1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 /// A note on VPR.P0 (the lane mask): 39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a 40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks). 41 /// They will simply "and" the result of their calculation with the current 42 /// value of VPR.P0. You can think of it like this: 43 /// \verbatim 44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs 45 /// VPR.P0 &= Value 46 /// else 47 /// VPR.P0 = Value 48 /// \endverbatim 49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always 50 /// fall in the "VPT active" case, so we can consider that all VPR writes by 51 /// one of those instruction is actually a "and". 52 //===----------------------------------------------------------------------===// 53 54 #include "ARM.h" 55 #include "ARMBaseInstrInfo.h" 56 #include "ARMBaseRegisterInfo.h" 57 #include "ARMBasicBlockInfo.h" 58 #include "ARMSubtarget.h" 59 #include "Thumb2InstrInfo.h" 60 #include "llvm/ADT/SetOperations.h" 61 #include "llvm/ADT/SmallSet.h" 62 #include "llvm/CodeGen/LivePhysRegs.h" 63 #include "llvm/CodeGen/MachineFunctionPass.h" 64 #include "llvm/CodeGen/MachineLoopInfo.h" 65 #include "llvm/CodeGen/MachineLoopUtils.h" 66 #include "llvm/CodeGen/MachineRegisterInfo.h" 67 #include "llvm/CodeGen/Passes.h" 68 #include "llvm/CodeGen/ReachingDefAnalysis.h" 69 #include "llvm/MC/MCInstrDesc.h" 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "arm-low-overhead-loops" 74 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 75 76 static cl::opt<bool> 77 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden, 78 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"), 79 cl::init(false)); 80 81 static bool isVectorPredicated(MachineInstr *MI) { 82 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 83 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 84 } 85 86 static bool isVectorPredicate(MachineInstr *MI) { 87 return MI->findRegisterDefOperandIdx(ARM::VPR) != -1; 88 } 89 90 static bool hasVPRUse(MachineInstr *MI) { 91 return MI->findRegisterUseOperandIdx(ARM::VPR) != -1; 92 } 93 94 static bool isDomainMVE(MachineInstr *MI) { 95 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask; 96 return Domain == ARMII::DomainMVE; 97 } 98 99 static bool shouldInspect(MachineInstr &MI) { 100 return isDomainMVE(&MI) || isVectorPredicate(&MI) || 101 hasVPRUse(&MI); 102 } 103 104 namespace { 105 106 using InstSet = SmallPtrSetImpl<MachineInstr *>; 107 108 class PostOrderLoopTraversal { 109 MachineLoop &ML; 110 MachineLoopInfo &MLI; 111 SmallPtrSet<MachineBasicBlock*, 4> Visited; 112 SmallVector<MachineBasicBlock*, 4> Order; 113 114 public: 115 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 116 : ML(ML), MLI(MLI) { } 117 118 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 119 return Order; 120 } 121 122 // Visit all the blocks within the loop, as well as exit blocks and any 123 // blocks properly dominating the header. 124 void ProcessLoop() { 125 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 126 (MachineBasicBlock *MBB) -> void { 127 if (Visited.count(MBB)) 128 return; 129 130 Visited.insert(MBB); 131 for (auto *Succ : MBB->successors()) { 132 if (!ML.contains(Succ)) 133 continue; 134 Search(Succ); 135 } 136 Order.push_back(MBB); 137 }; 138 139 // Insert exit blocks. 140 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 141 ML.getExitBlocks(ExitBlocks); 142 for (auto *MBB : ExitBlocks) 143 Order.push_back(MBB); 144 145 // Then add the loop body. 146 Search(ML.getHeader()); 147 148 // Then try the preheader and its predecessors. 149 std::function<void(MachineBasicBlock*)> GetPredecessor = 150 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 151 Order.push_back(MBB); 152 if (MBB->pred_size() == 1) 153 GetPredecessor(*MBB->pred_begin()); 154 }; 155 156 if (auto *Preheader = ML.getLoopPreheader()) 157 GetPredecessor(Preheader); 158 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true)) 159 GetPredecessor(Preheader); 160 } 161 }; 162 163 struct PredicatedMI { 164 MachineInstr *MI = nullptr; 165 SetVector<MachineInstr*> Predicates; 166 167 public: 168 PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) { 169 assert(I && "Instruction must not be null!"); 170 Predicates.insert(Preds.begin(), Preds.end()); 171 } 172 }; 173 174 // Represent the current state of the VPR and hold all instances which 175 // represent a VPT block, which is a list of instructions that begins with a 176 // VPT/VPST and has a maximum of four proceeding instructions. All 177 // instructions within the block are predicated upon the vpr and we allow 178 // instructions to define the vpr within in the block too. 179 class VPTState { 180 friend struct LowOverheadLoop; 181 182 SmallVector<MachineInstr *, 4> Insts; 183 184 static SmallVector<VPTState, 4> Blocks; 185 static SetVector<MachineInstr *> CurrentPredicates; 186 static std::map<MachineInstr *, 187 std::unique_ptr<PredicatedMI>> PredicatedInsts; 188 189 static void CreateVPTBlock(MachineInstr *MI) { 190 assert(CurrentPredicates.size() && "Can't begin VPT without predicate"); 191 Blocks.emplace_back(MI); 192 // The execution of MI is predicated upon the current set of instructions 193 // that are AND'ed together to form the VPR predicate value. In the case 194 // that MI is a VPT, CurrentPredicates will also just be MI. 195 PredicatedInsts.emplace( 196 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 197 } 198 199 static void reset() { 200 Blocks.clear(); 201 PredicatedInsts.clear(); 202 CurrentPredicates.clear(); 203 } 204 205 static void addInst(MachineInstr *MI) { 206 Blocks.back().insert(MI); 207 PredicatedInsts.emplace( 208 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 209 } 210 211 static void addPredicate(MachineInstr *MI) { 212 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI); 213 CurrentPredicates.insert(MI); 214 } 215 216 static void resetPredicate(MachineInstr *MI) { 217 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI); 218 CurrentPredicates.clear(); 219 CurrentPredicates.insert(MI); 220 } 221 222 public: 223 // Have we found an instruction within the block which defines the vpr? If 224 // so, not all the instructions in the block will have the same predicate. 225 static bool hasUniformPredicate(VPTState &Block) { 226 return getDivergent(Block) == nullptr; 227 } 228 229 // If it exists, return the first internal instruction which modifies the 230 // VPR. 231 static MachineInstr *getDivergent(VPTState &Block) { 232 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 233 for (unsigned i = 1; i < Insts.size(); ++i) { 234 MachineInstr *Next = Insts[i]; 235 if (isVectorPredicate(Next)) 236 return Next; // Found an instruction altering the vpr. 237 } 238 return nullptr; 239 } 240 241 // Return whether the given instruction is predicated upon a VCTP. 242 static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) { 243 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates; 244 if (Exclusive && Predicates.size() != 1) 245 return false; 246 for (auto *PredMI : Predicates) 247 if (isVCTP(PredMI)) 248 return true; 249 return false; 250 } 251 252 // Is the VPST, controlling the block entry, predicated upon a VCTP. 253 static bool isEntryPredicatedOnVCTP(VPTState &Block, 254 bool Exclusive = false) { 255 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 256 return isPredicatedOnVCTP(Insts.front(), Exclusive); 257 } 258 259 // If this block begins with a VPT, we can check whether it's using 260 // at least one predicated input(s), as well as possible loop invariant 261 // which would result in it being implicitly predicated. 262 static bool hasImplicitlyValidVPT(VPTState &Block, 263 ReachingDefAnalysis &RDA) { 264 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 265 MachineInstr *VPT = Insts.front(); 266 assert(isVPTOpcode(VPT->getOpcode()) && 267 "Expected VPT block to begin with VPT/VPST"); 268 269 if (VPT->getOpcode() == ARM::MVE_VPST) 270 return false; 271 272 auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) { 273 MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx)); 274 return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op); 275 }; 276 277 auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) { 278 MachineOperand &MO = MI->getOperand(Idx); 279 if (!MO.isReg() || !MO.getReg()) 280 return true; 281 282 SmallPtrSet<MachineInstr *, 2> Defs; 283 RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs); 284 if (Defs.empty()) 285 return true; 286 287 for (auto *Def : Defs) 288 if (Def->getParent() == VPT->getParent()) 289 return false; 290 return true; 291 }; 292 293 // Check that at least one of the operands is directly predicated on a 294 // vctp and allow an invariant value too. 295 return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) && 296 (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) && 297 (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2)); 298 } 299 300 static bool isValid(ReachingDefAnalysis &RDA) { 301 // All predication within the loop should be based on vctp. If the block 302 // isn't predicated on entry, check whether the vctp is within the block 303 // and that all other instructions are then predicated on it. 304 for (auto &Block : Blocks) { 305 if (isEntryPredicatedOnVCTP(Block, false) || 306 hasImplicitlyValidVPT(Block, RDA)) 307 continue; 308 309 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 310 for (auto *MI : Insts) { 311 // Check that any internal VCTPs are 'Then' predicated. 312 if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then) 313 return false; 314 // Skip other instructions that build up the predicate. 315 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI)) 316 continue; 317 // Check that any other instructions are predicated upon a vctp. 318 // TODO: We could infer when VPTs are implicitly predicated on the 319 // vctp (when the operands are predicated). 320 if (!isPredicatedOnVCTP(MI)) { 321 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI); 322 return false; 323 } 324 } 325 } 326 return true; 327 } 328 329 VPTState(MachineInstr *MI) { Insts.push_back(MI); } 330 331 void insert(MachineInstr *MI) { 332 Insts.push_back(MI); 333 // VPT/VPST + 4 predicated instructions. 334 assert(Insts.size() <= 5 && "Too many instructions in VPT block!"); 335 } 336 337 bool containsVCTP() const { 338 for (auto *MI : Insts) 339 if (isVCTP(MI)) 340 return true; 341 return false; 342 } 343 344 unsigned size() const { return Insts.size(); } 345 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; } 346 }; 347 348 struct LowOverheadLoop { 349 350 MachineLoop &ML; 351 MachineBasicBlock *Preheader = nullptr; 352 MachineLoopInfo &MLI; 353 ReachingDefAnalysis &RDA; 354 const TargetRegisterInfo &TRI; 355 const ARMBaseInstrInfo &TII; 356 MachineFunction *MF = nullptr; 357 MachineInstr *InsertPt = nullptr; 358 MachineInstr *Start = nullptr; 359 MachineInstr *Dec = nullptr; 360 MachineInstr *End = nullptr; 361 MachineOperand TPNumElements; 362 SmallVector<MachineInstr*, 4> VCTPs; 363 SmallPtrSet<MachineInstr*, 4> ToRemove; 364 SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute; 365 bool Revert = false; 366 bool CannotTailPredicate = false; 367 368 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 369 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI, 370 const ARMBaseInstrInfo &TII) 371 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII), 372 TPNumElements(MachineOperand::CreateImm(0)) { 373 MF = ML.getHeader()->getParent(); 374 if (auto *MBB = ML.getLoopPreheader()) 375 Preheader = MBB; 376 else if (auto *MBB = MLI.findLoopPreheader(&ML, true)) 377 Preheader = MBB; 378 VPTState::reset(); 379 } 380 381 // If this is an MVE instruction, check that we know how to use tail 382 // predication with it. Record VPT blocks and return whether the 383 // instruction is valid for tail predication. 384 bool ValidateMVEInst(MachineInstr *MI); 385 386 void AnalyseMVEInst(MachineInstr *MI) { 387 CannotTailPredicate = !ValidateMVEInst(MI); 388 } 389 390 bool IsTailPredicationLegal() const { 391 // For now, let's keep things really simple and only support a single 392 // block for tail predication. 393 return !Revert && FoundAllComponents() && !VCTPs.empty() && 394 !CannotTailPredicate && ML.getNumBlocks() == 1; 395 } 396 397 // Given that MI is a VCTP, check that is equivalent to any other VCTPs 398 // found. 399 bool AddVCTP(MachineInstr *MI); 400 401 // Check that the predication in the loop will be equivalent once we 402 // perform the conversion. Also ensure that we can provide the number 403 // of elements to the loop start instruction. 404 bool ValidateTailPredicate(MachineInstr *StartInsertPt); 405 406 // Check that any values available outside of the loop will be the same 407 // after tail predication conversion. 408 bool ValidateLiveOuts(); 409 410 // Is it safe to define LR with DLS/WLS? 411 // LR can be defined if it is the operand to start, because it's the same 412 // value, or if it's going to be equivalent to the operand to Start. 413 MachineInstr *isSafeToDefineLR(); 414 415 // Check the branch targets are within range and we satisfy our 416 // restrictions. 417 void Validate(ARMBasicBlockUtils *BBUtils); 418 419 bool FoundAllComponents() const { 420 return Start && Dec && End; 421 } 422 423 SmallVectorImpl<VPTState> &getVPTBlocks() { 424 return VPTState::Blocks; 425 } 426 427 // Return the operand for the loop start instruction. This will be the loop 428 // iteration count, or the number of elements if we're tail predicating. 429 MachineOperand &getLoopStartOperand() { 430 return IsTailPredicationLegal() ? TPNumElements : Start->getOperand(0); 431 } 432 433 unsigned getStartOpcode() const { 434 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 435 if (!IsTailPredicationLegal()) 436 return IsDo ? ARM::t2DLS : ARM::t2WLS; 437 438 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo); 439 } 440 441 void dump() const { 442 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 443 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 444 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 445 if (!VCTPs.empty()) { 446 dbgs() << "ARM Loops: Found VCTP(s):\n"; 447 for (auto *MI : VCTPs) 448 dbgs() << " - " << *MI; 449 } 450 if (!FoundAllComponents()) 451 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 452 else if (!(Start && Dec && End)) 453 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 454 } 455 }; 456 457 class ARMLowOverheadLoops : public MachineFunctionPass { 458 MachineFunction *MF = nullptr; 459 MachineLoopInfo *MLI = nullptr; 460 ReachingDefAnalysis *RDA = nullptr; 461 const ARMBaseInstrInfo *TII = nullptr; 462 MachineRegisterInfo *MRI = nullptr; 463 const TargetRegisterInfo *TRI = nullptr; 464 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 465 466 public: 467 static char ID; 468 469 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 470 471 void getAnalysisUsage(AnalysisUsage &AU) const override { 472 AU.setPreservesCFG(); 473 AU.addRequired<MachineLoopInfo>(); 474 AU.addRequired<ReachingDefAnalysis>(); 475 MachineFunctionPass::getAnalysisUsage(AU); 476 } 477 478 bool runOnMachineFunction(MachineFunction &MF) override; 479 480 MachineFunctionProperties getRequiredProperties() const override { 481 return MachineFunctionProperties().set( 482 MachineFunctionProperties::Property::NoVRegs).set( 483 MachineFunctionProperties::Property::TracksLiveness); 484 } 485 486 StringRef getPassName() const override { 487 return ARM_LOW_OVERHEAD_LOOPS_NAME; 488 } 489 490 private: 491 bool ProcessLoop(MachineLoop *ML); 492 493 bool RevertNonLoops(); 494 495 void RevertWhile(MachineInstr *MI) const; 496 497 bool RevertLoopDec(MachineInstr *MI) const; 498 499 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 500 501 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 502 503 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 504 505 void Expand(LowOverheadLoop &LoLoop); 506 507 void DCE(MachineInstr *MI, SmallPtrSetImpl<MachineInstr *> &ToRemove); 508 509 void IterationCountDCE(LowOverheadLoop &LoLoop); 510 }; 511 } 512 513 char ARMLowOverheadLoops::ID = 0; 514 515 SmallVector<VPTState, 4> VPTState::Blocks; 516 SetVector<MachineInstr *> VPTState::CurrentPredicates; 517 std::map<MachineInstr *, 518 std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts; 519 520 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 521 false, false) 522 523 bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt) { 524 if (!StartInsertPt) 525 return false; 526 527 if (!IsTailPredicationLegal()) { 528 LLVM_DEBUG(if (VCTPs.empty()) 529 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 530 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 531 return false; 532 } 533 534 assert(!VCTPs.empty() && "VCTP instruction expected but is not set"); 535 assert(ML.getBlocks().size() == 1 && 536 "Shouldn't be processing a loop with more than one block"); 537 538 if (DisableTailPredication) { 539 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n"); 540 return false; 541 } 542 543 if (!VPTState::isValid(RDA)) 544 return false; 545 546 if (!ValidateLiveOuts()) { 547 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n"); 548 return false; 549 } 550 551 // For tail predication, we need to provide the number of elements, instead 552 // of the iteration count, to the loop start instruction. The number of 553 // elements is provided to the vctp instruction, so we need to check that 554 // we can use this register at InsertPt. 555 MachineInstr *VCTP = VCTPs.back(); 556 TPNumElements = VCTP->getOperand(1); 557 Register NumElements = TPNumElements.getReg(); 558 559 // If the register is defined within loop, then we can't perform TP. 560 // TODO: Check whether this is just a mov of a register that would be 561 // available. 562 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 563 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 564 return false; 565 } 566 567 // The element count register maybe defined after InsertPt, in which case we 568 // need to try to move either InsertPt or the def so that the [w|d]lstp can 569 // use the value. 570 MachineBasicBlock *InsertBB = StartInsertPt->getParent(); 571 572 if (!RDA.isReachingDefLiveOut(StartInsertPt, NumElements)) { 573 if (auto *ElemDef = RDA.getLocalLiveOutMIDef(InsertBB, NumElements)) { 574 if (RDA.isSafeToMoveForwards(ElemDef, StartInsertPt)) { 575 ElemDef->removeFromParent(); 576 InsertBB->insert(MachineBasicBlock::iterator(StartInsertPt), ElemDef); 577 LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: " 578 << *ElemDef); 579 } else if (RDA.isSafeToMoveBackwards(StartInsertPt, ElemDef)) { 580 StartInsertPt->removeFromParent(); 581 InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 582 StartInsertPt); 583 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 584 } else { 585 // If we fail to move an instruction and the element count is provided 586 // by a mov, use the mov operand if it will have the same value at the 587 // insertion point 588 MachineOperand Operand = ElemDef->getOperand(1); 589 if (isMovRegOpcode(ElemDef->getOpcode()) && 590 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg()) == 591 RDA.getUniqueReachingMIDef(StartInsertPt, Operand.getReg())) { 592 TPNumElements = Operand; 593 NumElements = TPNumElements.getReg(); 594 } else { 595 LLVM_DEBUG(dbgs() 596 << "ARM Loops: Unable to move element count to loop " 597 << "start instruction.\n"); 598 return false; 599 } 600 } 601 } 602 } 603 604 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect 605 // world the [w|d]lstp instruction would be last instruction in the preheader 606 // and so it would only affect instructions within the loop body. But due to 607 // scheduling, and/or the logic in this pass (above), the insertion point can 608 // be moved earlier. So if the Loop Start isn't the last instruction in the 609 // preheader, and if the initial element count is smaller than the vector 610 // width, the Loop Start instruction will immediately generate one or more 611 // false lane mask which can, incorrectly, affect the proceeding MVE 612 // instructions in the preheader. 613 auto CannotInsertWDLSTPBetween = [](MachineBasicBlock::iterator I, 614 MachineBasicBlock::iterator E) { 615 for (; I != E; ++I) 616 if (shouldInspect(*I)) 617 return true; 618 return false; 619 }; 620 621 if (CannotInsertWDLSTPBetween(StartInsertPt, InsertBB->end())) 622 return false; 623 624 // Especially in the case of while loops, InsertBB may not be the 625 // preheader, so we need to check that the register isn't redefined 626 // before entering the loop. 627 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 628 Register NumElements) { 629 // NumElements is redefined in this block. 630 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 631 return true; 632 633 // Don't continue searching up through multiple predecessors. 634 if (MBB->pred_size() > 1) 635 return true; 636 637 return false; 638 }; 639 640 // Search backwards for a def, until we get to InsertBB. 641 MachineBasicBlock *MBB = Preheader; 642 while (MBB && MBB != InsertBB) { 643 if (CannotProvideElements(MBB, NumElements)) { 644 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 645 return false; 646 } 647 MBB = *MBB->pred_begin(); 648 } 649 650 // Check that the value change of the element count is what we expect and 651 // that the predication will be equivalent. For this we need: 652 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 653 // and we can also allow register copies within the chain too. 654 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 655 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 656 }; 657 658 MBB = VCTP->getParent(); 659 // Remove modifications to the element count since they have no purpose in a 660 // tail predicated loop. Explicitly refer to the vctp operand no matter which 661 // register NumElements has been assigned to, since that is what the 662 // modifications will be using 663 if (auto *Def = RDA.getUniqueReachingMIDef(&MBB->back(), 664 VCTP->getOperand(1).getReg())) { 665 SmallPtrSet<MachineInstr*, 2> ElementChain; 666 SmallPtrSet<MachineInstr*, 2> Ignore; 667 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 668 669 Ignore.insert(VCTPs.begin(), VCTPs.end()); 670 671 if (RDA.isSafeToRemove(Def, ElementChain, Ignore)) { 672 bool FoundSub = false; 673 674 for (auto *MI : ElementChain) { 675 if (isMovRegOpcode(MI->getOpcode())) 676 continue; 677 678 if (isSubImmOpcode(MI->getOpcode())) { 679 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) 680 return false; 681 FoundSub = true; 682 } else 683 return false; 684 } 685 686 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove element count chain:\n"; 687 for (auto *MI : ElementChain) 688 dbgs() << " - " << *MI); 689 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 690 } 691 } 692 return true; 693 } 694 695 static bool isRegInClass(const MachineOperand &MO, 696 const TargetRegisterClass *Class) { 697 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 698 } 699 700 // MVE 'narrowing' operate on half a lane, reading from half and writing 701 // to half, which are referred to has the top and bottom half. The other 702 // half retains its previous value. 703 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 704 const MCInstrDesc &MCID = MI.getDesc(); 705 uint64_t Flags = MCID.TSFlags; 706 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 707 } 708 709 // Some MVE instructions read from the top/bottom halves of their operand(s) 710 // and generate a vector result with result elements that are double the 711 // width of the input. 712 static bool producesDoubleWidthResult(const MachineInstr &MI) { 713 const MCInstrDesc &MCID = MI.getDesc(); 714 uint64_t Flags = MCID.TSFlags; 715 return (Flags & ARMII::DoubleWidthResult) != 0; 716 } 717 718 static bool isHorizontalReduction(const MachineInstr &MI) { 719 const MCInstrDesc &MCID = MI.getDesc(); 720 uint64_t Flags = MCID.TSFlags; 721 return (Flags & ARMII::HorizontalReduction) != 0; 722 } 723 724 // Can this instruction generate a non-zero result when given only zeroed 725 // operands? This allows us to know that, given operands with false bytes 726 // zeroed by masked loads, that the result will also contain zeros in those 727 // bytes. 728 static bool canGenerateNonZeros(const MachineInstr &MI) { 729 730 // Check for instructions which can write into a larger element size, 731 // possibly writing into a previous zero'd lane. 732 if (producesDoubleWidthResult(MI)) 733 return true; 734 735 switch (MI.getOpcode()) { 736 default: 737 break; 738 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 739 // fp16 -> fp32 vector conversions. 740 // Instructions that perform a NOT will generate 1s from 0s. 741 case ARM::MVE_VMVN: 742 case ARM::MVE_VORN: 743 // Count leading zeros will do just that! 744 case ARM::MVE_VCLZs8: 745 case ARM::MVE_VCLZs16: 746 case ARM::MVE_VCLZs32: 747 return true; 748 } 749 return false; 750 } 751 752 // Look at its register uses to see if it only can only receive zeros 753 // into its false lanes which would then produce zeros. Also check that 754 // the output register is also defined by an FalseLanesZero instruction 755 // so that if tail-predication happens, the lanes that aren't updated will 756 // still be zeros. 757 static bool producesFalseLanesZero(MachineInstr &MI, 758 const TargetRegisterClass *QPRs, 759 const ReachingDefAnalysis &RDA, 760 InstSet &FalseLanesZero) { 761 if (canGenerateNonZeros(MI)) 762 return false; 763 764 bool isPredicated = isVectorPredicated(&MI); 765 // Predicated loads will write zeros to the falsely predicated bytes of the 766 // destination register. 767 if (MI.mayLoad()) 768 return isPredicated; 769 770 auto IsZeroInit = [](MachineInstr *Def) { 771 return !isVectorPredicated(Def) && 772 Def->getOpcode() == ARM::MVE_VMOVimmi32 && 773 Def->getOperand(1).getImm() == 0; 774 }; 775 776 bool AllowScalars = isHorizontalReduction(MI); 777 for (auto &MO : MI.operands()) { 778 if (!MO.isReg() || !MO.getReg()) 779 continue; 780 if (!isRegInClass(MO, QPRs) && AllowScalars) 781 continue; 782 783 // Check that this instruction will produce zeros in its false lanes: 784 // - If it only consumes false lanes zero or constant 0 (vmov #0) 785 // - If it's predicated, it only matters that it's def register already has 786 // false lane zeros, so we can ignore the uses. 787 SmallPtrSet<MachineInstr *, 2> Defs; 788 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs); 789 for (auto *Def : Defs) { 790 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def)) 791 continue; 792 if (MO.isUse() && isPredicated) 793 continue; 794 return false; 795 } 796 } 797 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 798 return true; 799 } 800 801 bool LowOverheadLoop::ValidateLiveOuts() { 802 // We want to find out if the tail-predicated version of this loop will 803 // produce the same values as the loop in its original form. For this to 804 // be true, the newly inserted implicit predication must not change the 805 // the (observable) results. 806 // We're doing this because many instructions in the loop will not be 807 // predicated and so the conversion from VPT predication to tail-predication 808 // can result in different values being produced; due to the tail-predication 809 // preventing many instructions from updating their falsely predicated 810 // lanes. This analysis assumes that all the instructions perform lane-wise 811 // operations and don't perform any exchanges. 812 // A masked load, whether through VPT or tail predication, will write zeros 813 // to any of the falsely predicated bytes. So, from the loads, we know that 814 // the false lanes are zeroed and here we're trying to track that those false 815 // lanes remain zero, or where they change, the differences are masked away 816 // by their user(s). 817 // All MVE stores have to be predicated, so we know that any predicate load 818 // operands, or stored results are equivalent already. Other explicitly 819 // predicated instructions will perform the same operation in the original 820 // loop and the tail-predicated form too. Because of this, we can insert 821 // loads, stores and other predicated instructions into our Predicated 822 // set and build from there. 823 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 824 SetVector<MachineInstr *> FalseLanesUnknown; 825 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 826 SmallPtrSet<MachineInstr *, 4> Predicated; 827 MachineBasicBlock *Header = ML.getHeader(); 828 829 for (auto &MI : *Header) { 830 if (!shouldInspect(MI)) 831 continue; 832 833 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) 834 continue; 835 836 bool isPredicated = isVectorPredicated(&MI); 837 bool retainsOrReduces = 838 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI); 839 840 if (isPredicated) 841 Predicated.insert(&MI); 842 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) 843 FalseLanesZero.insert(&MI); 844 else if (MI.getNumDefs() == 0) 845 continue; 846 else if (!isPredicated && retainsOrReduces) 847 return false; 848 else if (!isPredicated) 849 FalseLanesUnknown.insert(&MI); 850 } 851 852 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 853 SmallPtrSetImpl<MachineInstr *> &Predicated) { 854 SmallPtrSet<MachineInstr *, 2> Uses; 855 RDA.getGlobalUses(MI, MO.getReg(), Uses); 856 for (auto *Use : Uses) { 857 if (Use != MI && !Predicated.count(Use)) 858 return false; 859 } 860 return true; 861 }; 862 863 // Visit the unknowns in reverse so that we can start at the values being 864 // stored and then we can work towards the leaves, hopefully adding more 865 // instructions to Predicated. Successfully terminating the loop means that 866 // all the unknown values have to found to be masked by predicated user(s). 867 // For any unpredicated values, we store them in NonPredicated so that we 868 // can later check whether these form a reduction. 869 SmallPtrSet<MachineInstr*, 2> NonPredicated; 870 for (auto *MI : reverse(FalseLanesUnknown)) { 871 for (auto &MO : MI->operands()) { 872 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 873 continue; 874 if (!HasPredicatedUsers(MI, MO, Predicated)) { 875 LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : " 876 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 877 NonPredicated.insert(MI); 878 break; 879 } 880 } 881 // Any unknown false lanes have been masked away by the user(s). 882 if (!NonPredicated.contains(MI)) 883 Predicated.insert(MI); 884 } 885 886 SmallPtrSet<MachineInstr *, 2> LiveOutMIs; 887 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 888 ML.getExitBlocks(ExitBlocks); 889 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 890 assert(ExitBlocks.size() == 1 && "Expected a single exit block"); 891 MachineBasicBlock *ExitBB = ExitBlocks.front(); 892 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) { 893 // TODO: Instead of blocking predication, we could move the vctp to the exit 894 // block and calculate it's operand there in or the preheader. 895 if (RegMask.PhysReg == ARM::VPR) 896 return false; 897 // Check Q-regs that are live in the exit blocks. We don't collect scalars 898 // because they won't be affected by lane predication. 899 if (QPRs->contains(RegMask.PhysReg)) 900 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg)) 901 LiveOutMIs.insert(MI); 902 } 903 904 // We've already validated that any VPT predication within the loop will be 905 // equivalent when we perform the predication transformation; so we know that 906 // any VPT predicated instruction is predicated upon VCTP. Any live-out 907 // instruction needs to be predicated, so check this here. The instructions 908 // in NonPredicated have been found to be a reduction that we can ensure its 909 // legality. 910 for (auto *MI : LiveOutMIs) { 911 if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) { 912 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to handle live out: " << *MI); 913 return false; 914 } 915 } 916 917 return true; 918 } 919 920 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) { 921 if (Revert) 922 return; 923 924 auto ValidateRanges = [this, &BBUtils]() { 925 if (!End->getOperand(1).isMBB()) 926 report_fatal_error("Expected LoopEnd to target basic block"); 927 928 // TODO Maybe there's cases where the target doesn't have to be the header, 929 // but for now be safe and revert. 930 if (End->getOperand(1).getMBB() != ML.getHeader()) { 931 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targetting header.\n"); 932 return false; 933 } 934 935 // The WLS and LE instructions have 12-bits for the label offset. WLS 936 // requires a positive offset, while LE uses negative. 937 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 938 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 939 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 940 return false; 941 } 942 943 if (Start->getOpcode() == ARM::t2WhileLoopStart && 944 (BBUtils->getOffsetOf(Start) > 945 BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || 946 !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { 947 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 948 return false; 949 } 950 return true; 951 }; 952 953 auto FindStartInsertionPoint = [this]() -> MachineInstr* { 954 // We can define LR because LR already contains the same value. 955 if (Start->getOperand(0).getReg() == ARM::LR) 956 return Start; 957 958 unsigned CountReg = Start->getOperand(0).getReg(); 959 auto IsMoveLR = [&CountReg](MachineInstr *MI) { 960 return MI->getOpcode() == ARM::tMOVr && 961 MI->getOperand(0).getReg() == ARM::LR && 962 MI->getOperand(1).getReg() == CountReg && 963 MI->getOperand(2).getImm() == ARMCC::AL; 964 }; 965 966 MachineBasicBlock *MBB = Start->getParent(); 967 968 // Find an insertion point: 969 // - Is there a (mov lr, Count) before Start? If so, and nothing else 970 // writes to Count before Start, we can insert at that mov. 971 if (auto *LRDef = RDA.getUniqueReachingMIDef(Start, ARM::LR)) 972 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 973 return LRDef; 974 975 // - Is there a (mov lr, Count) after Start? If so, and nothing else writes 976 // to Count after Start, we can insert at that mov. 977 if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR)) 978 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 979 return LRDef; 980 981 // We've found no suitable LR def and Start doesn't use LR directly. Can we 982 // just define LR anyway? 983 return RDA.isSafeToDefRegAt(Start, ARM::LR) ? Start : nullptr; 984 }; 985 986 InsertPt = FindStartInsertionPoint(); 987 Revert = !ValidateRanges() || !InsertPt; 988 CannotTailPredicate = !ValidateTailPredicate(InsertPt); 989 990 LLVM_DEBUG(if (!InsertPt) 991 dbgs() << "ARM Loops: Unable to find safe insertion point.\n"; 992 else 993 dbgs() << "ARM Loops: Start insertion point: " << *InsertPt; 994 if (CannotTailPredicate) 995 dbgs() << "ARM Loops: Couldn't validate tail predicate.\n" 996 ); 997 } 998 999 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) { 1000 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI); 1001 if (VCTPs.empty()) { 1002 VCTPs.push_back(MI); 1003 return true; 1004 } 1005 1006 // If we find another VCTP, check whether it uses the same value as the main VCTP. 1007 // If it does, store it in the VCTPs set, else refuse it. 1008 MachineInstr *Prev = VCTPs.back(); 1009 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) || 1010 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg())) { 1011 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " 1012 "definition from the main VCTP"); 1013 return false; 1014 } 1015 VCTPs.push_back(MI); 1016 return true; 1017 } 1018 1019 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) { 1020 if (CannotTailPredicate) 1021 return false; 1022 1023 if (!shouldInspect(*MI)) 1024 return true; 1025 1026 if (MI->getOpcode() == ARM::MVE_VPSEL || 1027 MI->getOpcode() == ARM::MVE_VPNOT) { 1028 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 1029 // 1) It will use the VPR as a predicate operand, but doesn't have to be 1030 // instead a VPT block, which means we can assert while building up 1031 // the VPT block because we don't find another VPT or VPST to being a new 1032 // one. 1033 // 2) VPSEL still requires a VPR operand even after tail predicating, 1034 // which means we can't remove it unless there is another 1035 // instruction, such as vcmp, that can provide the VPR def. 1036 return false; 1037 } 1038 1039 // Record all VCTPs and check that they're equivalent to one another. 1040 if (isVCTP(MI) && !AddVCTP(MI)) 1041 return false; 1042 1043 // Inspect uses first so that any instructions that alter the VPR don't 1044 // alter the predicate upon themselves. 1045 const MCInstrDesc &MCID = MI->getDesc(); 1046 bool IsUse = false; 1047 unsigned LastOpIdx = MI->getNumOperands() - 1; 1048 for (auto &Op : enumerate(reverse(MCID.operands()))) { 1049 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index()); 1050 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR) 1051 continue; 1052 1053 if (ARM::isVpred(Op.value().OperandType)) { 1054 VPTState::addInst(MI); 1055 IsUse = true; 1056 } else if (MI->getOpcode() != ARM::MVE_VPST) { 1057 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 1058 return false; 1059 } 1060 } 1061 1062 // If we find an instruction that has been marked as not valid for tail 1063 // predication, only allow the instruction if it's contained within a valid 1064 // VPT block. 1065 bool RequiresExplicitPredication = 1066 (MCID.TSFlags & ARMII::ValidForTailPredication) == 0; 1067 if (isDomainMVE(MI) && RequiresExplicitPredication) { 1068 LLVM_DEBUG(if (!IsUse) 1069 dbgs() << "ARM Loops: Can't tail predicate: " << *MI); 1070 return IsUse; 1071 } 1072 1073 // If the instruction is already explicitly predicated, then the conversion 1074 // will be fine, but ensure that all store operations are predicated. 1075 if (MI->mayStore()) 1076 return IsUse; 1077 1078 // If this instruction defines the VPR, update the predicate for the 1079 // proceeding instructions. 1080 if (isVectorPredicate(MI)) { 1081 // Clear the existing predicate when we're not in VPT Active state, 1082 // otherwise we add to it. 1083 if (!isVectorPredicated(MI)) 1084 VPTState::resetPredicate(MI); 1085 else 1086 VPTState::addPredicate(MI); 1087 } 1088 1089 // Finally once the predicate has been modified, we can start a new VPT 1090 // block if necessary. 1091 if (isVPTOpcode(MI->getOpcode())) 1092 VPTState::CreateVPTBlock(MI); 1093 1094 return true; 1095 } 1096 1097 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 1098 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 1099 if (!ST.hasLOB()) 1100 return false; 1101 1102 MF = &mf; 1103 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 1104 1105 MLI = &getAnalysis<MachineLoopInfo>(); 1106 RDA = &getAnalysis<ReachingDefAnalysis>(); 1107 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 1108 MRI = &MF->getRegInfo(); 1109 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 1110 TRI = ST.getRegisterInfo(); 1111 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 1112 BBUtils->computeAllBlockSizes(); 1113 BBUtils->adjustBBOffsetsAfter(&MF->front()); 1114 1115 bool Changed = false; 1116 for (auto ML : *MLI) { 1117 if (ML->isOutermost()) 1118 Changed |= ProcessLoop(ML); 1119 } 1120 Changed |= RevertNonLoops(); 1121 return Changed; 1122 } 1123 1124 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 1125 1126 bool Changed = false; 1127 1128 // Process inner loops first. 1129 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 1130 Changed |= ProcessLoop(*I); 1131 1132 LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; 1133 if (auto *Preheader = ML->getLoopPreheader()) 1134 dbgs() << " - " << Preheader->getName() << "\n"; 1135 else if (auto *Preheader = MLI->findLoopPreheader(ML)) 1136 dbgs() << " - " << Preheader->getName() << "\n"; 1137 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 1138 dbgs() << " - " << Preheader->getName() << "\n"; 1139 for (auto *MBB : ML->getBlocks()) 1140 dbgs() << " - " << MBB->getName() << "\n"; 1141 ); 1142 1143 // Search the given block for a loop start instruction. If one isn't found, 1144 // and there's only one predecessor block, search that one too. 1145 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 1146 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 1147 for (auto &MI : *MBB) { 1148 if (isLoopStart(MI)) 1149 return &MI; 1150 } 1151 if (MBB->pred_size() == 1) 1152 return SearchForStart(*MBB->pred_begin()); 1153 return nullptr; 1154 }; 1155 1156 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII); 1157 // Search the preheader for the start intrinsic. 1158 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 1159 // with potentially multiple set.loop.iterations, so we need to enable this. 1160 if (LoLoop.Preheader) 1161 LoLoop.Start = SearchForStart(LoLoop.Preheader); 1162 else 1163 return false; 1164 1165 // Find the low-overhead loop components and decide whether or not to fall 1166 // back to a normal loop. Also look for a vctp instructions and decide 1167 // whether we can convert that predicate using tail predication. 1168 for (auto *MBB : reverse(ML->getBlocks())) { 1169 for (auto &MI : *MBB) { 1170 if (MI.isDebugValue()) 1171 continue; 1172 else if (MI.getOpcode() == ARM::t2LoopDec) 1173 LoLoop.Dec = &MI; 1174 else if (MI.getOpcode() == ARM::t2LoopEnd) 1175 LoLoop.End = &MI; 1176 else if (isLoopStart(MI)) 1177 LoLoop.Start = &MI; 1178 else if (MI.getDesc().isCall()) { 1179 // TODO: Though the call will require LE to execute again, does this 1180 // mean we should revert? Always executing LE hopefully should be 1181 // faster than performing a sub,cmp,br or even subs,br. 1182 LoLoop.Revert = true; 1183 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 1184 } else { 1185 // Record VPR defs and build up their corresponding vpt blocks. 1186 // Check we know how to tail predicate any mve instructions. 1187 LoLoop.AnalyseMVEInst(&MI); 1188 } 1189 } 1190 } 1191 1192 LLVM_DEBUG(LoLoop.dump()); 1193 if (!LoLoop.FoundAllComponents()) { 1194 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 1195 return false; 1196 } 1197 1198 // Check that the only instruction using LoopDec is LoopEnd. 1199 // TODO: Check for copy chains that really have no effect. 1200 SmallPtrSet<MachineInstr*, 2> Uses; 1201 RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses); 1202 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 1203 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 1204 LoLoop.Revert = true; 1205 } 1206 LoLoop.Validate(BBUtils.get()); 1207 Expand(LoLoop); 1208 return true; 1209 } 1210 1211 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 1212 // beq that branches to the exit branch. 1213 // TODO: We could also try to generate a cbz if the value in LR is also in 1214 // another low register. 1215 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 1216 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 1217 MachineBasicBlock *MBB = MI->getParent(); 1218 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1219 TII->get(ARM::t2CMPri)); 1220 MIB.add(MI->getOperand(0)); 1221 MIB.addImm(0); 1222 MIB.addImm(ARMCC::AL); 1223 MIB.addReg(ARM::NoRegister); 1224 1225 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1226 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1227 ARM::tBcc : ARM::t2Bcc; 1228 1229 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1230 MIB.add(MI->getOperand(1)); // branch target 1231 MIB.addImm(ARMCC::EQ); // condition code 1232 MIB.addReg(ARM::CPSR); 1233 MI->eraseFromParent(); 1234 } 1235 1236 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 1237 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 1238 MachineBasicBlock *MBB = MI->getParent(); 1239 SmallPtrSet<MachineInstr*, 1> Ignore; 1240 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 1241 if (I->getOpcode() == ARM::t2LoopEnd) { 1242 Ignore.insert(&*I); 1243 break; 1244 } 1245 } 1246 1247 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1248 bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore); 1249 1250 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1251 TII->get(ARM::t2SUBri)); 1252 MIB.addDef(ARM::LR); 1253 MIB.add(MI->getOperand(1)); 1254 MIB.add(MI->getOperand(2)); 1255 MIB.addImm(ARMCC::AL); 1256 MIB.addReg(0); 1257 1258 if (SetFlags) { 1259 MIB.addReg(ARM::CPSR); 1260 MIB->getOperand(5).setIsDef(true); 1261 } else 1262 MIB.addReg(0); 1263 1264 MI->eraseFromParent(); 1265 return SetFlags; 1266 } 1267 1268 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1269 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1270 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1271 1272 MachineBasicBlock *MBB = MI->getParent(); 1273 // Create cmp 1274 if (!SkipCmp) { 1275 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1276 TII->get(ARM::t2CMPri)); 1277 MIB.addReg(ARM::LR); 1278 MIB.addImm(0); 1279 MIB.addImm(ARMCC::AL); 1280 MIB.addReg(ARM::NoRegister); 1281 } 1282 1283 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1284 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1285 ARM::tBcc : ARM::t2Bcc; 1286 1287 // Create bne 1288 MachineInstrBuilder MIB = 1289 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1290 MIB.add(MI->getOperand(1)); // branch target 1291 MIB.addImm(ARMCC::NE); // condition code 1292 MIB.addReg(ARM::CPSR); 1293 MI->eraseFromParent(); 1294 } 1295 1296 void ARMLowOverheadLoops::DCE(MachineInstr *MI, 1297 SmallPtrSetImpl<MachineInstr *> &ToRemove) { 1298 // Collect the dead code and the MBBs in which they reside. 1299 SmallPtrSet<MachineInstr*, 4> Killed; 1300 RDA->collectKilledOperands(MI, Killed); 1301 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 1302 for (auto *Dead : Killed) 1303 BasicBlocks.insert(Dead->getParent()); 1304 1305 // Collect IT blocks in all affected basic blocks. 1306 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 1307 for (auto *MBB : BasicBlocks) { 1308 for (auto &IT : *MBB) { 1309 if (IT.getOpcode() != ARM::t2IT) 1310 continue; 1311 RDA->getReachingLocalUses(&IT, ARM::ITSTATE, ITBlocks[&IT]); 1312 } 1313 } 1314 1315 // If we're removing all of the instructions within an IT block, then 1316 // also remove the IT instruction. 1317 SmallPtrSet<MachineInstr*, 2> ModifiedITs; 1318 for (auto *Dead : Killed) { 1319 if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) { 1320 MachineInstr *IT = RDA->getMIOperand(Dead, *MO); 1321 auto &CurrentBlock = ITBlocks[IT]; 1322 CurrentBlock.erase(Dead); 1323 if (CurrentBlock.empty()) 1324 ModifiedITs.erase(IT); 1325 else 1326 ModifiedITs.insert(IT); 1327 } 1328 } 1329 1330 // Delete the killed instructions only if we don't have any IT blocks that 1331 // need to be modified because we need to fixup the mask. 1332 // TODO: Handle cases where IT blocks are modified. 1333 if (ModifiedITs.empty()) { 1334 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove iteration count:\n"; 1335 for (auto *MI : Killed) 1336 dbgs() << " - " << *MI); 1337 ToRemove.insert(Killed.begin(), Killed.end()); 1338 } else 1339 LLVM_DEBUG(dbgs() << "ARM Loops: Would need to modify IT block(s).\n"); 1340 } 1341 1342 // Perform dead code elimation on the loop iteration count setup expression. 1343 // If we are tail-predicating, the number of elements to be processed is the 1344 // operand of the VCTP instruction in the vector body, see getCount(), which is 1345 // register $r3 in this example: 1346 // 1347 // $lr = big-itercount-expression 1348 // .. 1349 // t2DoLoopStart renamable $lr 1350 // vector.body: 1351 // .. 1352 // $vpr = MVE_VCTP32 renamable $r3 1353 // renamable $lr = t2LoopDec killed renamable $lr, 1 1354 // t2LoopEnd renamable $lr, %vector.body 1355 // tB %end 1356 // 1357 // What we would like achieve here is to replace the do-loop start pseudo 1358 // instruction t2DoLoopStart with: 1359 // 1360 // $lr = MVE_DLSTP_32 killed renamable $r3 1361 // 1362 // Thus, $r3 which defines the number of elements, is written to $lr, 1363 // and then we want to delete the whole chain that used to define $lr, 1364 // see the comment below how this chain could look like. 1365 // 1366 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1367 if (!LoLoop.IsTailPredicationLegal()) 1368 return; 1369 1370 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1371 1372 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0); 1373 if (!Def) { 1374 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1375 return; 1376 } 1377 1378 // Collect and remove the users of iteration count. 1379 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1380 LoLoop.End, LoLoop.InsertPt }; 1381 SmallPtrSet<MachineInstr*, 2> Remove; 1382 if (RDA->isSafeToRemove(Def, Remove, Killed)) { 1383 LoLoop.ToRemove.insert(Remove.begin(), Remove.end()); 1384 DCE(Def, LoLoop.ToRemove); 1385 } else 1386 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1387 } 1388 1389 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1390 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1391 // When using tail-predication, try to delete the dead code that was used to 1392 // calculate the number of loop iterations. 1393 IterationCountDCE(LoLoop); 1394 1395 MachineInstr *InsertPt = LoLoop.InsertPt; 1396 MachineInstr *Start = LoLoop.Start; 1397 MachineBasicBlock *MBB = InsertPt->getParent(); 1398 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 1399 unsigned Opc = LoLoop.getStartOpcode(); 1400 MachineOperand &Count = LoLoop.getLoopStartOperand(); 1401 1402 MachineInstrBuilder MIB = 1403 BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc)); 1404 1405 MIB.addDef(ARM::LR); 1406 MIB.add(Count); 1407 if (!IsDo) 1408 MIB.add(Start->getOperand(1)); 1409 1410 // If we're inserting at a mov lr, then remove it as it's redundant. 1411 if (InsertPt != Start) 1412 LoLoop.ToRemove.insert(InsertPt); 1413 LoLoop.ToRemove.insert(Start); 1414 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1415 return &*MIB; 1416 } 1417 1418 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1419 auto RemovePredicate = [](MachineInstr *MI) { 1420 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1421 if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) { 1422 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1423 "Expected Then predicate!"); 1424 MI->getOperand(PIdx).setImm(ARMVCC::None); 1425 MI->getOperand(PIdx+1).setReg(0); 1426 } else 1427 llvm_unreachable("trying to unpredicate a non-predicated instruction"); 1428 }; 1429 1430 for (auto &Block : LoLoop.getVPTBlocks()) { 1431 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 1432 1433 if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/true)) { 1434 if (VPTState::hasUniformPredicate(Block)) { 1435 // A vpt block starting with VPST, is only predicated upon vctp and has no 1436 // internal vpr defs: 1437 // - Remove vpst. 1438 // - Unpredicate the remaining instructions. 1439 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front()); 1440 LoLoop.ToRemove.insert(Insts.front()); 1441 for (unsigned i = 1; i < Insts.size(); ++i) 1442 RemovePredicate(Insts[i]); 1443 } else { 1444 // The VPT block has a non-uniform predicate but it uses a vpst and its 1445 // entry is guarded only by a vctp, which means we: 1446 // - Need to remove the original vpst. 1447 // - Then need to unpredicate any following instructions, until 1448 // we come across the divergent vpr def. 1449 // - Insert a new vpst to predicate the instruction(s) that following 1450 // the divergent vpr def. 1451 // TODO: We could be producing more VPT blocks than necessary and could 1452 // fold the newly created one into a proceeding one. 1453 MachineInstr *Divergent = VPTState::getDivergent(Block); 1454 for (auto I = ++MachineBasicBlock::iterator(Insts.front()), 1455 E = ++MachineBasicBlock::iterator(Divergent); I != E; ++I) 1456 RemovePredicate(&*I); 1457 1458 // Check if the instruction defining vpr is a vcmp so it can be combined 1459 // with the VPST This should be the divergent instruction 1460 MachineInstr *VCMP = VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 1461 ? Divergent 1462 : nullptr; 1463 1464 MachineInstrBuilder MIB; 1465 if (VCMP) { 1466 // Combine the VPST and VCMP into a VPT 1467 MIB = BuildMI(*Divergent->getParent(), Divergent, 1468 Divergent->getDebugLoc(), 1469 TII->get(VCMPOpcodeToVPT(VCMP->getOpcode()))); 1470 MIB.addImm(ARMVCC::Then); 1471 // Register one 1472 MIB.add(VCMP->getOperand(1)); 1473 // Register two 1474 MIB.add(VCMP->getOperand(2)); 1475 // The comparison code, e.g. ge, eq, lt 1476 MIB.add(VCMP->getOperand(3)); 1477 LLVM_DEBUG(dbgs() 1478 << "ARM Loops: Combining with VCMP to VPT: " << *MIB); 1479 LoLoop.ToRemove.insert(VCMP); 1480 } else { 1481 // Create a VPST (with a null mask for now, we'll recompute it later) 1482 // or a VPT in case there was a VCMP right before it 1483 MIB = BuildMI(*Divergent->getParent(), Divergent, 1484 Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST)); 1485 MIB.addImm(0); 1486 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1487 } 1488 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front()); 1489 LoLoop.ToRemove.insert(Insts.front()); 1490 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1491 } 1492 } else if (Block.containsVCTP()) { 1493 // The vctp will be removed, so the block mask of the vp(s)t will need 1494 // to be recomputed. 1495 LoLoop.BlockMasksToRecompute.insert(Insts.front()); 1496 } 1497 } 1498 1499 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end()); 1500 } 1501 1502 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1503 1504 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1505 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1506 MachineInstr *End = LoLoop.End; 1507 MachineBasicBlock *MBB = End->getParent(); 1508 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1509 ARM::MVE_LETP : ARM::t2LEUpdate; 1510 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1511 TII->get(Opc)); 1512 MIB.addDef(ARM::LR); 1513 MIB.add(End->getOperand(0)); 1514 MIB.add(End->getOperand(1)); 1515 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1516 LoLoop.ToRemove.insert(LoLoop.Dec); 1517 LoLoop.ToRemove.insert(End); 1518 return &*MIB; 1519 }; 1520 1521 // TODO: We should be able to automatically remove these branches before we 1522 // get here - probably by teaching analyzeBranch about the pseudo 1523 // instructions. 1524 // If there is an unconditional branch, after I, that just branches to the 1525 // next block, remove it. 1526 auto RemoveDeadBranch = [](MachineInstr *I) { 1527 MachineBasicBlock *BB = I->getParent(); 1528 MachineInstr *Terminator = &BB->instr_back(); 1529 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1530 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1531 if (BB->isLayoutSuccessor(Succ)) { 1532 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1533 Terminator->eraseFromParent(); 1534 } 1535 } 1536 }; 1537 1538 if (LoLoop.Revert) { 1539 if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) 1540 RevertWhile(LoLoop.Start); 1541 else 1542 LoLoop.Start->eraseFromParent(); 1543 bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec); 1544 RevertLoopEnd(LoLoop.End, FlagsAlreadySet); 1545 } else { 1546 LoLoop.Start = ExpandLoopStart(LoLoop); 1547 RemoveDeadBranch(LoLoop.Start); 1548 LoLoop.End = ExpandLoopEnd(LoLoop); 1549 RemoveDeadBranch(LoLoop.End); 1550 if (LoLoop.IsTailPredicationLegal()) 1551 ConvertVPTBlocks(LoLoop); 1552 for (auto *I : LoLoop.ToRemove) { 1553 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1554 I->eraseFromParent(); 1555 } 1556 for (auto *I : LoLoop.BlockMasksToRecompute) { 1557 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1558 recomputeVPTBlockMask(*I); 1559 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1560 } 1561 } 1562 1563 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1564 DFS.ProcessLoop(); 1565 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1566 for (auto *MBB : PostOrder) { 1567 recomputeLiveIns(*MBB); 1568 // FIXME: For some reason, the live-in print order is non-deterministic for 1569 // our tests and I can't out why... So just sort them. 1570 MBB->sortUniqueLiveIns(); 1571 } 1572 1573 for (auto *MBB : reverse(PostOrder)) 1574 recomputeLivenessFlags(*MBB); 1575 1576 // We've moved, removed and inserted new instructions, so update RDA. 1577 RDA->reset(); 1578 } 1579 1580 bool ARMLowOverheadLoops::RevertNonLoops() { 1581 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1582 bool Changed = false; 1583 1584 for (auto &MBB : *MF) { 1585 SmallVector<MachineInstr*, 4> Starts; 1586 SmallVector<MachineInstr*, 4> Decs; 1587 SmallVector<MachineInstr*, 4> Ends; 1588 1589 for (auto &I : MBB) { 1590 if (isLoopStart(I)) 1591 Starts.push_back(&I); 1592 else if (I.getOpcode() == ARM::t2LoopDec) 1593 Decs.push_back(&I); 1594 else if (I.getOpcode() == ARM::t2LoopEnd) 1595 Ends.push_back(&I); 1596 } 1597 1598 if (Starts.empty() && Decs.empty() && Ends.empty()) 1599 continue; 1600 1601 Changed = true; 1602 1603 for (auto *Start : Starts) { 1604 if (Start->getOpcode() == ARM::t2WhileLoopStart) 1605 RevertWhile(Start); 1606 else 1607 Start->eraseFromParent(); 1608 } 1609 for (auto *Dec : Decs) 1610 RevertLoopDec(Dec); 1611 1612 for (auto *End : Ends) 1613 RevertLoopEnd(End); 1614 } 1615 return Changed; 1616 } 1617 1618 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1619 return new ARMLowOverheadLoops(); 1620 } 1621