1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 /// A note on VPR.P0 (the lane mask): 39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a 40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks). 41 /// They will simply "and" the result of their calculation with the current 42 /// value of VPR.P0. You can think of it like this: 43 /// \verbatim 44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs 45 /// VPR.P0 &= Value 46 /// else 47 /// VPR.P0 = Value 48 /// \endverbatim 49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always 50 /// fall in the "VPT active" case, so we can consider that all VPR writes by 51 /// one of those instruction is actually a "and". 52 //===----------------------------------------------------------------------===// 53 54 #include "ARM.h" 55 #include "ARMBaseInstrInfo.h" 56 #include "ARMBaseRegisterInfo.h" 57 #include "ARMBasicBlockInfo.h" 58 #include "ARMSubtarget.h" 59 #include "Thumb2InstrInfo.h" 60 #include "llvm/ADT/SetOperations.h" 61 #include "llvm/ADT/SmallSet.h" 62 #include "llvm/CodeGen/LivePhysRegs.h" 63 #include "llvm/CodeGen/MachineFunctionPass.h" 64 #include "llvm/CodeGen/MachineLoopInfo.h" 65 #include "llvm/CodeGen/MachineLoopUtils.h" 66 #include "llvm/CodeGen/MachineRegisterInfo.h" 67 #include "llvm/CodeGen/Passes.h" 68 #include "llvm/CodeGen/ReachingDefAnalysis.h" 69 #include "llvm/MC/MCInstrDesc.h" 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "arm-low-overhead-loops" 74 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 75 76 static cl::opt<bool> 77 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden, 78 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"), 79 cl::init(false)); 80 81 static bool isVectorPredicated(MachineInstr *MI) { 82 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 83 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 84 } 85 86 static bool isVectorPredicate(MachineInstr *MI) { 87 return MI->findRegisterDefOperandIdx(ARM::VPR) != -1; 88 } 89 90 static bool hasVPRUse(MachineInstr &MI) { 91 return MI.findRegisterUseOperandIdx(ARM::VPR) != -1; 92 } 93 94 static bool isDomainMVE(MachineInstr *MI) { 95 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask; 96 return Domain == ARMII::DomainMVE; 97 } 98 99 static bool shouldInspect(MachineInstr &MI) { 100 return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI); 101 } 102 103 static bool isDo(MachineInstr *MI) { 104 return MI->getOpcode() != ARM::t2WhileLoopStart; 105 } 106 107 namespace { 108 109 using InstSet = SmallPtrSetImpl<MachineInstr *>; 110 111 class PostOrderLoopTraversal { 112 MachineLoop &ML; 113 MachineLoopInfo &MLI; 114 SmallPtrSet<MachineBasicBlock*, 4> Visited; 115 SmallVector<MachineBasicBlock*, 4> Order; 116 117 public: 118 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 119 : ML(ML), MLI(MLI) { } 120 121 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 122 return Order; 123 } 124 125 // Visit all the blocks within the loop, as well as exit blocks and any 126 // blocks properly dominating the header. 127 void ProcessLoop() { 128 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 129 (MachineBasicBlock *MBB) -> void { 130 if (Visited.count(MBB)) 131 return; 132 133 Visited.insert(MBB); 134 for (auto *Succ : MBB->successors()) { 135 if (!ML.contains(Succ)) 136 continue; 137 Search(Succ); 138 } 139 Order.push_back(MBB); 140 }; 141 142 // Insert exit blocks. 143 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 144 ML.getExitBlocks(ExitBlocks); 145 for (auto *MBB : ExitBlocks) 146 Order.push_back(MBB); 147 148 // Then add the loop body. 149 Search(ML.getHeader()); 150 151 // Then try the preheader and its predecessors. 152 std::function<void(MachineBasicBlock*)> GetPredecessor = 153 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 154 Order.push_back(MBB); 155 if (MBB->pred_size() == 1) 156 GetPredecessor(*MBB->pred_begin()); 157 }; 158 159 if (auto *Preheader = ML.getLoopPreheader()) 160 GetPredecessor(Preheader); 161 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true)) 162 GetPredecessor(Preheader); 163 } 164 }; 165 166 struct PredicatedMI { 167 MachineInstr *MI = nullptr; 168 SetVector<MachineInstr*> Predicates; 169 170 public: 171 PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) { 172 assert(I && "Instruction must not be null!"); 173 Predicates.insert(Preds.begin(), Preds.end()); 174 } 175 }; 176 177 // Represent the current state of the VPR and hold all instances which 178 // represent a VPT block, which is a list of instructions that begins with a 179 // VPT/VPST and has a maximum of four proceeding instructions. All 180 // instructions within the block are predicated upon the vpr and we allow 181 // instructions to define the vpr within in the block too. 182 class VPTState { 183 friend struct LowOverheadLoop; 184 185 SmallVector<MachineInstr *, 4> Insts; 186 187 static SmallVector<VPTState, 4> Blocks; 188 static SetVector<MachineInstr *> CurrentPredicates; 189 static std::map<MachineInstr *, 190 std::unique_ptr<PredicatedMI>> PredicatedInsts; 191 192 static void CreateVPTBlock(MachineInstr *MI) { 193 assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR)) 194 && "Can't begin VPT without predicate"); 195 Blocks.emplace_back(MI); 196 // The execution of MI is predicated upon the current set of instructions 197 // that are AND'ed together to form the VPR predicate value. In the case 198 // that MI is a VPT, CurrentPredicates will also just be MI. 199 PredicatedInsts.emplace( 200 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 201 } 202 203 static void reset() { 204 Blocks.clear(); 205 PredicatedInsts.clear(); 206 CurrentPredicates.clear(); 207 } 208 209 static void addInst(MachineInstr *MI) { 210 Blocks.back().insert(MI); 211 PredicatedInsts.emplace( 212 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 213 } 214 215 static void addPredicate(MachineInstr *MI) { 216 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI); 217 CurrentPredicates.insert(MI); 218 } 219 220 static void resetPredicate(MachineInstr *MI) { 221 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI); 222 CurrentPredicates.clear(); 223 CurrentPredicates.insert(MI); 224 } 225 226 public: 227 // Have we found an instruction within the block which defines the vpr? If 228 // so, not all the instructions in the block will have the same predicate. 229 static bool hasUniformPredicate(VPTState &Block) { 230 return getDivergent(Block) == nullptr; 231 } 232 233 // If it exists, return the first internal instruction which modifies the 234 // VPR. 235 static MachineInstr *getDivergent(VPTState &Block) { 236 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 237 for (unsigned i = 1; i < Insts.size(); ++i) { 238 MachineInstr *Next = Insts[i]; 239 if (isVectorPredicate(Next)) 240 return Next; // Found an instruction altering the vpr. 241 } 242 return nullptr; 243 } 244 245 // Return whether the given instruction is predicated upon a VCTP. 246 static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) { 247 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates; 248 if (Exclusive && Predicates.size() != 1) 249 return false; 250 for (auto *PredMI : Predicates) 251 if (isVCTP(PredMI)) 252 return true; 253 return false; 254 } 255 256 // Is the VPST, controlling the block entry, predicated upon a VCTP. 257 static bool isEntryPredicatedOnVCTP(VPTState &Block, 258 bool Exclusive = false) { 259 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 260 return isPredicatedOnVCTP(Insts.front(), Exclusive); 261 } 262 263 // If this block begins with a VPT, we can check whether it's using 264 // at least one predicated input(s), as well as possible loop invariant 265 // which would result in it being implicitly predicated. 266 static bool hasImplicitlyValidVPT(VPTState &Block, 267 ReachingDefAnalysis &RDA) { 268 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 269 MachineInstr *VPT = Insts.front(); 270 assert(isVPTOpcode(VPT->getOpcode()) && 271 "Expected VPT block to begin with VPT/VPST"); 272 273 if (VPT->getOpcode() == ARM::MVE_VPST) 274 return false; 275 276 auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) { 277 MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx)); 278 return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op); 279 }; 280 281 auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) { 282 MachineOperand &MO = MI->getOperand(Idx); 283 if (!MO.isReg() || !MO.getReg()) 284 return true; 285 286 SmallPtrSet<MachineInstr *, 2> Defs; 287 RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs); 288 if (Defs.empty()) 289 return true; 290 291 for (auto *Def : Defs) 292 if (Def->getParent() == VPT->getParent()) 293 return false; 294 return true; 295 }; 296 297 // Check that at least one of the operands is directly predicated on a 298 // vctp and allow an invariant value too. 299 return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) && 300 (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) && 301 (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2)); 302 } 303 304 static bool isValid(ReachingDefAnalysis &RDA) { 305 // All predication within the loop should be based on vctp. If the block 306 // isn't predicated on entry, check whether the vctp is within the block 307 // and that all other instructions are then predicated on it. 308 for (auto &Block : Blocks) { 309 if (isEntryPredicatedOnVCTP(Block, false) || 310 hasImplicitlyValidVPT(Block, RDA)) 311 continue; 312 313 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 314 for (auto *MI : Insts) { 315 // Check that any internal VCTPs are 'Then' predicated. 316 if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then) 317 return false; 318 // Skip other instructions that build up the predicate. 319 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI)) 320 continue; 321 // Check that any other instructions are predicated upon a vctp. 322 // TODO: We could infer when VPTs are implicitly predicated on the 323 // vctp (when the operands are predicated). 324 if (!isPredicatedOnVCTP(MI)) { 325 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI); 326 return false; 327 } 328 } 329 } 330 return true; 331 } 332 333 VPTState(MachineInstr *MI) { Insts.push_back(MI); } 334 335 void insert(MachineInstr *MI) { 336 Insts.push_back(MI); 337 // VPT/VPST + 4 predicated instructions. 338 assert(Insts.size() <= 5 && "Too many instructions in VPT block!"); 339 } 340 341 bool containsVCTP() const { 342 for (auto *MI : Insts) 343 if (isVCTP(MI)) 344 return true; 345 return false; 346 } 347 348 unsigned size() const { return Insts.size(); } 349 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; } 350 }; 351 352 struct LowOverheadLoop { 353 354 MachineLoop &ML; 355 MachineBasicBlock *Preheader = nullptr; 356 MachineLoopInfo &MLI; 357 ReachingDefAnalysis &RDA; 358 const TargetRegisterInfo &TRI; 359 const ARMBaseInstrInfo &TII; 360 MachineFunction *MF = nullptr; 361 MachineBasicBlock::iterator StartInsertPt; 362 MachineBasicBlock *StartInsertBB = nullptr; 363 MachineInstr *Start = nullptr; 364 MachineInstr *Dec = nullptr; 365 MachineInstr *End = nullptr; 366 MachineOperand TPNumElements; 367 SmallVector<MachineInstr*, 4> VCTPs; 368 SmallPtrSet<MachineInstr*, 4> ToRemove; 369 SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute; 370 bool Revert = false; 371 bool CannotTailPredicate = false; 372 373 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 374 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI, 375 const ARMBaseInstrInfo &TII) 376 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII), 377 TPNumElements(MachineOperand::CreateImm(0)) { 378 MF = ML.getHeader()->getParent(); 379 if (auto *MBB = ML.getLoopPreheader()) 380 Preheader = MBB; 381 else if (auto *MBB = MLI.findLoopPreheader(&ML, true)) 382 Preheader = MBB; 383 VPTState::reset(); 384 } 385 386 // If this is an MVE instruction, check that we know how to use tail 387 // predication with it. Record VPT blocks and return whether the 388 // instruction is valid for tail predication. 389 bool ValidateMVEInst(MachineInstr *MI); 390 391 void AnalyseMVEInst(MachineInstr *MI) { 392 CannotTailPredicate = !ValidateMVEInst(MI); 393 } 394 395 bool IsTailPredicationLegal() const { 396 // For now, let's keep things really simple and only support a single 397 // block for tail predication. 398 return !Revert && FoundAllComponents() && !VCTPs.empty() && 399 !CannotTailPredicate && ML.getNumBlocks() == 1; 400 } 401 402 // Given that MI is a VCTP, check that is equivalent to any other VCTPs 403 // found. 404 bool AddVCTP(MachineInstr *MI); 405 406 // Check that the predication in the loop will be equivalent once we 407 // perform the conversion. Also ensure that we can provide the number 408 // of elements to the loop start instruction. 409 bool ValidateTailPredicate(); 410 411 // Check that any values available outside of the loop will be the same 412 // after tail predication conversion. 413 bool ValidateLiveOuts(); 414 415 // Is it safe to define LR with DLS/WLS? 416 // LR can be defined if it is the operand to start, because it's the same 417 // value, or if it's going to be equivalent to the operand to Start. 418 MachineInstr *isSafeToDefineLR(); 419 420 // Check the branch targets are within range and we satisfy our 421 // restrictions. 422 void Validate(ARMBasicBlockUtils *BBUtils); 423 424 bool FoundAllComponents() const { 425 return Start && Dec && End; 426 } 427 428 SmallVectorImpl<VPTState> &getVPTBlocks() { 429 return VPTState::Blocks; 430 } 431 432 // Return the operand for the loop start instruction. This will be the loop 433 // iteration count, or the number of elements if we're tail predicating. 434 MachineOperand &getLoopStartOperand() { 435 if (IsTailPredicationLegal()) 436 return TPNumElements; 437 return isDo(Start) ? Start->getOperand(1) : Start->getOperand(0); 438 } 439 440 unsigned getStartOpcode() const { 441 bool IsDo = isDo(Start); 442 if (!IsTailPredicationLegal()) 443 return IsDo ? ARM::t2DLS : ARM::t2WLS; 444 445 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo); 446 } 447 448 void dump() const { 449 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 450 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 451 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 452 if (!VCTPs.empty()) { 453 dbgs() << "ARM Loops: Found VCTP(s):\n"; 454 for (auto *MI : VCTPs) 455 dbgs() << " - " << *MI; 456 } 457 if (!FoundAllComponents()) 458 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 459 else if (!(Start && Dec && End)) 460 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 461 } 462 }; 463 464 class ARMLowOverheadLoops : public MachineFunctionPass { 465 MachineFunction *MF = nullptr; 466 MachineLoopInfo *MLI = nullptr; 467 ReachingDefAnalysis *RDA = nullptr; 468 const ARMBaseInstrInfo *TII = nullptr; 469 MachineRegisterInfo *MRI = nullptr; 470 const TargetRegisterInfo *TRI = nullptr; 471 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 472 473 public: 474 static char ID; 475 476 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 477 478 void getAnalysisUsage(AnalysisUsage &AU) const override { 479 AU.setPreservesCFG(); 480 AU.addRequired<MachineLoopInfo>(); 481 AU.addRequired<ReachingDefAnalysis>(); 482 MachineFunctionPass::getAnalysisUsage(AU); 483 } 484 485 bool runOnMachineFunction(MachineFunction &MF) override; 486 487 MachineFunctionProperties getRequiredProperties() const override { 488 return MachineFunctionProperties().set( 489 MachineFunctionProperties::Property::NoVRegs).set( 490 MachineFunctionProperties::Property::TracksLiveness); 491 } 492 493 StringRef getPassName() const override { 494 return ARM_LOW_OVERHEAD_LOOPS_NAME; 495 } 496 497 private: 498 bool ProcessLoop(MachineLoop *ML); 499 500 bool RevertNonLoops(); 501 502 void RevertWhile(MachineInstr *MI) const; 503 void RevertDo(MachineInstr *MI) const; 504 505 bool RevertLoopDec(MachineInstr *MI) const; 506 507 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 508 509 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 510 511 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 512 513 void Expand(LowOverheadLoop &LoLoop); 514 515 void IterationCountDCE(LowOverheadLoop &LoLoop); 516 }; 517 } 518 519 char ARMLowOverheadLoops::ID = 0; 520 521 SmallVector<VPTState, 4> VPTState::Blocks; 522 SetVector<MachineInstr *> VPTState::CurrentPredicates; 523 std::map<MachineInstr *, 524 std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts; 525 526 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 527 false, false) 528 529 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA, 530 InstSet &ToRemove, InstSet &Ignore) { 531 532 // Check that we can remove all of Killed without having to modify any IT 533 // blocks. 534 auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) { 535 // Collect the dead code and the MBBs in which they reside. 536 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 537 for (auto *Dead : Killed) 538 BasicBlocks.insert(Dead->getParent()); 539 540 // Collect IT blocks in all affected basic blocks. 541 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 542 for (auto *MBB : BasicBlocks) { 543 for (auto &IT : *MBB) { 544 if (IT.getOpcode() != ARM::t2IT) 545 continue; 546 RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE), 547 ITBlocks[&IT]); 548 } 549 } 550 551 // If we're removing all of the instructions within an IT block, then 552 // also remove the IT instruction. 553 SmallPtrSet<MachineInstr *, 2> ModifiedITs; 554 SmallPtrSet<MachineInstr *, 2> RemoveITs; 555 for (auto *Dead : Killed) { 556 if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) { 557 MachineInstr *IT = RDA.getMIOperand(Dead, *MO); 558 RemoveITs.insert(IT); 559 auto &CurrentBlock = ITBlocks[IT]; 560 CurrentBlock.erase(Dead); 561 if (CurrentBlock.empty()) 562 ModifiedITs.erase(IT); 563 else 564 ModifiedITs.insert(IT); 565 } 566 } 567 if (!ModifiedITs.empty()) 568 return false; 569 Killed.insert(RemoveITs.begin(), RemoveITs.end()); 570 return true; 571 }; 572 573 SmallPtrSet<MachineInstr *, 2> Uses; 574 if (!RDA.isSafeToRemove(MI, Uses, Ignore)) 575 return false; 576 577 if (WontCorruptITs(Uses, RDA)) { 578 ToRemove.insert(Uses.begin(), Uses.end()); 579 LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI 580 << " - can also remove:\n"; 581 for (auto *Use : Uses) 582 dbgs() << " - " << *Use); 583 584 SmallPtrSet<MachineInstr*, 4> Killed; 585 RDA.collectKilledOperands(MI, Killed); 586 if (WontCorruptITs(Killed, RDA)) { 587 ToRemove.insert(Killed.begin(), Killed.end()); 588 LLVM_DEBUG(for (auto *Dead : Killed) 589 dbgs() << " - " << *Dead); 590 } 591 return true; 592 } 593 return false; 594 } 595 596 bool LowOverheadLoop::ValidateTailPredicate() { 597 if (!IsTailPredicationLegal()) { 598 LLVM_DEBUG(if (VCTPs.empty()) 599 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 600 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 601 return false; 602 } 603 604 assert(!VCTPs.empty() && "VCTP instruction expected but is not set"); 605 assert(ML.getBlocks().size() == 1 && 606 "Shouldn't be processing a loop with more than one block"); 607 608 if (DisableTailPredication) { 609 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n"); 610 return false; 611 } 612 613 if (!VPTState::isValid(RDA)) { 614 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n"); 615 return false; 616 } 617 618 if (!ValidateLiveOuts()) { 619 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n"); 620 return false; 621 } 622 623 // Check that creating a [W|D]LSTP, which will define LR with an element 624 // count instead of iteration count, won't affect any other instructions 625 // than the LoopStart and LoopDec. 626 // TODO: We should try to insert the [W|D]LSTP after any of the other uses. 627 Register StartReg = isDo(Start) ? Start->getOperand(1).getReg() 628 : Start->getOperand(0).getReg(); 629 if (StartInsertPt == Start && StartReg == ARM::LR) { 630 if (auto *IterCount = RDA.getMIOperand(Start, isDo(Start) ? 1 : 0)) { 631 SmallPtrSet<MachineInstr *, 2> Uses; 632 RDA.getGlobalUses(IterCount, MCRegister::from(ARM::LR), Uses); 633 for (auto *Use : Uses) { 634 if (Use != Start && Use != Dec) { 635 LLVM_DEBUG(dbgs() << " ARM Loops: Found LR use: " << *Use); 636 return false; 637 } 638 } 639 } 640 } 641 642 // For tail predication, we need to provide the number of elements, instead 643 // of the iteration count, to the loop start instruction. The number of 644 // elements is provided to the vctp instruction, so we need to check that 645 // we can use this register at InsertPt. 646 MachineInstr *VCTP = VCTPs.back(); 647 if (Start->getOpcode() == ARM::t2DoLoopStartTP) { 648 TPNumElements = Start->getOperand(2); 649 StartInsertPt = Start; 650 StartInsertBB = Start->getParent(); 651 } else { 652 TPNumElements = VCTP->getOperand(1); 653 MCRegister NumElements = TPNumElements.getReg().asMCReg(); 654 655 // If the register is defined within loop, then we can't perform TP. 656 // TODO: Check whether this is just a mov of a register that would be 657 // available. 658 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 659 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 660 return false; 661 } 662 663 // The element count register maybe defined after InsertPt, in which case we 664 // need to try to move either InsertPt or the def so that the [w|d]lstp can 665 // use the value. 666 667 if (StartInsertPt != StartInsertBB->end() && 668 !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) { 669 if (auto *ElemDef = 670 RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) { 671 if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) { 672 ElemDef->removeFromParent(); 673 StartInsertBB->insert(StartInsertPt, ElemDef); 674 LLVM_DEBUG(dbgs() 675 << "ARM Loops: Moved element count def: " << *ElemDef); 676 } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) { 677 StartInsertPt->removeFromParent(); 678 StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 679 &*StartInsertPt); 680 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 681 } else { 682 // If we fail to move an instruction and the element count is provided 683 // by a mov, use the mov operand if it will have the same value at the 684 // insertion point 685 MachineOperand Operand = ElemDef->getOperand(1); 686 if (isMovRegOpcode(ElemDef->getOpcode()) && 687 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) == 688 RDA.getUniqueReachingMIDef(&*StartInsertPt, 689 Operand.getReg().asMCReg())) { 690 TPNumElements = Operand; 691 NumElements = TPNumElements.getReg(); 692 } else { 693 LLVM_DEBUG(dbgs() 694 << "ARM Loops: Unable to move element count to loop " 695 << "start instruction.\n"); 696 return false; 697 } 698 } 699 } 700 } 701 702 // Especially in the case of while loops, InsertBB may not be the 703 // preheader, so we need to check that the register isn't redefined 704 // before entering the loop. 705 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 706 MCRegister NumElements) { 707 if (MBB->empty()) 708 return false; 709 // NumElements is redefined in this block. 710 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 711 return true; 712 713 // Don't continue searching up through multiple predecessors. 714 if (MBB->pred_size() > 1) 715 return true; 716 717 return false; 718 }; 719 720 // Search backwards for a def, until we get to InsertBB. 721 MachineBasicBlock *MBB = Preheader; 722 while (MBB && MBB != StartInsertBB) { 723 if (CannotProvideElements(MBB, NumElements)) { 724 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 725 return false; 726 } 727 MBB = *MBB->pred_begin(); 728 } 729 } 730 731 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect 732 // world the [w|d]lstp instruction would be last instruction in the preheader 733 // and so it would only affect instructions within the loop body. But due to 734 // scheduling, and/or the logic in this pass (above), the insertion point can 735 // be moved earlier. So if the Loop Start isn't the last instruction in the 736 // preheader, and if the initial element count is smaller than the vector 737 // width, the Loop Start instruction will immediately generate one or more 738 // false lane mask which can, incorrectly, affect the proceeding MVE 739 // instructions in the preheader. 740 if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) { 741 LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n"); 742 return false; 743 } 744 745 // Check that the value change of the element count is what we expect and 746 // that the predication will be equivalent. For this we need: 747 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 748 // and we can also allow register copies within the chain too. 749 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 750 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 751 }; 752 753 MachineBasicBlock *MBB = VCTP->getParent(); 754 // Remove modifications to the element count since they have no purpose in a 755 // tail predicated loop. Explicitly refer to the vctp operand no matter which 756 // register NumElements has been assigned to, since that is what the 757 // modifications will be using 758 if (auto *Def = RDA.getUniqueReachingMIDef( 759 &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) { 760 SmallPtrSet<MachineInstr*, 2> ElementChain; 761 SmallPtrSet<MachineInstr*, 2> Ignore; 762 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 763 764 Ignore.insert(VCTPs.begin(), VCTPs.end()); 765 766 if (TryRemove(Def, RDA, ElementChain, Ignore)) { 767 bool FoundSub = false; 768 769 for (auto *MI : ElementChain) { 770 if (isMovRegOpcode(MI->getOpcode())) 771 continue; 772 773 if (isSubImmOpcode(MI->getOpcode())) { 774 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) { 775 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 776 " count: " << *MI); 777 return false; 778 } 779 FoundSub = true; 780 } else { 781 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 782 " count: " << *MI); 783 return false; 784 } 785 } 786 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 787 } 788 } 789 return true; 790 } 791 792 static bool isRegInClass(const MachineOperand &MO, 793 const TargetRegisterClass *Class) { 794 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 795 } 796 797 // MVE 'narrowing' operate on half a lane, reading from half and writing 798 // to half, which are referred to has the top and bottom half. The other 799 // half retains its previous value. 800 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 801 const MCInstrDesc &MCID = MI.getDesc(); 802 uint64_t Flags = MCID.TSFlags; 803 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 804 } 805 806 // Some MVE instructions read from the top/bottom halves of their operand(s) 807 // and generate a vector result with result elements that are double the 808 // width of the input. 809 static bool producesDoubleWidthResult(const MachineInstr &MI) { 810 const MCInstrDesc &MCID = MI.getDesc(); 811 uint64_t Flags = MCID.TSFlags; 812 return (Flags & ARMII::DoubleWidthResult) != 0; 813 } 814 815 static bool isHorizontalReduction(const MachineInstr &MI) { 816 const MCInstrDesc &MCID = MI.getDesc(); 817 uint64_t Flags = MCID.TSFlags; 818 return (Flags & ARMII::HorizontalReduction) != 0; 819 } 820 821 // Can this instruction generate a non-zero result when given only zeroed 822 // operands? This allows us to know that, given operands with false bytes 823 // zeroed by masked loads, that the result will also contain zeros in those 824 // bytes. 825 static bool canGenerateNonZeros(const MachineInstr &MI) { 826 827 // Check for instructions which can write into a larger element size, 828 // possibly writing into a previous zero'd lane. 829 if (producesDoubleWidthResult(MI)) 830 return true; 831 832 switch (MI.getOpcode()) { 833 default: 834 break; 835 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 836 // fp16 -> fp32 vector conversions. 837 // Instructions that perform a NOT will generate 1s from 0s. 838 case ARM::MVE_VMVN: 839 case ARM::MVE_VORN: 840 // Count leading zeros will do just that! 841 case ARM::MVE_VCLZs8: 842 case ARM::MVE_VCLZs16: 843 case ARM::MVE_VCLZs32: 844 return true; 845 } 846 return false; 847 } 848 849 // Look at its register uses to see if it only can only receive zeros 850 // into its false lanes which would then produce zeros. Also check that 851 // the output register is also defined by an FalseLanesZero instruction 852 // so that if tail-predication happens, the lanes that aren't updated will 853 // still be zeros. 854 static bool producesFalseLanesZero(MachineInstr &MI, 855 const TargetRegisterClass *QPRs, 856 const ReachingDefAnalysis &RDA, 857 InstSet &FalseLanesZero) { 858 if (canGenerateNonZeros(MI)) 859 return false; 860 861 bool isPredicated = isVectorPredicated(&MI); 862 // Predicated loads will write zeros to the falsely predicated bytes of the 863 // destination register. 864 if (MI.mayLoad()) 865 return isPredicated; 866 867 auto IsZeroInit = [](MachineInstr *Def) { 868 return !isVectorPredicated(Def) && 869 Def->getOpcode() == ARM::MVE_VMOVimmi32 && 870 Def->getOperand(1).getImm() == 0; 871 }; 872 873 bool AllowScalars = isHorizontalReduction(MI); 874 for (auto &MO : MI.operands()) { 875 if (!MO.isReg() || !MO.getReg()) 876 continue; 877 if (!isRegInClass(MO, QPRs) && AllowScalars) 878 continue; 879 880 // Check that this instruction will produce zeros in its false lanes: 881 // - If it only consumes false lanes zero or constant 0 (vmov #0) 882 // - If it's predicated, it only matters that it's def register already has 883 // false lane zeros, so we can ignore the uses. 884 SmallPtrSet<MachineInstr *, 2> Defs; 885 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs); 886 for (auto *Def : Defs) { 887 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def)) 888 continue; 889 if (MO.isUse() && isPredicated) 890 continue; 891 return false; 892 } 893 } 894 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 895 return true; 896 } 897 898 bool LowOverheadLoop::ValidateLiveOuts() { 899 // We want to find out if the tail-predicated version of this loop will 900 // produce the same values as the loop in its original form. For this to 901 // be true, the newly inserted implicit predication must not change the 902 // the (observable) results. 903 // We're doing this because many instructions in the loop will not be 904 // predicated and so the conversion from VPT predication to tail-predication 905 // can result in different values being produced; due to the tail-predication 906 // preventing many instructions from updating their falsely predicated 907 // lanes. This analysis assumes that all the instructions perform lane-wise 908 // operations and don't perform any exchanges. 909 // A masked load, whether through VPT or tail predication, will write zeros 910 // to any of the falsely predicated bytes. So, from the loads, we know that 911 // the false lanes are zeroed and here we're trying to track that those false 912 // lanes remain zero, or where they change, the differences are masked away 913 // by their user(s). 914 // All MVE stores have to be predicated, so we know that any predicate load 915 // operands, or stored results are equivalent already. Other explicitly 916 // predicated instructions will perform the same operation in the original 917 // loop and the tail-predicated form too. Because of this, we can insert 918 // loads, stores and other predicated instructions into our Predicated 919 // set and build from there. 920 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 921 SetVector<MachineInstr *> FalseLanesUnknown; 922 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 923 SmallPtrSet<MachineInstr *, 4> Predicated; 924 MachineBasicBlock *Header = ML.getHeader(); 925 926 for (auto &MI : *Header) { 927 if (!shouldInspect(MI)) 928 continue; 929 930 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) 931 continue; 932 933 bool isPredicated = isVectorPredicated(&MI); 934 bool retainsOrReduces = 935 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI); 936 937 if (isPredicated) 938 Predicated.insert(&MI); 939 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) 940 FalseLanesZero.insert(&MI); 941 else if (MI.getNumDefs() == 0) 942 continue; 943 else if (!isPredicated && retainsOrReduces) 944 return false; 945 else if (!isPredicated) 946 FalseLanesUnknown.insert(&MI); 947 } 948 949 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 950 SmallPtrSetImpl<MachineInstr *> &Predicated) { 951 SmallPtrSet<MachineInstr *, 2> Uses; 952 RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses); 953 for (auto *Use : Uses) { 954 if (Use != MI && !Predicated.count(Use)) 955 return false; 956 } 957 return true; 958 }; 959 960 // Visit the unknowns in reverse so that we can start at the values being 961 // stored and then we can work towards the leaves, hopefully adding more 962 // instructions to Predicated. Successfully terminating the loop means that 963 // all the unknown values have to found to be masked by predicated user(s). 964 // For any unpredicated values, we store them in NonPredicated so that we 965 // can later check whether these form a reduction. 966 SmallPtrSet<MachineInstr*, 2> NonPredicated; 967 for (auto *MI : reverse(FalseLanesUnknown)) { 968 for (auto &MO : MI->operands()) { 969 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 970 continue; 971 if (!HasPredicatedUsers(MI, MO, Predicated)) { 972 LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : " 973 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 974 NonPredicated.insert(MI); 975 break; 976 } 977 } 978 // Any unknown false lanes have been masked away by the user(s). 979 if (!NonPredicated.contains(MI)) 980 Predicated.insert(MI); 981 } 982 983 SmallPtrSet<MachineInstr *, 2> LiveOutMIs; 984 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 985 ML.getExitBlocks(ExitBlocks); 986 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 987 assert(ExitBlocks.size() == 1 && "Expected a single exit block"); 988 MachineBasicBlock *ExitBB = ExitBlocks.front(); 989 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) { 990 // TODO: Instead of blocking predication, we could move the vctp to the exit 991 // block and calculate it's operand there in or the preheader. 992 if (RegMask.PhysReg == ARM::VPR) 993 return false; 994 // Check Q-regs that are live in the exit blocks. We don't collect scalars 995 // because they won't be affected by lane predication. 996 if (QPRs->contains(RegMask.PhysReg)) 997 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg)) 998 LiveOutMIs.insert(MI); 999 } 1000 1001 // We've already validated that any VPT predication within the loop will be 1002 // equivalent when we perform the predication transformation; so we know that 1003 // any VPT predicated instruction is predicated upon VCTP. Any live-out 1004 // instruction needs to be predicated, so check this here. The instructions 1005 // in NonPredicated have been found to be a reduction that we can ensure its 1006 // legality. 1007 for (auto *MI : LiveOutMIs) { 1008 if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) { 1009 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to handle live out: " << *MI); 1010 return false; 1011 } 1012 } 1013 1014 return true; 1015 } 1016 1017 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) { 1018 if (Revert) 1019 return; 1020 1021 // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP] 1022 // can only jump back. 1023 auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End, 1024 ARMBasicBlockUtils *BBUtils, MachineLoop &ML) { 1025 assert(End->getOperand(1).isMBB() && 1026 "Expected LoopEnd to target basic block!"); 1027 1028 // TODO Maybe there's cases where the target doesn't have to be the header, 1029 // but for now be safe and revert. 1030 if (End->getOperand(1).getMBB() != ML.getHeader()) { 1031 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n"); 1032 return false; 1033 } 1034 1035 // The WLS and LE instructions have 12-bits for the label offset. WLS 1036 // requires a positive offset, while LE uses negative. 1037 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 1038 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 1039 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 1040 return false; 1041 } 1042 1043 if (Start->getOpcode() == ARM::t2WhileLoopStart && 1044 (BBUtils->getOffsetOf(Start) > 1045 BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || 1046 !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { 1047 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 1048 return false; 1049 } 1050 return true; 1051 }; 1052 1053 // Find a suitable position to insert the loop start instruction. It needs to 1054 // be able to safely define LR. 1055 auto FindStartInsertionPoint = [](MachineInstr *Start, MachineInstr *Dec, 1056 MachineBasicBlock::iterator &InsertPt, 1057 MachineBasicBlock *&InsertBB, 1058 ReachingDefAnalysis &RDA, 1059 InstSet &ToRemove) { 1060 // For a t2DoLoopStart it is always valid to use the start insertion point. 1061 // For WLS we can define LR if LR already contains the same value. 1062 if (isDo(Start) || Start->getOperand(0).getReg() == ARM::LR) { 1063 InsertPt = MachineBasicBlock::iterator(Start); 1064 InsertBB = Start->getParent(); 1065 return true; 1066 } 1067 1068 // We've found no suitable LR def and Start doesn't use LR directly. Can we 1069 // just define LR anyway? 1070 if (!RDA.isSafeToDefRegAt(Start, MCRegister::from(ARM::LR))) 1071 return false; 1072 1073 InsertPt = MachineBasicBlock::iterator(Start); 1074 InsertBB = Start->getParent(); 1075 return true; 1076 }; 1077 1078 if (!FindStartInsertionPoint(Start, Dec, StartInsertPt, StartInsertBB, RDA, 1079 ToRemove)) { 1080 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n"); 1081 Revert = true; 1082 return; 1083 } 1084 LLVM_DEBUG(if (StartInsertPt == StartInsertBB->end()) 1085 dbgs() << "ARM Loops: Will insert LoopStart at end of block\n"; 1086 else 1087 dbgs() << "ARM Loops: Will insert LoopStart at " 1088 << *StartInsertPt 1089 ); 1090 1091 Revert = !ValidateRanges(Start, End, BBUtils, ML); 1092 CannotTailPredicate = !ValidateTailPredicate(); 1093 } 1094 1095 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) { 1096 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI); 1097 if (VCTPs.empty()) { 1098 VCTPs.push_back(MI); 1099 return true; 1100 } 1101 1102 // If we find another VCTP, check whether it uses the same value as the main VCTP. 1103 // If it does, store it in the VCTPs set, else refuse it. 1104 MachineInstr *Prev = VCTPs.back(); 1105 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) || 1106 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) { 1107 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " 1108 "definition from the main VCTP"); 1109 return false; 1110 } 1111 VCTPs.push_back(MI); 1112 return true; 1113 } 1114 1115 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) { 1116 if (CannotTailPredicate) 1117 return false; 1118 1119 if (!shouldInspect(*MI)) 1120 return true; 1121 1122 if (MI->getOpcode() == ARM::MVE_VPSEL || 1123 MI->getOpcode() == ARM::MVE_VPNOT) { 1124 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 1125 // 1) It will use the VPR as a predicate operand, but doesn't have to be 1126 // instead a VPT block, which means we can assert while building up 1127 // the VPT block because we don't find another VPT or VPST to being a new 1128 // one. 1129 // 2) VPSEL still requires a VPR operand even after tail predicating, 1130 // which means we can't remove it unless there is another 1131 // instruction, such as vcmp, that can provide the VPR def. 1132 return false; 1133 } 1134 1135 // Record all VCTPs and check that they're equivalent to one another. 1136 if (isVCTP(MI) && !AddVCTP(MI)) 1137 return false; 1138 1139 // Inspect uses first so that any instructions that alter the VPR don't 1140 // alter the predicate upon themselves. 1141 const MCInstrDesc &MCID = MI->getDesc(); 1142 bool IsUse = false; 1143 unsigned LastOpIdx = MI->getNumOperands() - 1; 1144 for (auto &Op : enumerate(reverse(MCID.operands()))) { 1145 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index()); 1146 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR) 1147 continue; 1148 1149 if (ARM::isVpred(Op.value().OperandType)) { 1150 VPTState::addInst(MI); 1151 IsUse = true; 1152 } else if (MI->getOpcode() != ARM::MVE_VPST) { 1153 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 1154 return false; 1155 } 1156 } 1157 1158 // If we find an instruction that has been marked as not valid for tail 1159 // predication, only allow the instruction if it's contained within a valid 1160 // VPT block. 1161 bool RequiresExplicitPredication = 1162 (MCID.TSFlags & ARMII::ValidForTailPredication) == 0; 1163 if (isDomainMVE(MI) && RequiresExplicitPredication) { 1164 LLVM_DEBUG(if (!IsUse) 1165 dbgs() << "ARM Loops: Can't tail predicate: " << *MI); 1166 return IsUse; 1167 } 1168 1169 // If the instruction is already explicitly predicated, then the conversion 1170 // will be fine, but ensure that all store operations are predicated. 1171 if (MI->mayStore()) 1172 return IsUse; 1173 1174 // If this instruction defines the VPR, update the predicate for the 1175 // proceeding instructions. 1176 if (isVectorPredicate(MI)) { 1177 // Clear the existing predicate when we're not in VPT Active state, 1178 // otherwise we add to it. 1179 if (!isVectorPredicated(MI)) 1180 VPTState::resetPredicate(MI); 1181 else 1182 VPTState::addPredicate(MI); 1183 } 1184 1185 // Finally once the predicate has been modified, we can start a new VPT 1186 // block if necessary. 1187 if (isVPTOpcode(MI->getOpcode())) 1188 VPTState::CreateVPTBlock(MI); 1189 1190 return true; 1191 } 1192 1193 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 1194 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 1195 if (!ST.hasLOB()) 1196 return false; 1197 1198 MF = &mf; 1199 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 1200 1201 MLI = &getAnalysis<MachineLoopInfo>(); 1202 RDA = &getAnalysis<ReachingDefAnalysis>(); 1203 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 1204 MRI = &MF->getRegInfo(); 1205 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 1206 TRI = ST.getRegisterInfo(); 1207 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 1208 BBUtils->computeAllBlockSizes(); 1209 BBUtils->adjustBBOffsetsAfter(&MF->front()); 1210 1211 bool Changed = false; 1212 for (auto ML : *MLI) { 1213 if (ML->isOutermost()) 1214 Changed |= ProcessLoop(ML); 1215 } 1216 Changed |= RevertNonLoops(); 1217 return Changed; 1218 } 1219 1220 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 1221 1222 bool Changed = false; 1223 1224 // Process inner loops first. 1225 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 1226 Changed |= ProcessLoop(*I); 1227 1228 LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; 1229 if (auto *Preheader = ML->getLoopPreheader()) 1230 dbgs() << " - " << Preheader->getName() << "\n"; 1231 else if (auto *Preheader = MLI->findLoopPreheader(ML)) 1232 dbgs() << " - " << Preheader->getName() << "\n"; 1233 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 1234 dbgs() << " - " << Preheader->getName() << "\n"; 1235 for (auto *MBB : ML->getBlocks()) 1236 dbgs() << " - " << MBB->getName() << "\n"; 1237 ); 1238 1239 // Search the given block for a loop start instruction. If one isn't found, 1240 // and there's only one predecessor block, search that one too. 1241 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 1242 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 1243 for (auto &MI : *MBB) { 1244 if (isLoopStart(MI)) 1245 return &MI; 1246 } 1247 if (MBB->pred_size() == 1) 1248 return SearchForStart(*MBB->pred_begin()); 1249 return nullptr; 1250 }; 1251 1252 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII); 1253 // Search the preheader for the start intrinsic. 1254 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 1255 // with potentially multiple set.loop.iterations, so we need to enable this. 1256 if (LoLoop.Preheader) 1257 LoLoop.Start = SearchForStart(LoLoop.Preheader); 1258 else 1259 return false; 1260 1261 // Find the low-overhead loop components and decide whether or not to fall 1262 // back to a normal loop. Also look for a vctp instructions and decide 1263 // whether we can convert that predicate using tail predication. 1264 for (auto *MBB : reverse(ML->getBlocks())) { 1265 for (auto &MI : *MBB) { 1266 if (MI.isDebugValue()) 1267 continue; 1268 else if (MI.getOpcode() == ARM::t2LoopDec) 1269 LoLoop.Dec = &MI; 1270 else if (MI.getOpcode() == ARM::t2LoopEnd) 1271 LoLoop.End = &MI; 1272 else if (isLoopStart(MI)) 1273 LoLoop.Start = &MI; 1274 else if (MI.getDesc().isCall()) { 1275 // TODO: Though the call will require LE to execute again, does this 1276 // mean we should revert? Always executing LE hopefully should be 1277 // faster than performing a sub,cmp,br or even subs,br. 1278 LoLoop.Revert = true; 1279 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 1280 } else { 1281 // Record VPR defs and build up their corresponding vpt blocks. 1282 // Check we know how to tail predicate any mve instructions. 1283 LoLoop.AnalyseMVEInst(&MI); 1284 } 1285 } 1286 } 1287 1288 LLVM_DEBUG(LoLoop.dump()); 1289 if (!LoLoop.FoundAllComponents()) { 1290 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 1291 return false; 1292 } 1293 1294 // Check that the only instruction using LoopDec is LoopEnd. 1295 // TODO: Check for copy chains that really have no effect. 1296 SmallPtrSet<MachineInstr*, 2> Uses; 1297 RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses); 1298 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 1299 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 1300 LoLoop.Revert = true; 1301 } 1302 LoLoop.Validate(BBUtils.get()); 1303 Expand(LoLoop); 1304 return true; 1305 } 1306 1307 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 1308 // beq that branches to the exit branch. 1309 // TODO: We could also try to generate a cbz if the value in LR is also in 1310 // another low register. 1311 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 1312 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 1313 MachineBasicBlock *MBB = MI->getParent(); 1314 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1315 TII->get(ARM::t2CMPri)); 1316 MIB.add(MI->getOperand(0)); 1317 MIB.addImm(0); 1318 MIB.addImm(ARMCC::AL); 1319 MIB.addReg(ARM::NoRegister); 1320 1321 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1322 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1323 ARM::tBcc : ARM::t2Bcc; 1324 1325 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1326 MIB.add(MI->getOperand(1)); // branch target 1327 MIB.addImm(ARMCC::EQ); // condition code 1328 MIB.addReg(ARM::CPSR); 1329 MI->eraseFromParent(); 1330 } 1331 1332 void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const { 1333 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI); 1334 MachineBasicBlock *MBB = MI->getParent(); 1335 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::tMOVr)) 1336 .add(MI->getOperand(0)) 1337 .add(MI->getOperand(1)) 1338 .add(predOps(ARMCC::AL)); 1339 MI->eraseFromParent(); 1340 } 1341 1342 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 1343 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 1344 MachineBasicBlock *MBB = MI->getParent(); 1345 SmallPtrSet<MachineInstr*, 1> Ignore; 1346 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 1347 if (I->getOpcode() == ARM::t2LoopEnd) { 1348 Ignore.insert(&*I); 1349 break; 1350 } 1351 } 1352 1353 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1354 bool SetFlags = 1355 RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore); 1356 1357 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1358 TII->get(ARM::t2SUBri)); 1359 MIB.addDef(ARM::LR); 1360 MIB.add(MI->getOperand(1)); 1361 MIB.add(MI->getOperand(2)); 1362 MIB.addImm(ARMCC::AL); 1363 MIB.addReg(0); 1364 1365 if (SetFlags) { 1366 MIB.addReg(ARM::CPSR); 1367 MIB->getOperand(5).setIsDef(true); 1368 } else 1369 MIB.addReg(0); 1370 1371 MI->eraseFromParent(); 1372 return SetFlags; 1373 } 1374 1375 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1376 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1377 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1378 1379 MachineBasicBlock *MBB = MI->getParent(); 1380 // Create cmp 1381 if (!SkipCmp) { 1382 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1383 TII->get(ARM::t2CMPri)); 1384 MIB.addReg(ARM::LR); 1385 MIB.addImm(0); 1386 MIB.addImm(ARMCC::AL); 1387 MIB.addReg(ARM::NoRegister); 1388 } 1389 1390 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1391 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1392 ARM::tBcc : ARM::t2Bcc; 1393 1394 // Create bne 1395 MachineInstrBuilder MIB = 1396 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1397 MIB.add(MI->getOperand(1)); // branch target 1398 MIB.addImm(ARMCC::NE); // condition code 1399 MIB.addReg(ARM::CPSR); 1400 MI->eraseFromParent(); 1401 } 1402 1403 // Perform dead code elimation on the loop iteration count setup expression. 1404 // If we are tail-predicating, the number of elements to be processed is the 1405 // operand of the VCTP instruction in the vector body, see getCount(), which is 1406 // register $r3 in this example: 1407 // 1408 // $lr = big-itercount-expression 1409 // .. 1410 // $lr = t2DoLoopStart renamable $lr 1411 // vector.body: 1412 // .. 1413 // $vpr = MVE_VCTP32 renamable $r3 1414 // renamable $lr = t2LoopDec killed renamable $lr, 1 1415 // t2LoopEnd renamable $lr, %vector.body 1416 // tB %end 1417 // 1418 // What we would like achieve here is to replace the do-loop start pseudo 1419 // instruction t2DoLoopStart with: 1420 // 1421 // $lr = MVE_DLSTP_32 killed renamable $r3 1422 // 1423 // Thus, $r3 which defines the number of elements, is written to $lr, 1424 // and then we want to delete the whole chain that used to define $lr, 1425 // see the comment below how this chain could look like. 1426 // 1427 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1428 if (!LoLoop.IsTailPredicationLegal()) 1429 return; 1430 1431 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1432 1433 MachineInstr *Def = 1434 RDA->getMIOperand(LoLoop.Start, isDo(LoLoop.Start) ? 1 : 0); 1435 if (!Def) { 1436 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1437 return; 1438 } 1439 1440 // Collect and remove the users of iteration count. 1441 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1442 LoLoop.End }; 1443 if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed)) 1444 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1445 } 1446 1447 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1448 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1449 // When using tail-predication, try to delete the dead code that was used to 1450 // calculate the number of loop iterations. 1451 IterationCountDCE(LoLoop); 1452 1453 MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt; 1454 MachineInstr *Start = LoLoop.Start; 1455 MachineBasicBlock *MBB = LoLoop.StartInsertBB; 1456 unsigned Opc = LoLoop.getStartOpcode(); 1457 MachineOperand &Count = LoLoop.getLoopStartOperand(); 1458 1459 MachineInstrBuilder MIB = 1460 BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc)); 1461 1462 MIB.addDef(ARM::LR); 1463 MIB.add(Count); 1464 if (!isDo(Start)) 1465 MIB.add(Start->getOperand(1)); 1466 1467 LoLoop.ToRemove.insert(Start); 1468 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1469 return &*MIB; 1470 } 1471 1472 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1473 auto RemovePredicate = [](MachineInstr *MI) { 1474 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1475 if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) { 1476 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1477 "Expected Then predicate!"); 1478 MI->getOperand(PIdx).setImm(ARMVCC::None); 1479 MI->getOperand(PIdx+1).setReg(0); 1480 } else 1481 llvm_unreachable("trying to unpredicate a non-predicated instruction"); 1482 }; 1483 1484 for (auto &Block : LoLoop.getVPTBlocks()) { 1485 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 1486 1487 auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) { 1488 assert(TheVCMP && "Replacing a removed or non-existent VCMP"); 1489 // Replace the VCMP with a VPT 1490 MachineInstrBuilder MIB = 1491 BuildMI(*At->getParent(), At, At->getDebugLoc(), 1492 TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode()))); 1493 MIB.addImm(ARMVCC::Then); 1494 // Register one 1495 MIB.add(TheVCMP->getOperand(1)); 1496 // Register two 1497 MIB.add(TheVCMP->getOperand(2)); 1498 // The comparison code, e.g. ge, eq, lt 1499 MIB.add(TheVCMP->getOperand(3)); 1500 LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB); 1501 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1502 LoLoop.ToRemove.insert(TheVCMP); 1503 TheVCMP = nullptr; 1504 }; 1505 1506 if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) { 1507 MachineInstr *VPST = Insts.front(); 1508 if (VPTState::hasUniformPredicate(Block)) { 1509 // A vpt block starting with VPST, is only predicated upon vctp and has no 1510 // internal vpr defs: 1511 // - Remove vpst. 1512 // - Unpredicate the remaining instructions. 1513 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1514 for (unsigned i = 1; i < Insts.size(); ++i) 1515 RemovePredicate(Insts[i]); 1516 } else { 1517 // The VPT block has a non-uniform predicate but it uses a vpst and its 1518 // entry is guarded only by a vctp, which means we: 1519 // - Need to remove the original vpst. 1520 // - Then need to unpredicate any following instructions, until 1521 // we come across the divergent vpr def. 1522 // - Insert a new vpst to predicate the instruction(s) that following 1523 // the divergent vpr def. 1524 MachineInstr *Divergent = VPTState::getDivergent(Block); 1525 auto DivergentNext = ++MachineBasicBlock::iterator(Divergent); 1526 bool DivergentNextIsPredicated = 1527 getVPTInstrPredicate(*DivergentNext) != ARMVCC::None; 1528 1529 for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext; 1530 I != E; ++I) 1531 RemovePredicate(&*I); 1532 1533 // Check if the instruction defining vpr is a vcmp so it can be combined 1534 // with the VPST This should be the divergent instruction 1535 MachineInstr *VCMP = 1536 VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr; 1537 1538 if (DivergentNextIsPredicated) { 1539 // Insert a VPST at the divergent only if the next instruction 1540 // would actually use it. A VCMP following a VPST can be 1541 // merged into a VPT so do that instead if the VCMP exists. 1542 if (!VCMP) { 1543 // Create a VPST (with a null mask for now, we'll recompute it 1544 // later) 1545 MachineInstrBuilder MIB = 1546 BuildMI(*Divergent->getParent(), Divergent, 1547 Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST)); 1548 MIB.addImm(0); 1549 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1550 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1551 } else { 1552 // No RDA checks are necessary here since the VPST would have been 1553 // directly after the VCMP 1554 ReplaceVCMPWithVPT(VCMP, VCMP); 1555 } 1556 } 1557 } 1558 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1559 LoLoop.ToRemove.insert(VPST); 1560 } else if (Block.containsVCTP()) { 1561 // The vctp will be removed, so the block mask of the vp(s)t will need 1562 // to be recomputed. 1563 LoLoop.BlockMasksToRecompute.insert(Insts.front()); 1564 } else if (Insts.front()->getOpcode() == ARM::MVE_VPST) { 1565 // If this block starts with a VPST then attempt to merge it with the 1566 // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT 1567 // block that no longer exists 1568 MachineInstr *VPST = Insts.front(); 1569 auto Next = ++MachineBasicBlock::iterator(VPST); 1570 assert(getVPTInstrPredicate(*Next) != ARMVCC::None && 1571 "The instruction after a VPST must be predicated"); 1572 1573 MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR); 1574 if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) && 1575 !LoLoop.ToRemove.contains(VprDef)) { 1576 MachineInstr *VCMP = VprDef; 1577 // The VCMP and VPST can only be merged if the VCMP's operands will have 1578 // the same values at the VPST 1579 if (RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) && 1580 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) { 1581 bool IntermediateInstrsUseVPR = 1582 std::any_of(++MachineBasicBlock::iterator(VCMP), 1583 MachineBasicBlock::iterator(VPST), hasVPRUse); 1584 // If the instruction after the VCMP is predicated then a different 1585 // code path is expected to have merged the VCMP and VPST already. 1586 // This assertion protects against changes to that behaviour 1587 assert(!IntermediateInstrsUseVPR && 1588 "Instructions between the VCMP and VPST are not expected to " 1589 "be predicated"); 1590 ReplaceVCMPWithVPT(VCMP, VPST); 1591 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1592 LoLoop.ToRemove.insert(VPST); 1593 } 1594 } 1595 } 1596 } 1597 1598 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end()); 1599 } 1600 1601 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1602 1603 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1604 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1605 MachineInstr *End = LoLoop.End; 1606 MachineBasicBlock *MBB = End->getParent(); 1607 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1608 ARM::MVE_LETP : ARM::t2LEUpdate; 1609 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1610 TII->get(Opc)); 1611 MIB.addDef(ARM::LR); 1612 MIB.add(End->getOperand(0)); 1613 MIB.add(End->getOperand(1)); 1614 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1615 LoLoop.ToRemove.insert(LoLoop.Dec); 1616 LoLoop.ToRemove.insert(End); 1617 return &*MIB; 1618 }; 1619 1620 // TODO: We should be able to automatically remove these branches before we 1621 // get here - probably by teaching analyzeBranch about the pseudo 1622 // instructions. 1623 // If there is an unconditional branch, after I, that just branches to the 1624 // next block, remove it. 1625 auto RemoveDeadBranch = [](MachineInstr *I) { 1626 MachineBasicBlock *BB = I->getParent(); 1627 MachineInstr *Terminator = &BB->instr_back(); 1628 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1629 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1630 if (BB->isLayoutSuccessor(Succ)) { 1631 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1632 Terminator->eraseFromParent(); 1633 } 1634 } 1635 }; 1636 1637 if (LoLoop.Revert) { 1638 if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) 1639 RevertWhile(LoLoop.Start); 1640 else 1641 RevertDo(LoLoop.Start); 1642 bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec); 1643 RevertLoopEnd(LoLoop.End, FlagsAlreadySet); 1644 } else { 1645 LoLoop.Start = ExpandLoopStart(LoLoop); 1646 RemoveDeadBranch(LoLoop.Start); 1647 LoLoop.End = ExpandLoopEnd(LoLoop); 1648 RemoveDeadBranch(LoLoop.End); 1649 if (LoLoop.IsTailPredicationLegal()) 1650 ConvertVPTBlocks(LoLoop); 1651 for (auto *I : LoLoop.ToRemove) { 1652 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1653 I->eraseFromParent(); 1654 } 1655 for (auto *I : LoLoop.BlockMasksToRecompute) { 1656 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1657 recomputeVPTBlockMask(*I); 1658 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1659 } 1660 } 1661 1662 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1663 DFS.ProcessLoop(); 1664 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1665 for (auto *MBB : PostOrder) { 1666 recomputeLiveIns(*MBB); 1667 // FIXME: For some reason, the live-in print order is non-deterministic for 1668 // our tests and I can't out why... So just sort them. 1669 MBB->sortUniqueLiveIns(); 1670 } 1671 1672 for (auto *MBB : reverse(PostOrder)) 1673 recomputeLivenessFlags(*MBB); 1674 1675 // We've moved, removed and inserted new instructions, so update RDA. 1676 RDA->reset(); 1677 } 1678 1679 bool ARMLowOverheadLoops::RevertNonLoops() { 1680 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1681 bool Changed = false; 1682 1683 for (auto &MBB : *MF) { 1684 SmallVector<MachineInstr*, 4> Starts; 1685 SmallVector<MachineInstr*, 4> Decs; 1686 SmallVector<MachineInstr*, 4> Ends; 1687 1688 for (auto &I : MBB) { 1689 if (isLoopStart(I)) 1690 Starts.push_back(&I); 1691 else if (I.getOpcode() == ARM::t2LoopDec) 1692 Decs.push_back(&I); 1693 else if (I.getOpcode() == ARM::t2LoopEnd) 1694 Ends.push_back(&I); 1695 } 1696 1697 if (Starts.empty() && Decs.empty() && Ends.empty()) 1698 continue; 1699 1700 Changed = true; 1701 1702 for (auto *Start : Starts) { 1703 if (Start->getOpcode() == ARM::t2WhileLoopStart) 1704 RevertWhile(Start); 1705 else 1706 RevertDo(Start); 1707 } 1708 for (auto *Dec : Decs) 1709 RevertLoopDec(Dec); 1710 1711 for (auto *End : Ends) 1712 RevertLoopEnd(End); 1713 } 1714 return Changed; 1715 } 1716 1717 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1718 return new ARMLowOverheadLoops(); 1719 } 1720