xref: /llvm-project/llvm/lib/Target/ARM/ARMLowOverheadLoops.cpp (revision dfa2c14b8fe8166ff9ff951b8b70a2004401d0db)
1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo
10 /// instructions into machine operations.
11 /// The expectation is that the loop contains three pseudo instructions:
12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
13 ///   form should be in the preheader, whereas the while form should be in the
14 ///   preheaders only predecessor.
15 /// - t2LoopDec - placed within in the loop body.
16 /// - t2LoopEnd - the loop latch terminator.
17 ///
18 /// In addition to this, we also look for the presence of the VCTP instruction,
19 /// which determines whether we can generated the tail-predicated low-overhead
20 /// loop form.
21 ///
22 /// Assumptions and Dependencies:
23 /// Low-overhead loops are constructed and executed using a setup instruction:
24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
26 /// but fixed polarity: WLS can only branch forwards and LE can only branch
27 /// backwards. These restrictions mean that this pass is dependent upon block
28 /// layout and block sizes, which is why it's the last pass to run. The same is
29 /// true for ConstantIslands, but this pass does not increase the size of the
30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed
31 /// during the transform and pseudo instructions are replaced by real ones. In
32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce
33 /// multiple instructions for a single pseudo (see RevertWhile and
34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd
35 /// are defined to be as large as this maximum sequence of replacement
36 /// instructions.
37 ///
38 /// A note on VPR.P0 (the lane mask):
39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a
40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks).
41 /// They will simply "and" the result of their calculation with the current
42 /// value of VPR.P0. You can think of it like this:
43 /// \verbatim
44 /// if VPT active:    ; Between a DLSTP/LETP, or for predicated instrs
45 ///   VPR.P0 &= Value
46 /// else
47 ///   VPR.P0 = Value
48 /// \endverbatim
49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always
50 /// fall in the "VPT active" case, so we can consider that all VPR writes by
51 /// one of those instruction is actually a "and".
52 //===----------------------------------------------------------------------===//
53 
54 #include "ARM.h"
55 #include "ARMBaseInstrInfo.h"
56 #include "ARMBaseRegisterInfo.h"
57 #include "ARMBasicBlockInfo.h"
58 #include "ARMSubtarget.h"
59 #include "Thumb2InstrInfo.h"
60 #include "llvm/ADT/SetOperations.h"
61 #include "llvm/ADT/SmallSet.h"
62 #include "llvm/CodeGen/LivePhysRegs.h"
63 #include "llvm/CodeGen/MachineFunctionPass.h"
64 #include "llvm/CodeGen/MachineLoopInfo.h"
65 #include "llvm/CodeGen/MachineLoopUtils.h"
66 #include "llvm/CodeGen/MachineRegisterInfo.h"
67 #include "llvm/CodeGen/Passes.h"
68 #include "llvm/CodeGen/ReachingDefAnalysis.h"
69 #include "llvm/MC/MCInstrDesc.h"
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "arm-low-overhead-loops"
74 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"
75 
76 static cl::opt<bool>
77 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden,
78     cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"),
79     cl::init(false));
80 
81 static bool isVectorPredicated(MachineInstr *MI) {
82   int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
83   return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR;
84 }
85 
86 static bool isVectorPredicate(MachineInstr *MI) {
87   return MI->findRegisterDefOperandIdx(ARM::VPR) != -1;
88 }
89 
90 static bool hasVPRUse(MachineInstr *MI) {
91   return MI->findRegisterUseOperandIdx(ARM::VPR) != -1;
92 }
93 
94 static bool isDomainMVE(MachineInstr *MI) {
95   uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
96   return Domain == ARMII::DomainMVE;
97 }
98 
99 static bool shouldInspect(MachineInstr &MI) {
100   return isDomainMVE(&MI) || isVectorPredicate(&MI) ||
101     hasVPRUse(&MI);
102 }
103 
104 namespace {
105 
106   using InstSet = SmallPtrSetImpl<MachineInstr *>;
107 
108   class PostOrderLoopTraversal {
109     MachineLoop &ML;
110     MachineLoopInfo &MLI;
111     SmallPtrSet<MachineBasicBlock*, 4> Visited;
112     SmallVector<MachineBasicBlock*, 4> Order;
113 
114   public:
115     PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI)
116       : ML(ML), MLI(MLI) { }
117 
118     const SmallVectorImpl<MachineBasicBlock*> &getOrder() const {
119       return Order;
120     }
121 
122     // Visit all the blocks within the loop, as well as exit blocks and any
123     // blocks properly dominating the header.
124     void ProcessLoop() {
125       std::function<void(MachineBasicBlock*)> Search = [this, &Search]
126         (MachineBasicBlock *MBB) -> void {
127         if (Visited.count(MBB))
128           return;
129 
130         Visited.insert(MBB);
131         for (auto *Succ : MBB->successors()) {
132           if (!ML.contains(Succ))
133             continue;
134           Search(Succ);
135         }
136         Order.push_back(MBB);
137       };
138 
139       // Insert exit blocks.
140       SmallVector<MachineBasicBlock*, 2> ExitBlocks;
141       ML.getExitBlocks(ExitBlocks);
142       for (auto *MBB : ExitBlocks)
143         Order.push_back(MBB);
144 
145       // Then add the loop body.
146       Search(ML.getHeader());
147 
148       // Then try the preheader and its predecessors.
149       std::function<void(MachineBasicBlock*)> GetPredecessor =
150         [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void {
151         Order.push_back(MBB);
152         if (MBB->pred_size() == 1)
153           GetPredecessor(*MBB->pred_begin());
154       };
155 
156       if (auto *Preheader = ML.getLoopPreheader())
157         GetPredecessor(Preheader);
158       else if (auto *Preheader = MLI.findLoopPreheader(&ML, true))
159         GetPredecessor(Preheader);
160     }
161   };
162 
163   struct PredicatedMI {
164     MachineInstr *MI = nullptr;
165     SetVector<MachineInstr*> Predicates;
166 
167   public:
168     PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) {
169       assert(I && "Instruction must not be null!");
170       Predicates.insert(Preds.begin(), Preds.end());
171     }
172   };
173 
174   // Represent the current state of the VPR and hold all instances which
175   // represent a VPT block, which is a list of instructions that begins with a
176   // VPT/VPST and has a maximum of four proceeding instructions. All
177   // instructions within the block are predicated upon the vpr and we allow
178   // instructions to define the vpr within in the block too.
179   class VPTState {
180     friend struct LowOverheadLoop;
181 
182     SmallVector<MachineInstr *, 4> Insts;
183 
184     static SmallVector<VPTState, 4> Blocks;
185     static SetVector<MachineInstr *> CurrentPredicates;
186     static std::map<MachineInstr *,
187       std::unique_ptr<PredicatedMI>> PredicatedInsts;
188 
189     static void CreateVPTBlock(MachineInstr *MI) {
190       assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR))
191              && "Can't begin VPT without predicate");
192       Blocks.emplace_back(MI);
193       // The execution of MI is predicated upon the current set of instructions
194       // that are AND'ed together to form the VPR predicate value. In the case
195       // that MI is a VPT, CurrentPredicates will also just be MI.
196       PredicatedInsts.emplace(
197         MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
198     }
199 
200     static void reset() {
201       Blocks.clear();
202       PredicatedInsts.clear();
203       CurrentPredicates.clear();
204     }
205 
206     static void addInst(MachineInstr *MI) {
207       Blocks.back().insert(MI);
208       PredicatedInsts.emplace(
209         MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
210     }
211 
212     static void addPredicate(MachineInstr *MI) {
213       LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI);
214       CurrentPredicates.insert(MI);
215     }
216 
217     static void resetPredicate(MachineInstr *MI) {
218       LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI);
219       CurrentPredicates.clear();
220       CurrentPredicates.insert(MI);
221     }
222 
223   public:
224     // Have we found an instruction within the block which defines the vpr? If
225     // so, not all the instructions in the block will have the same predicate.
226     static bool hasUniformPredicate(VPTState &Block) {
227       return getDivergent(Block) == nullptr;
228     }
229 
230     // If it exists, return the first internal instruction which modifies the
231     // VPR.
232     static MachineInstr *getDivergent(VPTState &Block) {
233       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
234       for (unsigned i = 1; i < Insts.size(); ++i) {
235         MachineInstr *Next = Insts[i];
236         if (isVectorPredicate(Next))
237           return Next; // Found an instruction altering the vpr.
238       }
239       return nullptr;
240     }
241 
242     // Return whether the given instruction is predicated upon a VCTP.
243     static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) {
244       SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates;
245       if (Exclusive && Predicates.size() != 1)
246         return false;
247       for (auto *PredMI : Predicates)
248         if (isVCTP(PredMI))
249           return true;
250       return false;
251     }
252 
253     // Is the VPST, controlling the block entry, predicated upon a VCTP.
254     static bool isEntryPredicatedOnVCTP(VPTState &Block,
255                                         bool Exclusive = false) {
256       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
257       return isPredicatedOnVCTP(Insts.front(), Exclusive);
258     }
259 
260     // If this block begins with a VPT, we can check whether it's using
261     // at least one predicated input(s), as well as possible loop invariant
262     // which would result in it being implicitly predicated.
263     static bool hasImplicitlyValidVPT(VPTState &Block,
264                                       ReachingDefAnalysis &RDA) {
265       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
266       MachineInstr *VPT = Insts.front();
267       assert(isVPTOpcode(VPT->getOpcode()) &&
268              "Expected VPT block to begin with VPT/VPST");
269 
270       if (VPT->getOpcode() == ARM::MVE_VPST)
271         return false;
272 
273       auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) {
274         MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx));
275         return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op);
276       };
277 
278       auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) {
279         MachineOperand &MO = MI->getOperand(Idx);
280         if (!MO.isReg() || !MO.getReg())
281           return true;
282 
283         SmallPtrSet<MachineInstr *, 2> Defs;
284         RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs);
285         if (Defs.empty())
286           return true;
287 
288         for (auto *Def : Defs)
289           if (Def->getParent() == VPT->getParent())
290             return false;
291         return true;
292       };
293 
294       // Check that at least one of the operands is directly predicated on a
295       // vctp and allow an invariant value too.
296       return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) &&
297              (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) &&
298              (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2));
299     }
300 
301     static bool isValid(ReachingDefAnalysis &RDA) {
302       // All predication within the loop should be based on vctp. If the block
303       // isn't predicated on entry, check whether the vctp is within the block
304       // and that all other instructions are then predicated on it.
305       for (auto &Block : Blocks) {
306         if (isEntryPredicatedOnVCTP(Block, false) ||
307             hasImplicitlyValidVPT(Block, RDA))
308           continue;
309 
310         SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
311         for (auto *MI : Insts) {
312           // Check that any internal VCTPs are 'Then' predicated.
313           if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then)
314             return false;
315           // Skip other instructions that build up the predicate.
316           if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI))
317             continue;
318           // Check that any other instructions are predicated upon a vctp.
319           // TODO: We could infer when VPTs are implicitly predicated on the
320           // vctp (when the operands are predicated).
321           if (!isPredicatedOnVCTP(MI)) {
322             LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI);
323             return false;
324           }
325         }
326       }
327       return true;
328     }
329 
330     VPTState(MachineInstr *MI) { Insts.push_back(MI); }
331 
332     void insert(MachineInstr *MI) {
333       Insts.push_back(MI);
334       // VPT/VPST + 4 predicated instructions.
335       assert(Insts.size() <= 5 && "Too many instructions in VPT block!");
336     }
337 
338     bool containsVCTP() const {
339       for (auto *MI : Insts)
340         if (isVCTP(MI))
341           return true;
342       return false;
343     }
344 
345     unsigned size() const { return Insts.size(); }
346     SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; }
347   };
348 
349   struct LowOverheadLoop {
350 
351     MachineLoop &ML;
352     MachineBasicBlock *Preheader = nullptr;
353     MachineLoopInfo &MLI;
354     ReachingDefAnalysis &RDA;
355     const TargetRegisterInfo &TRI;
356     const ARMBaseInstrInfo &TII;
357     MachineFunction *MF = nullptr;
358     MachineBasicBlock::iterator StartInsertPt;
359     MachineBasicBlock *StartInsertBB = nullptr;
360     MachineInstr *Start = nullptr;
361     MachineInstr *Dec = nullptr;
362     MachineInstr *End = nullptr;
363     MachineOperand TPNumElements;
364     SmallVector<MachineInstr*, 4> VCTPs;
365     SmallPtrSet<MachineInstr*, 4> ToRemove;
366     SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute;
367     bool Revert = false;
368     bool CannotTailPredicate = false;
369 
370     LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI,
371                     ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI,
372                     const ARMBaseInstrInfo &TII)
373         : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII),
374           TPNumElements(MachineOperand::CreateImm(0)) {
375       MF = ML.getHeader()->getParent();
376       if (auto *MBB = ML.getLoopPreheader())
377         Preheader = MBB;
378       else if (auto *MBB = MLI.findLoopPreheader(&ML, true))
379         Preheader = MBB;
380       VPTState::reset();
381     }
382 
383     // If this is an MVE instruction, check that we know how to use tail
384     // predication with it. Record VPT blocks and return whether the
385     // instruction is valid for tail predication.
386     bool ValidateMVEInst(MachineInstr *MI);
387 
388     void AnalyseMVEInst(MachineInstr *MI) {
389       CannotTailPredicate = !ValidateMVEInst(MI);
390     }
391 
392     bool IsTailPredicationLegal() const {
393       // For now, let's keep things really simple and only support a single
394       // block for tail predication.
395       return !Revert && FoundAllComponents() && !VCTPs.empty() &&
396              !CannotTailPredicate && ML.getNumBlocks() == 1;
397     }
398 
399     // Given that MI is a VCTP, check that is equivalent to any other VCTPs
400     // found.
401     bool AddVCTP(MachineInstr *MI);
402 
403     // Check that the predication in the loop will be equivalent once we
404     // perform the conversion. Also ensure that we can provide the number
405     // of elements to the loop start instruction.
406     bool ValidateTailPredicate();
407 
408     // Check that any values available outside of the loop will be the same
409     // after tail predication conversion.
410     bool ValidateLiveOuts();
411 
412     // Is it safe to define LR with DLS/WLS?
413     // LR can be defined if it is the operand to start, because it's the same
414     // value, or if it's going to be equivalent to the operand to Start.
415     MachineInstr *isSafeToDefineLR();
416 
417     // Check the branch targets are within range and we satisfy our
418     // restrictions.
419     void Validate(ARMBasicBlockUtils *BBUtils);
420 
421     bool FoundAllComponents() const {
422       return Start && Dec && End;
423     }
424 
425     SmallVectorImpl<VPTState> &getVPTBlocks() {
426       return VPTState::Blocks;
427     }
428 
429     // Return the operand for the loop start instruction. This will be the loop
430     // iteration count, or the number of elements if we're tail predicating.
431     MachineOperand &getLoopStartOperand() {
432       return IsTailPredicationLegal() ? TPNumElements : Start->getOperand(0);
433     }
434 
435     unsigned getStartOpcode() const {
436       bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
437       if (!IsTailPredicationLegal())
438         return IsDo ? ARM::t2DLS : ARM::t2WLS;
439 
440       return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo);
441     }
442 
443     void dump() const {
444       if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start;
445       if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec;
446       if (End) dbgs() << "ARM Loops: Found Loop End: " << *End;
447       if (!VCTPs.empty()) {
448         dbgs() << "ARM Loops: Found VCTP(s):\n";
449         for (auto *MI : VCTPs)
450           dbgs() << " - " << *MI;
451       }
452       if (!FoundAllComponents())
453         dbgs() << "ARM Loops: Not a low-overhead loop.\n";
454       else if (!(Start && Dec && End))
455         dbgs() << "ARM Loops: Failed to find all loop components.\n";
456     }
457   };
458 
459   class ARMLowOverheadLoops : public MachineFunctionPass {
460     MachineFunction           *MF = nullptr;
461     MachineLoopInfo           *MLI = nullptr;
462     ReachingDefAnalysis       *RDA = nullptr;
463     const ARMBaseInstrInfo    *TII = nullptr;
464     MachineRegisterInfo       *MRI = nullptr;
465     const TargetRegisterInfo  *TRI = nullptr;
466     std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
467 
468   public:
469     static char ID;
470 
471     ARMLowOverheadLoops() : MachineFunctionPass(ID) { }
472 
473     void getAnalysisUsage(AnalysisUsage &AU) const override {
474       AU.setPreservesCFG();
475       AU.addRequired<MachineLoopInfo>();
476       AU.addRequired<ReachingDefAnalysis>();
477       MachineFunctionPass::getAnalysisUsage(AU);
478     }
479 
480     bool runOnMachineFunction(MachineFunction &MF) override;
481 
482     MachineFunctionProperties getRequiredProperties() const override {
483       return MachineFunctionProperties().set(
484           MachineFunctionProperties::Property::NoVRegs).set(
485           MachineFunctionProperties::Property::TracksLiveness);
486     }
487 
488     StringRef getPassName() const override {
489       return ARM_LOW_OVERHEAD_LOOPS_NAME;
490     }
491 
492   private:
493     bool ProcessLoop(MachineLoop *ML);
494 
495     bool RevertNonLoops();
496 
497     void RevertWhile(MachineInstr *MI) const;
498 
499     bool RevertLoopDec(MachineInstr *MI) const;
500 
501     void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const;
502 
503     void ConvertVPTBlocks(LowOverheadLoop &LoLoop);
504 
505     MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop);
506 
507     void Expand(LowOverheadLoop &LoLoop);
508 
509     void IterationCountDCE(LowOverheadLoop &LoLoop);
510   };
511 }
512 
513 char ARMLowOverheadLoops::ID = 0;
514 
515 SmallVector<VPTState, 4> VPTState::Blocks;
516 SetVector<MachineInstr *> VPTState::CurrentPredicates;
517 std::map<MachineInstr *,
518          std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts;
519 
520 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME,
521                 false, false)
522 
523 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA,
524                       InstSet &ToRemove, InstSet &Ignore) {
525 
526   // Check that we can remove all of Killed without having to modify any IT
527   // blocks.
528   auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) {
529     // Collect the dead code and the MBBs in which they reside.
530     SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks;
531     for (auto *Dead : Killed)
532       BasicBlocks.insert(Dead->getParent());
533 
534     // Collect IT blocks in all affected basic blocks.
535     std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks;
536     for (auto *MBB : BasicBlocks) {
537       for (auto &IT : *MBB) {
538         if (IT.getOpcode() != ARM::t2IT)
539           continue;
540         RDA.getReachingLocalUses(&IT, ARM::ITSTATE, ITBlocks[&IT]);
541       }
542     }
543 
544     // If we're removing all of the instructions within an IT block, then
545     // also remove the IT instruction.
546     SmallPtrSet<MachineInstr *, 2> ModifiedITs;
547     SmallPtrSet<MachineInstr *, 2> RemoveITs;
548     for (auto *Dead : Killed) {
549       if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) {
550         MachineInstr *IT = RDA.getMIOperand(Dead, *MO);
551         RemoveITs.insert(IT);
552         auto &CurrentBlock = ITBlocks[IT];
553         CurrentBlock.erase(Dead);
554         if (CurrentBlock.empty())
555           ModifiedITs.erase(IT);
556         else
557           ModifiedITs.insert(IT);
558       }
559     }
560     if (!ModifiedITs.empty())
561       return false;
562     Killed.insert(RemoveITs.begin(), RemoveITs.end());
563     return true;
564   };
565 
566   SmallPtrSet<MachineInstr *, 2> Uses;
567   if (!RDA.isSafeToRemove(MI, Uses, Ignore))
568     return false;
569 
570   if (WontCorruptITs(Uses, RDA)) {
571     ToRemove.insert(Uses.begin(), Uses.end());
572     LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI
573                << " - can also remove:\n";
574                for (auto *Use : Uses)
575                  dbgs() << "   - " << *Use);
576 
577     SmallPtrSet<MachineInstr*, 4> Killed;
578     RDA.collectKilledOperands(MI, Killed);
579     if (WontCorruptITs(Killed, RDA)) {
580       ToRemove.insert(Killed.begin(), Killed.end());
581       LLVM_DEBUG(for (auto *Dead : Killed)
582                    dbgs() << "   - " << *Dead);
583     }
584     return true;
585   }
586   return false;
587 }
588 
589 bool LowOverheadLoop::ValidateTailPredicate() {
590   if (!IsTailPredicationLegal()) {
591     LLVM_DEBUG(if (VCTPs.empty())
592                  dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
593                dbgs() << "ARM Loops: Tail-predication is not valid.\n");
594     return false;
595   }
596 
597   assert(!VCTPs.empty() && "VCTP instruction expected but is not set");
598   assert(ML.getBlocks().size() == 1 &&
599          "Shouldn't be processing a loop with more than one block");
600 
601   if (DisableTailPredication) {
602     LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n");
603     return false;
604   }
605 
606   if (!VPTState::isValid(RDA))
607     return false;
608 
609   if (!ValidateLiveOuts()) {
610     LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n");
611     return false;
612   }
613 
614   // For tail predication, we need to provide the number of elements, instead
615   // of the iteration count, to the loop start instruction. The number of
616   // elements is provided to the vctp instruction, so we need to check that
617   // we can use this register at InsertPt.
618   MachineInstr *VCTP = VCTPs.back();
619   TPNumElements = VCTP->getOperand(1);
620   Register NumElements = TPNumElements.getReg();
621 
622   // If the register is defined within loop, then we can't perform TP.
623   // TODO: Check whether this is just a mov of a register that would be
624   // available.
625   if (RDA.hasLocalDefBefore(VCTP, NumElements)) {
626     LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
627     return false;
628   }
629 
630   // The element count register maybe defined after InsertPt, in which case we
631   // need to try to move either InsertPt or the def so that the [w|d]lstp can
632   // use the value.
633 
634   if (StartInsertPt != StartInsertBB->end() &&
635       !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) {
636     if (auto *ElemDef = RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) {
637       if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) {
638         ElemDef->removeFromParent();
639         StartInsertBB->insert(StartInsertPt, ElemDef);
640         LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: "
641                    << *ElemDef);
642       } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) {
643         StartInsertPt->removeFromParent();
644         StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef),
645                                    &*StartInsertPt);
646         LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef);
647       } else {
648         // If we fail to move an instruction and the element count is provided
649         // by a mov, use the mov operand if it will have the same value at the
650         // insertion point
651         MachineOperand Operand = ElemDef->getOperand(1);
652         if (isMovRegOpcode(ElemDef->getOpcode()) &&
653             RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg()) ==
654                RDA.getUniqueReachingMIDef(&*StartInsertPt, Operand.getReg())) {
655           TPNumElements = Operand;
656           NumElements = TPNumElements.getReg();
657         } else {
658           LLVM_DEBUG(dbgs()
659                      << "ARM Loops: Unable to move element count to loop "
660                      << "start instruction.\n");
661           return false;
662         }
663       }
664     }
665   }
666 
667   // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect
668   // world the [w|d]lstp instruction would be last instruction in the preheader
669   // and so it would only affect instructions within the loop body. But due to
670   // scheduling, and/or the logic in this pass (above), the insertion point can
671   // be moved earlier. So if the Loop Start isn't the last instruction in the
672   // preheader, and if the initial element count is smaller than the vector
673   // width, the Loop Start instruction will immediately generate one or more
674   // false lane mask which can, incorrectly, affect the proceeding MVE
675   // instructions in the preheader.
676   auto CannotInsertWDLSTPBetween = [](MachineBasicBlock::iterator I,
677                                       MachineBasicBlock::iterator E) {
678     for (; I != E; ++I)
679       if (shouldInspect(*I))
680         return true;
681     return false;
682   };
683 
684   if (CannotInsertWDLSTPBetween(StartInsertPt, StartInsertBB->end()))
685     return false;
686 
687   // Especially in the case of while loops, InsertBB may not be the
688   // preheader, so we need to check that the register isn't redefined
689   // before entering the loop.
690   auto CannotProvideElements = [this](MachineBasicBlock *MBB,
691                                       Register NumElements) {
692     // NumElements is redefined in this block.
693     if (RDA.hasLocalDefBefore(&MBB->back(), NumElements))
694       return true;
695 
696     // Don't continue searching up through multiple predecessors.
697     if (MBB->pred_size() > 1)
698       return true;
699 
700     return false;
701   };
702 
703   // Search backwards for a def, until we get to InsertBB.
704   MachineBasicBlock *MBB = Preheader;
705   while (MBB && MBB != StartInsertBB) {
706     if (CannotProvideElements(MBB, NumElements)) {
707       LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
708       return false;
709     }
710     MBB = *MBB->pred_begin();
711   }
712 
713   // Check that the value change of the element count is what we expect and
714   // that the predication will be equivalent. For this we need:
715   // NumElements = NumElements - VectorWidth. The sub will be a sub immediate
716   // and we can also allow register copies within the chain too.
717   auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) {
718     return -getAddSubImmediate(*MI) == ExpectedVecWidth;
719   };
720 
721   MBB = VCTP->getParent();
722   // Remove modifications to the element count since they have no purpose in a
723   // tail predicated loop. Explicitly refer to the vctp operand no matter which
724   // register NumElements has been assigned to, since that is what the
725   // modifications will be using
726   if (auto *Def = RDA.getUniqueReachingMIDef(&MBB->back(),
727                                              VCTP->getOperand(1).getReg())) {
728     SmallPtrSet<MachineInstr*, 2> ElementChain;
729     SmallPtrSet<MachineInstr*, 2> Ignore;
730     unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode());
731 
732     Ignore.insert(VCTPs.begin(), VCTPs.end());
733 
734     if (TryRemove(Def, RDA, ElementChain, Ignore)) {
735       bool FoundSub = false;
736 
737       for (auto *MI : ElementChain) {
738         if (isMovRegOpcode(MI->getOpcode()))
739           continue;
740 
741         if (isSubImmOpcode(MI->getOpcode())) {
742           if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth))
743             return false;
744           FoundSub = true;
745         } else
746           return false;
747       }
748       ToRemove.insert(ElementChain.begin(), ElementChain.end());
749     }
750   }
751   return true;
752 }
753 
754 static bool isRegInClass(const MachineOperand &MO,
755                          const TargetRegisterClass *Class) {
756   return MO.isReg() && MO.getReg() && Class->contains(MO.getReg());
757 }
758 
759 // MVE 'narrowing' operate on half a lane, reading from half and writing
760 // to half, which are referred to has the top and bottom half. The other
761 // half retains its previous value.
762 static bool retainsPreviousHalfElement(const MachineInstr &MI) {
763   const MCInstrDesc &MCID = MI.getDesc();
764   uint64_t Flags = MCID.TSFlags;
765   return (Flags & ARMII::RetainsPreviousHalfElement) != 0;
766 }
767 
768 // Some MVE instructions read from the top/bottom halves of their operand(s)
769 // and generate a vector result with result elements that are double the
770 // width of the input.
771 static bool producesDoubleWidthResult(const MachineInstr &MI) {
772   const MCInstrDesc &MCID = MI.getDesc();
773   uint64_t Flags = MCID.TSFlags;
774   return (Flags & ARMII::DoubleWidthResult) != 0;
775 }
776 
777 static bool isHorizontalReduction(const MachineInstr &MI) {
778   const MCInstrDesc &MCID = MI.getDesc();
779   uint64_t Flags = MCID.TSFlags;
780   return (Flags & ARMII::HorizontalReduction) != 0;
781 }
782 
783 // Can this instruction generate a non-zero result when given only zeroed
784 // operands? This allows us to know that, given operands with false bytes
785 // zeroed by masked loads, that the result will also contain zeros in those
786 // bytes.
787 static bool canGenerateNonZeros(const MachineInstr &MI) {
788 
789   // Check for instructions which can write into a larger element size,
790   // possibly writing into a previous zero'd lane.
791   if (producesDoubleWidthResult(MI))
792     return true;
793 
794   switch (MI.getOpcode()) {
795   default:
796     break;
797   // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow
798   // fp16 -> fp32 vector conversions.
799   // Instructions that perform a NOT will generate 1s from 0s.
800   case ARM::MVE_VMVN:
801   case ARM::MVE_VORN:
802   // Count leading zeros will do just that!
803   case ARM::MVE_VCLZs8:
804   case ARM::MVE_VCLZs16:
805   case ARM::MVE_VCLZs32:
806     return true;
807   }
808   return false;
809 }
810 
811 // Look at its register uses to see if it only can only receive zeros
812 // into its false lanes which would then produce zeros. Also check that
813 // the output register is also defined by an FalseLanesZero instruction
814 // so that if tail-predication happens, the lanes that aren't updated will
815 // still be zeros.
816 static bool producesFalseLanesZero(MachineInstr &MI,
817                                    const TargetRegisterClass *QPRs,
818                                    const ReachingDefAnalysis &RDA,
819                                    InstSet &FalseLanesZero) {
820   if (canGenerateNonZeros(MI))
821     return false;
822 
823   bool isPredicated = isVectorPredicated(&MI);
824   // Predicated loads will write zeros to the falsely predicated bytes of the
825   // destination register.
826   if (MI.mayLoad())
827     return isPredicated;
828 
829   auto IsZeroInit = [](MachineInstr *Def) {
830     return !isVectorPredicated(Def) &&
831            Def->getOpcode() == ARM::MVE_VMOVimmi32 &&
832            Def->getOperand(1).getImm() == 0;
833   };
834 
835   bool AllowScalars = isHorizontalReduction(MI);
836   for (auto &MO : MI.operands()) {
837     if (!MO.isReg() || !MO.getReg())
838       continue;
839     if (!isRegInClass(MO, QPRs) && AllowScalars)
840       continue;
841 
842     // Check that this instruction will produce zeros in its false lanes:
843     // - If it only consumes false lanes zero or constant 0 (vmov #0)
844     // - If it's predicated, it only matters that it's def register already has
845     //   false lane zeros, so we can ignore the uses.
846     SmallPtrSet<MachineInstr *, 2> Defs;
847     RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs);
848     for (auto *Def : Defs) {
849       if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def))
850         continue;
851       if (MO.isUse() && isPredicated)
852         continue;
853       return false;
854     }
855   }
856   LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI);
857   return true;
858 }
859 
860 bool LowOverheadLoop::ValidateLiveOuts() {
861   // We want to find out if the tail-predicated version of this loop will
862   // produce the same values as the loop in its original form. For this to
863   // be true, the newly inserted implicit predication must not change the
864   // the (observable) results.
865   // We're doing this because many instructions in the loop will not be
866   // predicated and so the conversion from VPT predication to tail-predication
867   // can result in different values being produced; due to the tail-predication
868   // preventing many instructions from updating their falsely predicated
869   // lanes. This analysis assumes that all the instructions perform lane-wise
870   // operations and don't perform any exchanges.
871   // A masked load, whether through VPT or tail predication, will write zeros
872   // to any of the falsely predicated bytes. So, from the loads, we know that
873   // the false lanes are zeroed and here we're trying to track that those false
874   // lanes remain zero, or where they change, the differences are masked away
875   // by their user(s).
876   // All MVE stores have to be predicated, so we know that any predicate load
877   // operands, or stored results are equivalent already. Other explicitly
878   // predicated instructions will perform the same operation in the original
879   // loop and the tail-predicated form too. Because of this, we can insert
880   // loads, stores and other predicated instructions into our Predicated
881   // set and build from there.
882   const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID);
883   SetVector<MachineInstr *> FalseLanesUnknown;
884   SmallPtrSet<MachineInstr *, 4> FalseLanesZero;
885   SmallPtrSet<MachineInstr *, 4> Predicated;
886   MachineBasicBlock *Header = ML.getHeader();
887 
888   for (auto &MI : *Header) {
889     if (!shouldInspect(MI))
890       continue;
891 
892     if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode()))
893       continue;
894 
895     bool isPredicated = isVectorPredicated(&MI);
896     bool retainsOrReduces =
897       retainsPreviousHalfElement(MI) || isHorizontalReduction(MI);
898 
899     if (isPredicated)
900       Predicated.insert(&MI);
901     if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero))
902       FalseLanesZero.insert(&MI);
903     else if (MI.getNumDefs() == 0)
904       continue;
905     else if (!isPredicated && retainsOrReduces)
906       return false;
907     else if (!isPredicated)
908       FalseLanesUnknown.insert(&MI);
909   }
910 
911   auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO,
912                               SmallPtrSetImpl<MachineInstr *> &Predicated) {
913     SmallPtrSet<MachineInstr *, 2> Uses;
914     RDA.getGlobalUses(MI, MO.getReg(), Uses);
915     for (auto *Use : Uses) {
916       if (Use != MI && !Predicated.count(Use))
917         return false;
918     }
919     return true;
920   };
921 
922   // Visit the unknowns in reverse so that we can start at the values being
923   // stored and then we can work towards the leaves, hopefully adding more
924   // instructions to Predicated. Successfully terminating the loop means that
925   // all the unknown values have to found to be masked by predicated user(s).
926   // For any unpredicated values, we store them in NonPredicated so that we
927   // can later check whether these form a reduction.
928   SmallPtrSet<MachineInstr*, 2> NonPredicated;
929   for (auto *MI : reverse(FalseLanesUnknown)) {
930     for (auto &MO : MI->operands()) {
931       if (!isRegInClass(MO, QPRs) || !MO.isDef())
932         continue;
933       if (!HasPredicatedUsers(MI, MO, Predicated)) {
934         LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : "
935                           << TRI.getRegAsmName(MO.getReg()) << " at " << *MI);
936         NonPredicated.insert(MI);
937         break;
938       }
939     }
940     // Any unknown false lanes have been masked away by the user(s).
941     if (!NonPredicated.contains(MI))
942       Predicated.insert(MI);
943   }
944 
945   SmallPtrSet<MachineInstr *, 2> LiveOutMIs;
946   SmallVector<MachineBasicBlock *, 2> ExitBlocks;
947   ML.getExitBlocks(ExitBlocks);
948   assert(ML.getNumBlocks() == 1 && "Expected single block loop!");
949   assert(ExitBlocks.size() == 1 && "Expected a single exit block");
950   MachineBasicBlock *ExitBB = ExitBlocks.front();
951   for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) {
952     // TODO: Instead of blocking predication, we could move the vctp to the exit
953     // block and calculate it's operand there in or the preheader.
954     if (RegMask.PhysReg == ARM::VPR)
955       return false;
956     // Check Q-regs that are live in the exit blocks. We don't collect scalars
957     // because they won't be affected by lane predication.
958     if (QPRs->contains(RegMask.PhysReg))
959       if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg))
960         LiveOutMIs.insert(MI);
961   }
962 
963   // We've already validated that any VPT predication within the loop will be
964   // equivalent when we perform the predication transformation; so we know that
965   // any VPT predicated instruction is predicated upon VCTP. Any live-out
966   // instruction needs to be predicated, so check this here. The instructions
967   // in NonPredicated have been found to be a reduction that we can ensure its
968   // legality.
969   for (auto *MI : LiveOutMIs) {
970     if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) {
971       LLVM_DEBUG(dbgs() << "ARM Loops: Unable to handle live out: " << *MI);
972       return false;
973     }
974   }
975 
976   return true;
977 }
978 
979 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) {
980   if (Revert)
981     return;
982 
983   // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP]
984   // can only jump back.
985   auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End,
986                            ARMBasicBlockUtils *BBUtils, MachineLoop &ML) {
987     if (!End->getOperand(1).isMBB())
988       report_fatal_error("Expected LoopEnd to target basic block");
989 
990     // TODO Maybe there's cases where the target doesn't have to be the header,
991     // but for now be safe and revert.
992     if (End->getOperand(1).getMBB() != ML.getHeader()) {
993       LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n");
994       return false;
995     }
996 
997     // The WLS and LE instructions have 12-bits for the label offset. WLS
998     // requires a positive offset, while LE uses negative.
999     if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) ||
1000         !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) {
1001       LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
1002       return false;
1003     }
1004 
1005     if (Start->getOpcode() == ARM::t2WhileLoopStart &&
1006         (BBUtils->getOffsetOf(Start) >
1007          BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) ||
1008          !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) {
1009       LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
1010       return false;
1011     }
1012     return true;
1013   };
1014 
1015   // Find a suitable position to insert the loop start instruction. It needs to
1016   // be able to safely define LR.
1017   auto FindStartInsertionPoint = [](MachineInstr *Start,
1018                                     MachineBasicBlock::iterator &InsertPt,
1019                                     MachineBasicBlock *&InsertBB,
1020                                     ReachingDefAnalysis &RDA) {
1021     // We can define LR because LR already contains the same value.
1022     if (Start->getOperand(0).getReg() == ARM::LR) {
1023       InsertPt = MachineBasicBlock::iterator(Start);
1024       InsertBB = Start->getParent();
1025       return true;
1026     }
1027 
1028     unsigned CountReg = Start->getOperand(0).getReg();
1029     auto IsMoveLR = [&CountReg](MachineInstr *MI) {
1030       return MI->getOpcode() == ARM::tMOVr &&
1031              MI->getOperand(0).getReg() == ARM::LR &&
1032              MI->getOperand(1).getReg() == CountReg &&
1033              MI->getOperand(2).getImm() == ARMCC::AL;
1034     };
1035 
1036     MachineBasicBlock *MBB = Start->getParent();
1037 
1038     // Find an insertion point:
1039     // - Is there a (mov lr, Count) before Start? If so, and nothing else
1040     //   writes to Count before Start, we can insert at that mov.
1041     if (auto *LRDef = RDA.getUniqueReachingMIDef(Start, ARM::LR)) {
1042       if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) {
1043         InsertPt = MachineBasicBlock::iterator(LRDef);
1044         InsertBB = LRDef->getParent();
1045         return true;
1046       }
1047     }
1048 
1049     // - Is there a (mov lr, Count) after Start? If so, and nothing else writes
1050     //   to Count after Start, we can insert at that mov.
1051     if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR)) {
1052       if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) {
1053         InsertPt = MachineBasicBlock::iterator(LRDef);
1054         InsertBB = LRDef->getParent();
1055         return true;
1056       }
1057     }
1058 
1059     // We've found no suitable LR def and Start doesn't use LR directly. Can we
1060     // just define LR anyway?
1061     if (!RDA.isSafeToDefRegAt(Start, ARM::LR))
1062       return false;
1063 
1064     InsertPt = MachineBasicBlock::iterator(Start);
1065     InsertBB = Start->getParent();
1066     return true;
1067   };
1068 
1069   if (!FindStartInsertionPoint(Start, StartInsertPt, StartInsertBB, RDA)) {
1070     LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n");
1071     Revert = true;
1072     return;
1073   }
1074   Revert = !ValidateRanges(Start, End, BBUtils, ML);
1075   CannotTailPredicate = !ValidateTailPredicate();
1076 }
1077 
1078 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) {
1079   LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI);
1080   if (VCTPs.empty()) {
1081     VCTPs.push_back(MI);
1082     return true;
1083   }
1084 
1085   // If we find another VCTP, check whether it uses the same value as the main VCTP.
1086   // If it does, store it in the VCTPs set, else refuse it.
1087   MachineInstr *Prev = VCTPs.back();
1088   if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) ||
1089       !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg())) {
1090     LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching "
1091                          "definition from the main VCTP");
1092     return false;
1093   }
1094   VCTPs.push_back(MI);
1095   return true;
1096 }
1097 
1098 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) {
1099   if (CannotTailPredicate)
1100     return false;
1101 
1102   if (!shouldInspect(*MI))
1103     return true;
1104 
1105   if (MI->getOpcode() == ARM::MVE_VPSEL ||
1106       MI->getOpcode() == ARM::MVE_VPNOT) {
1107     // TODO: Allow VPSEL and VPNOT, we currently cannot because:
1108     // 1) It will use the VPR as a predicate operand, but doesn't have to be
1109     //    instead a VPT block, which means we can assert while building up
1110     //    the VPT block because we don't find another VPT or VPST to being a new
1111     //    one.
1112     // 2) VPSEL still requires a VPR operand even after tail predicating,
1113     //    which means we can't remove it unless there is another
1114     //    instruction, such as vcmp, that can provide the VPR def.
1115     return false;
1116   }
1117 
1118   // Record all VCTPs and check that they're equivalent to one another.
1119   if (isVCTP(MI) && !AddVCTP(MI))
1120     return false;
1121 
1122   // Inspect uses first so that any instructions that alter the VPR don't
1123   // alter the predicate upon themselves.
1124   const MCInstrDesc &MCID = MI->getDesc();
1125   bool IsUse = false;
1126   unsigned LastOpIdx = MI->getNumOperands() - 1;
1127   for (auto &Op : enumerate(reverse(MCID.operands()))) {
1128     const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index());
1129     if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR)
1130       continue;
1131 
1132     if (ARM::isVpred(Op.value().OperandType)) {
1133       VPTState::addInst(MI);
1134       IsUse = true;
1135     } else if (MI->getOpcode() != ARM::MVE_VPST) {
1136       LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI);
1137       return false;
1138     }
1139   }
1140 
1141   // If we find an instruction that has been marked as not valid for tail
1142   // predication, only allow the instruction if it's contained within a valid
1143   // VPT block.
1144   bool RequiresExplicitPredication =
1145     (MCID.TSFlags & ARMII::ValidForTailPredication) == 0;
1146   if (isDomainMVE(MI) && RequiresExplicitPredication) {
1147     LLVM_DEBUG(if (!IsUse)
1148                dbgs() << "ARM Loops: Can't tail predicate: " << *MI);
1149     return IsUse;
1150   }
1151 
1152   // If the instruction is already explicitly predicated, then the conversion
1153   // will be fine, but ensure that all store operations are predicated.
1154   if (MI->mayStore())
1155     return IsUse;
1156 
1157   // If this instruction defines the VPR, update the predicate for the
1158   // proceeding instructions.
1159   if (isVectorPredicate(MI)) {
1160     // Clear the existing predicate when we're not in VPT Active state,
1161     // otherwise we add to it.
1162     if (!isVectorPredicated(MI))
1163       VPTState::resetPredicate(MI);
1164     else
1165       VPTState::addPredicate(MI);
1166   }
1167 
1168   // Finally once the predicate has been modified, we can start a new VPT
1169   // block if necessary.
1170   if (isVPTOpcode(MI->getOpcode()))
1171     VPTState::CreateVPTBlock(MI);
1172 
1173   return true;
1174 }
1175 
1176 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) {
1177   const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget());
1178   if (!ST.hasLOB())
1179     return false;
1180 
1181   MF = &mf;
1182   LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n");
1183 
1184   MLI = &getAnalysis<MachineLoopInfo>();
1185   RDA = &getAnalysis<ReachingDefAnalysis>();
1186   MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
1187   MRI = &MF->getRegInfo();
1188   TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo());
1189   TRI = ST.getRegisterInfo();
1190   BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF));
1191   BBUtils->computeAllBlockSizes();
1192   BBUtils->adjustBBOffsetsAfter(&MF->front());
1193 
1194   bool Changed = false;
1195   for (auto ML : *MLI) {
1196     if (ML->isOutermost())
1197       Changed |= ProcessLoop(ML);
1198   }
1199   Changed |= RevertNonLoops();
1200   return Changed;
1201 }
1202 
1203 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) {
1204 
1205   bool Changed = false;
1206 
1207   // Process inner loops first.
1208   for (auto I = ML->begin(), E = ML->end(); I != E; ++I)
1209     Changed |= ProcessLoop(*I);
1210 
1211   LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n";
1212              if (auto *Preheader = ML->getLoopPreheader())
1213                dbgs() << " - " << Preheader->getName() << "\n";
1214              else if (auto *Preheader = MLI->findLoopPreheader(ML))
1215                dbgs() << " - " << Preheader->getName() << "\n";
1216              else if (auto *Preheader = MLI->findLoopPreheader(ML, true))
1217                dbgs() << " - " << Preheader->getName() << "\n";
1218              for (auto *MBB : ML->getBlocks())
1219                dbgs() << " - " << MBB->getName() << "\n";
1220             );
1221 
1222   // Search the given block for a loop start instruction. If one isn't found,
1223   // and there's only one predecessor block, search that one too.
1224   std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart =
1225     [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* {
1226     for (auto &MI : *MBB) {
1227       if (isLoopStart(MI))
1228         return &MI;
1229     }
1230     if (MBB->pred_size() == 1)
1231       return SearchForStart(*MBB->pred_begin());
1232     return nullptr;
1233   };
1234 
1235   LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII);
1236   // Search the preheader for the start intrinsic.
1237   // FIXME: I don't see why we shouldn't be supporting multiple predecessors
1238   // with potentially multiple set.loop.iterations, so we need to enable this.
1239   if (LoLoop.Preheader)
1240     LoLoop.Start = SearchForStart(LoLoop.Preheader);
1241   else
1242     return false;
1243 
1244   // Find the low-overhead loop components and decide whether or not to fall
1245   // back to a normal loop. Also look for a vctp instructions and decide
1246   // whether we can convert that predicate using tail predication.
1247   for (auto *MBB : reverse(ML->getBlocks())) {
1248     for (auto &MI : *MBB) {
1249       if (MI.isDebugValue())
1250         continue;
1251       else if (MI.getOpcode() == ARM::t2LoopDec)
1252         LoLoop.Dec = &MI;
1253       else if (MI.getOpcode() == ARM::t2LoopEnd)
1254         LoLoop.End = &MI;
1255       else if (isLoopStart(MI))
1256         LoLoop.Start = &MI;
1257       else if (MI.getDesc().isCall()) {
1258         // TODO: Though the call will require LE to execute again, does this
1259         // mean we should revert? Always executing LE hopefully should be
1260         // faster than performing a sub,cmp,br or even subs,br.
1261         LoLoop.Revert = true;
1262         LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
1263       } else {
1264         // Record VPR defs and build up their corresponding vpt blocks.
1265         // Check we know how to tail predicate any mve instructions.
1266         LoLoop.AnalyseMVEInst(&MI);
1267       }
1268     }
1269   }
1270 
1271   LLVM_DEBUG(LoLoop.dump());
1272   if (!LoLoop.FoundAllComponents()) {
1273     LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
1274     return false;
1275   }
1276 
1277   // Check that the only instruction using LoopDec is LoopEnd.
1278   // TODO: Check for copy chains that really have no effect.
1279   SmallPtrSet<MachineInstr*, 2> Uses;
1280   RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses);
1281   if (Uses.size() > 1 || !Uses.count(LoLoop.End)) {
1282     LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n");
1283     LoLoop.Revert = true;
1284   }
1285   LoLoop.Validate(BBUtils.get());
1286   Expand(LoLoop);
1287   return true;
1288 }
1289 
1290 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
1291 // beq that branches to the exit branch.
1292 // TODO: We could also try to generate a cbz if the value in LR is also in
1293 // another low register.
1294 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const {
1295   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI);
1296   MachineBasicBlock *MBB = MI->getParent();
1297   MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
1298                                     TII->get(ARM::t2CMPri));
1299   MIB.add(MI->getOperand(0));
1300   MIB.addImm(0);
1301   MIB.addImm(ARMCC::AL);
1302   MIB.addReg(ARM::NoRegister);
1303 
1304   MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1305   unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1306     ARM::tBcc : ARM::t2Bcc;
1307 
1308   MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
1309   MIB.add(MI->getOperand(1));   // branch target
1310   MIB.addImm(ARMCC::EQ);        // condition code
1311   MIB.addReg(ARM::CPSR);
1312   MI->eraseFromParent();
1313 }
1314 
1315 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const {
1316   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI);
1317   MachineBasicBlock *MBB = MI->getParent();
1318   SmallPtrSet<MachineInstr*, 1> Ignore;
1319   for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) {
1320     if (I->getOpcode() == ARM::t2LoopEnd) {
1321       Ignore.insert(&*I);
1322       break;
1323     }
1324   }
1325 
1326   // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
1327   bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore);
1328 
1329   MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
1330                                     TII->get(ARM::t2SUBri));
1331   MIB.addDef(ARM::LR);
1332   MIB.add(MI->getOperand(1));
1333   MIB.add(MI->getOperand(2));
1334   MIB.addImm(ARMCC::AL);
1335   MIB.addReg(0);
1336 
1337   if (SetFlags) {
1338     MIB.addReg(ARM::CPSR);
1339     MIB->getOperand(5).setIsDef(true);
1340   } else
1341     MIB.addReg(0);
1342 
1343   MI->eraseFromParent();
1344   return SetFlags;
1345 }
1346 
1347 // Generate a subs, or sub and cmp, and a branch instead of an LE.
1348 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const {
1349   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI);
1350 
1351   MachineBasicBlock *MBB = MI->getParent();
1352   // Create cmp
1353   if (!SkipCmp) {
1354     MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
1355                                       TII->get(ARM::t2CMPri));
1356     MIB.addReg(ARM::LR);
1357     MIB.addImm(0);
1358     MIB.addImm(ARMCC::AL);
1359     MIB.addReg(ARM::NoRegister);
1360   }
1361 
1362   MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1363   unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1364     ARM::tBcc : ARM::t2Bcc;
1365 
1366   // Create bne
1367   MachineInstrBuilder MIB =
1368     BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
1369   MIB.add(MI->getOperand(1));   // branch target
1370   MIB.addImm(ARMCC::NE);        // condition code
1371   MIB.addReg(ARM::CPSR);
1372   MI->eraseFromParent();
1373 }
1374 
1375 // Perform dead code elimation on the loop iteration count setup expression.
1376 // If we are tail-predicating, the number of elements to be processed is the
1377 // operand of the VCTP instruction in the vector body, see getCount(), which is
1378 // register $r3 in this example:
1379 //
1380 //   $lr = big-itercount-expression
1381 //   ..
1382 //   t2DoLoopStart renamable $lr
1383 //   vector.body:
1384 //     ..
1385 //     $vpr = MVE_VCTP32 renamable $r3
1386 //     renamable $lr = t2LoopDec killed renamable $lr, 1
1387 //     t2LoopEnd renamable $lr, %vector.body
1388 //     tB %end
1389 //
1390 // What we would like achieve here is to replace the do-loop start pseudo
1391 // instruction t2DoLoopStart with:
1392 //
1393 //    $lr = MVE_DLSTP_32 killed renamable $r3
1394 //
1395 // Thus, $r3 which defines the number of elements, is written to $lr,
1396 // and then we want to delete the whole chain that used to define $lr,
1397 // see the comment below how this chain could look like.
1398 //
1399 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) {
1400   if (!LoLoop.IsTailPredicationLegal())
1401     return;
1402 
1403   LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n");
1404 
1405   MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0);
1406   if (!Def) {
1407     LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n");
1408     return;
1409   }
1410 
1411   // Collect and remove the users of iteration count.
1412   SmallPtrSet<MachineInstr*, 4> Killed  = { LoLoop.Start, LoLoop.Dec,
1413                                             LoLoop.End };
1414   if (LoLoop.StartInsertPt != LoLoop.StartInsertBB->end())
1415     Killed.insert(&*LoLoop.StartInsertPt);
1416 
1417   if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed))
1418     LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n");
1419 }
1420 
1421 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) {
1422   LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n");
1423   // When using tail-predication, try to delete the dead code that was used to
1424   // calculate the number of loop iterations.
1425   IterationCountDCE(LoLoop);
1426 
1427   MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt;
1428   MachineInstr *Start = LoLoop.Start;
1429   MachineBasicBlock *MBB = LoLoop.StartInsertBB;
1430   bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
1431   unsigned Opc = LoLoop.getStartOpcode();
1432   MachineOperand &Count = LoLoop.getLoopStartOperand();
1433 
1434   MachineInstrBuilder MIB =
1435     BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc));
1436 
1437   MIB.addDef(ARM::LR);
1438   MIB.add(Count);
1439   if (!IsDo)
1440     MIB.add(Start->getOperand(1));
1441 
1442   // If we're inserting at a mov lr, then remove it as it's redundant.
1443   if (InsertPt != MBB->end())
1444     LoLoop.ToRemove.insert(&*InsertPt);
1445   LoLoop.ToRemove.insert(Start);
1446   LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB);
1447   return &*MIB;
1448 }
1449 
1450 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) {
1451   auto RemovePredicate = [](MachineInstr *MI) {
1452     LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI);
1453     if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) {
1454       assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then &&
1455              "Expected Then predicate!");
1456       MI->getOperand(PIdx).setImm(ARMVCC::None);
1457       MI->getOperand(PIdx+1).setReg(0);
1458     } else
1459       llvm_unreachable("trying to unpredicate a non-predicated instruction");
1460   };
1461 
1462   for (auto &Block : LoLoop.getVPTBlocks()) {
1463     SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
1464 
1465     if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/true)) {
1466       if (VPTState::hasUniformPredicate(Block)) {
1467         // A vpt block starting with VPST, is only predicated upon vctp and has no
1468         // internal vpr defs:
1469         // - Remove vpst.
1470         // - Unpredicate the remaining instructions.
1471         LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front());
1472         LoLoop.ToRemove.insert(Insts.front());
1473         for (unsigned i = 1; i < Insts.size(); ++i)
1474           RemovePredicate(Insts[i]);
1475       } else {
1476         // The VPT block has a non-uniform predicate but it uses a vpst and its
1477         // entry is guarded only by a vctp, which means we:
1478         // - Need to remove the original vpst.
1479         // - Then need to unpredicate any following instructions, until
1480         //   we come across the divergent vpr def.
1481         // - Insert a new vpst to predicate the instruction(s) that following
1482         //   the divergent vpr def.
1483         // TODO: We could be producing more VPT blocks than necessary and could
1484         // fold the newly created one into a proceeding one.
1485         MachineInstr *Divergent = VPTState::getDivergent(Block);
1486         for (auto I = ++MachineBasicBlock::iterator(Insts.front()),
1487              E = ++MachineBasicBlock::iterator(Divergent); I != E; ++I)
1488           RemovePredicate(&*I);
1489 
1490         // Check if the instruction defining vpr is a vcmp so it can be combined
1491         // with the VPST This should be the divergent instruction
1492         MachineInstr *VCMP = VCMPOpcodeToVPT(Divergent->getOpcode()) != 0
1493           ? Divergent
1494           : nullptr;
1495 
1496         MachineInstrBuilder MIB;
1497         if (VCMP) {
1498           // Combine the VPST and VCMP into a VPT
1499           MIB = BuildMI(*Divergent->getParent(), Divergent,
1500                         Divergent->getDebugLoc(),
1501                         TII->get(VCMPOpcodeToVPT(VCMP->getOpcode())));
1502           MIB.addImm(ARMVCC::Then);
1503           // Register one
1504           MIB.add(VCMP->getOperand(1));
1505           // Register two
1506           MIB.add(VCMP->getOperand(2));
1507           // The comparison code, e.g. ge, eq, lt
1508           MIB.add(VCMP->getOperand(3));
1509           LLVM_DEBUG(dbgs()
1510                      << "ARM Loops: Combining with VCMP to VPT: " << *MIB);
1511           LoLoop.ToRemove.insert(VCMP);
1512         } else {
1513           // Create a VPST (with a null mask for now, we'll recompute it later)
1514           // or a VPT in case there was a VCMP right before it
1515           MIB = BuildMI(*Divergent->getParent(), Divergent,
1516                         Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST));
1517           MIB.addImm(0);
1518           LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB);
1519         }
1520         LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front());
1521         LoLoop.ToRemove.insert(Insts.front());
1522         LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1523       }
1524     } else if (Block.containsVCTP()) {
1525       // The vctp will be removed, so the block mask of the vp(s)t will need
1526       // to be recomputed.
1527       LoLoop.BlockMasksToRecompute.insert(Insts.front());
1528     }
1529   }
1530 
1531   LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end());
1532 }
1533 
1534 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) {
1535 
1536   // Combine the LoopDec and LoopEnd instructions into LE(TP).
1537   auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) {
1538     MachineInstr *End = LoLoop.End;
1539     MachineBasicBlock *MBB = End->getParent();
1540     unsigned Opc = LoLoop.IsTailPredicationLegal() ?
1541       ARM::MVE_LETP : ARM::t2LEUpdate;
1542     MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(),
1543                                       TII->get(Opc));
1544     MIB.addDef(ARM::LR);
1545     MIB.add(End->getOperand(0));
1546     MIB.add(End->getOperand(1));
1547     LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB);
1548     LoLoop.ToRemove.insert(LoLoop.Dec);
1549     LoLoop.ToRemove.insert(End);
1550     return &*MIB;
1551   };
1552 
1553   // TODO: We should be able to automatically remove these branches before we
1554   // get here - probably by teaching analyzeBranch about the pseudo
1555   // instructions.
1556   // If there is an unconditional branch, after I, that just branches to the
1557   // next block, remove it.
1558   auto RemoveDeadBranch = [](MachineInstr *I) {
1559     MachineBasicBlock *BB = I->getParent();
1560     MachineInstr *Terminator = &BB->instr_back();
1561     if (Terminator->isUnconditionalBranch() && I != Terminator) {
1562       MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB();
1563       if (BB->isLayoutSuccessor(Succ)) {
1564         LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator);
1565         Terminator->eraseFromParent();
1566       }
1567     }
1568   };
1569 
1570   if (LoLoop.Revert) {
1571     if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart)
1572       RevertWhile(LoLoop.Start);
1573     else
1574       LoLoop.Start->eraseFromParent();
1575     bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec);
1576     RevertLoopEnd(LoLoop.End, FlagsAlreadySet);
1577   } else {
1578     LoLoop.Start = ExpandLoopStart(LoLoop);
1579     RemoveDeadBranch(LoLoop.Start);
1580     LoLoop.End = ExpandLoopEnd(LoLoop);
1581     RemoveDeadBranch(LoLoop.End);
1582     if (LoLoop.IsTailPredicationLegal())
1583       ConvertVPTBlocks(LoLoop);
1584     for (auto *I : LoLoop.ToRemove) {
1585       LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I);
1586       I->eraseFromParent();
1587     }
1588     for (auto *I : LoLoop.BlockMasksToRecompute) {
1589       LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I);
1590       recomputeVPTBlockMask(*I);
1591       LLVM_DEBUG(dbgs() << "           ... done: " << *I);
1592     }
1593   }
1594 
1595   PostOrderLoopTraversal DFS(LoLoop.ML, *MLI);
1596   DFS.ProcessLoop();
1597   const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder();
1598   for (auto *MBB : PostOrder) {
1599     recomputeLiveIns(*MBB);
1600     // FIXME: For some reason, the live-in print order is non-deterministic for
1601     // our tests and I can't out why... So just sort them.
1602     MBB->sortUniqueLiveIns();
1603   }
1604 
1605   for (auto *MBB : reverse(PostOrder))
1606     recomputeLivenessFlags(*MBB);
1607 
1608   // We've moved, removed and inserted new instructions, so update RDA.
1609   RDA->reset();
1610 }
1611 
1612 bool ARMLowOverheadLoops::RevertNonLoops() {
1613   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
1614   bool Changed = false;
1615 
1616   for (auto &MBB : *MF) {
1617     SmallVector<MachineInstr*, 4> Starts;
1618     SmallVector<MachineInstr*, 4> Decs;
1619     SmallVector<MachineInstr*, 4> Ends;
1620 
1621     for (auto &I : MBB) {
1622       if (isLoopStart(I))
1623         Starts.push_back(&I);
1624       else if (I.getOpcode() == ARM::t2LoopDec)
1625         Decs.push_back(&I);
1626       else if (I.getOpcode() == ARM::t2LoopEnd)
1627         Ends.push_back(&I);
1628     }
1629 
1630     if (Starts.empty() && Decs.empty() && Ends.empty())
1631       continue;
1632 
1633     Changed = true;
1634 
1635     for (auto *Start : Starts) {
1636       if (Start->getOpcode() == ARM::t2WhileLoopStart)
1637         RevertWhile(Start);
1638       else
1639         Start->eraseFromParent();
1640     }
1641     for (auto *Dec : Decs)
1642       RevertLoopDec(Dec);
1643 
1644     for (auto *End : Ends)
1645       RevertLoopEnd(End);
1646   }
1647   return Changed;
1648 }
1649 
1650 FunctionPass *llvm::createARMLowOverheadLoopsPass() {
1651   return new ARMLowOverheadLoops();
1652 }
1653