xref: /llvm-project/llvm/lib/Target/ARM/ARMLowOverheadLoops.cpp (revision de3e65e60c8a28c70df7fc23376a0683a004b30f)
1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo
10 /// instructions into machine operations.
11 /// The expectation is that the loop contains three pseudo instructions:
12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
13 ///   form should be in the preheader, whereas the while form should be in the
14 ///   preheaders only predecessor.
15 /// - t2LoopDec - placed within in the loop body.
16 /// - t2LoopEnd - the loop latch terminator.
17 ///
18 /// In addition to this, we also look for the presence of the VCTP instruction,
19 /// which determines whether we can generated the tail-predicated low-overhead
20 /// loop form.
21 ///
22 /// Assumptions and Dependencies:
23 /// Low-overhead loops are constructed and executed using a setup instruction:
24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
26 /// but fixed polarity: WLS can only branch forwards and LE can only branch
27 /// backwards. These restrictions mean that this pass is dependent upon block
28 /// layout and block sizes, which is why it's the last pass to run. The same is
29 /// true for ConstantIslands, but this pass does not increase the size of the
30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed
31 /// during the transform and pseudo instructions are replaced by real ones. In
32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce
33 /// multiple instructions for a single pseudo (see RevertWhile and
34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd
35 /// are defined to be as large as this maximum sequence of replacement
36 /// instructions.
37 ///
38 //===----------------------------------------------------------------------===//
39 
40 #include "ARM.h"
41 #include "ARMBaseInstrInfo.h"
42 #include "ARMBaseRegisterInfo.h"
43 #include "ARMBasicBlockInfo.h"
44 #include "ARMSubtarget.h"
45 #include "Thumb2InstrInfo.h"
46 #include "llvm/ADT/SetOperations.h"
47 #include "llvm/ADT/SmallSet.h"
48 #include "llvm/CodeGen/LivePhysRegs.h"
49 #include "llvm/CodeGen/MachineFunctionPass.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineLoopUtils.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/Passes.h"
54 #include "llvm/CodeGen/ReachingDefAnalysis.h"
55 #include "llvm/MC/MCInstrDesc.h"
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "arm-low-overhead-loops"
60 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"
61 
62 namespace {
63 
64   class PostOrderLoopTraversal {
65     MachineLoop &ML;
66     MachineLoopInfo &MLI;
67     SmallPtrSet<MachineBasicBlock*, 4> Visited;
68     SmallVector<MachineBasicBlock*, 4> Order;
69 
70   public:
71     PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI)
72       : ML(ML), MLI(MLI) { }
73 
74     const SmallVectorImpl<MachineBasicBlock*> &getOrder() const {
75       return Order;
76     }
77 
78     // Visit all the blocks within the loop, as well as exit blocks and any
79     // blocks properly dominating the header.
80     void ProcessLoop() {
81       std::function<void(MachineBasicBlock*)> Search = [this, &Search]
82         (MachineBasicBlock *MBB) -> void {
83         if (Visited.count(MBB))
84           return;
85 
86         Visited.insert(MBB);
87         for (auto *Succ : MBB->successors()) {
88           if (!ML.contains(Succ))
89             continue;
90           Search(Succ);
91         }
92         Order.push_back(MBB);
93       };
94 
95       // Insert exit blocks.
96       SmallVector<MachineBasicBlock*, 2> ExitBlocks;
97       ML.getExitBlocks(ExitBlocks);
98       for (auto *MBB : ExitBlocks)
99         Order.push_back(MBB);
100 
101       // Then add the loop body.
102       Search(ML.getHeader());
103 
104       // Then try the preheader and its predecessors.
105       std::function<void(MachineBasicBlock*)> GetPredecessor =
106         [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void {
107         Order.push_back(MBB);
108         if (MBB->pred_size() == 1)
109           GetPredecessor(*MBB->pred_begin());
110       };
111 
112       if (auto *Preheader = ML.getLoopPreheader())
113         GetPredecessor(Preheader);
114       else if (auto *Preheader = MLI.findLoopPreheader(&ML, true))
115         GetPredecessor(Preheader);
116     }
117   };
118 
119   struct PredicatedMI {
120     MachineInstr *MI = nullptr;
121     SetVector<MachineInstr*> Predicates;
122 
123   public:
124     PredicatedMI(MachineInstr *I, SetVector<MachineInstr*> &Preds) :
125       MI(I) { Predicates.insert(Preds.begin(), Preds.end()); }
126   };
127 
128   // Represent a VPT block, a list of instructions that begins with a VPST and
129   // has a maximum of four proceeding instructions. All instructions within the
130   // block are predicated upon the vpr and we allow instructions to define the
131   // vpr within in the block too.
132   class VPTBlock {
133     std::unique_ptr<PredicatedMI> VPST;
134     PredicatedMI *Divergent = nullptr;
135     SmallVector<PredicatedMI, 4> Insts;
136 
137   public:
138     VPTBlock(MachineInstr *MI, SetVector<MachineInstr*> &Preds) {
139       VPST = std::make_unique<PredicatedMI>(MI, Preds);
140     }
141 
142     void addInst(MachineInstr *MI, SetVector<MachineInstr*> &Preds) {
143       LLVM_DEBUG(dbgs() << "ARM Loops: Adding predicated MI: " << *MI);
144       if (!Divergent && !set_difference(Preds, VPST->Predicates).empty()) {
145         Divergent = &Insts.back();
146         LLVM_DEBUG(dbgs() << " - has divergent predicate: " << *Divergent->MI);
147       }
148       Insts.emplace_back(MI, Preds);
149       assert(Insts.size() <= 4 && "Too many instructions in VPT block!");
150     }
151 
152     // Have we found an instruction within the block which defines the vpr? If
153     // so, not all the instructions in the block will have the same predicate.
154     bool HasNonUniformPredicate() const {
155       return Divergent != nullptr;
156     }
157 
158     // Is the given instruction part of the predicate set controlling the entry
159     // to the block.
160     bool IsPredicatedOn(MachineInstr *MI) const {
161       return VPST->Predicates.count(MI);
162     }
163 
164     // Is the given instruction the only predicate which controls the entry to
165     // the block.
166     bool IsOnlyPredicatedOn(MachineInstr *MI) const {
167       return IsPredicatedOn(MI) && VPST->Predicates.size() == 1;
168     }
169 
170     unsigned size() const { return Insts.size(); }
171     SmallVectorImpl<PredicatedMI> &getInsts() { return Insts; }
172     MachineInstr *getVPST() const { return VPST->MI; }
173     PredicatedMI *getDivergent() const { return Divergent; }
174   };
175 
176   struct LowOverheadLoop {
177 
178     MachineLoop &ML;
179     MachineLoopInfo &MLI;
180     ReachingDefAnalysis &RDA;
181     const TargetRegisterInfo &TRI;
182     MachineFunction *MF = nullptr;
183     MachineInstr *InsertPt = nullptr;
184     MachineInstr *Start = nullptr;
185     MachineInstr *Dec = nullptr;
186     MachineInstr *End = nullptr;
187     MachineInstr *VCTP = nullptr;
188     VPTBlock *CurrentBlock = nullptr;
189     SetVector<MachineInstr*> CurrentPredicate;
190     SmallVector<VPTBlock, 4> VPTBlocks;
191     SmallPtrSet<MachineInstr*, 4> ToRemove;
192     bool Revert = false;
193     bool CannotTailPredicate = false;
194 
195     LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI,
196                     ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI)
197       : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI) {
198       MF = ML.getHeader()->getParent();
199     }
200 
201     // If this is an MVE instruction, check that we know how to use tail
202     // predication with it. Record VPT blocks and return whether the
203     // instruction is valid for tail predication.
204     bool ValidateMVEInst(MachineInstr *MI);
205 
206     void AnalyseMVEInst(MachineInstr *MI) {
207       CannotTailPredicate = !ValidateMVEInst(MI);
208     }
209 
210     bool IsTailPredicationLegal() const {
211       // For now, let's keep things really simple and only support a single
212       // block for tail predication.
213       return !Revert && FoundAllComponents() && VCTP &&
214              !CannotTailPredicate && ML.getNumBlocks() == 1;
215     }
216 
217     // Check that the predication in the loop will be equivalent once we
218     // perform the conversion. Also ensure that we can provide the number
219     // of elements to the loop start instruction.
220     bool ValidateTailPredicate(MachineInstr *StartInsertPt);
221 
222     // Check that any values available outside of the loop will be the same
223     // after tail predication conversion.
224     bool ValidateLiveOuts() const;
225 
226     // Is it safe to define LR with DLS/WLS?
227     // LR can be defined if it is the operand to start, because it's the same
228     // value, or if it's going to be equivalent to the operand to Start.
229     MachineInstr *isSafeToDefineLR();
230 
231     // Check the branch targets are within range and we satisfy our
232     // restrictions.
233     void CheckLegality(ARMBasicBlockUtils *BBUtils);
234 
235     bool FoundAllComponents() const {
236       return Start && Dec && End;
237     }
238 
239     SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTBlocks; }
240 
241     // Return the loop iteration count, or the number of elements if we're tail
242     // predicating.
243     MachineOperand &getCount() {
244       return IsTailPredicationLegal() ?
245         VCTP->getOperand(1) : Start->getOperand(0);
246     }
247 
248     unsigned getStartOpcode() const {
249       bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
250       if (!IsTailPredicationLegal())
251         return IsDo ? ARM::t2DLS : ARM::t2WLS;
252 
253       return VCTPOpcodeToLSTP(VCTP->getOpcode(), IsDo);
254     }
255 
256     void dump() const {
257       if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start;
258       if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec;
259       if (End) dbgs() << "ARM Loops: Found Loop End: " << *End;
260       if (VCTP) dbgs() << "ARM Loops: Found VCTP: " << *VCTP;
261       if (!FoundAllComponents())
262         dbgs() << "ARM Loops: Not a low-overhead loop.\n";
263       else if (!(Start && Dec && End))
264         dbgs() << "ARM Loops: Failed to find all loop components.\n";
265     }
266   };
267 
268   class ARMLowOverheadLoops : public MachineFunctionPass {
269     MachineFunction           *MF = nullptr;
270     MachineLoopInfo           *MLI = nullptr;
271     ReachingDefAnalysis       *RDA = nullptr;
272     const ARMBaseInstrInfo    *TII = nullptr;
273     MachineRegisterInfo       *MRI = nullptr;
274     const TargetRegisterInfo  *TRI = nullptr;
275     std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
276 
277   public:
278     static char ID;
279 
280     ARMLowOverheadLoops() : MachineFunctionPass(ID) { }
281 
282     void getAnalysisUsage(AnalysisUsage &AU) const override {
283       AU.setPreservesCFG();
284       AU.addRequired<MachineLoopInfo>();
285       AU.addRequired<ReachingDefAnalysis>();
286       MachineFunctionPass::getAnalysisUsage(AU);
287     }
288 
289     bool runOnMachineFunction(MachineFunction &MF) override;
290 
291     MachineFunctionProperties getRequiredProperties() const override {
292       return MachineFunctionProperties().set(
293           MachineFunctionProperties::Property::NoVRegs).set(
294           MachineFunctionProperties::Property::TracksLiveness);
295     }
296 
297     StringRef getPassName() const override {
298       return ARM_LOW_OVERHEAD_LOOPS_NAME;
299     }
300 
301   private:
302     bool ProcessLoop(MachineLoop *ML);
303 
304     bool RevertNonLoops();
305 
306     void RevertWhile(MachineInstr *MI) const;
307 
308     bool RevertLoopDec(MachineInstr *MI) const;
309 
310     void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const;
311 
312     void ConvertVPTBlocks(LowOverheadLoop &LoLoop);
313 
314     MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop);
315 
316     void Expand(LowOverheadLoop &LoLoop);
317 
318     void IterationCountDCE(LowOverheadLoop &LoLoop);
319   };
320 }
321 
322 char ARMLowOverheadLoops::ID = 0;
323 
324 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME,
325                 false, false)
326 
327 MachineInstr *LowOverheadLoop::isSafeToDefineLR() {
328   // We can define LR because LR already contains the same value.
329   if (Start->getOperand(0).getReg() == ARM::LR)
330     return Start;
331 
332   unsigned CountReg = Start->getOperand(0).getReg();
333   auto IsMoveLR = [&CountReg](MachineInstr *MI) {
334     return MI->getOpcode() == ARM::tMOVr &&
335            MI->getOperand(0).getReg() == ARM::LR &&
336            MI->getOperand(1).getReg() == CountReg &&
337            MI->getOperand(2).getImm() == ARMCC::AL;
338    };
339 
340   MachineBasicBlock *MBB = Start->getParent();
341 
342   // Find an insertion point:
343   // - Is there a (mov lr, Count) before Start? If so, and nothing else writes
344   //   to Count before Start, we can insert at that mov.
345   if (auto *LRDef = RDA.getReachingMIDef(Start, ARM::LR))
346     if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg))
347       return LRDef;
348 
349   // - Is there a (mov lr, Count) after Start? If so, and nothing else writes
350   //   to Count after Start, we can insert at that mov.
351   if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR))
352     if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg))
353       return LRDef;
354 
355   // We've found no suitable LR def and Start doesn't use LR directly. Can we
356   // just define LR anyway?
357   return RDA.isSafeToDefRegAt(Start, ARM::LR) ? Start : nullptr;
358 }
359 
360 bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt) {
361   assert(VCTP && "VCTP instruction expected but is not set");
362   // All predication within the loop should be based on vctp. If the block
363   // isn't predicated on entry, check whether the vctp is within the block
364   // and that all other instructions are then predicated on it.
365   for (auto &Block : VPTBlocks) {
366     if (Block.IsPredicatedOn(VCTP))
367       continue;
368     if (!Block.HasNonUniformPredicate() || !isVCTP(Block.getDivergent()->MI)) {
369       LLVM_DEBUG(dbgs() << "ARM Loops: Found unsupported diverging predicate: "
370                  << *Block.getDivergent()->MI);
371       return false;
372     }
373     SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts();
374     for (auto &PredMI : Insts) {
375       if (PredMI.Predicates.count(VCTP) || isVCTP(PredMI.MI))
376         continue;
377       LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *PredMI.MI
378                  << " - which is predicated on:\n";
379                  for (auto *MI : PredMI.Predicates)
380                    dbgs() << "   - " << *MI);
381       return false;
382     }
383   }
384 
385   if (!ValidateLiveOuts())
386     return false;
387 
388   // For tail predication, we need to provide the number of elements, instead
389   // of the iteration count, to the loop start instruction. The number of
390   // elements is provided to the vctp instruction, so we need to check that
391   // we can use this register at InsertPt.
392   Register NumElements = VCTP->getOperand(1).getReg();
393 
394   // If the register is defined within loop, then we can't perform TP.
395   // TODO: Check whether this is just a mov of a register that would be
396   // available.
397   if (RDA.hasLocalDefBefore(VCTP, NumElements)) {
398     LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
399     return false;
400   }
401 
402   // The element count register maybe defined after InsertPt, in which case we
403   // need to try to move either InsertPt or the def so that the [w|d]lstp can
404   // use the value.
405   // TODO: On failing to move an instruction, check if the count is provided by
406   // a mov and whether we can use the mov operand directly.
407   MachineBasicBlock *InsertBB = StartInsertPt->getParent();
408   if (!RDA.isReachingDefLiveOut(StartInsertPt, NumElements)) {
409     if (auto *ElemDef = RDA.getLocalLiveOutMIDef(InsertBB, NumElements)) {
410       if (RDA.isSafeToMoveForwards(ElemDef, StartInsertPt)) {
411         ElemDef->removeFromParent();
412         InsertBB->insert(MachineBasicBlock::iterator(StartInsertPt), ElemDef);
413         LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: "
414                    << *ElemDef);
415       } else if (RDA.isSafeToMoveBackwards(StartInsertPt, ElemDef)) {
416         StartInsertPt->removeFromParent();
417         InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef),
418                               StartInsertPt);
419         LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef);
420       } else {
421         LLVM_DEBUG(dbgs() << "ARM Loops: Unable to move element count to loop "
422                    << "start instruction.\n");
423         return false;
424       }
425     }
426   }
427 
428   // Especially in the case of while loops, InsertBB may not be the
429   // preheader, so we need to check that the register isn't redefined
430   // before entering the loop.
431   auto CannotProvideElements = [this](MachineBasicBlock *MBB,
432                                       Register NumElements) {
433     // NumElements is redefined in this block.
434     if (RDA.hasLocalDefBefore(&MBB->back(), NumElements))
435       return true;
436 
437     // Don't continue searching up through multiple predecessors.
438     if (MBB->pred_size() > 1)
439       return true;
440 
441     return false;
442   };
443 
444   // First, find the block that looks like the preheader.
445   MachineBasicBlock *MBB = MLI.findLoopPreheader(&ML, true);
446   if (!MBB) {
447     LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find preheader.\n");
448     return false;
449   }
450 
451   // Then search backwards for a def, until we get to InsertBB.
452   while (MBB != InsertBB) {
453     if (CannotProvideElements(MBB, NumElements)) {
454       LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
455       return false;
456     }
457     MBB = *MBB->pred_begin();
458   }
459 
460   // Check that the value change of the element count is what we expect and
461   // that the predication will be equivalent. For this we need:
462   // NumElements = NumElements - VectorWidth. The sub will be a sub immediate
463   // and we can also allow register copies within the chain too.
464   auto IsValidSub = [](MachineInstr *MI, unsigned ExpectedVecWidth) {
465     unsigned ImmOpIdx = 0;
466     switch (MI->getOpcode()) {
467     default:
468       llvm_unreachable("unhandled sub opcode");
469     case ARM::tSUBi3:
470     case ARM::tSUBi8:
471       ImmOpIdx = 3;
472       break;
473     case ARM::t2SUBri:
474     case ARM::t2SUBri12:
475       ImmOpIdx = 2;
476       break;
477     }
478     return MI->getOperand(ImmOpIdx).getImm() == ExpectedVecWidth;
479   };
480 
481   MBB = VCTP->getParent();
482   if (MachineInstr *Def = RDA.getReachingMIDef(&MBB->back(), NumElements)) {
483     SmallPtrSet<MachineInstr*, 2> ElementChain;
484     SmallPtrSet<MachineInstr*, 2> Ignore = { VCTP };
485     unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode());
486 
487     if (RDA.isSafeToRemove(Def, ElementChain, Ignore)) {
488       bool FoundSub = false;
489 
490       for (auto *MI : ElementChain) {
491         if (isMovRegOpcode(MI->getOpcode()))
492           continue;
493 
494         if (isSubImmOpcode(MI->getOpcode())) {
495           if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth))
496             return false;
497           FoundSub = true;
498         } else
499           return false;
500       }
501 
502       LLVM_DEBUG(dbgs() << "ARM Loops: Will remove element count chain:\n";
503                  for (auto *MI : ElementChain)
504                    dbgs() << " - " << *MI);
505       ToRemove.insert(ElementChain.begin(), ElementChain.end());
506     }
507   }
508   return true;
509 }
510 
511 bool LowOverheadLoop::ValidateLiveOuts() const {
512   // Collect Q-regs that are live in the exit blocks. We don't collect scalars
513   // because they won't be affected by lane predication.
514   const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID);
515   SmallSet<Register, 2> LiveOuts;
516   SmallVector<MachineBasicBlock*, 2> ExitBlocks;
517   ML.getExitBlocks(ExitBlocks);
518   for (auto *MBB : ExitBlocks)
519     for (const MachineBasicBlock::RegisterMaskPair &RegMask : MBB->liveins())
520       if (QPRs->contains(RegMask.PhysReg))
521         LiveOuts.insert(RegMask.PhysReg);
522 
523   // Collect the instructions in the loop body that define the live-out values.
524   SmallPtrSet<MachineInstr*, 2> LiveMIs;
525   MachineBasicBlock *MBB = ML.getHeader();
526   for (auto Reg : LiveOuts)
527     if (auto *MI = RDA.getLocalLiveOutMIDef(MBB, Reg))
528       LiveMIs.insert(MI);
529 
530   LLVM_DEBUG(dbgs() << "ARM Loops: Found loop live-outs:\n";
531              for (auto *MI : LiveMIs)
532                dbgs() << " - " << *MI);
533   // We've already validated that any VPT predication within the loop will be
534   // equivalent when we perform the predication transformation; so we know that
535   // any VPT predicated instruction is predicated upon VCTP. Any live-out
536   // instruction needs to be predicated, so check this here.
537   for (auto *MI : LiveMIs) {
538     int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
539     if (PIdx == -1 || MI->getOperand(PIdx+1).getReg() != ARM::VPR)
540       return false;
541   }
542 
543   return true;
544 }
545 
546 void LowOverheadLoop::CheckLegality(ARMBasicBlockUtils *BBUtils) {
547   if (Revert)
548     return;
549 
550   if (!End->getOperand(1).isMBB())
551     report_fatal_error("Expected LoopEnd to target basic block");
552 
553   // TODO Maybe there's cases where the target doesn't have to be the header,
554   // but for now be safe and revert.
555   if (End->getOperand(1).getMBB() != ML.getHeader()) {
556     LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targetting header.\n");
557     Revert = true;
558     return;
559   }
560 
561   // The WLS and LE instructions have 12-bits for the label offset. WLS
562   // requires a positive offset, while LE uses negative.
563   if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) ||
564       !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) {
565     LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
566     Revert = true;
567     return;
568   }
569 
570   if (Start->getOpcode() == ARM::t2WhileLoopStart &&
571       (BBUtils->getOffsetOf(Start) >
572        BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) ||
573        !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) {
574     LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
575     Revert = true;
576     return;
577   }
578 
579   InsertPt = Revert ? nullptr : isSafeToDefineLR();
580   if (!InsertPt) {
581     LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n");
582     Revert = true;
583     return;
584   } else
585     LLVM_DEBUG(dbgs() << "ARM Loops: Start insertion point: " << *InsertPt);
586 
587   if (!IsTailPredicationLegal()) {
588     LLVM_DEBUG(if (!VCTP)
589                  dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
590                dbgs() << "ARM Loops: Tail-predication is not valid.\n");
591     return;
592   }
593 
594   assert(ML.getBlocks().size() == 1 &&
595          "Shouldn't be processing a loop with more than one block");
596   CannotTailPredicate = !ValidateTailPredicate(InsertPt);
597   LLVM_DEBUG(if (CannotTailPredicate)
598              dbgs() << "ARM Loops: Couldn't validate tail predicate.\n");
599 }
600 
601 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) {
602   if (CannotTailPredicate)
603     return false;
604 
605   // Only support a single vctp.
606   if (isVCTP(MI) && VCTP)
607     return false;
608 
609   // Start a new vpt block when we discover a vpt.
610   if (MI->getOpcode() == ARM::MVE_VPST) {
611     VPTBlocks.emplace_back(MI, CurrentPredicate);
612     CurrentBlock = &VPTBlocks.back();
613     return true;
614   } else if (isVCTP(MI))
615     VCTP = MI;
616   else if (MI->getOpcode() == ARM::MVE_VPSEL ||
617            MI->getOpcode() == ARM::MVE_VPNOT)
618     return false;
619 
620   // TODO: Allow VPSEL and VPNOT, we currently cannot because:
621   // 1) It will use the VPR as a predicate operand, but doesn't have to be
622   //    instead a VPT block, which means we can assert while building up
623   //    the VPT block because we don't find another VPST to being a new
624   //    one.
625   // 2) VPSEL still requires a VPR operand even after tail predicating,
626   //    which means we can't remove it unless there is another
627   //    instruction, such as vcmp, that can provide the VPR def.
628 
629   bool IsUse = false;
630   bool IsDef = false;
631   const MCInstrDesc &MCID = MI->getDesc();
632   for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
633     const MachineOperand &MO = MI->getOperand(i);
634     if (!MO.isReg() || MO.getReg() != ARM::VPR)
635       continue;
636 
637     if (MO.isDef()) {
638       CurrentPredicate.insert(MI);
639       IsDef = true;
640     } else if (ARM::isVpred(MCID.OpInfo[i].OperandType)) {
641       CurrentBlock->addInst(MI, CurrentPredicate);
642       IsUse = true;
643     } else {
644       LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI);
645       return false;
646     }
647   }
648 
649   // If we find a vpr def that is not already predicated on the vctp, we've
650   // got disjoint predicates that may not be equivalent when we do the
651   // conversion.
652   if (IsDef && !IsUse && VCTP && !isVCTP(MI)) {
653     LLVM_DEBUG(dbgs() << "ARM Loops: Found disjoint vpr def: " << *MI);
654     return false;
655   }
656 
657   uint64_t Flags = MCID.TSFlags;
658   if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE)
659     return true;
660 
661   // If we find an instruction that has been marked as not valid for tail
662   // predication, only allow the instruction if it's contained within a valid
663   // VPT block.
664   if ((Flags & ARMII::ValidForTailPredication) == 0 && !IsUse) {
665     LLVM_DEBUG(dbgs() << "ARM Loops: Can't tail predicate: " << *MI);
666     return false;
667   }
668 
669   // If the instruction is already explicitly predicated, then the conversion
670   // will be fine, but ensure that all memory operations are predicated.
671   return !IsUse && MI->mayLoadOrStore() ? false : true;
672 }
673 
674 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) {
675   const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget());
676   if (!ST.hasLOB())
677     return false;
678 
679   MF = &mf;
680   LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n");
681 
682   MLI = &getAnalysis<MachineLoopInfo>();
683   RDA = &getAnalysis<ReachingDefAnalysis>();
684   MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
685   MRI = &MF->getRegInfo();
686   TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo());
687   TRI = ST.getRegisterInfo();
688   BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF));
689   BBUtils->computeAllBlockSizes();
690   BBUtils->adjustBBOffsetsAfter(&MF->front());
691 
692   bool Changed = false;
693   for (auto ML : *MLI) {
694     if (!ML->getParentLoop())
695       Changed |= ProcessLoop(ML);
696   }
697   Changed |= RevertNonLoops();
698   return Changed;
699 }
700 
701 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) {
702 
703   bool Changed = false;
704 
705   // Process inner loops first.
706   for (auto I = ML->begin(), E = ML->end(); I != E; ++I)
707     Changed |= ProcessLoop(*I);
708 
709   LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n";
710              if (auto *Preheader = ML->getLoopPreheader())
711                dbgs() << " - " << Preheader->getName() << "\n";
712              else if (auto *Preheader = MLI->findLoopPreheader(ML))
713                dbgs() << " - " << Preheader->getName() << "\n";
714              else if (auto *Preheader = MLI->findLoopPreheader(ML, true))
715                dbgs() << " - " << Preheader->getName() << "\n";
716              for (auto *MBB : ML->getBlocks())
717                dbgs() << " - " << MBB->getName() << "\n";
718             );
719 
720   // Search the given block for a loop start instruction. If one isn't found,
721   // and there's only one predecessor block, search that one too.
722   std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart =
723     [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* {
724     for (auto &MI : *MBB) {
725       if (isLoopStart(MI))
726         return &MI;
727     }
728     if (MBB->pred_size() == 1)
729       return SearchForStart(*MBB->pred_begin());
730     return nullptr;
731   };
732 
733   LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI);
734   // Search the preheader for the start intrinsic.
735   // FIXME: I don't see why we shouldn't be supporting multiple predecessors
736   // with potentially multiple set.loop.iterations, so we need to enable this.
737   if (auto *Preheader = ML->getLoopPreheader())
738     LoLoop.Start = SearchForStart(Preheader);
739   else if (auto *Preheader = MLI->findLoopPreheader(ML, true))
740     LoLoop.Start = SearchForStart(Preheader);
741   else
742     return false;
743 
744   // Find the low-overhead loop components and decide whether or not to fall
745   // back to a normal loop. Also look for a vctp instructions and decide
746   // whether we can convert that predicate using tail predication.
747   for (auto *MBB : reverse(ML->getBlocks())) {
748     for (auto &MI : *MBB) {
749       if (MI.isDebugValue())
750         continue;
751       else if (MI.getOpcode() == ARM::t2LoopDec)
752         LoLoop.Dec = &MI;
753       else if (MI.getOpcode() == ARM::t2LoopEnd)
754         LoLoop.End = &MI;
755       else if (isLoopStart(MI))
756         LoLoop.Start = &MI;
757       else if (MI.getDesc().isCall()) {
758         // TODO: Though the call will require LE to execute again, does this
759         // mean we should revert? Always executing LE hopefully should be
760         // faster than performing a sub,cmp,br or even subs,br.
761         LoLoop.Revert = true;
762         LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
763       } else {
764         // Record VPR defs and build up their corresponding vpt blocks.
765         // Check we know how to tail predicate any mve instructions.
766         LoLoop.AnalyseMVEInst(&MI);
767       }
768     }
769   }
770 
771   LLVM_DEBUG(LoLoop.dump());
772   if (!LoLoop.FoundAllComponents()) {
773     LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
774     return false;
775   }
776 
777   // Check that the only instruction using LoopDec is LoopEnd.
778   // TODO: Check for copy chains that really have no effect.
779   SmallPtrSet<MachineInstr*, 2> Uses;
780   RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses);
781   if (Uses.size() > 1 || !Uses.count(LoLoop.End)) {
782     LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n");
783     LoLoop.Revert = true;
784   }
785   LoLoop.CheckLegality(BBUtils.get());
786   Expand(LoLoop);
787   return true;
788 }
789 
790 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
791 // beq that branches to the exit branch.
792 // TODO: We could also try to generate a cbz if the value in LR is also in
793 // another low register.
794 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const {
795   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI);
796   MachineBasicBlock *MBB = MI->getParent();
797   MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
798                                     TII->get(ARM::t2CMPri));
799   MIB.add(MI->getOperand(0));
800   MIB.addImm(0);
801   MIB.addImm(ARMCC::AL);
802   MIB.addReg(ARM::NoRegister);
803 
804   MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
805   unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
806     ARM::tBcc : ARM::t2Bcc;
807 
808   MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
809   MIB.add(MI->getOperand(1));   // branch target
810   MIB.addImm(ARMCC::EQ);        // condition code
811   MIB.addReg(ARM::CPSR);
812   MI->eraseFromParent();
813 }
814 
815 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const {
816   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI);
817   MachineBasicBlock *MBB = MI->getParent();
818   MachineInstr *Last = &MBB->back();
819   SmallPtrSet<MachineInstr*, 1> Ignore;
820   if (Last->getOpcode() == ARM::t2LoopEnd)
821     Ignore.insert(Last);
822 
823   // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
824   bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore);
825 
826   MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
827                                     TII->get(ARM::t2SUBri));
828   MIB.addDef(ARM::LR);
829   MIB.add(MI->getOperand(1));
830   MIB.add(MI->getOperand(2));
831   MIB.addImm(ARMCC::AL);
832   MIB.addReg(0);
833 
834   if (SetFlags) {
835     MIB.addReg(ARM::CPSR);
836     MIB->getOperand(5).setIsDef(true);
837   } else
838     MIB.addReg(0);
839 
840   MI->eraseFromParent();
841   return SetFlags;
842 }
843 
844 // Generate a subs, or sub and cmp, and a branch instead of an LE.
845 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const {
846   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI);
847 
848   MachineBasicBlock *MBB = MI->getParent();
849   // Create cmp
850   if (!SkipCmp) {
851     MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
852                                       TII->get(ARM::t2CMPri));
853     MIB.addReg(ARM::LR);
854     MIB.addImm(0);
855     MIB.addImm(ARMCC::AL);
856     MIB.addReg(ARM::NoRegister);
857   }
858 
859   MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
860   unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
861     ARM::tBcc : ARM::t2Bcc;
862 
863   // Create bne
864   MachineInstrBuilder MIB =
865     BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
866   MIB.add(MI->getOperand(1));   // branch target
867   MIB.addImm(ARMCC::NE);        // condition code
868   MIB.addReg(ARM::CPSR);
869   MI->eraseFromParent();
870 }
871 
872 // Perform dead code elimation on the loop iteration count setup expression.
873 // If we are tail-predicating, the number of elements to be processed is the
874 // operand of the VCTP instruction in the vector body, see getCount(), which is
875 // register $r3 in this example:
876 //
877 //   $lr = big-itercount-expression
878 //   ..
879 //   t2DoLoopStart renamable $lr
880 //   vector.body:
881 //     ..
882 //     $vpr = MVE_VCTP32 renamable $r3
883 //     renamable $lr = t2LoopDec killed renamable $lr, 1
884 //     t2LoopEnd renamable $lr, %vector.body
885 //     tB %end
886 //
887 // What we would like achieve here is to replace the do-loop start pseudo
888 // instruction t2DoLoopStart with:
889 //
890 //    $lr = MVE_DLSTP_32 killed renamable $r3
891 //
892 // Thus, $r3 which defines the number of elements, is written to $lr,
893 // and then we want to delete the whole chain that used to define $lr,
894 // see the comment below how this chain could look like.
895 //
896 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) {
897   if (!LoLoop.IsTailPredicationLegal())
898     return;
899 
900   if (auto *Def = RDA->getReachingMIDef(LoLoop.Start,
901                                         LoLoop.Start->getOperand(0).getReg())) {
902     SmallPtrSet<MachineInstr*, 4> Remove;
903     SmallPtrSet<MachineInstr*, 4> Ignore = { LoLoop.Start, LoLoop.Dec,
904                                              LoLoop.End, LoLoop.InsertPt };
905     SmallVector<MachineInstr*, 4> Chain = { Def };
906     while (!Chain.empty()) {
907       MachineInstr *MI = Chain.back();
908       Chain.pop_back();
909 
910       // If an instruction is conditionally executed, we assume here that this
911       // an IT-block with just this single instruction in it, otherwise we
912       // continue and can't perform dead-code elimination on it. This will
913       // capture most cases, because the loop iteration count expression
914       // that performs a round-up to next multiple of the vector length will
915       // look like this:
916       //
917       //   %mull = ..
918       //   %0 = add i32 %mul, 3
919       //   %1 = icmp slt i32 %mul, 4
920       //   %smin = select i1 %1, i32 %mul, i32 4
921       //   %2 = sub i32 %0, %smin
922       //   %3 = lshr i32 %2, 2
923       //   %4 = add nuw nsw i32 %3, 1
924       //
925       // There can be a select instruction, checking if we need to execute only
926       // 1 vector iteration (in this examples that means 4 elements). Thus,
927       // we conditionally execute one instructions to materialise the iteration
928       // count.
929       MachineInstr *IT = nullptr;
930       if (TII->getPredicate(*MI) != ARMCC::AL) {
931         auto PrevMI = std::prev(MI->getIterator());
932         auto NextMI = std::next(MI->getIterator());
933 
934         if (PrevMI->getOpcode() == ARM::t2IT &&
935             TII->getPredicate(*NextMI) == ARMCC::AL)
936           IT = &*PrevMI;
937         else
938           // We can't analyse IT-blocks with multiple statements. Be
939           // conservative here: clear the list, and don't remove any statements
940           // at all.
941           return;
942       }
943 
944       if (RDA->isSafeToRemove(MI, Remove, Ignore)) {
945         for (auto &MO : MI->operands()) {
946           if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
947             continue;
948           if (auto *Op = RDA->getReachingMIDef(MI, MO.getReg()))
949             Chain.push_back(Op);
950         }
951         Ignore.insert(MI);
952 
953         if (IT)
954           Remove.insert(IT);
955       }
956     }
957     LoLoop.ToRemove.insert(Remove.begin(), Remove.end());
958   }
959 }
960 
961 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) {
962   LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n");
963   // When using tail-predication, try to delete the dead code that was used to
964   // calculate the number of loop iterations.
965   IterationCountDCE(LoLoop);
966 
967   MachineInstr *InsertPt = LoLoop.InsertPt;
968   MachineInstr *Start = LoLoop.Start;
969   MachineBasicBlock *MBB = InsertPt->getParent();
970   bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
971   unsigned Opc = LoLoop.getStartOpcode();
972   MachineOperand &Count = LoLoop.getCount();
973 
974   MachineInstrBuilder MIB =
975     BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc));
976 
977   MIB.addDef(ARM::LR);
978   MIB.add(Count);
979   if (!IsDo)
980     MIB.add(Start->getOperand(1));
981 
982   // If we're inserting at a mov lr, then remove it as it's redundant.
983   if (InsertPt != Start)
984     LoLoop.ToRemove.insert(InsertPt);
985   LoLoop.ToRemove.insert(Start);
986   LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB);
987   return &*MIB;
988 }
989 
990 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) {
991   auto RemovePredicate = [](MachineInstr *MI) {
992     LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI);
993     if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) {
994       assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then &&
995              "Expected Then predicate!");
996       MI->getOperand(PIdx).setImm(ARMVCC::None);
997       MI->getOperand(PIdx+1).setReg(0);
998     } else
999       llvm_unreachable("trying to unpredicate a non-predicated instruction");
1000   };
1001 
1002   // There are a few scenarios which we have to fix up:
1003   // 1) A VPT block with is only predicated by the vctp and has no internal vpr
1004   //    defs.
1005   // 2) A VPT block which is only predicated by the vctp but has an internal
1006   //    vpr def.
1007   // 3) A VPT block which is predicated upon the vctp as well as another vpr
1008   //    def.
1009   // 4) A VPT block which is not predicated upon a vctp, but contains it and
1010   //    all instructions within the block are predicated upon in.
1011 
1012   for (auto &Block : LoLoop.getVPTBlocks()) {
1013     SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts();
1014     if (Block.HasNonUniformPredicate()) {
1015       PredicatedMI *Divergent = Block.getDivergent();
1016       if (isVCTP(Divergent->MI)) {
1017         // The vctp will be removed, so the size of the vpt block needs to be
1018         // modified.
1019         uint64_t Size = getARMVPTBlockMask(Block.size() - 1);
1020         Block.getVPST()->getOperand(0).setImm(Size);
1021         LLVM_DEBUG(dbgs() << "ARM Loops: Modified VPT block mask.\n");
1022       } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) {
1023         // The VPT block has a non-uniform predicate but it's entry is guarded
1024         // only by a vctp, which means we:
1025         // - Need to remove the original vpst.
1026         // - Then need to unpredicate any following instructions, until
1027         //   we come across the divergent vpr def.
1028         // - Insert a new vpst to predicate the instruction(s) that following
1029         //   the divergent vpr def.
1030         // TODO: We could be producing more VPT blocks than necessary and could
1031         // fold the newly created one into a proceeding one.
1032         for (auto I = ++MachineBasicBlock::iterator(Block.getVPST()),
1033              E = ++MachineBasicBlock::iterator(Divergent->MI); I != E; ++I)
1034           RemovePredicate(&*I);
1035 
1036         unsigned Size = 0;
1037         auto E = MachineBasicBlock::reverse_iterator(Divergent->MI);
1038         auto I = MachineBasicBlock::reverse_iterator(Insts.back().MI);
1039         MachineInstr *InsertAt = nullptr;
1040         while (I != E) {
1041           InsertAt = &*I;
1042           ++Size;
1043           ++I;
1044         }
1045         MachineInstrBuilder MIB = BuildMI(*InsertAt->getParent(), InsertAt,
1046                                           InsertAt->getDebugLoc(),
1047                                           TII->get(ARM::MVE_VPST));
1048         MIB.addImm(getARMVPTBlockMask(Size));
1049         LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST());
1050         LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB);
1051         LoLoop.ToRemove.insert(Block.getVPST());
1052       }
1053     } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) {
1054       // A vpt block which is only predicated upon vctp and has no internal vpr
1055       // defs:
1056       // - Remove vpst.
1057       // - Unpredicate the remaining instructions.
1058       LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST());
1059       LoLoop.ToRemove.insert(Block.getVPST());
1060       for (auto &PredMI : Insts)
1061         RemovePredicate(PredMI.MI);
1062     }
1063   }
1064   LLVM_DEBUG(dbgs() << "ARM Loops: Removing VCTP: " << *LoLoop.VCTP);
1065   LoLoop.ToRemove.insert(LoLoop.VCTP);
1066 }
1067 
1068 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) {
1069 
1070   // Combine the LoopDec and LoopEnd instructions into LE(TP).
1071   auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) {
1072     MachineInstr *End = LoLoop.End;
1073     MachineBasicBlock *MBB = End->getParent();
1074     unsigned Opc = LoLoop.IsTailPredicationLegal() ?
1075       ARM::MVE_LETP : ARM::t2LEUpdate;
1076     MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(),
1077                                       TII->get(Opc));
1078     MIB.addDef(ARM::LR);
1079     MIB.add(End->getOperand(0));
1080     MIB.add(End->getOperand(1));
1081     LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB);
1082     LoLoop.Dec->eraseFromParent();
1083     End->eraseFromParent();
1084     return &*MIB;
1085   };
1086 
1087   // TODO: We should be able to automatically remove these branches before we
1088   // get here - probably by teaching analyzeBranch about the pseudo
1089   // instructions.
1090   // If there is an unconditional branch, after I, that just branches to the
1091   // next block, remove it.
1092   auto RemoveDeadBranch = [](MachineInstr *I) {
1093     MachineBasicBlock *BB = I->getParent();
1094     MachineInstr *Terminator = &BB->instr_back();
1095     if (Terminator->isUnconditionalBranch() && I != Terminator) {
1096       MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB();
1097       if (BB->isLayoutSuccessor(Succ)) {
1098         LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator);
1099         Terminator->eraseFromParent();
1100       }
1101     }
1102   };
1103 
1104   if (LoLoop.Revert) {
1105     if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart)
1106       RevertWhile(LoLoop.Start);
1107     else
1108       LoLoop.Start->eraseFromParent();
1109     bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec);
1110     RevertLoopEnd(LoLoop.End, FlagsAlreadySet);
1111   } else {
1112     LoLoop.Start = ExpandLoopStart(LoLoop);
1113     RemoveDeadBranch(LoLoop.Start);
1114     LoLoop.End = ExpandLoopEnd(LoLoop);
1115     RemoveDeadBranch(LoLoop.End);
1116     if (LoLoop.IsTailPredicationLegal())
1117       ConvertVPTBlocks(LoLoop);
1118     for (auto *I : LoLoop.ToRemove) {
1119       LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I);
1120       I->eraseFromParent();
1121     }
1122   }
1123 
1124   PostOrderLoopTraversal DFS(LoLoop.ML, *MLI);
1125   DFS.ProcessLoop();
1126   const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder();
1127   for (auto *MBB : PostOrder) {
1128     recomputeLiveIns(*MBB);
1129     // FIXME: For some reason, the live-in print order is non-deterministic for
1130     // our tests and I can't out why... So just sort them.
1131     MBB->sortUniqueLiveIns();
1132   }
1133 
1134   for (auto *MBB : reverse(PostOrder))
1135     recomputeLivenessFlags(*MBB);
1136 }
1137 
1138 bool ARMLowOverheadLoops::RevertNonLoops() {
1139   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
1140   bool Changed = false;
1141 
1142   for (auto &MBB : *MF) {
1143     SmallVector<MachineInstr*, 4> Starts;
1144     SmallVector<MachineInstr*, 4> Decs;
1145     SmallVector<MachineInstr*, 4> Ends;
1146 
1147     for (auto &I : MBB) {
1148       if (isLoopStart(I))
1149         Starts.push_back(&I);
1150       else if (I.getOpcode() == ARM::t2LoopDec)
1151         Decs.push_back(&I);
1152       else if (I.getOpcode() == ARM::t2LoopEnd)
1153         Ends.push_back(&I);
1154     }
1155 
1156     if (Starts.empty() && Decs.empty() && Ends.empty())
1157       continue;
1158 
1159     Changed = true;
1160 
1161     for (auto *Start : Starts) {
1162       if (Start->getOpcode() == ARM::t2WhileLoopStart)
1163         RevertWhile(Start);
1164       else
1165         Start->eraseFromParent();
1166     }
1167     for (auto *Dec : Decs)
1168       RevertLoopDec(Dec);
1169 
1170     for (auto *End : Ends)
1171       RevertLoopEnd(End);
1172   }
1173   return Changed;
1174 }
1175 
1176 FunctionPass *llvm::createARMLowOverheadLoopsPass() {
1177   return new ARMLowOverheadLoops();
1178 }
1179