1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 /// A note on VPR.P0 (the lane mask): 39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a 40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks). 41 /// They will simply "and" the result of their calculation with the current 42 /// value of VPR.P0. You can think of it like this: 43 /// \verbatim 44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs 45 /// VPR.P0 &= Value 46 /// else 47 /// VPR.P0 = Value 48 /// \endverbatim 49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always 50 /// fall in the "VPT active" case, so we can consider that all VPR writes by 51 /// one of those instruction is actually a "and". 52 //===----------------------------------------------------------------------===// 53 54 #include "ARM.h" 55 #include "ARMBaseInstrInfo.h" 56 #include "ARMBaseRegisterInfo.h" 57 #include "ARMBasicBlockInfo.h" 58 #include "ARMSubtarget.h" 59 #include "Thumb2InstrInfo.h" 60 #include "llvm/ADT/SetOperations.h" 61 #include "llvm/ADT/SmallSet.h" 62 #include "llvm/CodeGen/LivePhysRegs.h" 63 #include "llvm/CodeGen/MachineFunctionPass.h" 64 #include "llvm/CodeGen/MachineLoopInfo.h" 65 #include "llvm/CodeGen/MachineLoopUtils.h" 66 #include "llvm/CodeGen/MachineRegisterInfo.h" 67 #include "llvm/CodeGen/Passes.h" 68 #include "llvm/CodeGen/ReachingDefAnalysis.h" 69 #include "llvm/MC/MCInstrDesc.h" 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "arm-low-overhead-loops" 74 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 75 76 namespace { 77 78 using InstSet = SmallPtrSetImpl<MachineInstr *>; 79 80 class PostOrderLoopTraversal { 81 MachineLoop &ML; 82 MachineLoopInfo &MLI; 83 SmallPtrSet<MachineBasicBlock*, 4> Visited; 84 SmallVector<MachineBasicBlock*, 4> Order; 85 86 public: 87 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 88 : ML(ML), MLI(MLI) { } 89 90 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 91 return Order; 92 } 93 94 // Visit all the blocks within the loop, as well as exit blocks and any 95 // blocks properly dominating the header. 96 void ProcessLoop() { 97 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 98 (MachineBasicBlock *MBB) -> void { 99 if (Visited.count(MBB)) 100 return; 101 102 Visited.insert(MBB); 103 for (auto *Succ : MBB->successors()) { 104 if (!ML.contains(Succ)) 105 continue; 106 Search(Succ); 107 } 108 Order.push_back(MBB); 109 }; 110 111 // Insert exit blocks. 112 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 113 ML.getExitBlocks(ExitBlocks); 114 for (auto *MBB : ExitBlocks) 115 Order.push_back(MBB); 116 117 // Then add the loop body. 118 Search(ML.getHeader()); 119 120 // Then try the preheader and its predecessors. 121 std::function<void(MachineBasicBlock*)> GetPredecessor = 122 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 123 Order.push_back(MBB); 124 if (MBB->pred_size() == 1) 125 GetPredecessor(*MBB->pred_begin()); 126 }; 127 128 if (auto *Preheader = ML.getLoopPreheader()) 129 GetPredecessor(Preheader); 130 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true)) 131 GetPredecessor(Preheader); 132 } 133 }; 134 135 struct PredicatedMI { 136 MachineInstr *MI = nullptr; 137 SetVector<MachineInstr*> Predicates; 138 139 public: 140 PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) { 141 assert(I && "Instruction must not be null!"); 142 Predicates.insert(Preds.begin(), Preds.end()); 143 } 144 }; 145 146 // Represent a VPT block, a list of instructions that begins with a VPT/VPST 147 // and has a maximum of four proceeding instructions. All instructions within 148 // the block are predicated upon the vpr and we allow instructions to define 149 // the vpr within in the block too. 150 class VPTBlock { 151 // The predicate then instruction, which is either a VPT, or a VPST 152 // instruction. 153 std::unique_ptr<PredicatedMI> PredicateThen; 154 PredicatedMI *Divergent = nullptr; 155 SmallVector<PredicatedMI, 4> Insts; 156 157 public: 158 VPTBlock(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { 159 PredicateThen = std::make_unique<PredicatedMI>(MI, Preds); 160 } 161 162 void addInst(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { 163 LLVM_DEBUG(dbgs() << "ARM Loops: Adding predicated MI: " << *MI); 164 if (!Divergent && !set_difference(Preds, PredicateThen->Predicates).empty()) { 165 Divergent = &Insts.back(); 166 LLVM_DEBUG(dbgs() << " - has divergent predicate: " << *Divergent->MI); 167 } 168 Insts.emplace_back(MI, Preds); 169 assert(Insts.size() <= 4 && "Too many instructions in VPT block!"); 170 } 171 172 // Have we found an instruction within the block which defines the vpr? If 173 // so, not all the instructions in the block will have the same predicate. 174 bool HasNonUniformPredicate() const { 175 return Divergent != nullptr; 176 } 177 178 // Is the given instruction part of the predicate set controlling the entry 179 // to the block. 180 bool IsPredicatedOn(MachineInstr *MI) const { 181 return PredicateThen->Predicates.count(MI); 182 } 183 184 // Returns true if this is a VPT instruction. 185 bool isVPT() const { return !isVPST(); } 186 187 // Returns true if this is a VPST instruction. 188 bool isVPST() const { 189 return PredicateThen->MI->getOpcode() == ARM::MVE_VPST; 190 } 191 192 // Is the given instruction the only predicate which controls the entry to 193 // the block. 194 bool IsOnlyPredicatedOn(MachineInstr *MI) const { 195 return IsPredicatedOn(MI) && PredicateThen->Predicates.size() == 1; 196 } 197 198 unsigned size() const { return Insts.size(); } 199 SmallVectorImpl<PredicatedMI> &getInsts() { return Insts; } 200 MachineInstr *getPredicateThen() const { return PredicateThen->MI; } 201 PredicatedMI *getDivergent() const { return Divergent; } 202 }; 203 204 struct LowOverheadLoop { 205 206 MachineLoop &ML; 207 MachineBasicBlock *Preheader = nullptr; 208 MachineLoopInfo &MLI; 209 ReachingDefAnalysis &RDA; 210 const TargetRegisterInfo &TRI; 211 const ARMBaseInstrInfo &TII; 212 MachineFunction *MF = nullptr; 213 MachineInstr *InsertPt = nullptr; 214 MachineInstr *Start = nullptr; 215 MachineInstr *Dec = nullptr; 216 MachineInstr *End = nullptr; 217 MachineInstr *VCTP = nullptr; 218 MachineOperand TPNumElements; 219 SmallPtrSet<MachineInstr*, 4> SecondaryVCTPs; 220 VPTBlock *CurrentBlock = nullptr; 221 SetVector<MachineInstr*> CurrentPredicate; 222 SmallVector<VPTBlock, 4> VPTBlocks; 223 SmallPtrSet<MachineInstr*, 4> ToRemove; 224 SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute; 225 bool Revert = false; 226 bool CannotTailPredicate = false; 227 228 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 229 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI, 230 const ARMBaseInstrInfo &TII) 231 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII), 232 TPNumElements(MachineOperand::CreateImm(0)) { 233 MF = ML.getHeader()->getParent(); 234 if (auto *MBB = ML.getLoopPreheader()) 235 Preheader = MBB; 236 else if (auto *MBB = MLI.findLoopPreheader(&ML, true)) 237 Preheader = MBB; 238 } 239 240 // If this is an MVE instruction, check that we know how to use tail 241 // predication with it. Record VPT blocks and return whether the 242 // instruction is valid for tail predication. 243 bool ValidateMVEInst(MachineInstr *MI); 244 245 void AnalyseMVEInst(MachineInstr *MI) { 246 CannotTailPredicate = !ValidateMVEInst(MI); 247 } 248 249 bool IsTailPredicationLegal() const { 250 // For now, let's keep things really simple and only support a single 251 // block for tail predication. 252 return !Revert && FoundAllComponents() && VCTP && 253 !CannotTailPredicate && ML.getNumBlocks() == 1; 254 } 255 256 // Check that the predication in the loop will be equivalent once we 257 // perform the conversion. Also ensure that we can provide the number 258 // of elements to the loop start instruction. 259 bool ValidateTailPredicate(MachineInstr *StartInsertPt); 260 261 // Check that any values available outside of the loop will be the same 262 // after tail predication conversion. 263 bool ValidateLiveOuts(); 264 265 // Is it safe to define LR with DLS/WLS? 266 // LR can be defined if it is the operand to start, because it's the same 267 // value, or if it's going to be equivalent to the operand to Start. 268 MachineInstr *isSafeToDefineLR(); 269 270 // Check the branch targets are within range and we satisfy our 271 // restrictions. 272 void CheckLegality(ARMBasicBlockUtils *BBUtils); 273 274 bool FoundAllComponents() const { 275 return Start && Dec && End; 276 } 277 278 SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTBlocks; } 279 280 // Return the operand for the loop start instruction. This will be the loop 281 // iteration count, or the number of elements if we're tail predicating. 282 MachineOperand &getLoopStartOperand() { 283 return IsTailPredicationLegal() ? TPNumElements : Start->getOperand(0); 284 } 285 286 unsigned getStartOpcode() const { 287 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 288 if (!IsTailPredicationLegal()) 289 return IsDo ? ARM::t2DLS : ARM::t2WLS; 290 291 return VCTPOpcodeToLSTP(VCTP->getOpcode(), IsDo); 292 } 293 294 void dump() const { 295 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 296 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 297 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 298 if (VCTP) dbgs() << "ARM Loops: Found VCTP: " << *VCTP; 299 if (!FoundAllComponents()) 300 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 301 else if (!(Start && Dec && End)) 302 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 303 } 304 }; 305 306 class ARMLowOverheadLoops : public MachineFunctionPass { 307 MachineFunction *MF = nullptr; 308 MachineLoopInfo *MLI = nullptr; 309 ReachingDefAnalysis *RDA = nullptr; 310 const ARMBaseInstrInfo *TII = nullptr; 311 MachineRegisterInfo *MRI = nullptr; 312 const TargetRegisterInfo *TRI = nullptr; 313 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 314 315 public: 316 static char ID; 317 318 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 319 320 void getAnalysisUsage(AnalysisUsage &AU) const override { 321 AU.setPreservesCFG(); 322 AU.addRequired<MachineLoopInfo>(); 323 AU.addRequired<ReachingDefAnalysis>(); 324 MachineFunctionPass::getAnalysisUsage(AU); 325 } 326 327 bool runOnMachineFunction(MachineFunction &MF) override; 328 329 MachineFunctionProperties getRequiredProperties() const override { 330 return MachineFunctionProperties().set( 331 MachineFunctionProperties::Property::NoVRegs).set( 332 MachineFunctionProperties::Property::TracksLiveness); 333 } 334 335 StringRef getPassName() const override { 336 return ARM_LOW_OVERHEAD_LOOPS_NAME; 337 } 338 339 private: 340 bool ProcessLoop(MachineLoop *ML); 341 342 bool RevertNonLoops(); 343 344 void RevertWhile(MachineInstr *MI) const; 345 346 bool RevertLoopDec(MachineInstr *MI) const; 347 348 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 349 350 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 351 352 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 353 354 void Expand(LowOverheadLoop &LoLoop); 355 356 void IterationCountDCE(LowOverheadLoop &LoLoop); 357 }; 358 } 359 360 char ARMLowOverheadLoops::ID = 0; 361 362 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 363 false, false) 364 365 MachineInstr *LowOverheadLoop::isSafeToDefineLR() { 366 // We can define LR because LR already contains the same value. 367 if (Start->getOperand(0).getReg() == ARM::LR) 368 return Start; 369 370 unsigned CountReg = Start->getOperand(0).getReg(); 371 auto IsMoveLR = [&CountReg](MachineInstr *MI) { 372 return MI->getOpcode() == ARM::tMOVr && 373 MI->getOperand(0).getReg() == ARM::LR && 374 MI->getOperand(1).getReg() == CountReg && 375 MI->getOperand(2).getImm() == ARMCC::AL; 376 }; 377 378 MachineBasicBlock *MBB = Start->getParent(); 379 380 // Find an insertion point: 381 // - Is there a (mov lr, Count) before Start? If so, and nothing else writes 382 // to Count before Start, we can insert at that mov. 383 if (auto *LRDef = RDA.getUniqueReachingMIDef(Start, ARM::LR)) 384 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 385 return LRDef; 386 387 // - Is there a (mov lr, Count) after Start? If so, and nothing else writes 388 // to Count after Start, we can insert at that mov. 389 if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR)) 390 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 391 return LRDef; 392 393 // We've found no suitable LR def and Start doesn't use LR directly. Can we 394 // just define LR anyway? 395 return RDA.isSafeToDefRegAt(Start, ARM::LR) ? Start : nullptr; 396 } 397 398 bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt) { 399 assert(VCTP && "VCTP instruction expected but is not set"); 400 // All predication within the loop should be based on vctp. If the block 401 // isn't predicated on entry, check whether the vctp is within the block 402 // and that all other instructions are then predicated on it. 403 for (auto &Block : VPTBlocks) { 404 if (Block.IsPredicatedOn(VCTP)) 405 continue; 406 if (Block.HasNonUniformPredicate() && !isVCTP(Block.getDivergent()->MI)) { 407 LLVM_DEBUG(dbgs() << "ARM Loops: Found unsupported diverging predicate: " 408 << *Block.getDivergent()->MI); 409 return false; 410 } 411 SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); 412 for (auto &PredMI : Insts) { 413 // Check the instructions in the block and only allow: 414 // - VCTPs 415 // - Instructions predicated on the main VCTP 416 // - Any VCMP 417 // - VCMPs just "and" their result with VPR.P0. Whether they are 418 // located before/after the VCTP is irrelevant - the end result will 419 // be the same in both cases, so there's no point in requiring them 420 // to be located after the VCTP! 421 if (PredMI.Predicates.count(VCTP) || isVCTP(PredMI.MI) || 422 VCMPOpcodeToVPT(PredMI.MI->getOpcode()) != 0) 423 continue; 424 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *PredMI.MI 425 << " - which is predicated on:\n"; 426 for (auto *MI : PredMI.Predicates) 427 dbgs() << " - " << *MI); 428 return false; 429 } 430 } 431 432 if (!ValidateLiveOuts()) { 433 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n"); 434 return false; 435 } 436 437 // For tail predication, we need to provide the number of elements, instead 438 // of the iteration count, to the loop start instruction. The number of 439 // elements is provided to the vctp instruction, so we need to check that 440 // we can use this register at InsertPt. 441 TPNumElements = VCTP->getOperand(1); 442 Register NumElements = TPNumElements.getReg(); 443 444 // If the register is defined within loop, then we can't perform TP. 445 // TODO: Check whether this is just a mov of a register that would be 446 // available. 447 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 448 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 449 return false; 450 } 451 452 // The element count register maybe defined after InsertPt, in which case we 453 // need to try to move either InsertPt or the def so that the [w|d]lstp can 454 // use the value. 455 MachineBasicBlock *InsertBB = StartInsertPt->getParent(); 456 457 if (!RDA.isReachingDefLiveOut(StartInsertPt, NumElements)) { 458 if (auto *ElemDef = RDA.getLocalLiveOutMIDef(InsertBB, NumElements)) { 459 if (RDA.isSafeToMoveForwards(ElemDef, StartInsertPt)) { 460 ElemDef->removeFromParent(); 461 InsertBB->insert(MachineBasicBlock::iterator(StartInsertPt), ElemDef); 462 LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: " 463 << *ElemDef); 464 } else if (RDA.isSafeToMoveBackwards(StartInsertPt, ElemDef)) { 465 StartInsertPt->removeFromParent(); 466 InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 467 StartInsertPt); 468 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 469 } else { 470 // If we fail to move an instruction and the element count is provided 471 // by a mov, use the mov operand if it will have the same value at the 472 // insertion point 473 MachineOperand Operand = ElemDef->getOperand(1); 474 if (isMovRegOpcode(ElemDef->getOpcode()) && 475 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg()) == 476 RDA.getUniqueReachingMIDef(StartInsertPt, Operand.getReg())) { 477 TPNumElements = Operand; 478 NumElements = TPNumElements.getReg(); 479 } else { 480 LLVM_DEBUG(dbgs() 481 << "ARM Loops: Unable to move element count to loop " 482 << "start instruction.\n"); 483 return false; 484 } 485 } 486 } 487 } 488 489 // Especially in the case of while loops, InsertBB may not be the 490 // preheader, so we need to check that the register isn't redefined 491 // before entering the loop. 492 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 493 Register NumElements) { 494 // NumElements is redefined in this block. 495 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 496 return true; 497 498 // Don't continue searching up through multiple predecessors. 499 if (MBB->pred_size() > 1) 500 return true; 501 502 return false; 503 }; 504 505 // First, find the block that looks like the preheader. 506 MachineBasicBlock *MBB = Preheader; 507 if (!MBB) { 508 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find preheader.\n"); 509 return false; 510 } 511 512 // Then search backwards for a def, until we get to InsertBB. 513 while (MBB != InsertBB) { 514 if (CannotProvideElements(MBB, NumElements)) { 515 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 516 return false; 517 } 518 MBB = *MBB->pred_begin(); 519 } 520 521 // Check that the value change of the element count is what we expect and 522 // that the predication will be equivalent. For this we need: 523 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 524 // and we can also allow register copies within the chain too. 525 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 526 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 527 }; 528 529 MBB = VCTP->getParent(); 530 if (auto *Def = RDA.getUniqueReachingMIDef(&MBB->back(), NumElements)) { 531 SmallPtrSet<MachineInstr*, 2> ElementChain; 532 SmallPtrSet<MachineInstr*, 2> Ignore = { VCTP }; 533 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 534 535 Ignore.insert(SecondaryVCTPs.begin(), SecondaryVCTPs.end()); 536 537 if (RDA.isSafeToRemove(Def, ElementChain, Ignore)) { 538 bool FoundSub = false; 539 540 for (auto *MI : ElementChain) { 541 if (isMovRegOpcode(MI->getOpcode())) 542 continue; 543 544 if (isSubImmOpcode(MI->getOpcode())) { 545 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) 546 return false; 547 FoundSub = true; 548 } else 549 return false; 550 } 551 552 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove element count chain:\n"; 553 for (auto *MI : ElementChain) 554 dbgs() << " - " << *MI); 555 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 556 } 557 } 558 return true; 559 } 560 561 static bool isVectorPredicated(MachineInstr *MI) { 562 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 563 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 564 } 565 566 static bool isRegInClass(const MachineOperand &MO, 567 const TargetRegisterClass *Class) { 568 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 569 } 570 571 // MVE 'narrowing' operate on half a lane, reading from half and writing 572 // to half, which are referred to has the top and bottom half. The other 573 // half retains its previous value. 574 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 575 const MCInstrDesc &MCID = MI.getDesc(); 576 uint64_t Flags = MCID.TSFlags; 577 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 578 } 579 580 // Some MVE instructions read from the top/bottom halves of their operand(s) 581 // and generate a vector result with result elements that are double the 582 // width of the input. 583 static bool producesDoubleWidthResult(const MachineInstr &MI) { 584 const MCInstrDesc &MCID = MI.getDesc(); 585 uint64_t Flags = MCID.TSFlags; 586 return (Flags & ARMII::DoubleWidthResult) != 0; 587 } 588 589 static bool isHorizontalReduction(const MachineInstr &MI) { 590 const MCInstrDesc &MCID = MI.getDesc(); 591 uint64_t Flags = MCID.TSFlags; 592 return (Flags & ARMII::HorizontalReduction) != 0; 593 } 594 595 // Can this instruction generate a non-zero result when given only zeroed 596 // operands? This allows us to know that, given operands with false bytes 597 // zeroed by masked loads, that the result will also contain zeros in those 598 // bytes. 599 static bool canGenerateNonZeros(const MachineInstr &MI) { 600 601 // Check for instructions which can write into a larger element size, 602 // possibly writing into a previous zero'd lane. 603 if (producesDoubleWidthResult(MI)) 604 return true; 605 606 switch (MI.getOpcode()) { 607 default: 608 break; 609 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 610 // fp16 -> fp32 vector conversions. 611 // Instructions that perform a NOT will generate 1s from 0s. 612 case ARM::MVE_VMVN: 613 case ARM::MVE_VORN: 614 // Count leading zeros will do just that! 615 case ARM::MVE_VCLZs8: 616 case ARM::MVE_VCLZs16: 617 case ARM::MVE_VCLZs32: 618 return true; 619 } 620 return false; 621 } 622 623 // Look at its register uses to see if it only can only receive zeros 624 // into its false lanes which would then produce zeros. Also check that 625 // the output register is also defined by an FalseLanesZero instruction 626 // so that if tail-predication happens, the lanes that aren't updated will 627 // still be zeros. 628 static bool producesFalseLanesZero(MachineInstr &MI, 629 const TargetRegisterClass *QPRs, 630 const ReachingDefAnalysis &RDA, 631 InstSet &FalseLanesZero) { 632 if (canGenerateNonZeros(MI)) 633 return false; 634 635 bool isPredicated = isVectorPredicated(&MI); 636 // Predicated loads will write zeros to the falsely predicated bytes of the 637 // destination register. 638 if (MI.mayLoad()) 639 return isPredicated; 640 641 auto IsZeroInit = [](MachineInstr *Def) { 642 return !isVectorPredicated(Def) && 643 Def->getOpcode() == ARM::MVE_VMOVimmi32 && 644 Def->getOperand(1).getImm() == 0; 645 }; 646 647 bool AllowScalars = isHorizontalReduction(MI); 648 for (auto &MO : MI.operands()) { 649 if (!MO.isReg() || !MO.getReg()) 650 continue; 651 if (!isRegInClass(MO, QPRs) && AllowScalars) 652 continue; 653 654 // Check that this instruction will produce zeros in its false lanes: 655 // - If it only consumes false lanes zero or constant 0 (vmov #0) 656 // - If it's predicated, it only matters that it's def register already has 657 // false lane zeros, so we can ignore the uses. 658 SmallPtrSet<MachineInstr *, 2> Defs; 659 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs); 660 for (auto *Def : Defs) { 661 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def)) 662 continue; 663 if (MO.isUse() && isPredicated) 664 continue; 665 return false; 666 } 667 } 668 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 669 return true; 670 } 671 672 bool LowOverheadLoop::ValidateLiveOuts() { 673 // We want to find out if the tail-predicated version of this loop will 674 // produce the same values as the loop in its original form. For this to 675 // be true, the newly inserted implicit predication must not change the 676 // the (observable) results. 677 // We're doing this because many instructions in the loop will not be 678 // predicated and so the conversion from VPT predication to tail-predication 679 // can result in different values being produced; due to the tail-predication 680 // preventing many instructions from updating their falsely predicated 681 // lanes. This analysis assumes that all the instructions perform lane-wise 682 // operations and don't perform any exchanges. 683 // A masked load, whether through VPT or tail predication, will write zeros 684 // to any of the falsely predicated bytes. So, from the loads, we know that 685 // the false lanes are zeroed and here we're trying to track that those false 686 // lanes remain zero, or where they change, the differences are masked away 687 // by their user(s). 688 // All MVE stores have to be predicated, so we know that any predicate load 689 // operands, or stored results are equivalent already. Other explicitly 690 // predicated instructions will perform the same operation in the original 691 // loop and the tail-predicated form too. Because of this, we can insert 692 // loads, stores and other predicated instructions into our Predicated 693 // set and build from there. 694 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 695 SetVector<MachineInstr *> FalseLanesUnknown; 696 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 697 SmallPtrSet<MachineInstr *, 4> Predicated; 698 MachineBasicBlock *Header = ML.getHeader(); 699 700 for (auto &MI : *Header) { 701 const MCInstrDesc &MCID = MI.getDesc(); 702 uint64_t Flags = MCID.TSFlags; 703 if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE) 704 continue; 705 706 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) 707 continue; 708 709 bool isPredicated = isVectorPredicated(&MI); 710 bool retainsOrReduces = 711 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI); 712 713 if (isPredicated) 714 Predicated.insert(&MI); 715 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) 716 FalseLanesZero.insert(&MI); 717 else if (MI.getNumDefs() == 0) 718 continue; 719 else if (!isPredicated && retainsOrReduces) 720 return false; 721 else 722 FalseLanesUnknown.insert(&MI); 723 } 724 725 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 726 SmallPtrSetImpl<MachineInstr *> &Predicated) { 727 SmallPtrSet<MachineInstr *, 2> Uses; 728 RDA.getGlobalUses(MI, MO.getReg(), Uses); 729 for (auto *Use : Uses) { 730 if (Use != MI && !Predicated.count(Use)) 731 return false; 732 } 733 return true; 734 }; 735 736 // Visit the unknowns in reverse so that we can start at the values being 737 // stored and then we can work towards the leaves, hopefully adding more 738 // instructions to Predicated. Successfully terminating the loop means that 739 // all the unknown values have to found to be masked by predicated user(s). 740 // For any unpredicated values, we store them in NonPredicated so that we 741 // can later check whether these form a reduction. 742 SmallPtrSet<MachineInstr*, 2> NonPredicated; 743 for (auto *MI : reverse(FalseLanesUnknown)) { 744 for (auto &MO : MI->operands()) { 745 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 746 continue; 747 if (!HasPredicatedUsers(MI, MO, Predicated)) { 748 LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : " 749 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 750 NonPredicated.insert(MI); 751 break; 752 } 753 } 754 // Any unknown false lanes have been masked away by the user(s). 755 if (!NonPredicated.contains(MI)) 756 Predicated.insert(MI); 757 } 758 759 SmallPtrSet<MachineInstr *, 2> LiveOutMIs; 760 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 761 ML.getExitBlocks(ExitBlocks); 762 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 763 assert(ExitBlocks.size() == 1 && "Expected a single exit block"); 764 MachineBasicBlock *ExitBB = ExitBlocks.front(); 765 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) { 766 // TODO: Instead of blocking predication, we could move the vctp to the exit 767 // block and calculate it's operand there in or the preheader. 768 if (RegMask.PhysReg == ARM::VPR) 769 return false; 770 // Check Q-regs that are live in the exit blocks. We don't collect scalars 771 // because they won't be affected by lane predication. 772 if (QPRs->contains(RegMask.PhysReg)) 773 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg)) 774 LiveOutMIs.insert(MI); 775 } 776 777 // We've already validated that any VPT predication within the loop will be 778 // equivalent when we perform the predication transformation; so we know that 779 // any VPT predicated instruction is predicated upon VCTP. Any live-out 780 // instruction needs to be predicated, so check this here. The instructions 781 // in NonPredicated have been found to be a reduction that we can ensure its 782 // legality. 783 for (auto *MI : LiveOutMIs) { 784 if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) { 785 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to handle live out: " << *MI); 786 return false; 787 } 788 } 789 790 return true; 791 } 792 793 void LowOverheadLoop::CheckLegality(ARMBasicBlockUtils *BBUtils) { 794 if (Revert) 795 return; 796 797 if (!End->getOperand(1).isMBB()) 798 report_fatal_error("Expected LoopEnd to target basic block"); 799 800 // TODO Maybe there's cases where the target doesn't have to be the header, 801 // but for now be safe and revert. 802 if (End->getOperand(1).getMBB() != ML.getHeader()) { 803 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targetting header.\n"); 804 Revert = true; 805 return; 806 } 807 808 // The WLS and LE instructions have 12-bits for the label offset. WLS 809 // requires a positive offset, while LE uses negative. 810 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 811 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 812 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 813 Revert = true; 814 return; 815 } 816 817 if (Start->getOpcode() == ARM::t2WhileLoopStart && 818 (BBUtils->getOffsetOf(Start) > 819 BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || 820 !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { 821 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 822 Revert = true; 823 return; 824 } 825 826 InsertPt = Revert ? nullptr : isSafeToDefineLR(); 827 if (!InsertPt) { 828 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n"); 829 Revert = true; 830 return; 831 } else 832 LLVM_DEBUG(dbgs() << "ARM Loops: Start insertion point: " << *InsertPt); 833 834 if (!IsTailPredicationLegal()) { 835 LLVM_DEBUG(if (!VCTP) 836 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 837 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 838 return; 839 } 840 841 assert(ML.getBlocks().size() == 1 && 842 "Shouldn't be processing a loop with more than one block"); 843 CannotTailPredicate = !ValidateTailPredicate(InsertPt); 844 LLVM_DEBUG(if (CannotTailPredicate) 845 dbgs() << "ARM Loops: Couldn't validate tail predicate.\n"); 846 } 847 848 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) { 849 if (CannotTailPredicate) 850 return false; 851 852 if (isVCTP(MI)) { 853 // If we find another VCTP, check whether it uses the same value as the main VCTP. 854 // If it does, store it in the SecondaryVCTPs set, else refuse it. 855 if (VCTP) { 856 if (!VCTP->getOperand(1).isIdenticalTo(MI->getOperand(1)) || 857 !RDA.hasSameReachingDef(VCTP, MI, MI->getOperand(1).getReg())) { 858 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " 859 "definition from the main VCTP"); 860 return false; 861 } 862 LLVM_DEBUG(dbgs() << "ARM Loops: Found secondary VCTP: " << *MI); 863 SecondaryVCTPs.insert(MI); 864 } else { 865 LLVM_DEBUG(dbgs() << "ARM Loops: Found 'main' VCTP: " << *MI); 866 VCTP = MI; 867 } 868 } else if (isVPTOpcode(MI->getOpcode())) { 869 if (MI->getOpcode() != ARM::MVE_VPST) { 870 assert(MI->findRegisterDefOperandIdx(ARM::VPR) != -1 && 871 "VPT does not implicitly define VPR?!"); 872 CurrentPredicate.insert(MI); 873 } 874 875 VPTBlocks.emplace_back(MI, CurrentPredicate); 876 CurrentBlock = &VPTBlocks.back(); 877 return true; 878 } else if (MI->getOpcode() == ARM::MVE_VPSEL || 879 MI->getOpcode() == ARM::MVE_VPNOT) { 880 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 881 // 1) It will use the VPR as a predicate operand, but doesn't have to be 882 // instead a VPT block, which means we can assert while building up 883 // the VPT block because we don't find another VPT or VPST to being a new 884 // one. 885 // 2) VPSEL still requires a VPR operand even after tail predicating, 886 // which means we can't remove it unless there is another 887 // instruction, such as vcmp, that can provide the VPR def. 888 return false; 889 } 890 891 bool IsUse = false; 892 bool IsDef = false; 893 const MCInstrDesc &MCID = MI->getDesc(); 894 for (int i = MI->getNumOperands() - 1; i >= 0; --i) { 895 const MachineOperand &MO = MI->getOperand(i); 896 if (!MO.isReg() || MO.getReg() != ARM::VPR) 897 continue; 898 899 if (MO.isDef()) { 900 CurrentPredicate.insert(MI); 901 IsDef = true; 902 } else if (ARM::isVpred(MCID.OpInfo[i].OperandType)) { 903 CurrentBlock->addInst(MI, CurrentPredicate); 904 IsUse = true; 905 } else { 906 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 907 return false; 908 } 909 } 910 911 // If we find a vpr def that is not already predicated on the vctp, we've 912 // got disjoint predicates that may not be equivalent when we do the 913 // conversion. 914 if (IsDef && !IsUse && VCTP && !isVCTP(MI)) { 915 LLVM_DEBUG(dbgs() << "ARM Loops: Found disjoint vpr def: " << *MI); 916 return false; 917 } 918 919 uint64_t Flags = MCID.TSFlags; 920 if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE) 921 return true; 922 923 // If we find an instruction that has been marked as not valid for tail 924 // predication, only allow the instruction if it's contained within a valid 925 // VPT block. 926 if ((Flags & ARMII::ValidForTailPredication) == 0 && !IsUse) { 927 LLVM_DEBUG(dbgs() << "ARM Loops: Can't tail predicate: " << *MI); 928 return false; 929 } 930 931 // If the instruction is already explicitly predicated, then the conversion 932 // will be fine, but ensure that all store operations are predicated. 933 return !IsUse && MI->mayStore() ? false : true; 934 } 935 936 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 937 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 938 if (!ST.hasLOB()) 939 return false; 940 941 MF = &mf; 942 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 943 944 MLI = &getAnalysis<MachineLoopInfo>(); 945 RDA = &getAnalysis<ReachingDefAnalysis>(); 946 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 947 MRI = &MF->getRegInfo(); 948 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 949 TRI = ST.getRegisterInfo(); 950 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 951 BBUtils->computeAllBlockSizes(); 952 BBUtils->adjustBBOffsetsAfter(&MF->front()); 953 954 bool Changed = false; 955 for (auto ML : *MLI) { 956 if (!ML->getParentLoop()) 957 Changed |= ProcessLoop(ML); 958 } 959 Changed |= RevertNonLoops(); 960 return Changed; 961 } 962 963 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 964 965 bool Changed = false; 966 967 // Process inner loops first. 968 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 969 Changed |= ProcessLoop(*I); 970 971 LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; 972 if (auto *Preheader = ML->getLoopPreheader()) 973 dbgs() << " - " << Preheader->getName() << "\n"; 974 else if (auto *Preheader = MLI->findLoopPreheader(ML)) 975 dbgs() << " - " << Preheader->getName() << "\n"; 976 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 977 dbgs() << " - " << Preheader->getName() << "\n"; 978 for (auto *MBB : ML->getBlocks()) 979 dbgs() << " - " << MBB->getName() << "\n"; 980 ); 981 982 // Search the given block for a loop start instruction. If one isn't found, 983 // and there's only one predecessor block, search that one too. 984 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 985 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 986 for (auto &MI : *MBB) { 987 if (isLoopStart(MI)) 988 return &MI; 989 } 990 if (MBB->pred_size() == 1) 991 return SearchForStart(*MBB->pred_begin()); 992 return nullptr; 993 }; 994 995 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII); 996 // Search the preheader for the start intrinsic. 997 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 998 // with potentially multiple set.loop.iterations, so we need to enable this. 999 if (LoLoop.Preheader) 1000 LoLoop.Start = SearchForStart(LoLoop.Preheader); 1001 else 1002 return false; 1003 1004 // Find the low-overhead loop components and decide whether or not to fall 1005 // back to a normal loop. Also look for a vctp instructions and decide 1006 // whether we can convert that predicate using tail predication. 1007 for (auto *MBB : reverse(ML->getBlocks())) { 1008 for (auto &MI : *MBB) { 1009 if (MI.isDebugValue()) 1010 continue; 1011 else if (MI.getOpcode() == ARM::t2LoopDec) 1012 LoLoop.Dec = &MI; 1013 else if (MI.getOpcode() == ARM::t2LoopEnd) 1014 LoLoop.End = &MI; 1015 else if (isLoopStart(MI)) 1016 LoLoop.Start = &MI; 1017 else if (MI.getDesc().isCall()) { 1018 // TODO: Though the call will require LE to execute again, does this 1019 // mean we should revert? Always executing LE hopefully should be 1020 // faster than performing a sub,cmp,br or even subs,br. 1021 LoLoop.Revert = true; 1022 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 1023 } else { 1024 // Record VPR defs and build up their corresponding vpt blocks. 1025 // Check we know how to tail predicate any mve instructions. 1026 LoLoop.AnalyseMVEInst(&MI); 1027 } 1028 } 1029 } 1030 1031 LLVM_DEBUG(LoLoop.dump()); 1032 if (!LoLoop.FoundAllComponents()) { 1033 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 1034 return false; 1035 } 1036 1037 // Check that the only instruction using LoopDec is LoopEnd. 1038 // TODO: Check for copy chains that really have no effect. 1039 SmallPtrSet<MachineInstr*, 2> Uses; 1040 RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses); 1041 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 1042 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 1043 LoLoop.Revert = true; 1044 } 1045 LoLoop.CheckLegality(BBUtils.get()); 1046 Expand(LoLoop); 1047 return true; 1048 } 1049 1050 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 1051 // beq that branches to the exit branch. 1052 // TODO: We could also try to generate a cbz if the value in LR is also in 1053 // another low register. 1054 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 1055 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 1056 MachineBasicBlock *MBB = MI->getParent(); 1057 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1058 TII->get(ARM::t2CMPri)); 1059 MIB.add(MI->getOperand(0)); 1060 MIB.addImm(0); 1061 MIB.addImm(ARMCC::AL); 1062 MIB.addReg(ARM::NoRegister); 1063 1064 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1065 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1066 ARM::tBcc : ARM::t2Bcc; 1067 1068 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1069 MIB.add(MI->getOperand(1)); // branch target 1070 MIB.addImm(ARMCC::EQ); // condition code 1071 MIB.addReg(ARM::CPSR); 1072 MI->eraseFromParent(); 1073 } 1074 1075 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 1076 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 1077 MachineBasicBlock *MBB = MI->getParent(); 1078 SmallPtrSet<MachineInstr*, 1> Ignore; 1079 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 1080 if (I->getOpcode() == ARM::t2LoopEnd) { 1081 Ignore.insert(&*I); 1082 break; 1083 } 1084 } 1085 1086 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1087 bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore); 1088 1089 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1090 TII->get(ARM::t2SUBri)); 1091 MIB.addDef(ARM::LR); 1092 MIB.add(MI->getOperand(1)); 1093 MIB.add(MI->getOperand(2)); 1094 MIB.addImm(ARMCC::AL); 1095 MIB.addReg(0); 1096 1097 if (SetFlags) { 1098 MIB.addReg(ARM::CPSR); 1099 MIB->getOperand(5).setIsDef(true); 1100 } else 1101 MIB.addReg(0); 1102 1103 MI->eraseFromParent(); 1104 return SetFlags; 1105 } 1106 1107 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1108 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1109 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1110 1111 MachineBasicBlock *MBB = MI->getParent(); 1112 // Create cmp 1113 if (!SkipCmp) { 1114 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1115 TII->get(ARM::t2CMPri)); 1116 MIB.addReg(ARM::LR); 1117 MIB.addImm(0); 1118 MIB.addImm(ARMCC::AL); 1119 MIB.addReg(ARM::NoRegister); 1120 } 1121 1122 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1123 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1124 ARM::tBcc : ARM::t2Bcc; 1125 1126 // Create bne 1127 MachineInstrBuilder MIB = 1128 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1129 MIB.add(MI->getOperand(1)); // branch target 1130 MIB.addImm(ARMCC::NE); // condition code 1131 MIB.addReg(ARM::CPSR); 1132 MI->eraseFromParent(); 1133 } 1134 1135 // Perform dead code elimation on the loop iteration count setup expression. 1136 // If we are tail-predicating, the number of elements to be processed is the 1137 // operand of the VCTP instruction in the vector body, see getCount(), which is 1138 // register $r3 in this example: 1139 // 1140 // $lr = big-itercount-expression 1141 // .. 1142 // t2DoLoopStart renamable $lr 1143 // vector.body: 1144 // .. 1145 // $vpr = MVE_VCTP32 renamable $r3 1146 // renamable $lr = t2LoopDec killed renamable $lr, 1 1147 // t2LoopEnd renamable $lr, %vector.body 1148 // tB %end 1149 // 1150 // What we would like achieve here is to replace the do-loop start pseudo 1151 // instruction t2DoLoopStart with: 1152 // 1153 // $lr = MVE_DLSTP_32 killed renamable $r3 1154 // 1155 // Thus, $r3 which defines the number of elements, is written to $lr, 1156 // and then we want to delete the whole chain that used to define $lr, 1157 // see the comment below how this chain could look like. 1158 // 1159 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1160 if (!LoLoop.IsTailPredicationLegal()) 1161 return; 1162 1163 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1164 1165 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0); 1166 if (!Def) { 1167 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1168 return; 1169 } 1170 1171 // Collect and remove the users of iteration count. 1172 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1173 LoLoop.End, LoLoop.InsertPt }; 1174 SmallPtrSet<MachineInstr*, 2> Remove; 1175 if (RDA->isSafeToRemove(Def, Remove, Killed)) 1176 LoLoop.ToRemove.insert(Remove.begin(), Remove.end()); 1177 else { 1178 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1179 return; 1180 } 1181 1182 // Collect the dead code and the MBBs in which they reside. 1183 RDA->collectKilledOperands(Def, Killed); 1184 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 1185 for (auto *MI : Killed) 1186 BasicBlocks.insert(MI->getParent()); 1187 1188 // Collect IT blocks in all affected basic blocks. 1189 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 1190 for (auto *MBB : BasicBlocks) { 1191 for (auto &MI : *MBB) { 1192 if (MI.getOpcode() != ARM::t2IT) 1193 continue; 1194 RDA->getReachingLocalUses(&MI, ARM::ITSTATE, ITBlocks[&MI]); 1195 } 1196 } 1197 1198 // If we're removing all of the instructions within an IT block, then 1199 // also remove the IT instruction. 1200 SmallPtrSet<MachineInstr*, 2> ModifiedITs; 1201 for (auto *MI : Killed) { 1202 if (MachineOperand *MO = MI->findRegisterUseOperand(ARM::ITSTATE)) { 1203 MachineInstr *IT = RDA->getMIOperand(MI, *MO); 1204 auto &CurrentBlock = ITBlocks[IT]; 1205 CurrentBlock.erase(MI); 1206 if (CurrentBlock.empty()) 1207 ModifiedITs.erase(IT); 1208 else 1209 ModifiedITs.insert(IT); 1210 } 1211 } 1212 1213 // Delete the killed instructions only if we don't have any IT blocks that 1214 // need to be modified because we need to fixup the mask. 1215 // TODO: Handle cases where IT blocks are modified. 1216 if (ModifiedITs.empty()) { 1217 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove iteration count:\n"; 1218 for (auto *MI : Killed) 1219 dbgs() << " - " << *MI); 1220 LoLoop.ToRemove.insert(Killed.begin(), Killed.end()); 1221 } else 1222 LLVM_DEBUG(dbgs() << "ARM Loops: Would need to modify IT block(s).\n"); 1223 } 1224 1225 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1226 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1227 // When using tail-predication, try to delete the dead code that was used to 1228 // calculate the number of loop iterations. 1229 IterationCountDCE(LoLoop); 1230 1231 MachineInstr *InsertPt = LoLoop.InsertPt; 1232 MachineInstr *Start = LoLoop.Start; 1233 MachineBasicBlock *MBB = InsertPt->getParent(); 1234 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 1235 unsigned Opc = LoLoop.getStartOpcode(); 1236 MachineOperand &Count = LoLoop.getLoopStartOperand(); 1237 1238 MachineInstrBuilder MIB = 1239 BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc)); 1240 1241 MIB.addDef(ARM::LR); 1242 MIB.add(Count); 1243 if (!IsDo) 1244 MIB.add(Start->getOperand(1)); 1245 1246 // If we're inserting at a mov lr, then remove it as it's redundant. 1247 if (InsertPt != Start) 1248 LoLoop.ToRemove.insert(InsertPt); 1249 LoLoop.ToRemove.insert(Start); 1250 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1251 return &*MIB; 1252 } 1253 1254 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1255 auto RemovePredicate = [](MachineInstr *MI) { 1256 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1257 if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) { 1258 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1259 "Expected Then predicate!"); 1260 MI->getOperand(PIdx).setImm(ARMVCC::None); 1261 MI->getOperand(PIdx+1).setReg(0); 1262 } else 1263 llvm_unreachable("trying to unpredicate a non-predicated instruction"); 1264 }; 1265 1266 // There are a few scenarios which we have to fix up: 1267 // 1. VPT Blocks with non-uniform predicates: 1268 // - a. When the divergent instruction is a vctp 1269 // - b. When the block uses a vpst, and is only predicated on the vctp 1270 // - c. When the block uses a vpt and (optionally) contains one or more 1271 // vctp. 1272 // 2. VPT Blocks with uniform predicates: 1273 // - a. The block uses a vpst, and is only predicated on the vctp 1274 for (auto &Block : LoLoop.getVPTBlocks()) { 1275 SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); 1276 if (Block.HasNonUniformPredicate()) { 1277 PredicatedMI *Divergent = Block.getDivergent(); 1278 if (isVCTP(Divergent->MI)) { 1279 // The vctp will be removed, so the block mask of the vp(s)t will need 1280 // to be recomputed. 1281 LoLoop.BlockMasksToRecompute.insert(Block.getPredicateThen()); 1282 } else if (Block.isVPST() && Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { 1283 // The VPT block has a non-uniform predicate but it uses a vpst and its 1284 // entry is guarded only by a vctp, which means we: 1285 // - Need to remove the original vpst. 1286 // - Then need to unpredicate any following instructions, until 1287 // we come across the divergent vpr def. 1288 // - Insert a new vpst to predicate the instruction(s) that following 1289 // the divergent vpr def. 1290 // TODO: We could be producing more VPT blocks than necessary and could 1291 // fold the newly created one into a proceeding one. 1292 for (auto I = ++MachineBasicBlock::iterator(Block.getPredicateThen()), 1293 E = ++MachineBasicBlock::iterator(Divergent->MI); I != E; ++I) 1294 RemovePredicate(&*I); 1295 1296 unsigned Size = 0; 1297 auto E = MachineBasicBlock::reverse_iterator(Divergent->MI); 1298 auto I = MachineBasicBlock::reverse_iterator(Insts.back().MI); 1299 MachineInstr *InsertAt = nullptr; 1300 while (I != E) { 1301 InsertAt = &*I; 1302 ++Size; 1303 ++I; 1304 } 1305 // Create a VPST (with a null mask for now, we'll recompute it later). 1306 MachineInstrBuilder MIB = BuildMI(*InsertAt->getParent(), InsertAt, 1307 InsertAt->getDebugLoc(), 1308 TII->get(ARM::MVE_VPST)); 1309 MIB.addImm(0); 1310 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getPredicateThen()); 1311 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1312 LoLoop.ToRemove.insert(Block.getPredicateThen()); 1313 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1314 } 1315 // Else, if the block uses a vpt, iterate over the block, removing the 1316 // extra VCTPs it may contain. 1317 else if (Block.isVPT()) { 1318 bool RemovedVCTP = false; 1319 for (PredicatedMI &Elt : Block.getInsts()) { 1320 MachineInstr *MI = Elt.MI; 1321 if (isVCTP(MI)) { 1322 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VCTP: " << *MI); 1323 LoLoop.ToRemove.insert(MI); 1324 RemovedVCTP = true; 1325 continue; 1326 } 1327 } 1328 if (RemovedVCTP) 1329 LoLoop.BlockMasksToRecompute.insert(Block.getPredicateThen()); 1330 } 1331 } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP) && Block.isVPST()) { 1332 // A vpt block starting with VPST, is only predicated upon vctp and has no 1333 // internal vpr defs: 1334 // - Remove vpst. 1335 // - Unpredicate the remaining instructions. 1336 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getPredicateThen()); 1337 LoLoop.ToRemove.insert(Block.getPredicateThen()); 1338 for (auto &PredMI : Insts) 1339 RemovePredicate(PredMI.MI); 1340 } 1341 } 1342 LLVM_DEBUG(dbgs() << "ARM Loops: Removing remaining VCTPs...\n"); 1343 // Remove the "main" VCTP 1344 LoLoop.ToRemove.insert(LoLoop.VCTP); 1345 LLVM_DEBUG(dbgs() << " " << *LoLoop.VCTP); 1346 // Remove remaining secondary VCTPs 1347 for (MachineInstr *VCTP : LoLoop.SecondaryVCTPs) { 1348 // All VCTPs that aren't marked for removal yet should be unpredicated ones. 1349 // The predicated ones should have already been marked for removal when 1350 // visiting the VPT blocks. 1351 if (LoLoop.ToRemove.insert(VCTP).second) { 1352 assert(getVPTInstrPredicate(*VCTP) == ARMVCC::None && 1353 "Removing Predicated VCTP without updating the block mask!"); 1354 LLVM_DEBUG(dbgs() << " " << *VCTP); 1355 } 1356 } 1357 } 1358 1359 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1360 1361 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1362 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1363 MachineInstr *End = LoLoop.End; 1364 MachineBasicBlock *MBB = End->getParent(); 1365 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1366 ARM::MVE_LETP : ARM::t2LEUpdate; 1367 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1368 TII->get(Opc)); 1369 MIB.addDef(ARM::LR); 1370 MIB.add(End->getOperand(0)); 1371 MIB.add(End->getOperand(1)); 1372 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1373 LoLoop.ToRemove.insert(LoLoop.Dec); 1374 LoLoop.ToRemove.insert(End); 1375 return &*MIB; 1376 }; 1377 1378 // TODO: We should be able to automatically remove these branches before we 1379 // get here - probably by teaching analyzeBranch about the pseudo 1380 // instructions. 1381 // If there is an unconditional branch, after I, that just branches to the 1382 // next block, remove it. 1383 auto RemoveDeadBranch = [](MachineInstr *I) { 1384 MachineBasicBlock *BB = I->getParent(); 1385 MachineInstr *Terminator = &BB->instr_back(); 1386 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1387 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1388 if (BB->isLayoutSuccessor(Succ)) { 1389 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1390 Terminator->eraseFromParent(); 1391 } 1392 } 1393 }; 1394 1395 if (LoLoop.Revert) { 1396 if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) 1397 RevertWhile(LoLoop.Start); 1398 else 1399 LoLoop.Start->eraseFromParent(); 1400 bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec); 1401 RevertLoopEnd(LoLoop.End, FlagsAlreadySet); 1402 } else { 1403 LoLoop.Start = ExpandLoopStart(LoLoop); 1404 RemoveDeadBranch(LoLoop.Start); 1405 LoLoop.End = ExpandLoopEnd(LoLoop); 1406 RemoveDeadBranch(LoLoop.End); 1407 if (LoLoop.IsTailPredicationLegal()) 1408 ConvertVPTBlocks(LoLoop); 1409 for (auto *I : LoLoop.ToRemove) { 1410 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1411 I->eraseFromParent(); 1412 } 1413 for (auto *I : LoLoop.BlockMasksToRecompute) { 1414 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1415 recomputeVPTBlockMask(*I); 1416 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1417 } 1418 } 1419 1420 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1421 DFS.ProcessLoop(); 1422 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1423 for (auto *MBB : PostOrder) { 1424 recomputeLiveIns(*MBB); 1425 // FIXME: For some reason, the live-in print order is non-deterministic for 1426 // our tests and I can't out why... So just sort them. 1427 MBB->sortUniqueLiveIns(); 1428 } 1429 1430 for (auto *MBB : reverse(PostOrder)) 1431 recomputeLivenessFlags(*MBB); 1432 1433 // We've moved, removed and inserted new instructions, so update RDA. 1434 RDA->reset(); 1435 } 1436 1437 bool ARMLowOverheadLoops::RevertNonLoops() { 1438 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1439 bool Changed = false; 1440 1441 for (auto &MBB : *MF) { 1442 SmallVector<MachineInstr*, 4> Starts; 1443 SmallVector<MachineInstr*, 4> Decs; 1444 SmallVector<MachineInstr*, 4> Ends; 1445 1446 for (auto &I : MBB) { 1447 if (isLoopStart(I)) 1448 Starts.push_back(&I); 1449 else if (I.getOpcode() == ARM::t2LoopDec) 1450 Decs.push_back(&I); 1451 else if (I.getOpcode() == ARM::t2LoopEnd) 1452 Ends.push_back(&I); 1453 } 1454 1455 if (Starts.empty() && Decs.empty() && Ends.empty()) 1456 continue; 1457 1458 Changed = true; 1459 1460 for (auto *Start : Starts) { 1461 if (Start->getOpcode() == ARM::t2WhileLoopStart) 1462 RevertWhile(Start); 1463 else 1464 Start->eraseFromParent(); 1465 } 1466 for (auto *Dec : Decs) 1467 RevertLoopDec(Dec); 1468 1469 for (auto *End : Ends) 1470 RevertLoopEnd(End); 1471 } 1472 return Changed; 1473 } 1474 1475 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1476 return new ARMLowOverheadLoops(); 1477 } 1478