1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 /// A note on VPR.P0 (the lane mask): 39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a 40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks). 41 /// They will simply "and" the result of their calculation with the current 42 /// value of VPR.P0. You can think of it like this: 43 /// \verbatim 44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs 45 /// VPR.P0 &= Value 46 /// else 47 /// VPR.P0 = Value 48 /// \endverbatim 49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always 50 /// fall in the "VPT active" case, so we can consider that all VPR writes by 51 /// one of those instruction is actually a "and". 52 //===----------------------------------------------------------------------===// 53 54 #include "ARM.h" 55 #include "ARMBaseInstrInfo.h" 56 #include "ARMBaseRegisterInfo.h" 57 #include "ARMBasicBlockInfo.h" 58 #include "ARMSubtarget.h" 59 #include "Thumb2InstrInfo.h" 60 #include "llvm/ADT/SetOperations.h" 61 #include "llvm/ADT/SmallSet.h" 62 #include "llvm/CodeGen/LivePhysRegs.h" 63 #include "llvm/CodeGen/MachineFunctionPass.h" 64 #include "llvm/CodeGen/MachineLoopInfo.h" 65 #include "llvm/CodeGen/MachineLoopUtils.h" 66 #include "llvm/CodeGen/MachineRegisterInfo.h" 67 #include "llvm/CodeGen/Passes.h" 68 #include "llvm/CodeGen/ReachingDefAnalysis.h" 69 #include "llvm/MC/MCInstrDesc.h" 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "arm-low-overhead-loops" 74 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 75 76 static cl::opt<bool> 77 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden, 78 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"), 79 cl::init(false)); 80 81 static bool isVectorPredicated(MachineInstr *MI) { 82 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 83 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 84 } 85 86 static bool isVectorPredicate(MachineInstr *MI) { 87 return MI->findRegisterDefOperandIdx(ARM::VPR) != -1; 88 } 89 90 static bool hasVPRUse(MachineInstr *MI) { 91 return MI->findRegisterUseOperandIdx(ARM::VPR) != -1; 92 } 93 94 static bool isDomainMVE(MachineInstr *MI) { 95 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask; 96 return Domain == ARMII::DomainMVE; 97 } 98 99 static bool shouldInspect(MachineInstr &MI) { 100 return isDomainMVE(&MI) || isVectorPredicate(&MI) || 101 hasVPRUse(&MI); 102 } 103 104 namespace { 105 106 using InstSet = SmallPtrSetImpl<MachineInstr *>; 107 108 class PostOrderLoopTraversal { 109 MachineLoop &ML; 110 MachineLoopInfo &MLI; 111 SmallPtrSet<MachineBasicBlock*, 4> Visited; 112 SmallVector<MachineBasicBlock*, 4> Order; 113 114 public: 115 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 116 : ML(ML), MLI(MLI) { } 117 118 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 119 return Order; 120 } 121 122 // Visit all the blocks within the loop, as well as exit blocks and any 123 // blocks properly dominating the header. 124 void ProcessLoop() { 125 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 126 (MachineBasicBlock *MBB) -> void { 127 if (Visited.count(MBB)) 128 return; 129 130 Visited.insert(MBB); 131 for (auto *Succ : MBB->successors()) { 132 if (!ML.contains(Succ)) 133 continue; 134 Search(Succ); 135 } 136 Order.push_back(MBB); 137 }; 138 139 // Insert exit blocks. 140 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 141 ML.getExitBlocks(ExitBlocks); 142 for (auto *MBB : ExitBlocks) 143 Order.push_back(MBB); 144 145 // Then add the loop body. 146 Search(ML.getHeader()); 147 148 // Then try the preheader and its predecessors. 149 std::function<void(MachineBasicBlock*)> GetPredecessor = 150 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 151 Order.push_back(MBB); 152 if (MBB->pred_size() == 1) 153 GetPredecessor(*MBB->pred_begin()); 154 }; 155 156 if (auto *Preheader = ML.getLoopPreheader()) 157 GetPredecessor(Preheader); 158 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true)) 159 GetPredecessor(Preheader); 160 } 161 }; 162 163 struct PredicatedMI { 164 MachineInstr *MI = nullptr; 165 SetVector<MachineInstr*> Predicates; 166 167 public: 168 PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) { 169 assert(I && "Instruction must not be null!"); 170 Predicates.insert(Preds.begin(), Preds.end()); 171 } 172 }; 173 174 // Represent the current state of the VPR and hold all instances which 175 // represent a VPT block, which is a list of instructions that begins with a 176 // VPT/VPST and has a maximum of four proceeding instructions. All 177 // instructions within the block are predicated upon the vpr and we allow 178 // instructions to define the vpr within in the block too. 179 class VPTState { 180 friend struct LowOverheadLoop; 181 182 SmallVector<MachineInstr *, 4> Insts; 183 184 static SmallVector<VPTState, 4> Blocks; 185 static SetVector<MachineInstr *> CurrentPredicates; 186 static std::map<MachineInstr *, 187 std::unique_ptr<PredicatedMI>> PredicatedInsts; 188 189 static void CreateVPTBlock(MachineInstr *MI) { 190 assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR)) 191 && "Can't begin VPT without predicate"); 192 Blocks.emplace_back(MI); 193 // The execution of MI is predicated upon the current set of instructions 194 // that are AND'ed together to form the VPR predicate value. In the case 195 // that MI is a VPT, CurrentPredicates will also just be MI. 196 PredicatedInsts.emplace( 197 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 198 } 199 200 static void reset() { 201 Blocks.clear(); 202 PredicatedInsts.clear(); 203 CurrentPredicates.clear(); 204 } 205 206 static void addInst(MachineInstr *MI) { 207 Blocks.back().insert(MI); 208 PredicatedInsts.emplace( 209 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 210 } 211 212 static void addPredicate(MachineInstr *MI) { 213 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI); 214 CurrentPredicates.insert(MI); 215 } 216 217 static void resetPredicate(MachineInstr *MI) { 218 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI); 219 CurrentPredicates.clear(); 220 CurrentPredicates.insert(MI); 221 } 222 223 public: 224 // Have we found an instruction within the block which defines the vpr? If 225 // so, not all the instructions in the block will have the same predicate. 226 static bool hasUniformPredicate(VPTState &Block) { 227 return getDivergent(Block) == nullptr; 228 } 229 230 // If it exists, return the first internal instruction which modifies the 231 // VPR. 232 static MachineInstr *getDivergent(VPTState &Block) { 233 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 234 for (unsigned i = 1; i < Insts.size(); ++i) { 235 MachineInstr *Next = Insts[i]; 236 if (isVectorPredicate(Next)) 237 return Next; // Found an instruction altering the vpr. 238 } 239 return nullptr; 240 } 241 242 // Return whether the given instruction is predicated upon a VCTP. 243 static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) { 244 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates; 245 if (Exclusive && Predicates.size() != 1) 246 return false; 247 for (auto *PredMI : Predicates) 248 if (isVCTP(PredMI)) 249 return true; 250 return false; 251 } 252 253 // Is the VPST, controlling the block entry, predicated upon a VCTP. 254 static bool isEntryPredicatedOnVCTP(VPTState &Block, 255 bool Exclusive = false) { 256 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 257 return isPredicatedOnVCTP(Insts.front(), Exclusive); 258 } 259 260 // If this block begins with a VPT, we can check whether it's using 261 // at least one predicated input(s), as well as possible loop invariant 262 // which would result in it being implicitly predicated. 263 static bool hasImplicitlyValidVPT(VPTState &Block, 264 ReachingDefAnalysis &RDA) { 265 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 266 MachineInstr *VPT = Insts.front(); 267 assert(isVPTOpcode(VPT->getOpcode()) && 268 "Expected VPT block to begin with VPT/VPST"); 269 270 if (VPT->getOpcode() == ARM::MVE_VPST) 271 return false; 272 273 auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) { 274 MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx)); 275 return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op); 276 }; 277 278 auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) { 279 MachineOperand &MO = MI->getOperand(Idx); 280 if (!MO.isReg() || !MO.getReg()) 281 return true; 282 283 SmallPtrSet<MachineInstr *, 2> Defs; 284 RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs); 285 if (Defs.empty()) 286 return true; 287 288 for (auto *Def : Defs) 289 if (Def->getParent() == VPT->getParent()) 290 return false; 291 return true; 292 }; 293 294 // Check that at least one of the operands is directly predicated on a 295 // vctp and allow an invariant value too. 296 return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) && 297 (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) && 298 (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2)); 299 } 300 301 static bool isValid(ReachingDefAnalysis &RDA) { 302 // All predication within the loop should be based on vctp. If the block 303 // isn't predicated on entry, check whether the vctp is within the block 304 // and that all other instructions are then predicated on it. 305 for (auto &Block : Blocks) { 306 if (isEntryPredicatedOnVCTP(Block, false) || 307 hasImplicitlyValidVPT(Block, RDA)) 308 continue; 309 310 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 311 for (auto *MI : Insts) { 312 // Check that any internal VCTPs are 'Then' predicated. 313 if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then) 314 return false; 315 // Skip other instructions that build up the predicate. 316 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI)) 317 continue; 318 // Check that any other instructions are predicated upon a vctp. 319 // TODO: We could infer when VPTs are implicitly predicated on the 320 // vctp (when the operands are predicated). 321 if (!isPredicatedOnVCTP(MI)) { 322 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI); 323 return false; 324 } 325 } 326 } 327 return true; 328 } 329 330 VPTState(MachineInstr *MI) { Insts.push_back(MI); } 331 332 void insert(MachineInstr *MI) { 333 Insts.push_back(MI); 334 // VPT/VPST + 4 predicated instructions. 335 assert(Insts.size() <= 5 && "Too many instructions in VPT block!"); 336 } 337 338 bool containsVCTP() const { 339 for (auto *MI : Insts) 340 if (isVCTP(MI)) 341 return true; 342 return false; 343 } 344 345 unsigned size() const { return Insts.size(); } 346 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; } 347 }; 348 349 struct LowOverheadLoop { 350 351 MachineLoop &ML; 352 MachineBasicBlock *Preheader = nullptr; 353 MachineLoopInfo &MLI; 354 ReachingDefAnalysis &RDA; 355 const TargetRegisterInfo &TRI; 356 const ARMBaseInstrInfo &TII; 357 MachineFunction *MF = nullptr; 358 MachineBasicBlock::iterator StartInsertPt; 359 MachineBasicBlock *StartInsertBB = nullptr; 360 MachineInstr *Start = nullptr; 361 MachineInstr *Dec = nullptr; 362 MachineInstr *End = nullptr; 363 MachineOperand TPNumElements; 364 SmallVector<MachineInstr*, 4> VCTPs; 365 SmallPtrSet<MachineInstr*, 4> ToRemove; 366 SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute; 367 bool Revert = false; 368 bool CannotTailPredicate = false; 369 370 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 371 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI, 372 const ARMBaseInstrInfo &TII) 373 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII), 374 TPNumElements(MachineOperand::CreateImm(0)) { 375 MF = ML.getHeader()->getParent(); 376 if (auto *MBB = ML.getLoopPreheader()) 377 Preheader = MBB; 378 else if (auto *MBB = MLI.findLoopPreheader(&ML, true)) 379 Preheader = MBB; 380 VPTState::reset(); 381 } 382 383 // If this is an MVE instruction, check that we know how to use tail 384 // predication with it. Record VPT blocks and return whether the 385 // instruction is valid for tail predication. 386 bool ValidateMVEInst(MachineInstr *MI); 387 388 void AnalyseMVEInst(MachineInstr *MI) { 389 CannotTailPredicate = !ValidateMVEInst(MI); 390 } 391 392 bool IsTailPredicationLegal() const { 393 // For now, let's keep things really simple and only support a single 394 // block for tail predication. 395 return !Revert && FoundAllComponents() && !VCTPs.empty() && 396 !CannotTailPredicate && ML.getNumBlocks() == 1; 397 } 398 399 // Given that MI is a VCTP, check that is equivalent to any other VCTPs 400 // found. 401 bool AddVCTP(MachineInstr *MI); 402 403 // Check that the predication in the loop will be equivalent once we 404 // perform the conversion. Also ensure that we can provide the number 405 // of elements to the loop start instruction. 406 bool ValidateTailPredicate(); 407 408 // Check that any values available outside of the loop will be the same 409 // after tail predication conversion. 410 bool ValidateLiveOuts(); 411 412 // Is it safe to define LR with DLS/WLS? 413 // LR can be defined if it is the operand to start, because it's the same 414 // value, or if it's going to be equivalent to the operand to Start. 415 MachineInstr *isSafeToDefineLR(); 416 417 // Check the branch targets are within range and we satisfy our 418 // restrictions. 419 void Validate(ARMBasicBlockUtils *BBUtils); 420 421 bool FoundAllComponents() const { 422 return Start && Dec && End; 423 } 424 425 SmallVectorImpl<VPTState> &getVPTBlocks() { 426 return VPTState::Blocks; 427 } 428 429 // Return the operand for the loop start instruction. This will be the loop 430 // iteration count, or the number of elements if we're tail predicating. 431 MachineOperand &getLoopStartOperand() { 432 return IsTailPredicationLegal() ? TPNumElements : Start->getOperand(0); 433 } 434 435 unsigned getStartOpcode() const { 436 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 437 if (!IsTailPredicationLegal()) 438 return IsDo ? ARM::t2DLS : ARM::t2WLS; 439 440 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo); 441 } 442 443 void dump() const { 444 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 445 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 446 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 447 if (!VCTPs.empty()) { 448 dbgs() << "ARM Loops: Found VCTP(s):\n"; 449 for (auto *MI : VCTPs) 450 dbgs() << " - " << *MI; 451 } 452 if (!FoundAllComponents()) 453 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 454 else if (!(Start && Dec && End)) 455 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 456 } 457 }; 458 459 class ARMLowOverheadLoops : public MachineFunctionPass { 460 MachineFunction *MF = nullptr; 461 MachineLoopInfo *MLI = nullptr; 462 ReachingDefAnalysis *RDA = nullptr; 463 const ARMBaseInstrInfo *TII = nullptr; 464 MachineRegisterInfo *MRI = nullptr; 465 const TargetRegisterInfo *TRI = nullptr; 466 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 467 468 public: 469 static char ID; 470 471 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 472 473 void getAnalysisUsage(AnalysisUsage &AU) const override { 474 AU.setPreservesCFG(); 475 AU.addRequired<MachineLoopInfo>(); 476 AU.addRequired<ReachingDefAnalysis>(); 477 MachineFunctionPass::getAnalysisUsage(AU); 478 } 479 480 bool runOnMachineFunction(MachineFunction &MF) override; 481 482 MachineFunctionProperties getRequiredProperties() const override { 483 return MachineFunctionProperties().set( 484 MachineFunctionProperties::Property::NoVRegs).set( 485 MachineFunctionProperties::Property::TracksLiveness); 486 } 487 488 StringRef getPassName() const override { 489 return ARM_LOW_OVERHEAD_LOOPS_NAME; 490 } 491 492 private: 493 bool ProcessLoop(MachineLoop *ML); 494 495 bool RevertNonLoops(); 496 497 void RevertWhile(MachineInstr *MI) const; 498 499 bool RevertLoopDec(MachineInstr *MI) const; 500 501 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 502 503 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 504 505 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 506 507 void Expand(LowOverheadLoop &LoLoop); 508 509 void IterationCountDCE(LowOverheadLoop &LoLoop); 510 }; 511 } 512 513 char ARMLowOverheadLoops::ID = 0; 514 515 SmallVector<VPTState, 4> VPTState::Blocks; 516 SetVector<MachineInstr *> VPTState::CurrentPredicates; 517 std::map<MachineInstr *, 518 std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts; 519 520 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 521 false, false) 522 523 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA, 524 InstSet &ToRemove, InstSet &Ignore) { 525 526 // Check that we can remove all of Killed without having to modify any IT 527 // blocks. 528 auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) { 529 // Collect the dead code and the MBBs in which they reside. 530 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 531 for (auto *Dead : Killed) 532 BasicBlocks.insert(Dead->getParent()); 533 534 // Collect IT blocks in all affected basic blocks. 535 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 536 for (auto *MBB : BasicBlocks) { 537 for (auto &IT : *MBB) { 538 if (IT.getOpcode() != ARM::t2IT) 539 continue; 540 RDA.getReachingLocalUses(&IT, ARM::ITSTATE, ITBlocks[&IT]); 541 } 542 } 543 544 // If we're removing all of the instructions within an IT block, then 545 // also remove the IT instruction. 546 SmallPtrSet<MachineInstr *, 2> ModifiedITs; 547 SmallPtrSet<MachineInstr *, 2> RemoveITs; 548 for (auto *Dead : Killed) { 549 if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) { 550 MachineInstr *IT = RDA.getMIOperand(Dead, *MO); 551 RemoveITs.insert(IT); 552 auto &CurrentBlock = ITBlocks[IT]; 553 CurrentBlock.erase(Dead); 554 if (CurrentBlock.empty()) 555 ModifiedITs.erase(IT); 556 else 557 ModifiedITs.insert(IT); 558 } 559 } 560 if (!ModifiedITs.empty()) 561 return false; 562 Killed.insert(RemoveITs.begin(), RemoveITs.end()); 563 return true; 564 }; 565 566 SmallPtrSet<MachineInstr *, 2> Uses; 567 if (!RDA.isSafeToRemove(MI, Uses, Ignore)) 568 return false; 569 570 if (WontCorruptITs(Uses, RDA)) { 571 ToRemove.insert(Uses.begin(), Uses.end()); 572 LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI 573 << " - can also remove:\n"; 574 for (auto *Use : Uses) 575 dbgs() << " - " << *Use); 576 577 SmallPtrSet<MachineInstr*, 4> Killed; 578 RDA.collectKilledOperands(MI, Killed); 579 if (WontCorruptITs(Killed, RDA)) { 580 ToRemove.insert(Killed.begin(), Killed.end()); 581 LLVM_DEBUG(for (auto *Dead : Killed) 582 dbgs() << " - " << *Dead); 583 } 584 return true; 585 } 586 return false; 587 } 588 589 bool LowOverheadLoop::ValidateTailPredicate() { 590 if (!IsTailPredicationLegal()) { 591 LLVM_DEBUG(if (VCTPs.empty()) 592 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 593 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 594 return false; 595 } 596 597 assert(!VCTPs.empty() && "VCTP instruction expected but is not set"); 598 assert(ML.getBlocks().size() == 1 && 599 "Shouldn't be processing a loop with more than one block"); 600 601 if (DisableTailPredication) { 602 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n"); 603 return false; 604 } 605 606 if (!VPTState::isValid(RDA)) 607 return false; 608 609 if (!ValidateLiveOuts()) { 610 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n"); 611 return false; 612 } 613 614 // For tail predication, we need to provide the number of elements, instead 615 // of the iteration count, to the loop start instruction. The number of 616 // elements is provided to the vctp instruction, so we need to check that 617 // we can use this register at InsertPt. 618 MachineInstr *VCTP = VCTPs.back(); 619 TPNumElements = VCTP->getOperand(1); 620 Register NumElements = TPNumElements.getReg(); 621 622 // If the register is defined within loop, then we can't perform TP. 623 // TODO: Check whether this is just a mov of a register that would be 624 // available. 625 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 626 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 627 return false; 628 } 629 630 // The element count register maybe defined after InsertPt, in which case we 631 // need to try to move either InsertPt or the def so that the [w|d]lstp can 632 // use the value. 633 634 if (StartInsertPt != StartInsertBB->end() && 635 !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) { 636 if (auto *ElemDef = RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) { 637 if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) { 638 ElemDef->removeFromParent(); 639 StartInsertBB->insert(StartInsertPt, ElemDef); 640 LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: " 641 << *ElemDef); 642 } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) { 643 StartInsertPt->removeFromParent(); 644 StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 645 &*StartInsertPt); 646 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 647 } else { 648 // If we fail to move an instruction and the element count is provided 649 // by a mov, use the mov operand if it will have the same value at the 650 // insertion point 651 MachineOperand Operand = ElemDef->getOperand(1); 652 if (isMovRegOpcode(ElemDef->getOpcode()) && 653 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg()) == 654 RDA.getUniqueReachingMIDef(&*StartInsertPt, Operand.getReg())) { 655 TPNumElements = Operand; 656 NumElements = TPNumElements.getReg(); 657 } else { 658 LLVM_DEBUG(dbgs() 659 << "ARM Loops: Unable to move element count to loop " 660 << "start instruction.\n"); 661 return false; 662 } 663 } 664 } 665 } 666 667 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect 668 // world the [w|d]lstp instruction would be last instruction in the preheader 669 // and so it would only affect instructions within the loop body. But due to 670 // scheduling, and/or the logic in this pass (above), the insertion point can 671 // be moved earlier. So if the Loop Start isn't the last instruction in the 672 // preheader, and if the initial element count is smaller than the vector 673 // width, the Loop Start instruction will immediately generate one or more 674 // false lane mask which can, incorrectly, affect the proceeding MVE 675 // instructions in the preheader. 676 auto CannotInsertWDLSTPBetween = [](MachineBasicBlock::iterator I, 677 MachineBasicBlock::iterator E) { 678 for (; I != E; ++I) 679 if (shouldInspect(*I)) 680 return true; 681 return false; 682 }; 683 684 if (CannotInsertWDLSTPBetween(StartInsertPt, StartInsertBB->end())) 685 return false; 686 687 // Especially in the case of while loops, InsertBB may not be the 688 // preheader, so we need to check that the register isn't redefined 689 // before entering the loop. 690 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 691 Register NumElements) { 692 // NumElements is redefined in this block. 693 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 694 return true; 695 696 // Don't continue searching up through multiple predecessors. 697 if (MBB->pred_size() > 1) 698 return true; 699 700 return false; 701 }; 702 703 // Search backwards for a def, until we get to InsertBB. 704 MachineBasicBlock *MBB = Preheader; 705 while (MBB && MBB != StartInsertBB) { 706 if (CannotProvideElements(MBB, NumElements)) { 707 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 708 return false; 709 } 710 MBB = *MBB->pred_begin(); 711 } 712 713 // Check that the value change of the element count is what we expect and 714 // that the predication will be equivalent. For this we need: 715 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 716 // and we can also allow register copies within the chain too. 717 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 718 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 719 }; 720 721 MBB = VCTP->getParent(); 722 // Remove modifications to the element count since they have no purpose in a 723 // tail predicated loop. Explicitly refer to the vctp operand no matter which 724 // register NumElements has been assigned to, since that is what the 725 // modifications will be using 726 if (auto *Def = RDA.getUniqueReachingMIDef(&MBB->back(), 727 VCTP->getOperand(1).getReg())) { 728 SmallPtrSet<MachineInstr*, 2> ElementChain; 729 SmallPtrSet<MachineInstr*, 2> Ignore; 730 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 731 732 Ignore.insert(VCTPs.begin(), VCTPs.end()); 733 734 if (TryRemove(Def, RDA, ElementChain, Ignore)) { 735 bool FoundSub = false; 736 737 for (auto *MI : ElementChain) { 738 if (isMovRegOpcode(MI->getOpcode())) 739 continue; 740 741 if (isSubImmOpcode(MI->getOpcode())) { 742 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) 743 return false; 744 FoundSub = true; 745 } else 746 return false; 747 } 748 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 749 } 750 } 751 return true; 752 } 753 754 static bool isRegInClass(const MachineOperand &MO, 755 const TargetRegisterClass *Class) { 756 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 757 } 758 759 // MVE 'narrowing' operate on half a lane, reading from half and writing 760 // to half, which are referred to has the top and bottom half. The other 761 // half retains its previous value. 762 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 763 const MCInstrDesc &MCID = MI.getDesc(); 764 uint64_t Flags = MCID.TSFlags; 765 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 766 } 767 768 // Some MVE instructions read from the top/bottom halves of their operand(s) 769 // and generate a vector result with result elements that are double the 770 // width of the input. 771 static bool producesDoubleWidthResult(const MachineInstr &MI) { 772 const MCInstrDesc &MCID = MI.getDesc(); 773 uint64_t Flags = MCID.TSFlags; 774 return (Flags & ARMII::DoubleWidthResult) != 0; 775 } 776 777 static bool isHorizontalReduction(const MachineInstr &MI) { 778 const MCInstrDesc &MCID = MI.getDesc(); 779 uint64_t Flags = MCID.TSFlags; 780 return (Flags & ARMII::HorizontalReduction) != 0; 781 } 782 783 // Can this instruction generate a non-zero result when given only zeroed 784 // operands? This allows us to know that, given operands with false bytes 785 // zeroed by masked loads, that the result will also contain zeros in those 786 // bytes. 787 static bool canGenerateNonZeros(const MachineInstr &MI) { 788 789 // Check for instructions which can write into a larger element size, 790 // possibly writing into a previous zero'd lane. 791 if (producesDoubleWidthResult(MI)) 792 return true; 793 794 switch (MI.getOpcode()) { 795 default: 796 break; 797 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 798 // fp16 -> fp32 vector conversions. 799 // Instructions that perform a NOT will generate 1s from 0s. 800 case ARM::MVE_VMVN: 801 case ARM::MVE_VORN: 802 // Count leading zeros will do just that! 803 case ARM::MVE_VCLZs8: 804 case ARM::MVE_VCLZs16: 805 case ARM::MVE_VCLZs32: 806 return true; 807 } 808 return false; 809 } 810 811 // Look at its register uses to see if it only can only receive zeros 812 // into its false lanes which would then produce zeros. Also check that 813 // the output register is also defined by an FalseLanesZero instruction 814 // so that if tail-predication happens, the lanes that aren't updated will 815 // still be zeros. 816 static bool producesFalseLanesZero(MachineInstr &MI, 817 const TargetRegisterClass *QPRs, 818 const ReachingDefAnalysis &RDA, 819 InstSet &FalseLanesZero) { 820 if (canGenerateNonZeros(MI)) 821 return false; 822 823 bool isPredicated = isVectorPredicated(&MI); 824 // Predicated loads will write zeros to the falsely predicated bytes of the 825 // destination register. 826 if (MI.mayLoad()) 827 return isPredicated; 828 829 auto IsZeroInit = [](MachineInstr *Def) { 830 return !isVectorPredicated(Def) && 831 Def->getOpcode() == ARM::MVE_VMOVimmi32 && 832 Def->getOperand(1).getImm() == 0; 833 }; 834 835 bool AllowScalars = isHorizontalReduction(MI); 836 for (auto &MO : MI.operands()) { 837 if (!MO.isReg() || !MO.getReg()) 838 continue; 839 if (!isRegInClass(MO, QPRs) && AllowScalars) 840 continue; 841 842 // Check that this instruction will produce zeros in its false lanes: 843 // - If it only consumes false lanes zero or constant 0 (vmov #0) 844 // - If it's predicated, it only matters that it's def register already has 845 // false lane zeros, so we can ignore the uses. 846 SmallPtrSet<MachineInstr *, 2> Defs; 847 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs); 848 for (auto *Def : Defs) { 849 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def)) 850 continue; 851 if (MO.isUse() && isPredicated) 852 continue; 853 return false; 854 } 855 } 856 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 857 return true; 858 } 859 860 bool LowOverheadLoop::ValidateLiveOuts() { 861 // We want to find out if the tail-predicated version of this loop will 862 // produce the same values as the loop in its original form. For this to 863 // be true, the newly inserted implicit predication must not change the 864 // the (observable) results. 865 // We're doing this because many instructions in the loop will not be 866 // predicated and so the conversion from VPT predication to tail-predication 867 // can result in different values being produced; due to the tail-predication 868 // preventing many instructions from updating their falsely predicated 869 // lanes. This analysis assumes that all the instructions perform lane-wise 870 // operations and don't perform any exchanges. 871 // A masked load, whether through VPT or tail predication, will write zeros 872 // to any of the falsely predicated bytes. So, from the loads, we know that 873 // the false lanes are zeroed and here we're trying to track that those false 874 // lanes remain zero, or where they change, the differences are masked away 875 // by their user(s). 876 // All MVE stores have to be predicated, so we know that any predicate load 877 // operands, or stored results are equivalent already. Other explicitly 878 // predicated instructions will perform the same operation in the original 879 // loop and the tail-predicated form too. Because of this, we can insert 880 // loads, stores and other predicated instructions into our Predicated 881 // set and build from there. 882 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 883 SetVector<MachineInstr *> FalseLanesUnknown; 884 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 885 SmallPtrSet<MachineInstr *, 4> Predicated; 886 MachineBasicBlock *Header = ML.getHeader(); 887 888 for (auto &MI : *Header) { 889 if (!shouldInspect(MI)) 890 continue; 891 892 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) 893 continue; 894 895 bool isPredicated = isVectorPredicated(&MI); 896 bool retainsOrReduces = 897 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI); 898 899 if (isPredicated) 900 Predicated.insert(&MI); 901 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) 902 FalseLanesZero.insert(&MI); 903 else if (MI.getNumDefs() == 0) 904 continue; 905 else if (!isPredicated && retainsOrReduces) 906 return false; 907 else if (!isPredicated) 908 FalseLanesUnknown.insert(&MI); 909 } 910 911 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 912 SmallPtrSetImpl<MachineInstr *> &Predicated) { 913 SmallPtrSet<MachineInstr *, 2> Uses; 914 RDA.getGlobalUses(MI, MO.getReg(), Uses); 915 for (auto *Use : Uses) { 916 if (Use != MI && !Predicated.count(Use)) 917 return false; 918 } 919 return true; 920 }; 921 922 // Visit the unknowns in reverse so that we can start at the values being 923 // stored and then we can work towards the leaves, hopefully adding more 924 // instructions to Predicated. Successfully terminating the loop means that 925 // all the unknown values have to found to be masked by predicated user(s). 926 // For any unpredicated values, we store them in NonPredicated so that we 927 // can later check whether these form a reduction. 928 SmallPtrSet<MachineInstr*, 2> NonPredicated; 929 for (auto *MI : reverse(FalseLanesUnknown)) { 930 for (auto &MO : MI->operands()) { 931 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 932 continue; 933 if (!HasPredicatedUsers(MI, MO, Predicated)) { 934 LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : " 935 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 936 NonPredicated.insert(MI); 937 break; 938 } 939 } 940 // Any unknown false lanes have been masked away by the user(s). 941 if (!NonPredicated.contains(MI)) 942 Predicated.insert(MI); 943 } 944 945 SmallPtrSet<MachineInstr *, 2> LiveOutMIs; 946 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 947 ML.getExitBlocks(ExitBlocks); 948 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 949 assert(ExitBlocks.size() == 1 && "Expected a single exit block"); 950 MachineBasicBlock *ExitBB = ExitBlocks.front(); 951 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) { 952 // TODO: Instead of blocking predication, we could move the vctp to the exit 953 // block and calculate it's operand there in or the preheader. 954 if (RegMask.PhysReg == ARM::VPR) 955 return false; 956 // Check Q-regs that are live in the exit blocks. We don't collect scalars 957 // because they won't be affected by lane predication. 958 if (QPRs->contains(RegMask.PhysReg)) 959 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg)) 960 LiveOutMIs.insert(MI); 961 } 962 963 // We've already validated that any VPT predication within the loop will be 964 // equivalent when we perform the predication transformation; so we know that 965 // any VPT predicated instruction is predicated upon VCTP. Any live-out 966 // instruction needs to be predicated, so check this here. The instructions 967 // in NonPredicated have been found to be a reduction that we can ensure its 968 // legality. 969 for (auto *MI : LiveOutMIs) { 970 if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) { 971 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to handle live out: " << *MI); 972 return false; 973 } 974 } 975 976 return true; 977 } 978 979 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) { 980 if (Revert) 981 return; 982 983 // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP] 984 // can only jump back. 985 auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End, 986 ARMBasicBlockUtils *BBUtils, MachineLoop &ML) { 987 if (!End->getOperand(1).isMBB()) 988 report_fatal_error("Expected LoopEnd to target basic block"); 989 990 // TODO Maybe there's cases where the target doesn't have to be the header, 991 // but for now be safe and revert. 992 if (End->getOperand(1).getMBB() != ML.getHeader()) { 993 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n"); 994 return false; 995 } 996 997 // The WLS and LE instructions have 12-bits for the label offset. WLS 998 // requires a positive offset, while LE uses negative. 999 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 1000 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 1001 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 1002 return false; 1003 } 1004 1005 if (Start->getOpcode() == ARM::t2WhileLoopStart && 1006 (BBUtils->getOffsetOf(Start) > 1007 BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || 1008 !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { 1009 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 1010 return false; 1011 } 1012 return true; 1013 }; 1014 1015 // Find a suitable position to insert the loop start instruction. It needs to 1016 // be able to safely define LR. 1017 auto FindStartInsertionPoint = [](MachineInstr *Start, 1018 MachineBasicBlock::iterator &InsertPt, 1019 MachineBasicBlock *&InsertBB, 1020 ReachingDefAnalysis &RDA) { 1021 // We can define LR because LR already contains the same value. 1022 if (Start->getOperand(0).getReg() == ARM::LR) { 1023 InsertPt = MachineBasicBlock::iterator(Start); 1024 InsertBB = Start->getParent(); 1025 return true; 1026 } 1027 1028 unsigned CountReg = Start->getOperand(0).getReg(); 1029 auto IsMoveLR = [&CountReg](MachineInstr *MI) { 1030 return MI->getOpcode() == ARM::tMOVr && 1031 MI->getOperand(0).getReg() == ARM::LR && 1032 MI->getOperand(1).getReg() == CountReg && 1033 MI->getOperand(2).getImm() == ARMCC::AL; 1034 }; 1035 1036 MachineBasicBlock *MBB = Start->getParent(); 1037 1038 // Find an insertion point: 1039 // - Is there a (mov lr, Count) before Start? If so, and nothing else 1040 // writes to Count before Start, we can insert at that mov. 1041 if (auto *LRDef = RDA.getUniqueReachingMIDef(Start, ARM::LR)) { 1042 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) { 1043 InsertPt = MachineBasicBlock::iterator(LRDef); 1044 InsertBB = LRDef->getParent(); 1045 return true; 1046 } 1047 } 1048 1049 // - Is there a (mov lr, Count) after Start? If so, and nothing else writes 1050 // to Count after Start, we can insert at that mov. 1051 if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR)) { 1052 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) { 1053 InsertPt = MachineBasicBlock::iterator(LRDef); 1054 InsertBB = LRDef->getParent(); 1055 return true; 1056 } 1057 } 1058 1059 // We've found no suitable LR def and Start doesn't use LR directly. Can we 1060 // just define LR anyway? 1061 if (!RDA.isSafeToDefRegAt(Start, ARM::LR)) 1062 return false; 1063 1064 InsertPt = MachineBasicBlock::iterator(Start); 1065 InsertBB = Start->getParent(); 1066 return true; 1067 }; 1068 1069 if (!FindStartInsertionPoint(Start, StartInsertPt, StartInsertBB, RDA)) { 1070 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n"); 1071 Revert = true; 1072 return; 1073 } 1074 Revert = !ValidateRanges(Start, End, BBUtils, ML); 1075 CannotTailPredicate = !ValidateTailPredicate(); 1076 } 1077 1078 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) { 1079 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI); 1080 if (VCTPs.empty()) { 1081 VCTPs.push_back(MI); 1082 return true; 1083 } 1084 1085 // If we find another VCTP, check whether it uses the same value as the main VCTP. 1086 // If it does, store it in the VCTPs set, else refuse it. 1087 MachineInstr *Prev = VCTPs.back(); 1088 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) || 1089 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg())) { 1090 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " 1091 "definition from the main VCTP"); 1092 return false; 1093 } 1094 VCTPs.push_back(MI); 1095 return true; 1096 } 1097 1098 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) { 1099 if (CannotTailPredicate) 1100 return false; 1101 1102 if (!shouldInspect(*MI)) 1103 return true; 1104 1105 if (MI->getOpcode() == ARM::MVE_VPSEL || 1106 MI->getOpcode() == ARM::MVE_VPNOT) { 1107 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 1108 // 1) It will use the VPR as a predicate operand, but doesn't have to be 1109 // instead a VPT block, which means we can assert while building up 1110 // the VPT block because we don't find another VPT or VPST to being a new 1111 // one. 1112 // 2) VPSEL still requires a VPR operand even after tail predicating, 1113 // which means we can't remove it unless there is another 1114 // instruction, such as vcmp, that can provide the VPR def. 1115 return false; 1116 } 1117 1118 // Record all VCTPs and check that they're equivalent to one another. 1119 if (isVCTP(MI) && !AddVCTP(MI)) 1120 return false; 1121 1122 // Inspect uses first so that any instructions that alter the VPR don't 1123 // alter the predicate upon themselves. 1124 const MCInstrDesc &MCID = MI->getDesc(); 1125 bool IsUse = false; 1126 unsigned LastOpIdx = MI->getNumOperands() - 1; 1127 for (auto &Op : enumerate(reverse(MCID.operands()))) { 1128 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index()); 1129 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR) 1130 continue; 1131 1132 if (ARM::isVpred(Op.value().OperandType)) { 1133 VPTState::addInst(MI); 1134 IsUse = true; 1135 } else if (MI->getOpcode() != ARM::MVE_VPST) { 1136 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 1137 return false; 1138 } 1139 } 1140 1141 // If we find an instruction that has been marked as not valid for tail 1142 // predication, only allow the instruction if it's contained within a valid 1143 // VPT block. 1144 bool RequiresExplicitPredication = 1145 (MCID.TSFlags & ARMII::ValidForTailPredication) == 0; 1146 if (isDomainMVE(MI) && RequiresExplicitPredication) { 1147 LLVM_DEBUG(if (!IsUse) 1148 dbgs() << "ARM Loops: Can't tail predicate: " << *MI); 1149 return IsUse; 1150 } 1151 1152 // If the instruction is already explicitly predicated, then the conversion 1153 // will be fine, but ensure that all store operations are predicated. 1154 if (MI->mayStore()) 1155 return IsUse; 1156 1157 // If this instruction defines the VPR, update the predicate for the 1158 // proceeding instructions. 1159 if (isVectorPredicate(MI)) { 1160 // Clear the existing predicate when we're not in VPT Active state, 1161 // otherwise we add to it. 1162 if (!isVectorPredicated(MI)) 1163 VPTState::resetPredicate(MI); 1164 else 1165 VPTState::addPredicate(MI); 1166 } 1167 1168 // Finally once the predicate has been modified, we can start a new VPT 1169 // block if necessary. 1170 if (isVPTOpcode(MI->getOpcode())) 1171 VPTState::CreateVPTBlock(MI); 1172 1173 return true; 1174 } 1175 1176 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 1177 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 1178 if (!ST.hasLOB()) 1179 return false; 1180 1181 MF = &mf; 1182 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 1183 1184 MLI = &getAnalysis<MachineLoopInfo>(); 1185 RDA = &getAnalysis<ReachingDefAnalysis>(); 1186 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 1187 MRI = &MF->getRegInfo(); 1188 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 1189 TRI = ST.getRegisterInfo(); 1190 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 1191 BBUtils->computeAllBlockSizes(); 1192 BBUtils->adjustBBOffsetsAfter(&MF->front()); 1193 1194 bool Changed = false; 1195 for (auto ML : *MLI) { 1196 if (ML->isOutermost()) 1197 Changed |= ProcessLoop(ML); 1198 } 1199 Changed |= RevertNonLoops(); 1200 return Changed; 1201 } 1202 1203 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 1204 1205 bool Changed = false; 1206 1207 // Process inner loops first. 1208 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 1209 Changed |= ProcessLoop(*I); 1210 1211 LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; 1212 if (auto *Preheader = ML->getLoopPreheader()) 1213 dbgs() << " - " << Preheader->getName() << "\n"; 1214 else if (auto *Preheader = MLI->findLoopPreheader(ML)) 1215 dbgs() << " - " << Preheader->getName() << "\n"; 1216 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 1217 dbgs() << " - " << Preheader->getName() << "\n"; 1218 for (auto *MBB : ML->getBlocks()) 1219 dbgs() << " - " << MBB->getName() << "\n"; 1220 ); 1221 1222 // Search the given block for a loop start instruction. If one isn't found, 1223 // and there's only one predecessor block, search that one too. 1224 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 1225 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 1226 for (auto &MI : *MBB) { 1227 if (isLoopStart(MI)) 1228 return &MI; 1229 } 1230 if (MBB->pred_size() == 1) 1231 return SearchForStart(*MBB->pred_begin()); 1232 return nullptr; 1233 }; 1234 1235 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII); 1236 // Search the preheader for the start intrinsic. 1237 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 1238 // with potentially multiple set.loop.iterations, so we need to enable this. 1239 if (LoLoop.Preheader) 1240 LoLoop.Start = SearchForStart(LoLoop.Preheader); 1241 else 1242 return false; 1243 1244 // Find the low-overhead loop components and decide whether or not to fall 1245 // back to a normal loop. Also look for a vctp instructions and decide 1246 // whether we can convert that predicate using tail predication. 1247 for (auto *MBB : reverse(ML->getBlocks())) { 1248 for (auto &MI : *MBB) { 1249 if (MI.isDebugValue()) 1250 continue; 1251 else if (MI.getOpcode() == ARM::t2LoopDec) 1252 LoLoop.Dec = &MI; 1253 else if (MI.getOpcode() == ARM::t2LoopEnd) 1254 LoLoop.End = &MI; 1255 else if (isLoopStart(MI)) 1256 LoLoop.Start = &MI; 1257 else if (MI.getDesc().isCall()) { 1258 // TODO: Though the call will require LE to execute again, does this 1259 // mean we should revert? Always executing LE hopefully should be 1260 // faster than performing a sub,cmp,br or even subs,br. 1261 LoLoop.Revert = true; 1262 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 1263 } else { 1264 // Record VPR defs and build up their corresponding vpt blocks. 1265 // Check we know how to tail predicate any mve instructions. 1266 LoLoop.AnalyseMVEInst(&MI); 1267 } 1268 } 1269 } 1270 1271 LLVM_DEBUG(LoLoop.dump()); 1272 if (!LoLoop.FoundAllComponents()) { 1273 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 1274 return false; 1275 } 1276 1277 // Check that the only instruction using LoopDec is LoopEnd. 1278 // TODO: Check for copy chains that really have no effect. 1279 SmallPtrSet<MachineInstr*, 2> Uses; 1280 RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses); 1281 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 1282 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 1283 LoLoop.Revert = true; 1284 } 1285 LoLoop.Validate(BBUtils.get()); 1286 Expand(LoLoop); 1287 return true; 1288 } 1289 1290 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 1291 // beq that branches to the exit branch. 1292 // TODO: We could also try to generate a cbz if the value in LR is also in 1293 // another low register. 1294 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 1295 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 1296 MachineBasicBlock *MBB = MI->getParent(); 1297 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1298 TII->get(ARM::t2CMPri)); 1299 MIB.add(MI->getOperand(0)); 1300 MIB.addImm(0); 1301 MIB.addImm(ARMCC::AL); 1302 MIB.addReg(ARM::NoRegister); 1303 1304 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1305 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1306 ARM::tBcc : ARM::t2Bcc; 1307 1308 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1309 MIB.add(MI->getOperand(1)); // branch target 1310 MIB.addImm(ARMCC::EQ); // condition code 1311 MIB.addReg(ARM::CPSR); 1312 MI->eraseFromParent(); 1313 } 1314 1315 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 1316 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 1317 MachineBasicBlock *MBB = MI->getParent(); 1318 SmallPtrSet<MachineInstr*, 1> Ignore; 1319 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 1320 if (I->getOpcode() == ARM::t2LoopEnd) { 1321 Ignore.insert(&*I); 1322 break; 1323 } 1324 } 1325 1326 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1327 bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore); 1328 1329 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1330 TII->get(ARM::t2SUBri)); 1331 MIB.addDef(ARM::LR); 1332 MIB.add(MI->getOperand(1)); 1333 MIB.add(MI->getOperand(2)); 1334 MIB.addImm(ARMCC::AL); 1335 MIB.addReg(0); 1336 1337 if (SetFlags) { 1338 MIB.addReg(ARM::CPSR); 1339 MIB->getOperand(5).setIsDef(true); 1340 } else 1341 MIB.addReg(0); 1342 1343 MI->eraseFromParent(); 1344 return SetFlags; 1345 } 1346 1347 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1348 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1349 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1350 1351 MachineBasicBlock *MBB = MI->getParent(); 1352 // Create cmp 1353 if (!SkipCmp) { 1354 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1355 TII->get(ARM::t2CMPri)); 1356 MIB.addReg(ARM::LR); 1357 MIB.addImm(0); 1358 MIB.addImm(ARMCC::AL); 1359 MIB.addReg(ARM::NoRegister); 1360 } 1361 1362 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1363 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1364 ARM::tBcc : ARM::t2Bcc; 1365 1366 // Create bne 1367 MachineInstrBuilder MIB = 1368 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1369 MIB.add(MI->getOperand(1)); // branch target 1370 MIB.addImm(ARMCC::NE); // condition code 1371 MIB.addReg(ARM::CPSR); 1372 MI->eraseFromParent(); 1373 } 1374 1375 // Perform dead code elimation on the loop iteration count setup expression. 1376 // If we are tail-predicating, the number of elements to be processed is the 1377 // operand of the VCTP instruction in the vector body, see getCount(), which is 1378 // register $r3 in this example: 1379 // 1380 // $lr = big-itercount-expression 1381 // .. 1382 // t2DoLoopStart renamable $lr 1383 // vector.body: 1384 // .. 1385 // $vpr = MVE_VCTP32 renamable $r3 1386 // renamable $lr = t2LoopDec killed renamable $lr, 1 1387 // t2LoopEnd renamable $lr, %vector.body 1388 // tB %end 1389 // 1390 // What we would like achieve here is to replace the do-loop start pseudo 1391 // instruction t2DoLoopStart with: 1392 // 1393 // $lr = MVE_DLSTP_32 killed renamable $r3 1394 // 1395 // Thus, $r3 which defines the number of elements, is written to $lr, 1396 // and then we want to delete the whole chain that used to define $lr, 1397 // see the comment below how this chain could look like. 1398 // 1399 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1400 if (!LoLoop.IsTailPredicationLegal()) 1401 return; 1402 1403 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1404 1405 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0); 1406 if (!Def) { 1407 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1408 return; 1409 } 1410 1411 // Collect and remove the users of iteration count. 1412 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1413 LoLoop.End }; 1414 if (LoLoop.StartInsertPt != LoLoop.StartInsertBB->end()) 1415 Killed.insert(&*LoLoop.StartInsertPt); 1416 1417 if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed)) 1418 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1419 } 1420 1421 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1422 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1423 // When using tail-predication, try to delete the dead code that was used to 1424 // calculate the number of loop iterations. 1425 IterationCountDCE(LoLoop); 1426 1427 MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt; 1428 MachineInstr *Start = LoLoop.Start; 1429 MachineBasicBlock *MBB = LoLoop.StartInsertBB; 1430 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 1431 unsigned Opc = LoLoop.getStartOpcode(); 1432 MachineOperand &Count = LoLoop.getLoopStartOperand(); 1433 1434 MachineInstrBuilder MIB = 1435 BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc)); 1436 1437 MIB.addDef(ARM::LR); 1438 MIB.add(Count); 1439 if (!IsDo) 1440 MIB.add(Start->getOperand(1)); 1441 1442 // If we're inserting at a mov lr, then remove it as it's redundant. 1443 if (InsertPt != MBB->end()) 1444 LoLoop.ToRemove.insert(&*InsertPt); 1445 LoLoop.ToRemove.insert(Start); 1446 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1447 return &*MIB; 1448 } 1449 1450 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1451 auto RemovePredicate = [](MachineInstr *MI) { 1452 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1453 if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) { 1454 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1455 "Expected Then predicate!"); 1456 MI->getOperand(PIdx).setImm(ARMVCC::None); 1457 MI->getOperand(PIdx+1).setReg(0); 1458 } else 1459 llvm_unreachable("trying to unpredicate a non-predicated instruction"); 1460 }; 1461 1462 for (auto &Block : LoLoop.getVPTBlocks()) { 1463 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 1464 1465 if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/true)) { 1466 if (VPTState::hasUniformPredicate(Block)) { 1467 // A vpt block starting with VPST, is only predicated upon vctp and has no 1468 // internal vpr defs: 1469 // - Remove vpst. 1470 // - Unpredicate the remaining instructions. 1471 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front()); 1472 LoLoop.ToRemove.insert(Insts.front()); 1473 for (unsigned i = 1; i < Insts.size(); ++i) 1474 RemovePredicate(Insts[i]); 1475 } else { 1476 // The VPT block has a non-uniform predicate but it uses a vpst and its 1477 // entry is guarded only by a vctp, which means we: 1478 // - Need to remove the original vpst. 1479 // - Then need to unpredicate any following instructions, until 1480 // we come across the divergent vpr def. 1481 // - Insert a new vpst to predicate the instruction(s) that following 1482 // the divergent vpr def. 1483 // TODO: We could be producing more VPT blocks than necessary and could 1484 // fold the newly created one into a proceeding one. 1485 MachineInstr *Divergent = VPTState::getDivergent(Block); 1486 for (auto I = ++MachineBasicBlock::iterator(Insts.front()), 1487 E = ++MachineBasicBlock::iterator(Divergent); I != E; ++I) 1488 RemovePredicate(&*I); 1489 1490 // Check if the instruction defining vpr is a vcmp so it can be combined 1491 // with the VPST This should be the divergent instruction 1492 MachineInstr *VCMP = VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 1493 ? Divergent 1494 : nullptr; 1495 1496 MachineInstrBuilder MIB; 1497 if (VCMP) { 1498 // Combine the VPST and VCMP into a VPT 1499 MIB = BuildMI(*Divergent->getParent(), Divergent, 1500 Divergent->getDebugLoc(), 1501 TII->get(VCMPOpcodeToVPT(VCMP->getOpcode()))); 1502 MIB.addImm(ARMVCC::Then); 1503 // Register one 1504 MIB.add(VCMP->getOperand(1)); 1505 // Register two 1506 MIB.add(VCMP->getOperand(2)); 1507 // The comparison code, e.g. ge, eq, lt 1508 MIB.add(VCMP->getOperand(3)); 1509 LLVM_DEBUG(dbgs() 1510 << "ARM Loops: Combining with VCMP to VPT: " << *MIB); 1511 LoLoop.ToRemove.insert(VCMP); 1512 } else { 1513 // Create a VPST (with a null mask for now, we'll recompute it later) 1514 // or a VPT in case there was a VCMP right before it 1515 MIB = BuildMI(*Divergent->getParent(), Divergent, 1516 Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST)); 1517 MIB.addImm(0); 1518 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1519 } 1520 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front()); 1521 LoLoop.ToRemove.insert(Insts.front()); 1522 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1523 } 1524 } else if (Block.containsVCTP()) { 1525 // The vctp will be removed, so the block mask of the vp(s)t will need 1526 // to be recomputed. 1527 LoLoop.BlockMasksToRecompute.insert(Insts.front()); 1528 } 1529 } 1530 1531 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end()); 1532 } 1533 1534 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1535 1536 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1537 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1538 MachineInstr *End = LoLoop.End; 1539 MachineBasicBlock *MBB = End->getParent(); 1540 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1541 ARM::MVE_LETP : ARM::t2LEUpdate; 1542 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1543 TII->get(Opc)); 1544 MIB.addDef(ARM::LR); 1545 MIB.add(End->getOperand(0)); 1546 MIB.add(End->getOperand(1)); 1547 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1548 LoLoop.ToRemove.insert(LoLoop.Dec); 1549 LoLoop.ToRemove.insert(End); 1550 return &*MIB; 1551 }; 1552 1553 // TODO: We should be able to automatically remove these branches before we 1554 // get here - probably by teaching analyzeBranch about the pseudo 1555 // instructions. 1556 // If there is an unconditional branch, after I, that just branches to the 1557 // next block, remove it. 1558 auto RemoveDeadBranch = [](MachineInstr *I) { 1559 MachineBasicBlock *BB = I->getParent(); 1560 MachineInstr *Terminator = &BB->instr_back(); 1561 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1562 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1563 if (BB->isLayoutSuccessor(Succ)) { 1564 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1565 Terminator->eraseFromParent(); 1566 } 1567 } 1568 }; 1569 1570 if (LoLoop.Revert) { 1571 if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) 1572 RevertWhile(LoLoop.Start); 1573 else 1574 LoLoop.Start->eraseFromParent(); 1575 bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec); 1576 RevertLoopEnd(LoLoop.End, FlagsAlreadySet); 1577 } else { 1578 LoLoop.Start = ExpandLoopStart(LoLoop); 1579 RemoveDeadBranch(LoLoop.Start); 1580 LoLoop.End = ExpandLoopEnd(LoLoop); 1581 RemoveDeadBranch(LoLoop.End); 1582 if (LoLoop.IsTailPredicationLegal()) 1583 ConvertVPTBlocks(LoLoop); 1584 for (auto *I : LoLoop.ToRemove) { 1585 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1586 I->eraseFromParent(); 1587 } 1588 for (auto *I : LoLoop.BlockMasksToRecompute) { 1589 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1590 recomputeVPTBlockMask(*I); 1591 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1592 } 1593 } 1594 1595 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1596 DFS.ProcessLoop(); 1597 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1598 for (auto *MBB : PostOrder) { 1599 recomputeLiveIns(*MBB); 1600 // FIXME: For some reason, the live-in print order is non-deterministic for 1601 // our tests and I can't out why... So just sort them. 1602 MBB->sortUniqueLiveIns(); 1603 } 1604 1605 for (auto *MBB : reverse(PostOrder)) 1606 recomputeLivenessFlags(*MBB); 1607 1608 // We've moved, removed and inserted new instructions, so update RDA. 1609 RDA->reset(); 1610 } 1611 1612 bool ARMLowOverheadLoops::RevertNonLoops() { 1613 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1614 bool Changed = false; 1615 1616 for (auto &MBB : *MF) { 1617 SmallVector<MachineInstr*, 4> Starts; 1618 SmallVector<MachineInstr*, 4> Decs; 1619 SmallVector<MachineInstr*, 4> Ends; 1620 1621 for (auto &I : MBB) { 1622 if (isLoopStart(I)) 1623 Starts.push_back(&I); 1624 else if (I.getOpcode() == ARM::t2LoopDec) 1625 Decs.push_back(&I); 1626 else if (I.getOpcode() == ARM::t2LoopEnd) 1627 Ends.push_back(&I); 1628 } 1629 1630 if (Starts.empty() && Decs.empty() && Ends.empty()) 1631 continue; 1632 1633 Changed = true; 1634 1635 for (auto *Start : Starts) { 1636 if (Start->getOpcode() == ARM::t2WhileLoopStart) 1637 RevertWhile(Start); 1638 else 1639 Start->eraseFromParent(); 1640 } 1641 for (auto *Dec : Decs) 1642 RevertLoopDec(Dec); 1643 1644 for (auto *End : Ends) 1645 RevertLoopEnd(End); 1646 } 1647 return Changed; 1648 } 1649 1650 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1651 return new ARMLowOverheadLoops(); 1652 } 1653