insts.size(); } 171 SmallVectorImpl<PredicatedMI> &getInsts() { return Insts; } 172 MachineInstr *getVPST() const { return VPST->MI; } 173 PredicatedMI *getDivergent() const { return Divergent; } 174 }; 175 176 struct LowOverheadLoop { 177 178 MachineLoop &ML; 179 MachineLoopInfo &MLI; 180 ReachingDefAnalysis &RDA; 181 const TargetRegisterInfo &TRI; 182 MachineFunction *MF = nullptr; 183 MachineInstr *InsertPt = nullptr; 184 MachineInstr *Start = nullptr; 185 MachineInstr *Dec = nullptr; 186 MachineInstr *End = nullptr; 187 MachineInstr *VCTP = nullptr; 188 VPTBlock *CurrentBlock = nullptr; 189 SetVector<MachineInstr*> CurrentPredicate; 190 SmallVector<VPTBlock, 4> VPTBlocks; 191 SmallPtrSet<MachineInstr*, 4> ToRemove; 192 bool Revert = false; 193 bool CannotTailPredicate = false; 194 195 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 196 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI) 197 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI) { 198 MF = ML.getHeader()->getParent(); 199 } 200 201 // If this is an MVE instruction, check that we know how to use tail 202 // predication with it. Record VPT blocks and return whether the 203 // instruction is valid for tail predication. 204 bool ValidateMVEInst(MachineInstr *MI); 205 206 void AnalyseMVEInst(MachineInstr *MI) { 207 CannotTailPredicate = !ValidateMVEInst(MI); 208 } 209 210 bool IsTailPredicationLegal() const { 211 // For now, let's keep things really simple and only support a single 212 // block for tail predication. 213 return !Revert && FoundAllComponents() && VCTP && 214 !CannotTailPredicate && ML.getNumBlocks() == 1; 215 } 216 217 // Check that the predication in the loop will be equivalent once we 218 // perform the conversion. Also ensure that we can provide the number 219 // of elements to the loop start instruction. 220 bool ValidateTailPredicate(MachineInstr *StartInsertPt); 221 222 // Check that any values available outside of the loop will be the same 223 // after tail predication conversion. 224 bool ValidateLiveOuts() const; 225 226 // Is it safe to define LR with DLS/WLS? 227 // LR can be defined if it is the operand to start, because it's the same 228 // value, or if it's going to be equivalent to the operand to Start. 229 MachineInstr *isSafeToDefineLR(); 230 231 // Check the branch targets are within range and we satisfy our 232 // restrictions. 233 void CheckLegality(ARMBasicBlockUtils *BBUtils); 234 235 bool FoundAllComponents() const { 236 return Start && Dec && End; 237 } 238 239 SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTBlocks; } 240 241 // Return the loop iteration count, or the number of elements if we're tail 242 // predicating. 243 MachineOperand &getCount() { 244 return IsTailPredicationLegal() ? 245 VCTP->getOperand(1) : Start->getOperand(0); 246 } 247 248 unsigned getStartOpcode() const { 249 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 250 if (!IsTailPredicationLegal()) 251 return IsDo ? ARM::t2DLS : ARM::t2WLS; 252 253 return VCTPOpcodeToLSTP(VCTP->getOpcode(), IsDo); 254 } 255 256 void dump() const { 257 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 258 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 259 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 260 if (VCTP) dbgs() << "ARM Loops: Found VCTP: " << *VCTP; 261 if (!FoundAllComponents()) 262 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 263 else if (!(Start && Dec && End)) 264 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 265 } 266 }; 267 268 class ARMLowOverheadLoops : public MachineFunctionPass { 269 MachineFunction *MF = nullptr; 270 MachineLoopInfo *MLI = nullptr; 271 ReachingDefAnalysis *RDA = nullptr; 272 const ARMBaseInstrInfo *TII = nullptr; 273 MachineRegisterInfo *MRI = nullptr; 274 const TargetRegisterInfo *TRI = nullptr; 275 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 276 277 public: 278 static char ID; 279 280 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 281 282 void getAnalysisUsage(AnalysisUsage &AU) const override { 283 AU.setPreservesCFG(); 284 AU.addRequired<MachineLoopInfo>(); 285 AU.addRequired<ReachingDefAnalysis>(); 286 MachineFunctionPass::getAnalysisUsage(AU); 287 } 288 289 bool runOnMachineFunction(MachineFunction &MF) override; 290 291 MachineFunctionProperties getRequiredProperties() const override { 292 return MachineFunctionProperties().set( 293 MachineFunctionProperties::Property::NoVRegs).set( 294 MachineFunctionProperties::Property::TracksLiveness); 295 } 296 297 StringRef getPassName() const override { 298 return ARM_LOW_OVERHEAD_LOOPS_NAME; 299 } 300 301 private: 302 bool ProcessLoop(MachineLoop *ML); 303 304 bool RevertNonLoops(); 305 306 void RevertWhile(MachineInstr *MI) const; 307 308 bool RevertLoopDec(MachineInstr *MI) const; 309 310 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 311 312 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 313 314 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 315 316 void Expand(LowOverheadLoop &LoLoop); 317 318 void IterationCountDCE(LowOverheadLoop &LoLoop); 319 }; 320 } 321 322 char ARMLowOverheadLoops::ID = 0; 323 324 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 325 false, false) 326 327 MachineInstr *LowOverheadLoop::isSafeToDefineLR() { 328 // We can define LR because LR already contains the same value. 329 if (Start->getOperand(0).getReg() == ARM::LR) 330 return Start; 331 332 unsigned CountReg = Start->getOperand(0).getReg(); 333 auto IsMoveLR = [&CountReg](MachineInstr *MI) { 334 return MI->getOpcode() == ARM::tMOVr && 335 MI->getOperand(0).getReg() == ARM::LR && 336 MI->getOperand(1).getReg() == CountReg && 337 MI->getOperand(2).getImm() == ARMCC::AL; 338 }; 339 340 MachineBasicBlock *MBB = Start->getParent(); 341 342 // Find an insertion point: 343 // - Is there a (mov lr, Count) before Start? If so, and nothing else writes 344 // to Count before Start, we can insert at that mov. 345 if (auto *LRDef = RDA.getUniqueReachingMIDef(Start, ARM::LR)) 346 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 347 return LRDef; 348 349 // - Is there a (mov lr, Count) after Start? If so, and nothing else writes 350 // to Count after Start, we can insert at that mov. 351 if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR)) 352 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 353 return LRDef; 354 355 // We've found no suitable LR def and Start doesn't use LR directly. Can we 356 // just define LR anyway? 357 return RDA.isSafeToDefRegAt(Start, ARM::LR) ? Start : nullptr; 358 } 359 360 bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt) { 361 assert(VCTP && "VCTP instruction expected but is not set"); 362 // All predication within the loop should be based on vctp. If the block 363 // isn't predicated on entry, check whether the vctp is within the block 364 // and that all other instructions are then predicated on it. 365 for (auto &Block : VPTBlocks) { 366 if (Block.IsPredicatedOn(VCTP)) 367 continue; 368 if (!Block.HasNonUniformPredicate() || !isVCTP(Block.getDivergent()->MI)) { 369 LLVM_DEBUG(dbgs() << "ARM Loops: Found unsupported diverging predicate: " 370 << *Block.getDivergent()->MI); 371 return false; 372 } 373 SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); 374 for (auto &PredMI : Insts) { 375 if (PredMI.Predicates.count(VCTP) || isVCTP(PredMI.MI)) 376 continue; 377 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *PredMI.MI 378 << " - which is predicated on:\n"; 379 for (auto *MI : PredMI.Predicates) 380 dbgs() << " - " << *MI); 381 return false; 382 } 383 } 384 385 if (!ValidateLiveOuts()) 386 return false; 387 388 // For tail predication, we need to provide the number of elements, instead 389 // of the iteration count, to the loop start instruction. The number of 390 // elements is provided to the vctp instruction, so we need to check that 391 // we can use this register at InsertPt. 392 Register NumElements = VCTP->getOperand(1).getReg(); 393 394 // If the register is defined within loop, then we can't perform TP. 395 // TODO: Check whether this is just a mov of a register that would be 396 // available. 397 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 398 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 399 return false; 400 } 401 402 // The element count register maybe defined after InsertPt, in which case we 403 // need to try to move either InsertPt or the def so that the [w|d]lstp can 404 // use the value. 405 // TODO: On failing to move an instruction, check if the count is provided by 406 // a mov and whether we can use the mov operand directly. 407 MachineBasicBlock *InsertBB = StartInsertPt->getParent(); 408 if (!RDA.isReachingDefLiveOut(StartInsertPt, NumElements)) { 409 if (auto *ElemDef = RDA.getLocalLiveOutMIDef(InsertBB, NumElements)) { 410 if (RDA.isSafeToMoveForwards(ElemDef, StartInsertPt)) { 411 ElemDef->removeFromParent(); 412 InsertBB->insert(MachineBasicBlock::iterator(StartInsertPt), ElemDef); 413 LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: " 414 << *ElemDef); 415 } else if (RDA.isSafeToMoveBackwards(StartInsertPt, ElemDef)) { 416 StartInsertPt->removeFromParent(); 417 InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 418 StartInsertPt); 419 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 420 } else { 421 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to move element count to loop " 422 << "start instruction.\n"); 423 return false; 424 } 425 } 426 } 427 428 // Especially in the case of while loops, InsertBB may not be the 429 // preheader, so we need to check that the register isn't redefined 430 // before entering the loop. 431 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 432 Register NumElements) { 433 // NumElements is redefined in this block. 434 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 435 return true; 436 437 // Don't continue searching up through multiple predecessors. 438 if (MBB->pred_size() > 1) 439 return true; 440 441 return false; 442 }; 443 444 // First, find the block that looks like the preheader. 445 MachineBasicBlock *MBB = MLI.findLoopPreheader(&ML, true); 446 if (!MBB) { 447 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find preheader.\n"); 448 return false; 449 } 450 451 // Then search backwards for a def, until we get to InsertBB. 452 while (MBB != InsertBB) { 453 if (CannotProvideElements(MBB, NumElements)) { 454 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 455 return false; 456 } 457 MBB = *MBB->pred_begin(); 458 } 459 460 // Check that the value change of the element count is what we expect and 461 // that the predication will be equivalent. For this we need: 462 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 463 // and we can also allow register copies within the chain too. 464 auto IsValidSub = [](MachineInstr *MI, unsigned ExpectedVecWidth) { 465 unsigned ImmOpIdx = 0; 466 switch (MI->getOpcode()) { 467 default: 468 llvm_unreachable("unhandled sub opcode"); 469 case ARM::tSUBi3: 470 case ARM::tSUBi8: 471 ImmOpIdx = 3; 472 break; 473 case ARM::t2SUBri: 474 case ARM::t2SUBri12: 475 ImmOpIdx = 2; 476 break; 477 } 478 return MI->getOperand(ImmOpIdx).getImm() == ExpectedVecWidth; 479 }; 480 481 MBB = VCTP->getParent(); 482 if (auto *Def = RDA.getUniqueReachingMIDef(&MBB->back(), NumElements)) { 483 SmallPtrSet<MachineInstr*, 2> ElementChain; 484 SmallPtrSet<MachineInstr*, 2> Ignore = { VCTP }; 485 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 486 487 if (RDA.isSafeToRemove(Def, ElementChain, Ignore)) { 488 bool FoundSub = false; 489 490 for (auto *MI : ElementChain) { 491 if (isMovRegOpcode(MI->getOpcode())) 492 continue; 493 494 if (isSubImmOpcode(MI->getOpcode())) { 495 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) 496 return false; 497 FoundSub = true; 498 } else 499 return false; 500 } 501 502 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove element count chain:\n"; 503 for (auto *MI : ElementChain) 504 dbgs() << " - " << *MI); 505 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 506 } 507 } 508 return true; 509 } 510 511 static bool isVectorPredicated(MachineInstr *MI) { 512 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 513 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 514 } 515 516 static bool isRegInClass(const MachineOperand &MO, 517 const TargetRegisterClass *Class) { 518 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 519 } 520 521 bool LowOverheadLoop::ValidateLiveOuts() const { 522 // Collect Q-regs that are live in the exit blocks. We don't collect scalars 523 // because they won't be affected by lane predication. 524 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 525 SmallSet<Register, 2> LiveOuts; 526 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 527 ML.getExitBlocks(ExitBlocks); 528 for (auto *MBB : ExitBlocks) 529 for (const MachineBasicBlock::RegisterMaskPair &RegMask : MBB->liveins()) 530 if (QPRs->contains(RegMask.PhysReg)) 531 LiveOuts.insert(RegMask.PhysReg); 532 533 // Collect the instructions in the loop body that define the live-out values. 534 SmallPtrSet<MachineInstr *, 2> LiveMIs; 535 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 536 MachineBasicBlock *MBB = ML.getHeader(); 537 for (auto Reg : LiveOuts) 538 if (auto *MI = RDA.getLocalLiveOutMIDef(MBB, Reg)) 539 LiveMIs.insert(MI); 540 541 LLVM_DEBUG(dbgs() << "ARM Loops: Found loop live-outs:\n"; 542 for (auto *MI : LiveMIs) 543 dbgs() << " - " << *MI); 544 // We've already validated that any VPT predication within the loop will be 545 // equivalent when we perform the predication transformation; so we know that 546 // any VPT predicated instruction is predicated upon VCTP. Any live-out 547 // instruction needs to be predicated, so check this here. 548 for (auto *MI : LiveMIs) 549 if (!isVectorPredicated(MI)) 550 return false; 551 552 // We want to find out if the tail-predicated version of this loop will 553 // produce the same values as the loop in its original form. For this to 554 // be true, the newly inserted implicit predication must not change the 555 // the (observable) results. 556 // We're doing this because many instructions in the loop will not be 557 // predicated and so the conversion from VPT predication to tail-predication 558 // can result in different values being produced; due to the tail-predication 559 // preventing many instructions from updating their falsely predicated 560 // lanes. This analysis assumes that all the instructions perform lane-wise 561 // operations and don't perform any exchanges. 562 // A masked load, whether through VPT or tail predication, will write zeros 563 // to any of the falsely predicated bytes. So, from the loads, we know that 564 // the false lanes are zeroed and here we're trying to track that those false 565 // lanes remain zero, or where they change, the differences are masked away 566 // by their user(s). 567 // All MVE loads and stores have to be predicated, so we know that any load 568 // operands, or stored results are equivalent already. Other explicitly 569 // predicated instructions will perform the same operation in the original 570 // loop and the tail-predicated form too. Because of this, we can insert 571 // loads, stores and other predicated instructions into our KnownFalseZeros 572 // set and build from there. 573 SetVector<MachineInstr *> UnknownFalseLanes; 574 SmallPtrSet<MachineInstr *, 4> KnownFalseZeros; 575 for (auto &MI : *MBB) { 576 const MCInstrDesc &MCID = MI.getDesc(); 577 uint64_t Flags = MCID.TSFlags; 578 if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE) 579 continue; 580 581 if (isVectorPredicated(&MI)) { 582 KnownFalseZeros.insert(&MI); 583 continue; 584 } 585 586 if (MI.getNumDefs() == 0) 587 continue; 588 589 // Only evaluate instructions which produce a single value. 590 assert((MI.getNumDefs() == 1 && MI.defs().begin()->isReg()) && 591 "Expected no more than one register def"); 592 593 Register DefReg = MI.defs().begin()->getReg(); 594 for (auto &MO : MI.operands()) { 595 if (!isRegInClass(MO, QPRs) || !MO.isUse() || MO.getReg() != DefReg) 596 continue; 597 598 // If this instruction overwrites one of its operands, and that register 599 // has known lanes, then this instruction also has known predicated false 600 // lanes. 601 if (auto *OpDef = RDA.getMIOperand(&MI, MO)) { 602 if (KnownFalseZeros.count(OpDef)) { 603 KnownFalseZeros.insert(&MI); 604 break; 605 } 606 } 607 } 608 if (!KnownFalseZeros.count(&MI)) 609 UnknownFalseLanes.insert(&MI); 610 } 611 612 auto HasKnownUsers = [this](MachineInstr *MI, const MachineOperand &MO, 613 SmallPtrSetImpl<MachineInstr *> &Knowns) { 614 SmallPtrSet<MachineInstr *, 2> Uses; 615 RDA.getGlobalUses(MI, MO.getReg(), Uses); 616 for (auto *Use : Uses) { 617 if (Use != MI && !Knowns.count(Use)) 618 return false; 619 } 620 return true; 621 }; 622 623 // Now for all the unknown values, see if they're only consumed by known 624 // instructions. Visit in reverse so that we can start at the values being 625 // stored and then we can work towards the leaves, hopefully adding more 626 // instructions to KnownFalseZeros. 627 for (auto *MI : reverse(UnknownFalseLanes)) { 628 for (auto &MO : MI->operands()) { 629 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 630 continue; 631 if (!HasKnownUsers(MI, MO, KnownFalseZeros)) { 632 LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : " 633 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 634 return false; 635 } 636 } 637 // Any unknown false lanes have been masked away by the user(s). 638 KnownFalseZeros.insert(MI); 639 } 640 return true; 641 } 642 643 void LowOverheadLoop::CheckLegality(ARMBasicBlockUtils *BBUtils) { 644 if (Revert) 645 return; 646 647 if (!End->getOperand(1).isMBB()) 648 report_fatal_error("Expected LoopEnd to target basic block"); 649 650 // TODO Maybe there's cases where the target doesn't have to be the header, 651 // but for now be safe and revert. 652 if (End->getOperand(1).getMBB() != ML.getHeader()) { 653 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targetting header.\n"); 654 Revert = true; 655 return; 656 } 657 658 // The WLS and LE instructions have 12-bits for the label offset. WLS 659 // requires a positive offset, while LE uses negative. 660 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 661 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 662 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 663 Revert = true; 664 return; 665 } 666 667 if (Start->getOpcode() == ARM::t2WhileLoopStart && 668 (BBUtils->getOffsetOf(Start) > 669 BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || 670 !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { 671 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 672 Revert = true; 673 return; 674 } 675 676 InsertPt = Revert ? nullptr : isSafeToDefineLR(); 677 if (!InsertPt) { 678 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n"); 679 Revert = true; 680 return; 681 } else 682 LLVM_DEBUG(dbgs() << "ARM Loops: Start insertion point: " << *InsertPt); 683 684 if (!IsTailPredicationLegal()) { 685 LLVM_DEBUG(if (!VCTP) 686 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 687 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 688 return; 689 } 690 691 assert(ML.getBlocks().size() == 1 && 692 "Shouldn't be processing a loop with more than one block"); 693 CannotTailPredicate = !ValidateTailPredicate(InsertPt); 694 LLVM_DEBUG(if (CannotTailPredicate) 695 dbgs() << "ARM Loops: Couldn't validate tail predicate.\n"); 696 } 697 698 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) { 699 if (CannotTailPredicate) 700 return false; 701 702 // Only support a single vctp. 703 if (isVCTP(MI) && VCTP) 704 return false; 705 706 // Start a new vpt block when we discover a vpt. 707 if (MI->getOpcode() == ARM::MVE_VPST) { 708 VPTBlocks.emplace_back(MI, CurrentPredicate); 709 CurrentBlock = &VPTBlocks.back(); 710 return true; 711 } else if (isVCTP(MI)) 712 VCTP = MI; 713 else if (MI->getOpcode() == ARM::MVE_VPSEL || 714 MI->getOpcode() == ARM::MVE_VPNOT) 715 return false; 716 717 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 718 // 1) It will use the VPR as a predicate operand, but doesn't have to be 719 // instead a VPT block, which means we can assert while building up 720 // the VPT block because we don't find another VPST to being a new 721 // one. 722 // 2) VPSEL still requires a VPR operand even after tail predicating, 723 // which means we can't remove it unless there is another 724 // instruction, such as vcmp, that can provide the VPR def. 725 726 bool IsUse = false; 727 bool IsDef = false; 728 const MCInstrDesc &MCID = MI->getDesc(); 729 for (int i = MI->getNumOperands() - 1; i >= 0; --i) { 730 const MachineOperand &MO = MI->getOperand(i); 731 if (!MO.isReg() || MO.getReg() != ARM::VPR) 732 continue; 733 734 if (MO.isDef()) { 735 CurrentPredicate.insert(MI); 736 IsDef = true; 737 } else if (ARM::isVpred(MCID.OpInfo[i].OperandType)) { 738 CurrentBlock->addInst(MI, CurrentPredicate); 739 IsUse = true; 740 } else { 741 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 742 return false; 743 } 744 } 745 746 // If we find a vpr def that is not already predicated on the vctp, we've 747 // got disjoint predicates that may not be equivalent when we do the 748 // conversion. 749 if (IsDef && !IsUse && VCTP && !isVCTP(MI)) { 750 LLVM_DEBUG(dbgs() << "ARM Loops: Found disjoint vpr def: " << *MI); 751 return false; 752 } 753 754 uint64_t Flags = MCID.TSFlags; 755 if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE) 756 return true; 757 758 // If we find an instruction that has been marked as not valid for tail 759 // predication, only allow the instruction if it's contained within a valid 760 // VPT block. 761 if ((Flags & ARMII::ValidForTailPredication) == 0 && !IsUse) { 762 LLVM_DEBUG(dbgs() << "ARM Loops: Can't tail predicate: " << *MI); 763 return false; 764 } 765 766 // If the instruction is already explicitly predicated, then the conversion 767 // will be fine, but ensure that all memory operations are predicated. 768 return !IsUse && MI->mayLoadOrStore() ? false : true; 769 } 770 771 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 772 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 773 if (!ST.hasLOB()) 774 return false; 775 776 MF = &mf; 777 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 778 779 MLI = &getAnalysis<MachineLoopInfo>(); 780 RDA = &getAnalysis<ReachingDefAnalysis>(); 781 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 782 MRI = &MF->getRegInfo(); 783 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 784 TRI = ST.getRegisterInfo(); 785 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 786 BBUtils->computeAllBlockSizes(); 787 BBUtils->adjustBBOffsetsAfter(&MF->front()); 788 789 bool Changed = false; 790 for (auto ML : *MLI) { 791 if (!ML->getParentLoop()) 792 Changed |= ProcessLoop(ML); 793 } 794 Changed |= RevertNonLoops(); 795 return Changed; 796 } 797 798 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 799 800 bool Changed = false; 801 802 // Process inner loops first. 803 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 804 Changed |= ProcessLoop(*I); 805 806 LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; 807 if (auto *Preheader = ML->getLoopPreheader()) 808 dbgs() << " - " << Preheader->getName() << "\n"; 809 else if (auto *Preheader = MLI->findLoopPreheader(ML)) 810 dbgs() << " - " << Preheader->getName() << "\n"; 811 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 812 dbgs() << " - " << Preheader->getName() << "\n"; 813 for (auto *MBB : ML->getBlocks()) 814 dbgs() << " - " << MBB->getName() << "\n"; 815 ); 816 817 // Search the given block for a loop start instruction. If one isn't found, 818 // and there's only one predecessor block, search that one too. 819 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 820 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 821 for (auto &MI : *MBB) { 822 if (isLoopStart(MI)) 823 return &MI; 824 } 825 if (MBB->pred_size() == 1) 826 return SearchForStart(*MBB->pred_begin()); 827 return nullptr; 828 }; 829 830 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI); 831 // Search the preheader for the start intrinsic. 832 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 833 // with potentially multiple set.loop.iterations, so we need to enable this. 834 if (auto *Preheader = ML->getLoopPreheader()) 835 LoLoop.Start = SearchForStart(Preheader); 836 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 837 LoLoop.Start = SearchForStart(Preheader); 838 else 839 return false; 840 841 // Find the low-overhead loop components and decide whether or not to fall 842 // back to a normal loop. Also look for a vctp instructions and decide 843 // whether we can convert that predicate using tail predication. 844 for (auto *MBB : reverse(ML->getBlocks())) { 845 for (auto &MI : *MBB) { 846 if (MI.isDebugValue()) 847 continue; 848 else if (MI.getOpcode() == ARM::t2LoopDec) 849 LoLoop.Dec = &MI; 850 else if (MI.getOpcode() == ARM::t2LoopEnd) 851 LoLoop.End = &MI; 852 else if (isLoopStart(MI)) 853 LoLoop.Start = &MI; 854 else if (MI.getDesc().isCall()) { 855 // TODO: Though the call will require LE to execute again, does this 856 // mean we should revert? Always executing LE hopefully should be 857 // faster than performing a sub,cmp,br or even subs,br. 858 LoLoop.Revert = true; 859 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 860 } else { 861 // Record VPR defs and build up their corresponding vpt blocks. 862 // Check we know how to tail predicate any mve instructions. 863 LoLoop.AnalyseMVEInst(&MI); 864 } 865 } 866 } 867 868 LLVM_DEBUG(LoLoop.dump()); 869 if (!LoLoop.FoundAllComponents()) { 870 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 871 return false; 872 } 873 874 // Check that the only instruction using LoopDec is LoopEnd. 875 // TODO: Check for copy chains that really have no effect. 876 SmallPtrSet<MachineInstr*, 2> Uses; 877 RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses); 878 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 879 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 880 LoLoop.Revert = true; 881 } 882 LoLoop.CheckLegality(BBUtils.get()); 883 Expand(LoLoop); 884 return true; 885 } 886 887 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 888 // beq that branches to the exit branch. 889 // TODO: We could also try to generate a cbz if the value in LR is also in 890 // another low register. 891 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 892 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 893 MachineBasicBlock *MBB = MI->getParent(); 894 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 895 TII->get(ARM::t2CMPri)); 896 MIB.add(MI->getOperand(0)); 897 MIB.addImm(0); 898 MIB.addImm(ARMCC::AL); 899 MIB.addReg(ARM::NoRegister); 900 901 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 902 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 903 ARM::tBcc : ARM::t2Bcc; 904 905 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 906 MIB.add(MI->getOperand(1)); // branch target 907 MIB.addImm(ARMCC::EQ); // condition code 908 MIB.addReg(ARM::CPSR); 909 MI->eraseFromParent(); 910 } 911 912 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 913 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 914 MachineBasicBlock *MBB = MI->getParent(); 915 SmallPtrSet<MachineInstr*, 1> Ignore; 916 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 917 if (I->getOpcode() == ARM::t2LoopEnd) { 918 Ignore.insert(&*I); 919 break; 920 } 921 } 922 923 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 924 bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore); 925 926 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 927 TII->get(ARM::t2SUBri)); 928 MIB.addDef(ARM::LR); 929 MIB.add(MI->getOperand(1)); 930 MIB.add(MI->getOperand(2)); 931 MIB.addImm(ARMCC::AL); 932 MIB.addReg(0); 933 934 if (SetFlags) { 935 MIB.addReg(ARM::CPSR); 936 MIB->getOperand(5).setIsDef(true); 937 } else 938 MIB.addReg(0); 939 940 MI->eraseFromParent(); 941 return SetFlags; 942 } 943 944 // Generate a subs, or sub and cmp, and a branch instead of an LE. 945 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 946 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 947 948 MachineBasicBlock *MBB = MI->getParent(); 949 // Create cmp 950 if (!SkipCmp) { 951 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 952 TII->get(ARM::t2CMPri)); 953 MIB.addReg(ARM::LR); 954 MIB.addImm(0); 955 MIB.addImm(ARMCC::AL); 956 MIB.addReg(ARM::NoRegister); 957 } 958 959 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 960 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 961 ARM::tBcc : ARM::t2Bcc; 962 963 // Create bne 964 MachineInstrBuilder MIB = 965 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 966 MIB.add(MI->getOperand(1)); // branch target 967 MIB.addImm(ARMCC::NE); // condition code 968 MIB.addReg(ARM::CPSR); 969 MI->eraseFromParent(); 970 } 971 972 // Perform dead code elimation on the loop iteration count setup expression. 973 // If we are tail-predicating, the number of elements to be processed is the 974 // operand of the VCTP instruction in the vector body, see getCount(), which is 975 // register $r3 in this example: 976 // 977 // $lr = big-itercount-expression 978 // .. 979 // t2DoLoopStart renamable $lr 980 // vector.body: 981 // .. 982 // $vpr = MVE_VCTP32 renamable $r3 983 // renamable $lr = t2LoopDec killed renamable $lr, 1 984 // t2LoopEnd renamable $lr, %vector.body 985 // tB %end 986 // 987 // What we would like achieve here is to replace the do-loop start pseudo 988 // instruction t2DoLoopStart with: 989 // 990 // $lr = MVE_DLSTP_32 killed renamable $r3 991 // 992 // Thus, $r3 which defines the number of elements, is written to $lr, 993 // and then we want to delete the whole chain that used to define $lr, 994 // see the comment below how this chain could look like. 995 // 996 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 997 if (!LoLoop.IsTailPredicationLegal()) 998 return; 999 1000 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1001 1002 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0); 1003 if (!Def) { 1004 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1005 return; 1006 } 1007 1008 // Collect and remove the users of iteration count. 1009 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1010 LoLoop.End, LoLoop.InsertPt }; 1011 SmallPtrSet<MachineInstr*, 2> Remove; 1012 if (RDA->isSafeToRemove(Def, Remove, Killed)) 1013 LoLoop.ToRemove.insert(Remove.begin(), Remove.end()); 1014 else { 1015 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1016 return; 1017 } 1018 1019 // Collect the dead code and the MBBs in which they reside. 1020 RDA->collectKilledOperands(Def, Killed); 1021 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 1022 for (auto *MI : Killed) 1023 BasicBlocks.insert(MI->getParent()); 1024 1025 // Collect IT blocks in all affected basic blocks. 1026 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 1027 for (auto *MBB : BasicBlocks) { 1028 for (auto &MI : *MBB) { 1029 if (MI.getOpcode() != ARM::t2IT) 1030 continue; 1031 RDA->getReachingLocalUses(&MI, ARM::ITSTATE, ITBlocks[&MI]); 1032 } 1033 } 1034 1035 // If we're removing all of the instructions within an IT block, then 1036 // also remove the IT instruction. 1037 SmallPtrSet<MachineInstr*, 2> ModifiedITs; 1038 for (auto *MI : Killed) { 1039 if (MachineOperand *MO = MI->findRegisterUseOperand(ARM::ITSTATE)) { 1040 MachineInstr *IT = RDA->getMIOperand(MI, *MO); 1041 auto &CurrentBlock = ITBlocks[IT]; 1042 CurrentBlock.erase(MI); 1043 if (CurrentBlock.empty()) 1044 ModifiedITs.erase(IT); 1045 else 1046 ModifiedITs.insert(IT); 1047 } 1048 } 1049 1050 // Delete the killed instructions only if we don't have any IT blocks that 1051 // need to be modified because we need to fixup the mask. 1052 // TODO: Handle cases where IT blocks are modified. 1053 if (ModifiedITs.empty()) { 1054 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove iteration count:\n"; 1055 for (auto *MI : Killed) 1056 dbgs() << " - " << *MI); 1057 LoLoop.ToRemove.insert(Killed.begin(), Killed.end()); 1058 } else 1059 LLVM_DEBUG(dbgs() << "ARM Loops: Would need to modify IT block(s).\n"); 1060 } 1061 1062 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1063 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1064 // When using tail-predication, try to delete the dead code that was used to 1065 // calculate the number of loop iterations. 1066 IterationCountDCE(LoLoop); 1067 1068 MachineInstr *InsertPt = LoLoop.InsertPt; 1069 MachineInstr *Start = LoLoop.Start; 1070 MachineBasicBlock *MBB = InsertPt->getParent(); 1071 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 1072 unsigned Opc = LoLoop.getStartOpcode(); 1073 MachineOperand &Count = LoLoop.getCount(); 1074 1075 MachineInstrBuilder MIB = 1076 BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc)); 1077 1078 MIB.addDef(ARM::LR); 1079 MIB.add(Count); 1080 if (!IsDo) 1081 MIB.add(Start->getOperand(1)); 1082 1083 // If we're inserting at a mov lr, then remove it as it's redundant. 1084 if (InsertPt != Start) 1085 LoLoop.ToRemove.insert(InsertPt); 1086 LoLoop.ToRemove.insert(Start); 1087 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1088 return &*MIB; 1089 } 1090 1091 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1092 auto RemovePredicate = [](MachineInstr *MI) { 1093 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1094 if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) { 1095 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1096 "Expected Then predicate!"); 1097 MI->getOperand(PIdx).setImm(ARMVCC::None); 1098 MI->getOperand(PIdx+1).setReg(0); 1099 } else 1100 llvm_unreachable("trying to unpredicate a non-predicated instruction"); 1101 }; 1102 1103 // There are a few scenarios which we have to fix up: 1104 // 1) A VPT block with is only predicated by the vctp and has no internal vpr 1105 // defs. 1106 // 2) A VPT block which is only predicated by the vctp but has an internal 1107 // vpr def. 1108 // 3) A VPT block which is predicated upon the vctp as well as another vpr 1109 // def. 1110 // 4) A VPT block which is not predicated upon a vctp, but contains it and 1111 // all instructions within the block are predicated upon in. 1112 1113 for (auto &Block : LoLoop.getVPTBlocks()) { 1114 SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); 1115 if (Block.HasNonUniformPredicate()) { 1116 PredicatedMI *Divergent = Block.getDivergent(); 1117 if (isVCTP(Divergent->MI)) { 1118 // The vctp will be removed, so the size of the vpt block needs to be 1119 // modified. 1120 uint64_t Size = getARMVPTBlockMask(Block.size() - 1); 1121 Block.getVPST()->getOperand(0).setImm(Size); 1122 LLVM_DEBUG(dbgs() << "ARM Loops: Modified VPT block mask.\n"); 1123 } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { 1124 // The VPT block has a non-uniform predicate but it's entry is guarded 1125 // only by a vctp, which means we: 1126 // - Need to remove the original vpst. 1127 // - Then need to unpredicate any following instructions, until 1128 // we come across the divergent vpr def. 1129 // - Insert a new vpst to predicate the instruction(s) that following 1130 // the divergent vpr def. 1131 // TODO: We could be producing more VPT blocks than necessary and could 1132 // fold the newly created one into a proceeding one. 1133 for (auto I = ++MachineBasicBlock::iterator(Block.getVPST()), 1134 E = ++MachineBasicBlock::iterator(Divergent->MI); I != E; ++I) 1135 RemovePredicate(&*I); 1136 1137 unsigned Size = 0; 1138 auto E = MachineBasicBlock::reverse_iterator(Divergent->MI); 1139 auto I = MachineBasicBlock::reverse_iterator(Insts.back().MI); 1140 MachineInstr *InsertAt = nullptr; 1141 while (I != E) { 1142 InsertAt = &*I; 1143 ++Size; 1144 ++I; 1145 } 1146 MachineInstrBuilder MIB = BuildMI(*InsertAt->getParent(), InsertAt, 1147 InsertAt->getDebugLoc(), 1148 TII->get(ARM::MVE_VPST)); 1149 MIB.addImm(getARMVPTBlockMask(Size)); 1150 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST()); 1151 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1152 LoLoop.ToRemove.insert(Block.getVPST()); 1153 } 1154 } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { 1155 // A vpt block which is only predicated upon vctp and has no internal vpr 1156 // defs: 1157 // - Remove vpst. 1158 // - Unpredicate the remaining instructions. 1159 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST()); 1160 LoLoop.ToRemove.insert(Block.getVPST()); 1161 for (auto &PredMI : Insts) 1162 RemovePredicate(PredMI.MI); 1163 } 1164 } 1165 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VCTP: " << *LoLoop.VCTP); 1166 LoLoop.ToRemove.insert(LoLoop.VCTP); 1167 } 1168 1169 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1170 1171 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1172 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1173 MachineInstr *End = LoLoop.End; 1174 MachineBasicBlock *MBB = End->getParent(); 1175 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1176 ARM::MVE_LETP : ARM::t2LEUpdate; 1177 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1178 TII->get(Opc)); 1179 MIB.addDef(ARM::LR); 1180 MIB.add(End->getOperand(0)); 1181 MIB.add(End->getOperand(1)); 1182 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1183 LoLoop.ToRemove.insert(LoLoop.Dec); 1184 LoLoop.ToRemove.insert(End); 1185 return &*MIB; 1186 }; 1187 1188 // TODO: We should be able to automatically remove these branches before we 1189 // get here - probably by teaching analyzeBranch about the pseudo 1190 // instructions. 1191 // If there is an unconditional branch, after I, that just branches to the 1192 // next block, remove it. 1193 auto RemoveDeadBranch = [](MachineInstr *I) { 1194 MachineBasicBlock *BB = I->getParent(); 1195 MachineInstr *Terminator = &BB->instr_back(); 1196 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1197 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1198 if (BB->isLayoutSuccessor(Succ)) { 1199 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1200 Terminator->eraseFromParent(); 1201 } 1202 } 1203 }; 1204 1205 if (LoLoop.Revert) { 1206 if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) 1207 RevertWhile(LoLoop.Start); 1208 else 1209 LoLoop.Start->eraseFromParent(); 1210 bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec); 1211 RevertLoopEnd(LoLoop.End, FlagsAlreadySet); 1212 } else { 1213 LoLoop.Start = ExpandLoopStart(LoLoop); 1214 RemoveDeadBranch(LoLoop.Start); 1215 LoLoop.End = ExpandLoopEnd(LoLoop); 1216 RemoveDeadBranch(LoLoop.End); 1217 if (LoLoop.IsTailPredicationLegal()) 1218 ConvertVPTBlocks(LoLoop); 1219 for (auto *I : LoLoop.ToRemove) { 1220 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1221 I->eraseFromParent(); 1222 } 1223 } 1224 1225 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1226 DFS.ProcessLoop(); 1227 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1228 for (auto *MBB : PostOrder) { 1229 recomputeLiveIns(*MBB); 1230 // FIXME: For some reason, the live-in print order is non-deterministic for 1231 // our tests and I can't out why... So just sort them. 1232 MBB->sortUniqueLiveIns(); 1233 } 1234 1235 for (auto *MBB : reverse(PostOrder)) 1236 recomputeLivenessFlags(*MBB); 1237 1238 // We've moved, removed and inserted new instructions, so update RDA. 1239 RDA->reset(); 1240 } 1241 1242 bool ARMLowOverheadLoops::RevertNonLoops() { 1243 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1244 bool Changed = false; 1245 1246 for (auto &MBB : *MF) { 1247 SmallVector<MachineInstr*, 4> Starts; 1248 SmallVector<MachineInstr*, 4> Decs; 1249 SmallVector<MachineInstr*, 4> Ends; 1250 1251 for (auto &I : MBB) { 1252 if (isLoopStart(I)) 1253 Starts.push_back(&I); 1254 else if (I.getOpcode() == ARM::t2LoopDec) 1255 Decs.push_back(&I); 1256 else if (I.getOpcode() == ARM::t2LoopEnd) 1257 Ends.push_back(&I); 1258 } 1259 1260 if (Starts.empty() && Decs.empty() && Ends.empty()) 1261 continue; 1262 1263 Changed = true; 1264 1265 for (auto *Start : Starts) { 1266 if (Start->getOpcode() == ARM::t2WhileLoopStart) 1267 RevertWhile(Start); 1268 else 1269 Start->eraseFromParent(); 1270 } 1271 for (auto *Dec : Decs) 1272 RevertLoopDec(Dec); 1273 1274 for (auto *End : Ends) 1275 RevertLoopEnd(End); 1276 } 1277 return Changed; 1278 } 1279 1280 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1281 return new ARMLowOverheadLoops(); 1282 } 1283