1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 //===----------------------------------------------------------------------===// 39 40 #include "ARM.h" 41 #include "ARMBaseInstrInfo.h" 42 #include "ARMBaseRegisterInfo.h" 43 #include "ARMBasicBlockInfo.h" 44 #include "ARMSubtarget.h" 45 #include "Thumb2InstrInfo.h" 46 #include "llvm/ADT/SetOperations.h" 47 #include "llvm/ADT/SmallSet.h" 48 #include "llvm/CodeGen/LivePhysRegs.h" 49 #include "llvm/CodeGen/MachineFunctionPass.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineLoopUtils.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/Passes.h" 54 #include "llvm/CodeGen/ReachingDefAnalysis.h" 55 #include "llvm/MC/MCInstrDesc.h" 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "arm-low-overhead-loops" 60 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 61 62 namespace { 63 64 using InstSet = SmallPtrSetImpl<MachineInstr *>; 65 66 class PostOrderLoopTraversal { 67 MachineLoop &ML; 68 MachineLoopInfo &MLI; 69 SmallPtrSet<MachineBasicBlock*, 4> Visited; 70 SmallVector<MachineBasicBlock*, 4> Order; 71 72 public: 73 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 74 : ML(ML), MLI(MLI) { } 75 76 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 77 return Order; 78 } 79 80 // Visit all the blocks within the loop, as well as exit blocks and any 81 // blocks properly dominating the header. 82 void ProcessLoop() { 83 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 84 (MachineBasicBlock *MBB) -> void { 85 if (Visited.count(MBB)) 86 return; 87 88 Visited.insert(MBB); 89 for (auto *Succ : MBB->successors()) { 90 if (!ML.contains(Succ)) 91 continue; 92 Search(Succ); 93 } 94 Order.push_back(MBB); 95 }; 96 97 // Insert exit blocks. 98 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 99 ML.getExitBlocks(ExitBlocks); 100 for (auto *MBB : ExitBlocks) 101 Order.push_back(MBB); 102 103 // Then add the loop body. 104 Search(ML.getHeader()); 105 106 // Then try the preheader and its predecessors. 107 std::function<void(MachineBasicBlock*)> GetPredecessor = 108 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 109 Order.push_back(MBB); 110 if (MBB->pred_size() == 1) 111 GetPredecessor(*MBB->pred_begin()); 112 }; 113 114 if (auto *Preheader = ML.getLoopPreheader()) 115 GetPredecessor(Preheader); 116 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true)) 117 GetPredecessor(Preheader); 118 } 119 }; 120 121 struct PredicatedMI { 122 MachineInstr *MI = nullptr; 123 SetVector<MachineInstr*> Predicates; 124 125 public: 126 PredicatedMI(MachineInstr *I, SetVector<MachineInstr*> &Preds) : 127 MI(I) { Predicates.insert(Preds.begin(), Preds.end()); } 128 }; 129 130 // Represent a VPT block, a list of instructions that begins with a VPST and 131 // has a maximum of four proceeding instructions. All instructions within the 132 // block are predicated upon the vpr and we allow instructions to define the 133 // vpr within in the block too. 134 class VPTBlock { 135 std::unique_ptr<PredicatedMI> VPST; 136 PredicatedMI *Divergent = nullptr; 137 SmallVector<PredicatedMI, 4> Insts; 138 139 public: 140 VPTBlock(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { 141 VPST = std::make_unique<PredicatedMI>(MI, Preds); 142 } 143 144 void addInst(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { 145 LLVM_DEBUG(dbgs() << "ARM Loops: Adding predicated MI: " << *MI); 146 if (!Divergent && !set_difference(Preds, VPST->Predicates).empty()) { 147 Divergent = &Insts.back(); 148 LLVM_DEBUG(dbgs() << " - has divergent predicate: " << *Divergent->MI); 149 } 150 Insts.emplace_back(MI, Preds); 151 assert(Insts.size() <= 4 && "Too many instructions in VPT block!"); 152 } 153 154 // Have we found an instruction within the block which defines the vpr? If 155 // so, not all the instructions in the block will have the same predicate. 156 bool HasNonUniformPredicate() const { 157 return Divergent != nullptr; 158 } 159 160 // Is the given instruction part of the predicate set controlling the entry 161 // to the block. 162 bool IsPredicatedOn(MachineInstr *MI) const { 163 return VPST->Predicates.count(MI); 164 } 165 166 // Is the given instruction the only predicate which controls the entry to 167 // the block. 168 bool IsOnlyPredicatedOn(MachineInstr *MI) const { 169 return IsPredicatedOn(MI) && VPST->Predicates.size() == 1; 170 } 171 172 unsigned size() const { return Insts.size(); } 173 SmallVectorImpl<PredicatedMI> &getInsts() { return Insts; } 174 MachineInstr *getVPST() const { return VPST->MI; } 175 PredicatedMI *getDivergent() const { return Divergent; } 176 }; 177 178 struct LowOverheadLoop { 179 180 MachineLoop &ML; 181 MachineLoopInfo &MLI; 182 ReachingDefAnalysis &RDA; 183 const TargetRegisterInfo &TRI; 184 MachineFunction *MF = nullptr; 185 MachineInstr *InsertPt = nullptr; 186 MachineInstr *Start = nullptr; 187 MachineInstr *Dec = nullptr; 188 MachineInstr *End = nullptr; 189 MachineInstr *VCTP = nullptr; 190 VPTBlock *CurrentBlock = nullptr; 191 SetVector<MachineInstr*> CurrentPredicate; 192 SmallVector<VPTBlock, 4> VPTBlocks; 193 SmallPtrSet<MachineInstr*, 4> ToRemove; 194 bool Revert = false; 195 bool CannotTailPredicate = false; 196 197 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 198 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI) 199 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI) { 200 MF = ML.getHeader()->getParent(); 201 } 202 203 // If this is an MVE instruction, check that we know how to use tail 204 // predication with it. Record VPT blocks and return whether the 205 // instruction is valid for tail predication. 206 bool ValidateMVEInst(MachineInstr *MI); 207 208 void AnalyseMVEInst(MachineInstr *MI) { 209 CannotTailPredicate = !ValidateMVEInst(MI); 210 } 211 212 bool IsTailPredicationLegal() const { 213 // For now, let's keep things really simple and only support a single 214 // block for tail predication. 215 return !Revert && FoundAllComponents() && VCTP && 216 !CannotTailPredicate && ML.getNumBlocks() == 1; 217 } 218 219 // Check that the predication in the loop will be equivalent once we 220 // perform the conversion. Also ensure that we can provide the number 221 // of elements to the loop start instruction. 222 bool ValidateTailPredicate(MachineInstr *StartInsertPt); 223 224 // Check that any values available outside of the loop will be the same 225 // after tail predication conversion. 226 bool ValidateLiveOuts() const; 227 228 // Is it safe to define LR with DLS/WLS? 229 // LR can be defined if it is the operand to start, because it's the same 230 // value, or if it's going to be equivalent to the operand to Start. 231 MachineInstr *isSafeToDefineLR(); 232 233 // Check the branch targets are within range and we satisfy our 234 // restrictions. 235 void CheckLegality(ARMBasicBlockUtils *BBUtils); 236 237 bool FoundAllComponents() const { 238 return Start && Dec && End; 239 } 240 241 SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTBlocks; } 242 243 // Return the loop iteration count, or the number of elements if we're tail 244 // predicating. 245 MachineOperand &getCount() { 246 return IsTailPredicationLegal() ? 247 VCTP->getOperand(1) : Start->getOperand(0); 248 } 249 250 unsigned getStartOpcode() const { 251 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 252 if (!IsTailPredicationLegal()) 253 return IsDo ? ARM::t2DLS : ARM::t2WLS; 254 255 return VCTPOpcodeToLSTP(VCTP->getOpcode(), IsDo); 256 } 257 258 void dump() const { 259 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 260 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 261 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 262 if (VCTP) dbgs() << "ARM Loops: Found VCTP: " << *VCTP; 263 if (!FoundAllComponents()) 264 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 265 else if (!(Start && Dec && End)) 266 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 267 } 268 }; 269 270 class ARMLowOverheadLoops : public MachineFunctionPass { 271 MachineFunction *MF = nullptr; 272 MachineLoopInfo *MLI = nullptr; 273 ReachingDefAnalysis *RDA = nullptr; 274 const ARMBaseInstrInfo *TII = nullptr; 275 MachineRegisterInfo *MRI = nullptr; 276 const TargetRegisterInfo *TRI = nullptr; 277 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 278 279 public: 280 static char ID; 281 282 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 283 284 void getAnalysisUsage(AnalysisUsage &AU) const override { 285 AU.setPreservesCFG(); 286 AU.addRequired<MachineLoopInfo>(); 287 AU.addRequired<ReachingDefAnalysis>(); 288 MachineFunctionPass::getAnalysisUsage(AU); 289 } 290 291 bool runOnMachineFunction(MachineFunction &MF) override; 292 293 MachineFunctionProperties getRequiredProperties() const override { 294 return MachineFunctionProperties().set( 295 MachineFunctionProperties::Property::NoVRegs).set( 296 MachineFunctionProperties::Property::TracksLiveness); 297 } 298 299 StringRef getPassName() const override { 300 return ARM_LOW_OVERHEAD_LOOPS_NAME; 301 } 302 303 private: 304 bool ProcessLoop(MachineLoop *ML); 305 306 bool RevertNonLoops(); 307 308 void RevertWhile(MachineInstr *MI) const; 309 310 bool RevertLoopDec(MachineInstr *MI) const; 311 312 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 313 314 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 315 316 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 317 318 void Expand(LowOverheadLoop &LoLoop); 319 320 void IterationCountDCE(LowOverheadLoop &LoLoop); 321 }; 322 } 323 324 char ARMLowOverheadLoops::ID = 0; 325 326 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 327 false, false) 328 329 MachineInstr *LowOverheadLoop::isSafeToDefineLR() { 330 // We can define LR because LR already contains the same value. 331 if (Start->getOperand(0).getReg() == ARM::LR) 332 return Start; 333 334 unsigned CountReg = Start->getOperand(0).getReg(); 335 auto IsMoveLR = [&CountReg](MachineInstr *MI) { 336 return MI->getOpcode() == ARM::tMOVr && 337 MI->getOperand(0).getReg() == ARM::LR && 338 MI->getOperand(1).getReg() == CountReg && 339 MI->getOperand(2).getImm() == ARMCC::AL; 340 }; 341 342 MachineBasicBlock *MBB = Start->getParent(); 343 344 // Find an insertion point: 345 // - Is there a (mov lr, Count) before Start? If so, and nothing else writes 346 // to Count before Start, we can insert at that mov. 347 if (auto *LRDef = RDA.getUniqueReachingMIDef(Start, ARM::LR)) 348 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 349 return LRDef; 350 351 // - Is there a (mov lr, Count) after Start? If so, and nothing else writes 352 // to Count after Start, we can insert at that mov. 353 if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR)) 354 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 355 return LRDef; 356 357 // We've found no suitable LR def and Start doesn't use LR directly. Can we 358 // just define LR anyway? 359 return RDA.isSafeToDefRegAt(Start, ARM::LR) ? Start : nullptr; 360 } 361 362 bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt) { 363 assert(VCTP && "VCTP instruction expected but is not set"); 364 // All predication within the loop should be based on vctp. If the block 365 // isn't predicated on entry, check whether the vctp is within the block 366 // and that all other instructions are then predicated on it. 367 for (auto &Block : VPTBlocks) { 368 if (Block.IsPredicatedOn(VCTP)) 369 continue; 370 if (!Block.HasNonUniformPredicate() || !isVCTP(Block.getDivergent()->MI)) { 371 LLVM_DEBUG(dbgs() << "ARM Loops: Found unsupported diverging predicate: " 372 << *Block.getDivergent()->MI); 373 return false; 374 } 375 SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); 376 for (auto &PredMI : Insts) { 377 if (PredMI.Predicates.count(VCTP) || isVCTP(PredMI.MI)) 378 continue; 379 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *PredMI.MI 380 << " - which is predicated on:\n"; 381 for (auto *MI : PredMI.Predicates) 382 dbgs() << " - " << *MI); 383 return false; 384 } 385 } 386 387 if (!ValidateLiveOuts()) 388 return false; 389 390 // For tail predication, we need to provide the number of elements, instead 391 // of the iteration count, to the loop start instruction. The number of 392 // elements is provided to the vctp instruction, so we need to check that 393 // we can use this register at InsertPt. 394 Register NumElements = VCTP->getOperand(1).getReg(); 395 396 // If the register is defined within loop, then we can't perform TP. 397 // TODO: Check whether this is just a mov of a register that would be 398 // available. 399 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 400 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 401 return false; 402 } 403 404 // The element count register maybe defined after InsertPt, in which case we 405 // need to try to move either InsertPt or the def so that the [w|d]lstp can 406 // use the value. 407 // TODO: On failing to move an instruction, check if the count is provided by 408 // a mov and whether we can use the mov operand directly. 409 MachineBasicBlock *InsertBB = StartInsertPt->getParent(); 410 if (!RDA.isReachingDefLiveOut(StartInsertPt, NumElements)) { 411 if (auto *ElemDef = RDA.getLocalLiveOutMIDef(InsertBB, NumElements)) { 412 if (RDA.isSafeToMoveForwards(ElemDef, StartInsertPt)) { 413 ElemDef->removeFromParent(); 414 InsertBB->insert(MachineBasicBlock::iterator(StartInsertPt), ElemDef); 415 LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: " 416 << *ElemDef); 417 } else if (RDA.isSafeToMoveBackwards(StartInsertPt, ElemDef)) { 418 StartInsertPt->removeFromParent(); 419 InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 420 StartInsertPt); 421 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 422 } else { 423 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to move element count to loop " 424 << "start instruction.\n"); 425 return false; 426 } 427 } 428 } 429 430 // Especially in the case of while loops, InsertBB may not be the 431 // preheader, so we need to check that the register isn't redefined 432 // before entering the loop. 433 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 434 Register NumElements) { 435 // NumElements is redefined in this block. 436 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 437 return true; 438 439 // Don't continue searching up through multiple predecessors. 440 if (MBB->pred_size() > 1) 441 return true; 442 443 return false; 444 }; 445 446 // First, find the block that looks like the preheader. 447 MachineBasicBlock *MBB = MLI.findLoopPreheader(&ML, true); 448 if (!MBB) { 449 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find preheader.\n"); 450 return false; 451 } 452 453 // Then search backwards for a def, until we get to InsertBB. 454 while (MBB != InsertBB) { 455 if (CannotProvideElements(MBB, NumElements)) { 456 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 457 return false; 458 } 459 MBB = *MBB->pred_begin(); 460 } 461 462 // Check that the value change of the element count is what we expect and 463 // that the predication will be equivalent. For this we need: 464 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 465 // and we can also allow register copies within the chain too. 466 auto IsValidSub = [](MachineInstr *MI, unsigned ExpectedVecWidth) { 467 unsigned ImmOpIdx = 0; 468 switch (MI->getOpcode()) { 469 default: 470 llvm_unreachable("unhandled sub opcode"); 471 case ARM::tSUBi3: 472 case ARM::tSUBi8: 473 ImmOpIdx = 3; 474 break; 475 case ARM::t2SUBri: 476 case ARM::t2SUBri12: 477 ImmOpIdx = 2; 478 break; 479 } 480 return MI->getOperand(ImmOpIdx).getImm() == ExpectedVecWidth; 481 }; 482 483 MBB = VCTP->getParent(); 484 if (auto *Def = RDA.getUniqueReachingMIDef(&MBB->back(), NumElements)) { 485 SmallPtrSet<MachineInstr*, 2> ElementChain; 486 SmallPtrSet<MachineInstr*, 2> Ignore = { VCTP }; 487 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 488 489 if (RDA.isSafeToRemove(Def, ElementChain, Ignore)) { 490 bool FoundSub = false; 491 492 for (auto *MI : ElementChain) { 493 if (isMovRegOpcode(MI->getOpcode())) 494 continue; 495 496 if (isSubImmOpcode(MI->getOpcode())) { 497 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) 498 return false; 499 FoundSub = true; 500 } else 501 return false; 502 } 503 504 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove element count chain:\n"; 505 for (auto *MI : ElementChain) 506 dbgs() << " - " << *MI); 507 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 508 } 509 } 510 return true; 511 } 512 513 static bool isVectorPredicated(MachineInstr *MI) { 514 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 515 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 516 } 517 518 static bool isRegInClass(const MachineOperand &MO, 519 const TargetRegisterClass *Class) { 520 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 521 } 522 523 // MVE 'narrowing' operate on half a lane, reading from half and writing 524 // to half, which are referred to has the top and bottom half. The other 525 // half retains its previous value. 526 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 527 const MCInstrDesc &MCID = MI.getDesc(); 528 uint64_t Flags = MCID.TSFlags; 529 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 530 } 531 532 // Some MVE instructions read from the top/bottom halves of their operand(s) 533 // and generate a vector result with result elements that are double the 534 // width of the input. 535 static bool producesDoubleWidthResult(const MachineInstr &MI) { 536 const MCInstrDesc &MCID = MI.getDesc(); 537 uint64_t Flags = MCID.TSFlags; 538 return (Flags & ARMII::DoubleWidthResult) != 0; 539 } 540 541 // Can this instruction generate a non-zero result when given only zeroed 542 // operands? This allows us to know that, given operands with false bytes 543 // zeroed by masked loads, that the result will also contain zeros in those 544 // bytes. 545 static bool canGenerateNonZeros(const MachineInstr &MI) { 546 547 // Check for instructions which can write into a larger element size, 548 // possibly writing into a previous zero'd lane. 549 if (producesDoubleWidthResult(MI)) 550 return true; 551 552 switch (MI.getOpcode()) { 553 default: 554 break; 555 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 556 // fp16 -> fp32 vector conversions. 557 // Instructions that perform a NOT will generate 1s from 0s. 558 case ARM::MVE_VMVN: 559 case ARM::MVE_VORN: 560 // Count leading zeros will do just that! 561 case ARM::MVE_VCLZs8: 562 case ARM::MVE_VCLZs16: 563 case ARM::MVE_VCLZs32: 564 return true; 565 } 566 return false; 567 } 568 569 570 // Look at its register uses to see if it only can only receive zeros 571 // into its false lanes which would then produce zeros. Also check that 572 // the output register is also defined by an FalseLaneZeros instruction 573 // so that if tail-predication happens, the lanes that aren't updated will 574 // still be zeros. 575 static bool producesFalseLaneZeros(MachineInstr &MI, 576 const TargetRegisterClass *QPRs, 577 const ReachingDefAnalysis &RDA, 578 InstSet &FalseLaneZeros) { 579 if (canGenerateNonZeros(MI)) 580 return false; 581 for (auto &MO : MI.operands()) { 582 if (!MO.isReg() || !MO.getReg()) 583 continue; 584 if (auto *OpDef = RDA.getMIOperand(&MI, MO)) 585 if (FalseLaneZeros.count(OpDef)) 586 continue; 587 return false; 588 } 589 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 590 return true; 591 } 592 593 bool LowOverheadLoop::ValidateLiveOuts() const { 594 // We want to find out if the tail-predicated version of this loop will 595 // produce the same values as the loop in its original form. For this to 596 // be true, the newly inserted implicit predication must not change the 597 // the (observable) results. 598 // We're doing this because many instructions in the loop will not be 599 // predicated and so the conversion from VPT predication to tail-predication 600 // can result in different values being produced; due to the tail-predication 601 // preventing many instructions from updating their falsely predicated 602 // lanes. This analysis assumes that all the instructions perform lane-wise 603 // operations and don't perform any exchanges. 604 // A masked load, whether through VPT or tail predication, will write zeros 605 // to any of the falsely predicated bytes. So, from the loads, we know that 606 // the false lanes are zeroed and here we're trying to track that those false 607 // lanes remain zero, or where they change, the differences are masked away 608 // by their user(s). 609 // All MVE loads and stores have to be predicated, so we know that any load 610 // operands, or stored results are equivalent already. Other explicitly 611 // predicated instructions will perform the same operation in the original 612 // loop and the tail-predicated form too. Because of this, we can insert 613 // loads, stores and other predicated instructions into our Predicated 614 // set and build from there. 615 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 616 SetVector<MachineInstr *> Unknown; 617 SmallPtrSet<MachineInstr *, 4> FalseLaneZeros; 618 SmallPtrSet<MachineInstr *, 4> Predicated; 619 MachineBasicBlock *MBB = ML.getHeader(); 620 621 for (auto &MI : *MBB) { 622 const MCInstrDesc &MCID = MI.getDesc(); 623 uint64_t Flags = MCID.TSFlags; 624 if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE) 625 continue; 626 627 if (isVectorPredicated(&MI)) { 628 if (MI.mayLoad()) 629 FalseLaneZeros.insert(&MI); 630 Predicated.insert(&MI); 631 continue; 632 } 633 634 if (MI.getNumDefs() == 0) 635 continue; 636 637 if (producesFalseLaneZeros(MI, QPRs, RDA, FalseLaneZeros)) 638 FalseLaneZeros.insert(&MI); 639 else if (retainsPreviousHalfElement(MI)) 640 return false; 641 else 642 Unknown.insert(&MI); 643 } 644 645 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 646 SmallPtrSetImpl<MachineInstr *> &Predicated) { 647 SmallPtrSet<MachineInstr *, 2> Uses; 648 RDA.getGlobalUses(MI, MO.getReg(), Uses); 649 for (auto *Use : Uses) { 650 if (Use != MI && !Predicated.count(Use)) 651 return false; 652 } 653 return true; 654 }; 655 656 // Visit the unknowns in reverse so that we can start at the values being 657 // stored and then we can work towards the leaves, hopefully adding more 658 // instructions to Predicated. 659 for (auto *MI : reverse(Unknown)) { 660 for (auto &MO : MI->operands()) { 661 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 662 continue; 663 if (!HasPredicatedUsers(MI, MO, Predicated)) { 664 LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : " 665 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 666 return false; 667 } 668 } 669 // Any unknown false lanes have been masked away by the user(s). 670 Predicated.insert(MI); 671 } 672 673 // Collect Q-regs that are live in the exit blocks. We don't collect scalars 674 // because they won't be affected by lane predication. 675 SmallSet<Register, 2> LiveOuts; 676 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 677 ML.getExitBlocks(ExitBlocks); 678 for (auto *MBB : ExitBlocks) 679 for (const MachineBasicBlock::RegisterMaskPair &RegMask : MBB->liveins()) 680 if (QPRs->contains(RegMask.PhysReg)) 681 LiveOuts.insert(RegMask.PhysReg); 682 683 // Collect the instructions in the loop body that define the live-out values. 684 SmallPtrSet<MachineInstr *, 2> LiveMIs; 685 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 686 for (auto Reg : LiveOuts) 687 if (auto *MI = RDA.getLocalLiveOutMIDef(MBB, Reg)) 688 LiveMIs.insert(MI); 689 690 LLVM_DEBUG(dbgs() << "ARM Loops: Found loop live-outs:\n"; 691 for (auto *MI : LiveMIs) 692 dbgs() << " - " << *MI); 693 // We've already validated that any VPT predication within the loop will be 694 // equivalent when we perform the predication transformation; so we know that 695 // any VPT predicated instruction is predicated upon VCTP. Any live-out 696 // instruction needs to be predicated, so check this here. 697 for (auto *MI : LiveMIs) 698 if (!isVectorPredicated(MI)) 699 return false; 700 701 return true; 702 } 703 704 void LowOverheadLoop::CheckLegality(ARMBasicBlockUtils *BBUtils) { 705 if (Revert) 706 return; 707 708 if (!End->getOperand(1).isMBB()) 709 report_fatal_error("Expected LoopEnd to target basic block"); 710 711 // TODO Maybe there's cases where the target doesn't have to be the header, 712 // but for now be safe and revert. 713 if (End->getOperand(1).getMBB() != ML.getHeader()) { 714 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targetting header.\n"); 715 Revert = true; 716 return; 717 } 718 719 // The WLS and LE instructions have 12-bits for the label offset. WLS 720 // requires a positive offset, while LE uses negative. 721 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 722 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 723 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 724 Revert = true; 725 return; 726 } 727 728 if (Start->getOpcode() == ARM::t2WhileLoopStart && 729 (BBUtils->getOffsetOf(Start) > 730 BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || 731 !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { 732 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 733 Revert = true; 734 return; 735 } 736 737 InsertPt = Revert ? nullptr : isSafeToDefineLR(); 738 if (!InsertPt) { 739 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n"); 740 Revert = true; 741 return; 742 } else 743 LLVM_DEBUG(dbgs() << "ARM Loops: Start insertion point: " << *InsertPt); 744 745 if (!IsTailPredicationLegal()) { 746 LLVM_DEBUG(if (!VCTP) 747 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 748 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 749 return; 750 } 751 752 assert(ML.getBlocks().size() == 1 && 753 "Shouldn't be processing a loop with more than one block"); 754 CannotTailPredicate = !ValidateTailPredicate(InsertPt); 755 LLVM_DEBUG(if (CannotTailPredicate) 756 dbgs() << "ARM Loops: Couldn't validate tail predicate.\n"); 757 } 758 759 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) { 760 if (CannotTailPredicate) 761 return false; 762 763 // Only support a single vctp. 764 if (isVCTP(MI) && VCTP) 765 return false; 766 767 // Start a new vpt block when we discover a vpt. 768 if (MI->getOpcode() == ARM::MVE_VPST) { 769 VPTBlocks.emplace_back(MI, CurrentPredicate); 770 CurrentBlock = &VPTBlocks.back(); 771 return true; 772 } else if (isVCTP(MI)) 773 VCTP = MI; 774 else if (MI->getOpcode() == ARM::MVE_VPSEL || 775 MI->getOpcode() == ARM::MVE_VPNOT) 776 return false; 777 778 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 779 // 1) It will use the VPR as a predicate operand, but doesn't have to be 780 // instead a VPT block, which means we can assert while building up 781 // the VPT block because we don't find another VPST to being a new 782 // one. 783 // 2) VPSEL still requires a VPR operand even after tail predicating, 784 // which means we can't remove it unless there is another 785 // instruction, such as vcmp, that can provide the VPR def. 786 787 bool IsUse = false; 788 bool IsDef = false; 789 const MCInstrDesc &MCID = MI->getDesc(); 790 for (int i = MI->getNumOperands() - 1; i >= 0; --i) { 791 const MachineOperand &MO = MI->getOperand(i); 792 if (!MO.isReg() || MO.getReg() != ARM::VPR) 793 continue; 794 795 if (MO.isDef()) { 796 CurrentPredicate.insert(MI); 797 IsDef = true; 798 } else if (ARM::isVpred(MCID.OpInfo[i].OperandType)) { 799 CurrentBlock->addInst(MI, CurrentPredicate); 800 IsUse = true; 801 } else { 802 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 803 return false; 804 } 805 } 806 807 // If we find a vpr def that is not already predicated on the vctp, we've 808 // got disjoint predicates that may not be equivalent when we do the 809 // conversion. 810 if (IsDef && !IsUse && VCTP && !isVCTP(MI)) { 811 LLVM_DEBUG(dbgs() << "ARM Loops: Found disjoint vpr def: " << *MI); 812 return false; 813 } 814 815 uint64_t Flags = MCID.TSFlags; 816 if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE) 817 return true; 818 819 // If we find an instruction that has been marked as not valid for tail 820 // predication, only allow the instruction if it's contained within a valid 821 // VPT block. 822 if ((Flags & ARMII::ValidForTailPredication) == 0 && !IsUse) { 823 LLVM_DEBUG(dbgs() << "ARM Loops: Can't tail predicate: " << *MI); 824 return false; 825 } 826 827 // If the instruction is already explicitly predicated, then the conversion 828 // will be fine, but ensure that all memory operations are predicated. 829 return !IsUse && MI->mayLoadOrStore() ? false : true; 830 } 831 832 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 833 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 834 if (!ST.hasLOB()) 835 return false; 836 837 MF = &mf; 838 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 839 840 MLI = &getAnalysis<MachineLoopInfo>(); 841 RDA = &getAnalysis<ReachingDefAnalysis>(); 842 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 843 MRI = &MF->getRegInfo(); 844 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 845 TRI = ST.getRegisterInfo(); 846 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 847 BBUtils->computeAllBlockSizes(); 848 BBUtils->adjustBBOffsetsAfter(&MF->front()); 849 850 bool Changed = false; 851 for (auto ML : *MLI) { 852 if (!ML->getParentLoop()) 853 Changed |= ProcessLoop(ML); 854 } 855 Changed |= RevertNonLoops(); 856 return Changed; 857 } 858 859 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 860 861 bool Changed = false; 862 863 // Process inner loops first. 864 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 865 Changed |= ProcessLoop(*I); 866 867 LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; 868 if (auto *Preheader = ML->getLoopPreheader()) 869 dbgs() << " - " << Preheader->getName() << "\n"; 870 else if (auto *Preheader = MLI->findLoopPreheader(ML)) 871 dbgs() << " - " << Preheader->getName() << "\n"; 872 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 873 dbgs() << " - " << Preheader->getName() << "\n"; 874 for (auto *MBB : ML->getBlocks()) 875 dbgs() << " - " << MBB->getName() << "\n"; 876 ); 877 878 // Search the given block for a loop start instruction. If one isn't found, 879 // and there's only one predecessor block, search that one too. 880 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 881 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 882 for (auto &MI : *MBB) { 883 if (isLoopStart(MI)) 884 return &MI; 885 } 886 if (MBB->pred_size() == 1) 887 return SearchForStart(*MBB->pred_begin()); 888 return nullptr; 889 }; 890 891 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI); 892 // Search the preheader for the start intrinsic. 893 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 894 // with potentially multiple set.loop.iterations, so we need to enable this. 895 if (auto *Preheader = ML->getLoopPreheader()) 896 LoLoop.Start = SearchForStart(Preheader); 897 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 898 LoLoop.Start = SearchForStart(Preheader); 899 else 900 return false; 901 902 // Find the low-overhead loop components and decide whether or not to fall 903 // back to a normal loop. Also look for a vctp instructions and decide 904 // whether we can convert that predicate using tail predication. 905 for (auto *MBB : reverse(ML->getBlocks())) { 906 for (auto &MI : *MBB) { 907 if (MI.isDebugValue()) 908 continue; 909 else if (MI.getOpcode() == ARM::t2LoopDec) 910 LoLoop.Dec = &MI; 911 else if (MI.getOpcode() == ARM::t2LoopEnd) 912 LoLoop.End = &MI; 913 else if (isLoopStart(MI)) 914 LoLoop.Start = &MI; 915 else if (MI.getDesc().isCall()) { 916 // TODO: Though the call will require LE to execute again, does this 917 // mean we should revert? Always executing LE hopefully should be 918 // faster than performing a sub,cmp,br or even subs,br. 919 LoLoop.Revert = true; 920 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 921 } else { 922 // Record VPR defs and build up their corresponding vpt blocks. 923 // Check we know how to tail predicate any mve instructions. 924 LoLoop.AnalyseMVEInst(&MI); 925 } 926 } 927 } 928 929 LLVM_DEBUG(LoLoop.dump()); 930 if (!LoLoop.FoundAllComponents()) { 931 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 932 return false; 933 } 934 935 // Check that the only instruction using LoopDec is LoopEnd. 936 // TODO: Check for copy chains that really have no effect. 937 SmallPtrSet<MachineInstr*, 2> Uses; 938 RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses); 939 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 940 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 941 LoLoop.Revert = true; 942 } 943 LoLoop.CheckLegality(BBUtils.get()); 944 Expand(LoLoop); 945 return true; 946 } 947 948 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 949 // beq that branches to the exit branch. 950 // TODO: We could also try to generate a cbz if the value in LR is also in 951 // another low register. 952 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 953 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 954 MachineBasicBlock *MBB = MI->getParent(); 955 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 956 TII->get(ARM::t2CMPri)); 957 MIB.add(MI->getOperand(0)); 958 MIB.addImm(0); 959 MIB.addImm(ARMCC::AL); 960 MIB.addReg(ARM::NoRegister); 961 962 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 963 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 964 ARM::tBcc : ARM::t2Bcc; 965 966 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 967 MIB.add(MI->getOperand(1)); // branch target 968 MIB.addImm(ARMCC::EQ); // condition code 969 MIB.addReg(ARM::CPSR); 970 MI->eraseFromParent(); 971 } 972 973 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 974 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 975 MachineBasicBlock *MBB = MI->getParent(); 976 SmallPtrSet<MachineInstr*, 1> Ignore; 977 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 978 if (I->getOpcode() == ARM::t2LoopEnd) { 979 Ignore.insert(&*I); 980 break; 981 } 982 } 983 984 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 985 bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore); 986 987 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 988 TII->get(ARM::t2SUBri)); 989 MIB.addDef(ARM::LR); 990 MIB.add(MI->getOperand(1)); 991 MIB.add(MI->getOperand(2)); 992 MIB.addImm(ARMCC::AL); 993 MIB.addReg(0); 994 995 if (SetFlags) { 996 MIB.addReg(ARM::CPSR); 997 MIB->getOperand(5).setIsDef(true); 998 } else 999 MIB.addReg(0); 1000 1001 MI->eraseFromParent(); 1002 return SetFlags; 1003 } 1004 1005 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1006 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1007 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1008 1009 MachineBasicBlock *MBB = MI->getParent(); 1010 // Create cmp 1011 if (!SkipCmp) { 1012 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1013 TII->get(ARM::t2CMPri)); 1014 MIB.addReg(ARM::LR); 1015 MIB.addImm(0); 1016 MIB.addImm(ARMCC::AL); 1017 MIB.addReg(ARM::NoRegister); 1018 } 1019 1020 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1021 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1022 ARM::tBcc : ARM::t2Bcc; 1023 1024 // Create bne 1025 MachineInstrBuilder MIB = 1026 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1027 MIB.add(MI->getOperand(1)); // branch target 1028 MIB.addImm(ARMCC::NE); // condition code 1029 MIB.addReg(ARM::CPSR); 1030 MI->eraseFromParent(); 1031 } 1032 1033 // Perform dead code elimation on the loop iteration count setup expression. 1034 // If we are tail-predicating, the number of elements to be processed is the 1035 // operand of the VCTP instruction in the vector body, see getCount(), which is 1036 // register $r3 in this example: 1037 // 1038 // $lr = big-itercount-expression 1039 // .. 1040 // t2DoLoopStart renamable $lr 1041 // vector.body: 1042 // .. 1043 // $vpr = MVE_VCTP32 renamable $r3 1044 // renamable $lr = t2LoopDec killed renamable $lr, 1 1045 // t2LoopEnd renamable $lr, %vector.body 1046 // tB %end 1047 // 1048 // What we would like achieve here is to replace the do-loop start pseudo 1049 // instruction t2DoLoopStart with: 1050 // 1051 // $lr = MVE_DLSTP_32 killed renamable $r3 1052 // 1053 // Thus, $r3 which defines the number of elements, is written to $lr, 1054 // and then we want to delete the whole chain that used to define $lr, 1055 // see the comment below how this chain could look like. 1056 // 1057 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1058 if (!LoLoop.IsTailPredicationLegal()) 1059 return; 1060 1061 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1062 1063 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0); 1064 if (!Def) { 1065 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1066 return; 1067 } 1068 1069 // Collect and remove the users of iteration count. 1070 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1071 LoLoop.End, LoLoop.InsertPt }; 1072 SmallPtrSet<MachineInstr*, 2> Remove; 1073 if (RDA->isSafeToRemove(Def, Remove, Killed)) 1074 LoLoop.ToRemove.insert(Remove.begin(), Remove.end()); 1075 else { 1076 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1077 return; 1078 } 1079 1080 // Collect the dead code and the MBBs in which they reside. 1081 RDA->collectKilledOperands(Def, Killed); 1082 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 1083 for (auto *MI : Killed) 1084 BasicBlocks.insert(MI->getParent()); 1085 1086 // Collect IT blocks in all affected basic blocks. 1087 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 1088 for (auto *MBB : BasicBlocks) { 1089 for (auto &MI : *MBB) { 1090 if (MI.getOpcode() != ARM::t2IT) 1091 continue; 1092 RDA->getReachingLocalUses(&MI, ARM::ITSTATE, ITBlocks[&MI]); 1093 } 1094 } 1095 1096 // If we're removing all of the instructions within an IT block, then 1097 // also remove the IT instruction. 1098 SmallPtrSet<MachineInstr*, 2> ModifiedITs; 1099 for (auto *MI : Killed) { 1100 if (MachineOperand *MO = MI->findRegisterUseOperand(ARM::ITSTATE)) { 1101 MachineInstr *IT = RDA->getMIOperand(MI, *MO); 1102 auto &CurrentBlock = ITBlocks[IT]; 1103 CurrentBlock.erase(MI); 1104 if (CurrentBlock.empty()) 1105 ModifiedITs.erase(IT); 1106 else 1107 ModifiedITs.insert(IT); 1108 } 1109 } 1110 1111 // Delete the killed instructions only if we don't have any IT blocks that 1112 // need to be modified because we need to fixup the mask. 1113 // TODO: Handle cases where IT blocks are modified. 1114 if (ModifiedITs.empty()) { 1115 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove iteration count:\n"; 1116 for (auto *MI : Killed) 1117 dbgs() << " - " << *MI); 1118 LoLoop.ToRemove.insert(Killed.begin(), Killed.end()); 1119 } else 1120 LLVM_DEBUG(dbgs() << "ARM Loops: Would need to modify IT block(s).\n"); 1121 } 1122 1123 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1124 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1125 // When using tail-predication, try to delete the dead code that was used to 1126 // calculate the number of loop iterations. 1127 IterationCountDCE(LoLoop); 1128 1129 MachineInstr *InsertPt = LoLoop.InsertPt; 1130 MachineInstr *Start = LoLoop.Start; 1131 MachineBasicBlock *MBB = InsertPt->getParent(); 1132 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 1133 unsigned Opc = LoLoop.getStartOpcode(); 1134 MachineOperand &Count = LoLoop.getCount(); 1135 1136 MachineInstrBuilder MIB = 1137 BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc)); 1138 1139 MIB.addDef(ARM::LR); 1140 MIB.add(Count); 1141 if (!IsDo) 1142 MIB.add(Start->getOperand(1)); 1143 1144 // If we're inserting at a mov lr, then remove it as it's redundant. 1145 if (InsertPt != Start) 1146 LoLoop.ToRemove.insert(InsertPt); 1147 LoLoop.ToRemove.insert(Start); 1148 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1149 return &*MIB; 1150 } 1151 1152 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1153 auto RemovePredicate = [](MachineInstr *MI) { 1154 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1155 if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) { 1156 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1157 "Expected Then predicate!"); 1158 MI->getOperand(PIdx).setImm(ARMVCC::None); 1159 MI->getOperand(PIdx+1).setReg(0); 1160 } else 1161 llvm_unreachable("trying to unpredicate a non-predicated instruction"); 1162 }; 1163 1164 // There are a few scenarios which we have to fix up: 1165 // 1) A VPT block with is only predicated by the vctp and has no internal vpr 1166 // defs. 1167 // 2) A VPT block which is only predicated by the vctp but has an internal 1168 // vpr def. 1169 // 3) A VPT block which is predicated upon the vctp as well as another vpr 1170 // def. 1171 // 4) A VPT block which is not predicated upon a vctp, but contains it and 1172 // all instructions within the block are predicated upon in. 1173 1174 for (auto &Block : LoLoop.getVPTBlocks()) { 1175 SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); 1176 if (Block.HasNonUniformPredicate()) { 1177 PredicatedMI *Divergent = Block.getDivergent(); 1178 if (isVCTP(Divergent->MI)) { 1179 // The vctp will be removed, so the size of the vpt block needs to be 1180 // modified. 1181 uint64_t Size = getARMVPTBlockMask(Block.size() - 1); 1182 Block.getVPST()->getOperand(0).setImm(Size); 1183 LLVM_DEBUG(dbgs() << "ARM Loops: Modified VPT block mask.\n"); 1184 } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { 1185 // The VPT block has a non-uniform predicate but it's entry is guarded 1186 // only by a vctp, which means we: 1187 // - Need to remove the original vpst. 1188 // - Then need to unpredicate any following instructions, until 1189 // we come across the divergent vpr def. 1190 // - Insert a new vpst to predicate the instruction(s) that following 1191 // the divergent vpr def. 1192 // TODO: We could be producing more VPT blocks than necessary and could 1193 // fold the newly created one into a proceeding one. 1194 for (auto I = ++MachineBasicBlock::iterator(Block.getVPST()), 1195 E = ++MachineBasicBlock::iterator(Divergent->MI); I != E; ++I) 1196 RemovePredicate(&*I); 1197 1198 unsigned Size = 0; 1199 auto E = MachineBasicBlock::reverse_iterator(Divergent->MI); 1200 auto I = MachineBasicBlock::reverse_iterator(Insts.back().MI); 1201 MachineInstr *InsertAt = nullptr; 1202 while (I != E) { 1203 InsertAt = &*I; 1204 ++Size; 1205 ++I; 1206 } 1207 MachineInstrBuilder MIB = BuildMI(*InsertAt->getParent(), InsertAt, 1208 InsertAt->getDebugLoc(), 1209 TII->get(ARM::MVE_VPST)); 1210 MIB.addImm(getARMVPTBlockMask(Size)); 1211 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST()); 1212 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1213 LoLoop.ToRemove.insert(Block.getVPST()); 1214 } 1215 } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { 1216 // A vpt block which is only predicated upon vctp and has no internal vpr 1217 // defs: 1218 // - Remove vpst. 1219 // - Unpredicate the remaining instructions. 1220 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST()); 1221 LoLoop.ToRemove.insert(Block.getVPST()); 1222 for (auto &PredMI : Insts) 1223 RemovePredicate(PredMI.MI); 1224 } 1225 } 1226 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VCTP: " << *LoLoop.VCTP); 1227 LoLoop.ToRemove.insert(LoLoop.VCTP); 1228 } 1229 1230 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1231 1232 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1233 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1234 MachineInstr *End = LoLoop.End; 1235 MachineBasicBlock *MBB = End->getParent(); 1236 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1237 ARM::MVE_LETP : ARM::t2LEUpdate; 1238 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1239 TII->get(Opc)); 1240 MIB.addDef(ARM::LR); 1241 MIB.add(End->getOperand(0)); 1242 MIB.add(End->getOperand(1)); 1243 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1244 LoLoop.ToRemove.insert(LoLoop.Dec); 1245 LoLoop.ToRemove.insert(End); 1246 return &*MIB; 1247 }; 1248 1249 // TODO: We should be able to automatically remove these branches before we 1250 // get here - probably by teaching analyzeBranch about the pseudo 1251 // instructions. 1252 // If there is an unconditional branch, after I, that just branches to the 1253 // next block, remove it. 1254 auto RemoveDeadBranch = [](MachineInstr *I) { 1255 MachineBasicBlock *BB = I->getParent(); 1256 MachineInstr *Terminator = &BB->instr_back(); 1257 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1258 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1259 if (BB->isLayoutSuccessor(Succ)) { 1260 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1261 Terminator->eraseFromParent(); 1262 } 1263 } 1264 }; 1265 1266 if (LoLoop.Revert) { 1267 if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) 1268 RevertWhile(LoLoop.Start); 1269 else 1270 LoLoop.Start->eraseFromParent(); 1271 bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec); 1272 RevertLoopEnd(LoLoop.End, FlagsAlreadySet); 1273 } else { 1274 LoLoop.Start = ExpandLoopStart(LoLoop); 1275 RemoveDeadBranch(LoLoop.Start); 1276 LoLoop.End = ExpandLoopEnd(LoLoop); 1277 RemoveDeadBranch(LoLoop.End); 1278 if (LoLoop.IsTailPredicationLegal()) 1279 ConvertVPTBlocks(LoLoop); 1280 for (auto *I : LoLoop.ToRemove) { 1281 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1282 I->eraseFromParent(); 1283 } 1284 } 1285 1286 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1287 DFS.ProcessLoop(); 1288 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1289 for (auto *MBB : PostOrder) { 1290 recomputeLiveIns(*MBB); 1291 // FIXME: For some reason, the live-in print order is non-deterministic for 1292 // our tests and I can't out why... So just sort them. 1293 MBB->sortUniqueLiveIns(); 1294 } 1295 1296 for (auto *MBB : reverse(PostOrder)) 1297 recomputeLivenessFlags(*MBB); 1298 1299 // We've moved, removed and inserted new instructions, so update RDA. 1300 RDA->reset(); 1301 } 1302 1303 bool ARMLowOverheadLoops::RevertNonLoops() { 1304 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1305 bool Changed = false; 1306 1307 for (auto &MBB : *MF) { 1308 SmallVector<MachineInstr*, 4> Starts; 1309 SmallVector<MachineInstr*, 4> Decs; 1310 SmallVector<MachineInstr*, 4> Ends; 1311 1312 for (auto &I : MBB) { 1313 if (isLoopStart(I)) 1314 Starts.push_back(&I); 1315 else if (I.getOpcode() == ARM::t2LoopDec) 1316 Decs.push_back(&I); 1317 else if (I.getOpcode() == ARM::t2LoopEnd) 1318 Ends.push_back(&I); 1319 } 1320 1321 if (Starts.empty() && Decs.empty() && Ends.empty()) 1322 continue; 1323 1324 Changed = true; 1325 1326 for (auto *Start : Starts) { 1327 if (Start->getOpcode() == ARM::t2WhileLoopStart) 1328 RevertWhile(Start); 1329 else 1330 Start->eraseFromParent(); 1331 } 1332 for (auto *Dec : Decs) 1333 RevertLoopDec(Dec); 1334 1335 for (auto *End : Ends) 1336 RevertLoopEnd(End); 1337 } 1338 return Changed; 1339 } 1340 1341 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1342 return new ARMLowOverheadLoops(); 1343 } 1344