1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 /// A note on VPR.P0 (the lane mask): 39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a 40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks). 41 /// They will simply "and" the result of their calculation with the current 42 /// value of VPR.P0. You can think of it like this: 43 /// \verbatim 44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs 45 /// VPR.P0 &= Value 46 /// else 47 /// VPR.P0 = Value 48 /// \endverbatim 49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always 50 /// fall in the "VPT active" case, so we can consider that all VPR writes by 51 /// one of those instruction is actually a "and". 52 //===----------------------------------------------------------------------===// 53 54 #include "ARM.h" 55 #include "ARMBaseInstrInfo.h" 56 #include "ARMBaseRegisterInfo.h" 57 #include "ARMBasicBlockInfo.h" 58 #include "ARMSubtarget.h" 59 #include "Thumb2InstrInfo.h" 60 #include "llvm/ADT/SetOperations.h" 61 #include "llvm/ADT/SmallSet.h" 62 #include "llvm/CodeGen/LivePhysRegs.h" 63 #include "llvm/CodeGen/MachineFunctionPass.h" 64 #include "llvm/CodeGen/MachineLoopInfo.h" 65 #include "llvm/CodeGen/MachineLoopUtils.h" 66 #include "llvm/CodeGen/MachineRegisterInfo.h" 67 #include "llvm/CodeGen/Passes.h" 68 #include "llvm/CodeGen/ReachingDefAnalysis.h" 69 #include "llvm/MC/MCInstrDesc.h" 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "arm-low-overhead-loops" 74 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 75 76 namespace { 77 78 using InstSet = SmallPtrSetImpl<MachineInstr *>; 79 80 class PostOrderLoopTraversal { 81 MachineLoop &ML; 82 MachineLoopInfo &MLI; 83 SmallPtrSet<MachineBasicBlock*, 4> Visited; 84 SmallVector<MachineBasicBlock*, 4> Order; 85 86 public: 87 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 88 : ML(ML), MLI(MLI) { } 89 90 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 91 return Order; 92 } 93 94 // Visit all the blocks within the loop, as well as exit blocks and any 95 // blocks properly dominating the header. 96 void ProcessLoop() { 97 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 98 (MachineBasicBlock *MBB) -> void { 99 if (Visited.count(MBB)) 100 return; 101 102 Visited.insert(MBB); 103 for (auto *Succ : MBB->successors()) { 104 if (!ML.contains(Succ)) 105 continue; 106 Search(Succ); 107 } 108 Order.push_back(MBB); 109 }; 110 111 // Insert exit blocks. 112 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 113 ML.getExitBlocks(ExitBlocks); 114 for (auto *MBB : ExitBlocks) 115 Order.push_back(MBB); 116 117 // Then add the loop body. 118 Search(ML.getHeader()); 119 120 // Then try the preheader and its predecessors. 121 std::function<void(MachineBasicBlock*)> GetPredecessor = 122 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 123 Order.push_back(MBB); 124 if (MBB->pred_size() == 1) 125 GetPredecessor(*MBB->pred_begin()); 126 }; 127 128 if (auto *Preheader = ML.getLoopPreheader()) 129 GetPredecessor(Preheader); 130 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true)) 131 GetPredecessor(Preheader); 132 } 133 }; 134 135 struct PredicatedMI { 136 MachineInstr *MI = nullptr; 137 SetVector<MachineInstr*> Predicates; 138 139 public: 140 PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) { 141 assert(I && "Instruction must not be null!"); 142 Predicates.insert(Preds.begin(), Preds.end()); 143 } 144 }; 145 146 // Represent a VPT block, a list of instructions that begins with a VPT/VPST 147 // and has a maximum of four proceeding instructions. All instructions within 148 // the block are predicated upon the vpr and we allow instructions to define 149 // the vpr within in the block too. 150 class VPTBlock { 151 // The predicate then instruction, which is either a VPT, or a VPST 152 // instruction. 153 std::unique_ptr<PredicatedMI> PredicateThen; 154 PredicatedMI *Divergent = nullptr; 155 SmallVector<PredicatedMI, 4> Insts; 156 157 public: 158 VPTBlock(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { 159 PredicateThen = std::make_unique<PredicatedMI>(MI, Preds); 160 } 161 162 void addInst(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { 163 LLVM_DEBUG(dbgs() << "ARM Loops: Adding predicated MI: " << *MI); 164 if (!Divergent && !set_difference(Preds, PredicateThen->Predicates).empty()) { 165 Divergent = &Insts.back(); 166 LLVM_DEBUG(dbgs() << " - has divergent predicate: " << *Divergent->MI); 167 } 168 Insts.emplace_back(MI, Preds); 169 assert(Insts.size() <= 4 && "Too many instructions in VPT block!"); 170 } 171 172 // Have we found an instruction within the block which defines the vpr? If 173 // so, not all the instructions in the block will have the same predicate. 174 bool HasNonUniformPredicate() const { 175 return Divergent != nullptr; 176 } 177 178 // Is the given instruction part of the predicate set controlling the entry 179 // to the block. 180 bool IsPredicatedOn(MachineInstr *MI) const { 181 return PredicateThen->Predicates.count(MI); 182 } 183 184 // Returns true if this is a VPT instruction. 185 bool isVPT() const { return !isVPST(); } 186 187 // Returns true if this is a VPST instruction. 188 bool isVPST() const { 189 return PredicateThen->MI->getOpcode() == ARM::MVE_VPST; 190 } 191 192 // Is the given instruction the only predicate which controls the entry to 193 // the block. 194 bool IsOnlyPredicatedOn(MachineInstr *MI) const { 195 return IsPredicatedOn(MI) && PredicateThen->Predicates.size() == 1; 196 } 197 198 unsigned size() const { return Insts.size(); } 199 SmallVectorImpl<PredicatedMI> &getInsts() { return Insts; } 200 MachineInstr *getPredicateThen() const { return PredicateThen->MI; } 201 PredicatedMI *getDivergent() const { return Divergent; } 202 }; 203 204 struct LowOverheadLoop { 205 206 MachineLoop &ML; 207 MachineBasicBlock *Preheader = nullptr; 208 MachineLoopInfo &MLI; 209 ReachingDefAnalysis &RDA; 210 const TargetRegisterInfo &TRI; 211 const ARMBaseInstrInfo &TII; 212 MachineFunction *MF = nullptr; 213 MachineInstr *InsertPt = nullptr; 214 MachineInstr *Start = nullptr; 215 MachineInstr *Dec = nullptr; 216 MachineInstr *End = nullptr; 217 MachineInstr *VCTP = nullptr; 218 MachineOperand TPNumElements; 219 SmallPtrSet<MachineInstr*, 4> SecondaryVCTPs; 220 VPTBlock *CurrentBlock = nullptr; 221 SetVector<MachineInstr*> CurrentPredicate; 222 SmallVector<VPTBlock, 4> VPTBlocks; 223 SmallPtrSet<MachineInstr*, 4> ToRemove; 224 SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute; 225 bool Revert = false; 226 bool CannotTailPredicate = false; 227 228 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 229 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI, 230 const ARMBaseInstrInfo &TII) 231 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII), 232 TPNumElements(MachineOperand::CreateImm(0)) { 233 MF = ML.getHeader()->getParent(); 234 if (auto *MBB = ML.getLoopPreheader()) 235 Preheader = MBB; 236 else if (auto *MBB = MLI.findLoopPreheader(&ML, true)) 237 Preheader = MBB; 238 } 239 240 // If this is an MVE instruction, check that we know how to use tail 241 // predication with it. Record VPT blocks and return whether the 242 // instruction is valid for tail predication. 243 bool ValidateMVEInst(MachineInstr *MI); 244 245 void AnalyseMVEInst(MachineInstr *MI) { 246 CannotTailPredicate = !ValidateMVEInst(MI); 247 } 248 249 bool IsTailPredicationLegal() const { 250 // For now, let's keep things really simple and only support a single 251 // block for tail predication. 252 return !Revert && FoundAllComponents() && VCTP && 253 !CannotTailPredicate && ML.getNumBlocks() == 1; 254 } 255 256 // Check that the predication in the loop will be equivalent once we 257 // perform the conversion. Also ensure that we can provide the number 258 // of elements to the loop start instruction. 259 bool ValidateTailPredicate(MachineInstr *StartInsertPt); 260 261 // Check that any values available outside of the loop will be the same 262 // after tail predication conversion. 263 bool ValidateLiveOuts(); 264 265 // Is it safe to define LR with DLS/WLS? 266 // LR can be defined if it is the operand to start, because it's the same 267 // value, or if it's going to be equivalent to the operand to Start. 268 MachineInstr *isSafeToDefineLR(); 269 270 // Check the branch targets are within range and we satisfy our 271 // restrictions. 272 void CheckLegality(ARMBasicBlockUtils *BBUtils); 273 274 bool FoundAllComponents() const { 275 return Start && Dec && End; 276 } 277 278 SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTBlocks; } 279 280 // Return the operand for the loop start instruction. This will be the loop 281 // iteration count, or the number of elements if we're tail predicating. 282 MachineOperand &getLoopStartOperand() { 283 return IsTailPredicationLegal() ? TPNumElements : Start->getOperand(0); 284 } 285 286 unsigned getStartOpcode() const { 287 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 288 if (!IsTailPredicationLegal()) 289 return IsDo ? ARM::t2DLS : ARM::t2WLS; 290 291 return VCTPOpcodeToLSTP(VCTP->getOpcode(), IsDo); 292 } 293 294 void dump() const { 295 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 296 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 297 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 298 if (VCTP) dbgs() << "ARM Loops: Found VCTP: " << *VCTP; 299 if (!FoundAllComponents()) 300 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 301 else if (!(Start && Dec && End)) 302 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 303 } 304 }; 305 306 class ARMLowOverheadLoops : public MachineFunctionPass { 307 MachineFunction *MF = nullptr; 308 MachineLoopInfo *MLI = nullptr; 309 ReachingDefAnalysis *RDA = nullptr; 310 const ARMBaseInstrInfo *TII = nullptr; 311 MachineRegisterInfo *MRI = nullptr; 312 const TargetRegisterInfo *TRI = nullptr; 313 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 314 315 public: 316 static char ID; 317 318 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 319 320 void getAnalysisUsage(AnalysisUsage &AU) const override { 321 AU.setPreservesCFG(); 322 AU.addRequired<MachineLoopInfo>(); 323 AU.addRequired<ReachingDefAnalysis>(); 324 MachineFunctionPass::getAnalysisUsage(AU); 325 } 326 327 bool runOnMachineFunction(MachineFunction &MF) override; 328 329 MachineFunctionProperties getRequiredProperties() const override { 330 return MachineFunctionProperties().set( 331 MachineFunctionProperties::Property::NoVRegs).set( 332 MachineFunctionProperties::Property::TracksLiveness); 333 } 334 335 StringRef getPassName() const override { 336 return ARM_LOW_OVERHEAD_LOOPS_NAME; 337 } 338 339 private: 340 bool ProcessLoop(MachineLoop *ML); 341 342 bool RevertNonLoops(); 343 344 void RevertWhile(MachineInstr *MI) const; 345 346 bool RevertLoopDec(MachineInstr *MI) const; 347 348 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 349 350 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 351 352 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 353 354 void Expand(LowOverheadLoop &LoLoop); 355 356 void IterationCountDCE(LowOverheadLoop &LoLoop); 357 }; 358 } 359 360 char ARMLowOverheadLoops::ID = 0; 361 362 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 363 false, false) 364 365 MachineInstr *LowOverheadLoop::isSafeToDefineLR() { 366 // We can define LR because LR already contains the same value. 367 if (Start->getOperand(0).getReg() == ARM::LR) 368 return Start; 369 370 unsigned CountReg = Start->getOperand(0).getReg(); 371 auto IsMoveLR = [&CountReg](MachineInstr *MI) { 372 return MI->getOpcode() == ARM::tMOVr && 373 MI->getOperand(0).getReg() == ARM::LR && 374 MI->getOperand(1).getReg() == CountReg && 375 MI->getOperand(2).getImm() == ARMCC::AL; 376 }; 377 378 MachineBasicBlock *MBB = Start->getParent(); 379 380 // Find an insertion point: 381 // - Is there a (mov lr, Count) before Start? If so, and nothing else writes 382 // to Count before Start, we can insert at that mov. 383 if (auto *LRDef = RDA.getUniqueReachingMIDef(Start, ARM::LR)) 384 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 385 return LRDef; 386 387 // - Is there a (mov lr, Count) after Start? If so, and nothing else writes 388 // to Count after Start, we can insert at that mov. 389 if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR)) 390 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 391 return LRDef; 392 393 // We've found no suitable LR def and Start doesn't use LR directly. Can we 394 // just define LR anyway? 395 return RDA.isSafeToDefRegAt(Start, ARM::LR) ? Start : nullptr; 396 } 397 398 bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt) { 399 assert(VCTP && "VCTP instruction expected but is not set"); 400 // All predication within the loop should be based on vctp. If the block 401 // isn't predicated on entry, check whether the vctp is within the block 402 // and that all other instructions are then predicated on it. 403 for (auto &Block : VPTBlocks) { 404 if (Block.IsPredicatedOn(VCTP)) 405 continue; 406 if (Block.HasNonUniformPredicate() && !isVCTP(Block.getDivergent()->MI)) { 407 LLVM_DEBUG(dbgs() << "ARM Loops: Found unsupported diverging predicate: " 408 << *Block.getDivergent()->MI); 409 return false; 410 } 411 SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); 412 for (auto &PredMI : Insts) { 413 // Check the instructions in the block and only allow: 414 // - VCTPs 415 // - Instructions predicated on the main VCTP 416 // - Any VCMP 417 // - VCMPs just "and" their result with VPR.P0. Whether they are 418 // located before/after the VCTP is irrelevant - the end result will 419 // be the same in both cases, so there's no point in requiring them 420 // to be located after the VCTP! 421 if (PredMI.Predicates.count(VCTP) || isVCTP(PredMI.MI) || 422 VCMPOpcodeToVPT(PredMI.MI->getOpcode()) != 0) 423 continue; 424 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *PredMI.MI 425 << " - which is predicated on:\n"; 426 for (auto *MI : PredMI.Predicates) 427 dbgs() << " - " << *MI); 428 return false; 429 } 430 } 431 432 if (!ValidateLiveOuts()) { 433 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n"); 434 return false; 435 } 436 437 // For tail predication, we need to provide the number of elements, instead 438 // of the iteration count, to the loop start instruction. The number of 439 // elements is provided to the vctp instruction, so we need to check that 440 // we can use this register at InsertPt. 441 TPNumElements = VCTP->getOperand(1); 442 Register NumElements = TPNumElements.getReg(); 443 444 // If the register is defined within loop, then we can't perform TP. 445 // TODO: Check whether this is just a mov of a register that would be 446 // available. 447 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 448 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 449 return false; 450 } 451 452 // The element count register maybe defined after InsertPt, in which case we 453 // need to try to move either InsertPt or the def so that the [w|d]lstp can 454 // use the value. 455 MachineBasicBlock *InsertBB = StartInsertPt->getParent(); 456 457 if (!RDA.isReachingDefLiveOut(StartInsertPt, NumElements)) { 458 if (auto *ElemDef = RDA.getLocalLiveOutMIDef(InsertBB, NumElements)) { 459 if (RDA.isSafeToMoveForwards(ElemDef, StartInsertPt)) { 460 ElemDef->removeFromParent(); 461 InsertBB->insert(MachineBasicBlock::iterator(StartInsertPt), ElemDef); 462 LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: " 463 << *ElemDef); 464 } else if (RDA.isSafeToMoveBackwards(StartInsertPt, ElemDef)) { 465 StartInsertPt->removeFromParent(); 466 InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 467 StartInsertPt); 468 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 469 } else { 470 // If we fail to move an instruction and the element count is provided 471 // by a mov, use the mov operand if it will have the same value at the 472 // insertion point 473 MachineOperand Operand = ElemDef->getOperand(1); 474 if (isMovRegOpcode(ElemDef->getOpcode()) && 475 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg()) == 476 RDA.getUniqueReachingMIDef(StartInsertPt, Operand.getReg())) { 477 TPNumElements = Operand; 478 NumElements = TPNumElements.getReg(); 479 } else { 480 LLVM_DEBUG(dbgs() 481 << "ARM Loops: Unable to move element count to loop " 482 << "start instruction.\n"); 483 return false; 484 } 485 } 486 } 487 } 488 489 // Especially in the case of while loops, InsertBB may not be the 490 // preheader, so we need to check that the register isn't redefined 491 // before entering the loop. 492 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 493 Register NumElements) { 494 // NumElements is redefined in this block. 495 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 496 return true; 497 498 // Don't continue searching up through multiple predecessors. 499 if (MBB->pred_size() > 1) 500 return true; 501 502 return false; 503 }; 504 505 // First, find the block that looks like the preheader. 506 MachineBasicBlock *MBB = Preheader; 507 if (!MBB) { 508 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find preheader.\n"); 509 return false; 510 } 511 512 // Then search backwards for a def, until we get to InsertBB. 513 while (MBB != InsertBB) { 514 if (CannotProvideElements(MBB, NumElements)) { 515 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 516 return false; 517 } 518 MBB = *MBB->pred_begin(); 519 } 520 521 // Check that the value change of the element count is what we expect and 522 // that the predication will be equivalent. For this we need: 523 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 524 // and we can also allow register copies within the chain too. 525 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 526 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 527 }; 528 529 MBB = VCTP->getParent(); 530 // Remove modifications to the element count since they have no purpose in a 531 // tail predicated loop. Explicitly refer to the vctp operand no matter which 532 // register NumElements has been assigned to, since that is what the 533 // modifications will be using 534 if (auto *Def = RDA.getUniqueReachingMIDef(&MBB->back(), 535 VCTP->getOperand(1).getReg())) { 536 SmallPtrSet<MachineInstr*, 2> ElementChain; 537 SmallPtrSet<MachineInstr*, 2> Ignore = { VCTP }; 538 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 539 540 Ignore.insert(SecondaryVCTPs.begin(), SecondaryVCTPs.end()); 541 542 if (RDA.isSafeToRemove(Def, ElementChain, Ignore)) { 543 bool FoundSub = false; 544 545 for (auto *MI : ElementChain) { 546 if (isMovRegOpcode(MI->getOpcode())) 547 continue; 548 549 if (isSubImmOpcode(MI->getOpcode())) { 550 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) 551 return false; 552 FoundSub = true; 553 } else 554 return false; 555 } 556 557 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove element count chain:\n"; 558 for (auto *MI : ElementChain) 559 dbgs() << " - " << *MI); 560 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 561 } 562 } 563 return true; 564 } 565 566 static bool isVectorPredicated(MachineInstr *MI) { 567 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 568 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 569 } 570 571 static bool isRegInClass(const MachineOperand &MO, 572 const TargetRegisterClass *Class) { 573 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 574 } 575 576 // MVE 'narrowing' operate on half a lane, reading from half and writing 577 // to half, which are referred to has the top and bottom half. The other 578 // half retains its previous value. 579 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 580 const MCInstrDesc &MCID = MI.getDesc(); 581 uint64_t Flags = MCID.TSFlags; 582 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 583 } 584 585 // Some MVE instructions read from the top/bottom halves of their operand(s) 586 // and generate a vector result with result elements that are double the 587 // width of the input. 588 static bool producesDoubleWidthResult(const MachineInstr &MI) { 589 const MCInstrDesc &MCID = MI.getDesc(); 590 uint64_t Flags = MCID.TSFlags; 591 return (Flags & ARMII::DoubleWidthResult) != 0; 592 } 593 594 static bool isHorizontalReduction(const MachineInstr &MI) { 595 const MCInstrDesc &MCID = MI.getDesc(); 596 uint64_t Flags = MCID.TSFlags; 597 return (Flags & ARMII::HorizontalReduction) != 0; 598 } 599 600 // Can this instruction generate a non-zero result when given only zeroed 601 // operands? This allows us to know that, given operands with false bytes 602 // zeroed by masked loads, that the result will also contain zeros in those 603 // bytes. 604 static bool canGenerateNonZeros(const MachineInstr &MI) { 605 606 // Check for instructions which can write into a larger element size, 607 // possibly writing into a previous zero'd lane. 608 if (producesDoubleWidthResult(MI)) 609 return true; 610 611 switch (MI.getOpcode()) { 612 default: 613 break; 614 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 615 // fp16 -> fp32 vector conversions. 616 // Instructions that perform a NOT will generate 1s from 0s. 617 case ARM::MVE_VMVN: 618 case ARM::MVE_VORN: 619 // Count leading zeros will do just that! 620 case ARM::MVE_VCLZs8: 621 case ARM::MVE_VCLZs16: 622 case ARM::MVE_VCLZs32: 623 return true; 624 } 625 return false; 626 } 627 628 // Look at its register uses to see if it only can only receive zeros 629 // into its false lanes which would then produce zeros. Also check that 630 // the output register is also defined by an FalseLanesZero instruction 631 // so that if tail-predication happens, the lanes that aren't updated will 632 // still be zeros. 633 static bool producesFalseLanesZero(MachineInstr &MI, 634 const TargetRegisterClass *QPRs, 635 const ReachingDefAnalysis &RDA, 636 InstSet &FalseLanesZero) { 637 if (canGenerateNonZeros(MI)) 638 return false; 639 640 bool isPredicated = isVectorPredicated(&MI); 641 // Predicated loads will write zeros to the falsely predicated bytes of the 642 // destination register. 643 if (MI.mayLoad()) 644 return isPredicated; 645 646 auto IsZeroInit = [](MachineInstr *Def) { 647 return !isVectorPredicated(Def) && 648 Def->getOpcode() == ARM::MVE_VMOVimmi32 && 649 Def->getOperand(1).getImm() == 0; 650 }; 651 652 bool AllowScalars = isHorizontalReduction(MI); 653 for (auto &MO : MI.operands()) { 654 if (!MO.isReg() || !MO.getReg()) 655 continue; 656 if (!isRegInClass(MO, QPRs) && AllowScalars) 657 continue; 658 659 // Check that this instruction will produce zeros in its false lanes: 660 // - If it only consumes false lanes zero or constant 0 (vmov #0) 661 // - If it's predicated, it only matters that it's def register already has 662 // false lane zeros, so we can ignore the uses. 663 SmallPtrSet<MachineInstr *, 2> Defs; 664 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs); 665 for (auto *Def : Defs) { 666 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def)) 667 continue; 668 if (MO.isUse() && isPredicated) 669 continue; 670 return false; 671 } 672 } 673 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 674 return true; 675 } 676 677 bool LowOverheadLoop::ValidateLiveOuts() { 678 // We want to find out if the tail-predicated version of this loop will 679 // produce the same values as the loop in its original form. For this to 680 // be true, the newly inserted implicit predication must not change the 681 // the (observable) results. 682 // We're doing this because many instructions in the loop will not be 683 // predicated and so the conversion from VPT predication to tail-predication 684 // can result in different values being produced; due to the tail-predication 685 // preventing many instructions from updating their falsely predicated 686 // lanes. This analysis assumes that all the instructions perform lane-wise 687 // operations and don't perform any exchanges. 688 // A masked load, whether through VPT or tail predication, will write zeros 689 // to any of the falsely predicated bytes. So, from the loads, we know that 690 // the false lanes are zeroed and here we're trying to track that those false 691 // lanes remain zero, or where they change, the differences are masked away 692 // by their user(s). 693 // All MVE stores have to be predicated, so we know that any predicate load 694 // operands, or stored results are equivalent already. Other explicitly 695 // predicated instructions will perform the same operation in the original 696 // loop and the tail-predicated form too. Because of this, we can insert 697 // loads, stores and other predicated instructions into our Predicated 698 // set and build from there. 699 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 700 SetVector<MachineInstr *> FalseLanesUnknown; 701 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 702 SmallPtrSet<MachineInstr *, 4> Predicated; 703 MachineBasicBlock *Header = ML.getHeader(); 704 705 for (auto &MI : *Header) { 706 const MCInstrDesc &MCID = MI.getDesc(); 707 uint64_t Flags = MCID.TSFlags; 708 if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE) 709 continue; 710 711 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) 712 continue; 713 714 bool isPredicated = isVectorPredicated(&MI); 715 bool retainsOrReduces = 716 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI); 717 718 if (isPredicated) 719 Predicated.insert(&MI); 720 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) 721 FalseLanesZero.insert(&MI); 722 else if (MI.getNumDefs() == 0) 723 continue; 724 else if (!isPredicated && retainsOrReduces) 725 return false; 726 else if (!isPredicated) 727 FalseLanesUnknown.insert(&MI); 728 } 729 730 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 731 SmallPtrSetImpl<MachineInstr *> &Predicated) { 732 SmallPtrSet<MachineInstr *, 2> Uses; 733 RDA.getGlobalUses(MI, MO.getReg(), Uses); 734 for (auto *Use : Uses) { 735 if (Use != MI && !Predicated.count(Use)) 736 return false; 737 } 738 return true; 739 }; 740 741 // Visit the unknowns in reverse so that we can start at the values being 742 // stored and then we can work towards the leaves, hopefully adding more 743 // instructions to Predicated. Successfully terminating the loop means that 744 // all the unknown values have to found to be masked by predicated user(s). 745 // For any unpredicated values, we store them in NonPredicated so that we 746 // can later check whether these form a reduction. 747 SmallPtrSet<MachineInstr*, 2> NonPredicated; 748 for (auto *MI : reverse(FalseLanesUnknown)) { 749 for (auto &MO : MI->operands()) { 750 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 751 continue; 752 if (!HasPredicatedUsers(MI, MO, Predicated)) { 753 LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : " 754 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 755 NonPredicated.insert(MI); 756 break; 757 } 758 } 759 // Any unknown false lanes have been masked away by the user(s). 760 if (!NonPredicated.contains(MI)) 761 Predicated.insert(MI); 762 } 763 764 SmallPtrSet<MachineInstr *, 2> LiveOutMIs; 765 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 766 ML.getExitBlocks(ExitBlocks); 767 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 768 assert(ExitBlocks.size() == 1 && "Expected a single exit block"); 769 MachineBasicBlock *ExitBB = ExitBlocks.front(); 770 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) { 771 // TODO: Instead of blocking predication, we could move the vctp to the exit 772 // block and calculate it's operand there in or the preheader. 773 if (RegMask.PhysReg == ARM::VPR) 774 return false; 775 // Check Q-regs that are live in the exit blocks. We don't collect scalars 776 // because they won't be affected by lane predication. 777 if (QPRs->contains(RegMask.PhysReg)) 778 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg)) 779 LiveOutMIs.insert(MI); 780 } 781 782 // We've already validated that any VPT predication within the loop will be 783 // equivalent when we perform the predication transformation; so we know that 784 // any VPT predicated instruction is predicated upon VCTP. Any live-out 785 // instruction needs to be predicated, so check this here. The instructions 786 // in NonPredicated have been found to be a reduction that we can ensure its 787 // legality. 788 for (auto *MI : LiveOutMIs) { 789 if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) { 790 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to handle live out: " << *MI); 791 return false; 792 } 793 } 794 795 return true; 796 } 797 798 void LowOverheadLoop::CheckLegality(ARMBasicBlockUtils *BBUtils) { 799 if (Revert) 800 return; 801 802 if (!End->getOperand(1).isMBB()) 803 report_fatal_error("Expected LoopEnd to target basic block"); 804 805 // TODO Maybe there's cases where the target doesn't have to be the header, 806 // but for now be safe and revert. 807 if (End->getOperand(1).getMBB() != ML.getHeader()) { 808 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targetting header.\n"); 809 Revert = true; 810 return; 811 } 812 813 // The WLS and LE instructions have 12-bits for the label offset. WLS 814 // requires a positive offset, while LE uses negative. 815 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 816 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 817 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 818 Revert = true; 819 return; 820 } 821 822 if (Start->getOpcode() == ARM::t2WhileLoopStart && 823 (BBUtils->getOffsetOf(Start) > 824 BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || 825 !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { 826 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 827 Revert = true; 828 return; 829 } 830 831 InsertPt = Revert ? nullptr : isSafeToDefineLR(); 832 if (!InsertPt) { 833 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n"); 834 Revert = true; 835 return; 836 } else 837 LLVM_DEBUG(dbgs() << "ARM Loops: Start insertion point: " << *InsertPt); 838 839 if (!IsTailPredicationLegal()) { 840 LLVM_DEBUG(if (!VCTP) 841 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 842 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 843 return; 844 } 845 846 assert(ML.getBlocks().size() == 1 && 847 "Shouldn't be processing a loop with more than one block"); 848 CannotTailPredicate = !ValidateTailPredicate(InsertPt); 849 LLVM_DEBUG(if (CannotTailPredicate) 850 dbgs() << "ARM Loops: Couldn't validate tail predicate.\n"); 851 } 852 853 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) { 854 if (CannotTailPredicate) 855 return false; 856 857 if (isVCTP(MI)) { 858 // If we find another VCTP, check whether it uses the same value as the main VCTP. 859 // If it does, store it in the SecondaryVCTPs set, else refuse it. 860 if (VCTP) { 861 if (!VCTP->getOperand(1).isIdenticalTo(MI->getOperand(1)) || 862 !RDA.hasSameReachingDef(VCTP, MI, MI->getOperand(1).getReg())) { 863 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " 864 "definition from the main VCTP"); 865 return false; 866 } 867 LLVM_DEBUG(dbgs() << "ARM Loops: Found secondary VCTP: " << *MI); 868 SecondaryVCTPs.insert(MI); 869 } else { 870 LLVM_DEBUG(dbgs() << "ARM Loops: Found 'main' VCTP: " << *MI); 871 VCTP = MI; 872 } 873 } else if (isVPTOpcode(MI->getOpcode())) { 874 if (MI->getOpcode() != ARM::MVE_VPST) { 875 assert(MI->findRegisterDefOperandIdx(ARM::VPR) != -1 && 876 "VPT does not implicitly define VPR?!"); 877 CurrentPredicate.insert(MI); 878 } 879 880 VPTBlocks.emplace_back(MI, CurrentPredicate); 881 CurrentBlock = &VPTBlocks.back(); 882 return true; 883 } else if (MI->getOpcode() == ARM::MVE_VPSEL || 884 MI->getOpcode() == ARM::MVE_VPNOT) { 885 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 886 // 1) It will use the VPR as a predicate operand, but doesn't have to be 887 // instead a VPT block, which means we can assert while building up 888 // the VPT block because we don't find another VPT or VPST to being a new 889 // one. 890 // 2) VPSEL still requires a VPR operand even after tail predicating, 891 // which means we can't remove it unless there is another 892 // instruction, such as vcmp, that can provide the VPR def. 893 return false; 894 } 895 896 bool IsUse = false; 897 bool IsDef = false; 898 const MCInstrDesc &MCID = MI->getDesc(); 899 for (int i = MI->getNumOperands() - 1; i >= 0; --i) { 900 const MachineOperand &MO = MI->getOperand(i); 901 if (!MO.isReg() || MO.getReg() != ARM::VPR) 902 continue; 903 904 if (MO.isDef()) { 905 CurrentPredicate.insert(MI); 906 IsDef = true; 907 } else if (ARM::isVpred(MCID.OpInfo[i].OperandType)) { 908 CurrentBlock->addInst(MI, CurrentPredicate); 909 IsUse = true; 910 } else { 911 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 912 return false; 913 } 914 } 915 916 // If we find a vpr def that is not already predicated on the vctp, we've 917 // got disjoint predicates that may not be equivalent when we do the 918 // conversion. 919 if (IsDef && !IsUse && VCTP && !isVCTP(MI)) { 920 LLVM_DEBUG(dbgs() << "ARM Loops: Found disjoint vpr def: " << *MI); 921 return false; 922 } 923 924 uint64_t Flags = MCID.TSFlags; 925 if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE) 926 return true; 927 928 // If we find an instruction that has been marked as not valid for tail 929 // predication, only allow the instruction if it's contained within a valid 930 // VPT block. 931 if ((Flags & ARMII::ValidForTailPredication) == 0 && !IsUse) { 932 LLVM_DEBUG(dbgs() << "ARM Loops: Can't tail predicate: " << *MI); 933 return false; 934 } 935 936 // If the instruction is already explicitly predicated, then the conversion 937 // will be fine, but ensure that all store operations are predicated. 938 return !IsUse && MI->mayStore() ? false : true; 939 } 940 941 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 942 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 943 if (!ST.hasLOB()) 944 return false; 945 946 MF = &mf; 947 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 948 949 MLI = &getAnalysis<MachineLoopInfo>(); 950 RDA = &getAnalysis<ReachingDefAnalysis>(); 951 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 952 MRI = &MF->getRegInfo(); 953 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 954 TRI = ST.getRegisterInfo(); 955 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 956 BBUtils->computeAllBlockSizes(); 957 BBUtils->adjustBBOffsetsAfter(&MF->front()); 958 959 bool Changed = false; 960 for (auto ML : *MLI) { 961 if (!ML->getParentLoop()) 962 Changed |= ProcessLoop(ML); 963 } 964 Changed |= RevertNonLoops(); 965 return Changed; 966 } 967 968 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 969 970 bool Changed = false; 971 972 // Process inner loops first. 973 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 974 Changed |= ProcessLoop(*I); 975 976 LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; 977 if (auto *Preheader = ML->getLoopPreheader()) 978 dbgs() << " - " << Preheader->getName() << "\n"; 979 else if (auto *Preheader = MLI->findLoopPreheader(ML)) 980 dbgs() << " - " << Preheader->getName() << "\n"; 981 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 982 dbgs() << " - " << Preheader->getName() << "\n"; 983 for (auto *MBB : ML->getBlocks()) 984 dbgs() << " - " << MBB->getName() << "\n"; 985 ); 986 987 // Search the given block for a loop start instruction. If one isn't found, 988 // and there's only one predecessor block, search that one too. 989 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 990 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 991 for (auto &MI : *MBB) { 992 if (isLoopStart(MI)) 993 return &MI; 994 } 995 if (MBB->pred_size() == 1) 996 return SearchForStart(*MBB->pred_begin()); 997 return nullptr; 998 }; 999 1000 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII); 1001 // Search the preheader for the start intrinsic. 1002 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 1003 // with potentially multiple set.loop.iterations, so we need to enable this. 1004 if (LoLoop.Preheader) 1005 LoLoop.Start = SearchForStart(LoLoop.Preheader); 1006 else 1007 return false; 1008 1009 // Find the low-overhead loop components and decide whether or not to fall 1010 // back to a normal loop. Also look for a vctp instructions and decide 1011 // whether we can convert that predicate using tail predication. 1012 for (auto *MBB : reverse(ML->getBlocks())) { 1013 for (auto &MI : *MBB) { 1014 if (MI.isDebugValue()) 1015 continue; 1016 else if (MI.getOpcode() == ARM::t2LoopDec) 1017 LoLoop.Dec = &MI; 1018 else if (MI.getOpcode() == ARM::t2LoopEnd) 1019 LoLoop.End = &MI; 1020 else if (isLoopStart(MI)) 1021 LoLoop.Start = &MI; 1022 else if (MI.getDesc().isCall()) { 1023 // TODO: Though the call will require LE to execute again, does this 1024 // mean we should revert? Always executing LE hopefully should be 1025 // faster than performing a sub,cmp,br or even subs,br. 1026 LoLoop.Revert = true; 1027 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 1028 } else { 1029 // Record VPR defs and build up their corresponding vpt blocks. 1030 // Check we know how to tail predicate any mve instructions. 1031 LoLoop.AnalyseMVEInst(&MI); 1032 } 1033 } 1034 } 1035 1036 LLVM_DEBUG(LoLoop.dump()); 1037 if (!LoLoop.FoundAllComponents()) { 1038 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 1039 return false; 1040 } 1041 1042 // Check that the only instruction using LoopDec is LoopEnd. 1043 // TODO: Check for copy chains that really have no effect. 1044 SmallPtrSet<MachineInstr*, 2> Uses; 1045 RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses); 1046 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 1047 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 1048 LoLoop.Revert = true; 1049 } 1050 LoLoop.CheckLegality(BBUtils.get()); 1051 Expand(LoLoop); 1052 return true; 1053 } 1054 1055 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 1056 // beq that branches to the exit branch. 1057 // TODO: We could also try to generate a cbz if the value in LR is also in 1058 // another low register. 1059 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 1060 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 1061 MachineBasicBlock *MBB = MI->getParent(); 1062 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1063 TII->get(ARM::t2CMPri)); 1064 MIB.add(MI->getOperand(0)); 1065 MIB.addImm(0); 1066 MIB.addImm(ARMCC::AL); 1067 MIB.addReg(ARM::NoRegister); 1068 1069 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1070 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1071 ARM::tBcc : ARM::t2Bcc; 1072 1073 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1074 MIB.add(MI->getOperand(1)); // branch target 1075 MIB.addImm(ARMCC::EQ); // condition code 1076 MIB.addReg(ARM::CPSR); 1077 MI->eraseFromParent(); 1078 } 1079 1080 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 1081 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 1082 MachineBasicBlock *MBB = MI->getParent(); 1083 SmallPtrSet<MachineInstr*, 1> Ignore; 1084 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 1085 if (I->getOpcode() == ARM::t2LoopEnd) { 1086 Ignore.insert(&*I); 1087 break; 1088 } 1089 } 1090 1091 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1092 bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore); 1093 1094 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1095 TII->get(ARM::t2SUBri)); 1096 MIB.addDef(ARM::LR); 1097 MIB.add(MI->getOperand(1)); 1098 MIB.add(MI->getOperand(2)); 1099 MIB.addImm(ARMCC::AL); 1100 MIB.addReg(0); 1101 1102 if (SetFlags) { 1103 MIB.addReg(ARM::CPSR); 1104 MIB->getOperand(5).setIsDef(true); 1105 } else 1106 MIB.addReg(0); 1107 1108 MI->eraseFromParent(); 1109 return SetFlags; 1110 } 1111 1112 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1113 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1114 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1115 1116 MachineBasicBlock *MBB = MI->getParent(); 1117 // Create cmp 1118 if (!SkipCmp) { 1119 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1120 TII->get(ARM::t2CMPri)); 1121 MIB.addReg(ARM::LR); 1122 MIB.addImm(0); 1123 MIB.addImm(ARMCC::AL); 1124 MIB.addReg(ARM::NoRegister); 1125 } 1126 1127 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1128 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1129 ARM::tBcc : ARM::t2Bcc; 1130 1131 // Create bne 1132 MachineInstrBuilder MIB = 1133 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1134 MIB.add(MI->getOperand(1)); // branch target 1135 MIB.addImm(ARMCC::NE); // condition code 1136 MIB.addReg(ARM::CPSR); 1137 MI->eraseFromParent(); 1138 } 1139 1140 // Perform dead code elimation on the loop iteration count setup expression. 1141 // If we are tail-predicating, the number of elements to be processed is the 1142 // operand of the VCTP instruction in the vector body, see getCount(), which is 1143 // register $r3 in this example: 1144 // 1145 // $lr = big-itercount-expression 1146 // .. 1147 // t2DoLoopStart renamable $lr 1148 // vector.body: 1149 // .. 1150 // $vpr = MVE_VCTP32 renamable $r3 1151 // renamable $lr = t2LoopDec killed renamable $lr, 1 1152 // t2LoopEnd renamable $lr, %vector.body 1153 // tB %end 1154 // 1155 // What we would like achieve here is to replace the do-loop start pseudo 1156 // instruction t2DoLoopStart with: 1157 // 1158 // $lr = MVE_DLSTP_32 killed renamable $r3 1159 // 1160 // Thus, $r3 which defines the number of elements, is written to $lr, 1161 // and then we want to delete the whole chain that used to define $lr, 1162 // see the comment below how this chain could look like. 1163 // 1164 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1165 if (!LoLoop.IsTailPredicationLegal()) 1166 return; 1167 1168 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1169 1170 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0); 1171 if (!Def) { 1172 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1173 return; 1174 } 1175 1176 // Collect and remove the users of iteration count. 1177 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1178 LoLoop.End, LoLoop.InsertPt }; 1179 SmallPtrSet<MachineInstr*, 2> Remove; 1180 if (RDA->isSafeToRemove(Def, Remove, Killed)) 1181 LoLoop.ToRemove.insert(Remove.begin(), Remove.end()); 1182 else { 1183 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1184 return; 1185 } 1186 1187 // Collect the dead code and the MBBs in which they reside. 1188 RDA->collectKilledOperands(Def, Killed); 1189 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 1190 for (auto *MI : Killed) 1191 BasicBlocks.insert(MI->getParent()); 1192 1193 // Collect IT blocks in all affected basic blocks. 1194 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 1195 for (auto *MBB : BasicBlocks) { 1196 for (auto &MI : *MBB) { 1197 if (MI.getOpcode() != ARM::t2IT) 1198 continue; 1199 RDA->getReachingLocalUses(&MI, ARM::ITSTATE, ITBlocks[&MI]); 1200 } 1201 } 1202 1203 // If we're removing all of the instructions within an IT block, then 1204 // also remove the IT instruction. 1205 SmallPtrSet<MachineInstr*, 2> ModifiedITs; 1206 for (auto *MI : Killed) { 1207 if (MachineOperand *MO = MI->findRegisterUseOperand(ARM::ITSTATE)) { 1208 MachineInstr *IT = RDA->getMIOperand(MI, *MO); 1209 auto &CurrentBlock = ITBlocks[IT]; 1210 CurrentBlock.erase(MI); 1211 if (CurrentBlock.empty()) 1212 ModifiedITs.erase(IT); 1213 else 1214 ModifiedITs.insert(IT); 1215 } 1216 } 1217 1218 // Delete the killed instructions only if we don't have any IT blocks that 1219 // need to be modified because we need to fixup the mask. 1220 // TODO: Handle cases where IT blocks are modified. 1221 if (ModifiedITs.empty()) { 1222 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove iteration count:\n"; 1223 for (auto *MI : Killed) 1224 dbgs() << " - " << *MI); 1225 LoLoop.ToRemove.insert(Killed.begin(), Killed.end()); 1226 } else 1227 LLVM_DEBUG(dbgs() << "ARM Loops: Would need to modify IT block(s).\n"); 1228 } 1229 1230 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1231 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1232 // When using tail-predication, try to delete the dead code that was used to 1233 // calculate the number of loop iterations. 1234 IterationCountDCE(LoLoop); 1235 1236 MachineInstr *InsertPt = LoLoop.InsertPt; 1237 MachineInstr *Start = LoLoop.Start; 1238 MachineBasicBlock *MBB = InsertPt->getParent(); 1239 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 1240 unsigned Opc = LoLoop.getStartOpcode(); 1241 MachineOperand &Count = LoLoop.getLoopStartOperand(); 1242 1243 MachineInstrBuilder MIB = 1244 BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc)); 1245 1246 MIB.addDef(ARM::LR); 1247 MIB.add(Count); 1248 if (!IsDo) 1249 MIB.add(Start->getOperand(1)); 1250 1251 // If we're inserting at a mov lr, then remove it as it's redundant. 1252 if (InsertPt != Start) 1253 LoLoop.ToRemove.insert(InsertPt); 1254 LoLoop.ToRemove.insert(Start); 1255 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1256 return &*MIB; 1257 } 1258 1259 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1260 auto RemovePredicate = [](MachineInstr *MI) { 1261 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1262 if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) { 1263 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1264 "Expected Then predicate!"); 1265 MI->getOperand(PIdx).setImm(ARMVCC::None); 1266 MI->getOperand(PIdx+1).setReg(0); 1267 } else 1268 llvm_unreachable("trying to unpredicate a non-predicated instruction"); 1269 }; 1270 1271 // There are a few scenarios which we have to fix up: 1272 // 1. VPT Blocks with non-uniform predicates: 1273 // - a. When the divergent instruction is a vctp 1274 // - b. When the block uses a vpst, and is only predicated on the vctp 1275 // - c. When the block uses a vpt and (optionally) contains one or more 1276 // vctp. 1277 // 2. VPT Blocks with uniform predicates: 1278 // - a. The block uses a vpst, and is only predicated on the vctp 1279 for (auto &Block : LoLoop.getVPTBlocks()) { 1280 SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); 1281 if (Block.HasNonUniformPredicate()) { 1282 PredicatedMI *Divergent = Block.getDivergent(); 1283 if (isVCTP(Divergent->MI)) { 1284 // The vctp will be removed, so the block mask of the vp(s)t will need 1285 // to be recomputed. 1286 LoLoop.BlockMasksToRecompute.insert(Block.getPredicateThen()); 1287 } else if (Block.isVPST() && Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { 1288 // The VPT block has a non-uniform predicate but it uses a vpst and its 1289 // entry is guarded only by a vctp, which means we: 1290 // - Need to remove the original vpst. 1291 // - Then need to unpredicate any following instructions, until 1292 // we come across the divergent vpr def. 1293 // - Insert a new vpst to predicate the instruction(s) that following 1294 // the divergent vpr def. 1295 // TODO: We could be producing more VPT blocks than necessary and could 1296 // fold the newly created one into a proceeding one. 1297 for (auto I = ++MachineBasicBlock::iterator(Block.getPredicateThen()), 1298 E = ++MachineBasicBlock::iterator(Divergent->MI); I != E; ++I) 1299 RemovePredicate(&*I); 1300 1301 unsigned Size = 0; 1302 auto E = MachineBasicBlock::reverse_iterator(Divergent->MI); 1303 auto I = MachineBasicBlock::reverse_iterator(Insts.back().MI); 1304 MachineInstr *InsertAt = nullptr; 1305 while (I != E) { 1306 InsertAt = &*I; 1307 ++Size; 1308 ++I; 1309 } 1310 // Create a VPST (with a null mask for now, we'll recompute it later). 1311 MachineInstrBuilder MIB = BuildMI(*InsertAt->getParent(), InsertAt, 1312 InsertAt->getDebugLoc(), 1313 TII->get(ARM::MVE_VPST)); 1314 MIB.addImm(0); 1315 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getPredicateThen()); 1316 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1317 LoLoop.ToRemove.insert(Block.getPredicateThen()); 1318 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1319 } 1320 // Else, if the block uses a vpt, iterate over the block, removing the 1321 // extra VCTPs it may contain. 1322 else if (Block.isVPT()) { 1323 bool RemovedVCTP = false; 1324 for (PredicatedMI &Elt : Block.getInsts()) { 1325 MachineInstr *MI = Elt.MI; 1326 if (isVCTP(MI)) { 1327 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VCTP: " << *MI); 1328 LoLoop.ToRemove.insert(MI); 1329 RemovedVCTP = true; 1330 continue; 1331 } 1332 } 1333 if (RemovedVCTP) 1334 LoLoop.BlockMasksToRecompute.insert(Block.getPredicateThen()); 1335 } 1336 } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP) && Block.isVPST()) { 1337 // A vpt block starting with VPST, is only predicated upon vctp and has no 1338 // internal vpr defs: 1339 // - Remove vpst. 1340 // - Unpredicate the remaining instructions. 1341 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getPredicateThen()); 1342 LoLoop.ToRemove.insert(Block.getPredicateThen()); 1343 for (auto &PredMI : Insts) 1344 RemovePredicate(PredMI.MI); 1345 } 1346 } 1347 LLVM_DEBUG(dbgs() << "ARM Loops: Removing remaining VCTPs...\n"); 1348 // Remove the "main" VCTP 1349 LoLoop.ToRemove.insert(LoLoop.VCTP); 1350 LLVM_DEBUG(dbgs() << " " << *LoLoop.VCTP); 1351 // Remove remaining secondary VCTPs 1352 for (MachineInstr *VCTP : LoLoop.SecondaryVCTPs) { 1353 // All VCTPs that aren't marked for removal yet should be unpredicated ones. 1354 // The predicated ones should have already been marked for removal when 1355 // visiting the VPT blocks. 1356 if (LoLoop.ToRemove.insert(VCTP).second) { 1357 assert(getVPTInstrPredicate(*VCTP) == ARMVCC::None && 1358 "Removing Predicated VCTP without updating the block mask!"); 1359 LLVM_DEBUG(dbgs() << " " << *VCTP); 1360 } 1361 } 1362 } 1363 1364 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1365 1366 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1367 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1368 MachineInstr *End = LoLoop.End; 1369 MachineBasicBlock *MBB = End->getParent(); 1370 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1371 ARM::MVE_LETP : ARM::t2LEUpdate; 1372 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1373 TII->get(Opc)); 1374 MIB.addDef(ARM::LR); 1375 MIB.add(End->getOperand(0)); 1376 MIB.add(End->getOperand(1)); 1377 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1378 LoLoop.ToRemove.insert(LoLoop.Dec); 1379 LoLoop.ToRemove.insert(End); 1380 return &*MIB; 1381 }; 1382 1383 // TODO: We should be able to automatically remove these branches before we 1384 // get here - probably by teaching analyzeBranch about the pseudo 1385 // instructions. 1386 // If there is an unconditional branch, after I, that just branches to the 1387 // next block, remove it. 1388 auto RemoveDeadBranch = [](MachineInstr *I) { 1389 MachineBasicBlock *BB = I->getParent(); 1390 MachineInstr *Terminator = &BB->instr_back(); 1391 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1392 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1393 if (BB->isLayoutSuccessor(Succ)) { 1394 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1395 Terminator->eraseFromParent(); 1396 } 1397 } 1398 }; 1399 1400 if (LoLoop.Revert) { 1401 if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) 1402 RevertWhile(LoLoop.Start); 1403 else 1404 LoLoop.Start->eraseFromParent(); 1405 bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec); 1406 RevertLoopEnd(LoLoop.End, FlagsAlreadySet); 1407 } else { 1408 LoLoop.Start = ExpandLoopStart(LoLoop); 1409 RemoveDeadBranch(LoLoop.Start); 1410 LoLoop.End = ExpandLoopEnd(LoLoop); 1411 RemoveDeadBranch(LoLoop.End); 1412 if (LoLoop.IsTailPredicationLegal()) 1413 ConvertVPTBlocks(LoLoop); 1414 for (auto *I : LoLoop.ToRemove) { 1415 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1416 I->eraseFromParent(); 1417 } 1418 for (auto *I : LoLoop.BlockMasksToRecompute) { 1419 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1420 recomputeVPTBlockMask(*I); 1421 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1422 } 1423 } 1424 1425 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1426 DFS.ProcessLoop(); 1427 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1428 for (auto *MBB : PostOrder) { 1429 recomputeLiveIns(*MBB); 1430 // FIXME: For some reason, the live-in print order is non-deterministic for 1431 // our tests and I can't out why... So just sort them. 1432 MBB->sortUniqueLiveIns(); 1433 } 1434 1435 for (auto *MBB : reverse(PostOrder)) 1436 recomputeLivenessFlags(*MBB); 1437 1438 // We've moved, removed and inserted new instructions, so update RDA. 1439 RDA->reset(); 1440 } 1441 1442 bool ARMLowOverheadLoops::RevertNonLoops() { 1443 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1444 bool Changed = false; 1445 1446 for (auto &MBB : *MF) { 1447 SmallVector<MachineInstr*, 4> Starts; 1448 SmallVector<MachineInstr*, 4> Decs; 1449 SmallVector<MachineInstr*, 4> Ends; 1450 1451 for (auto &I : MBB) { 1452 if (isLoopStart(I)) 1453 Starts.push_back(&I); 1454 else if (I.getOpcode() == ARM::t2LoopDec) 1455 Decs.push_back(&I); 1456 else if (I.getOpcode() == ARM::t2LoopEnd) 1457 Ends.push_back(&I); 1458 } 1459 1460 if (Starts.empty() && Decs.empty() && Ends.empty()) 1461 continue; 1462 1463 Changed = true; 1464 1465 for (auto *Start : Starts) { 1466 if (Start->getOpcode() == ARM::t2WhileLoopStart) 1467 RevertWhile(Start); 1468 else 1469 Start->eraseFromParent(); 1470 } 1471 for (auto *Dec : Decs) 1472 RevertLoopDec(Dec); 1473 1474 for (auto *End : Ends) 1475 RevertLoopEnd(End); 1476 } 1477 return Changed; 1478 } 1479 1480 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1481 return new ARMLowOverheadLoops(); 1482 } 1483