1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 /// A note on VPR.P0 (the lane mask): 39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a 40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks). 41 /// They will simply "and" the result of their calculation with the current 42 /// value of VPR.P0. You can think of it like this: 43 /// \verbatim 44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs 45 /// VPR.P0 &= Value 46 /// else 47 /// VPR.P0 = Value 48 /// \endverbatim 49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always 50 /// fall in the "VPT active" case, so we can consider that all VPR writes by 51 /// one of those instruction is actually a "and". 52 //===----------------------------------------------------------------------===// 53 54 #include "ARM.h" 55 #include "ARMBaseInstrInfo.h" 56 #include "ARMBaseRegisterInfo.h" 57 #include "ARMBasicBlockInfo.h" 58 #include "ARMSubtarget.h" 59 #include "Thumb2InstrInfo.h" 60 #include "llvm/ADT/SetOperations.h" 61 #include "llvm/ADT/SmallSet.h" 62 #include "llvm/CodeGen/LivePhysRegs.h" 63 #include "llvm/CodeGen/MachineFunctionPass.h" 64 #include "llvm/CodeGen/MachineLoopInfo.h" 65 #include "llvm/CodeGen/MachineLoopUtils.h" 66 #include "llvm/CodeGen/MachineRegisterInfo.h" 67 #include "llvm/CodeGen/Passes.h" 68 #include "llvm/CodeGen/ReachingDefAnalysis.h" 69 #include "llvm/MC/MCInstrDesc.h" 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "arm-low-overhead-loops" 74 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 75 76 static cl::opt<bool> 77 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden, 78 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"), 79 cl::init(false)); 80 81 static bool isVectorPredicated(MachineInstr *MI) { 82 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 83 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 84 } 85 86 static bool isVectorPredicate(MachineInstr *MI) { 87 return MI->findRegisterDefOperandIdx(ARM::VPR) != -1; 88 } 89 90 static bool hasVPRUse(MachineInstr *MI) { 91 return MI->findRegisterUseOperandIdx(ARM::VPR) != -1; 92 } 93 94 static bool isDomainMVE(MachineInstr *MI) { 95 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask; 96 return Domain == ARMII::DomainMVE; 97 } 98 99 static bool shouldInspect(MachineInstr &MI) { 100 return isDomainMVE(&MI) || isVectorPredicate(&MI) || 101 hasVPRUse(&MI); 102 } 103 104 namespace { 105 106 using InstSet = SmallPtrSetImpl<MachineInstr *>; 107 108 class PostOrderLoopTraversal { 109 MachineLoop &ML; 110 MachineLoopInfo &MLI; 111 SmallPtrSet<MachineBasicBlock*, 4> Visited; 112 SmallVector<MachineBasicBlock*, 4> Order; 113 114 public: 115 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 116 : ML(ML), MLI(MLI) { } 117 118 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 119 return Order; 120 } 121 122 // Visit all the blocks within the loop, as well as exit blocks and any 123 // blocks properly dominating the header. 124 void ProcessLoop() { 125 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 126 (MachineBasicBlock *MBB) -> void { 127 if (Visited.count(MBB)) 128 return; 129 130 Visited.insert(MBB); 131 for (auto *Succ : MBB->successors()) { 132 if (!ML.contains(Succ)) 133 continue; 134 Search(Succ); 135 } 136 Order.push_back(MBB); 137 }; 138 139 // Insert exit blocks. 140 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 141 ML.getExitBlocks(ExitBlocks); 142 for (auto *MBB : ExitBlocks) 143 Order.push_back(MBB); 144 145 // Then add the loop body. 146 Search(ML.getHeader()); 147 148 // Then try the preheader and its predecessors. 149 std::function<void(MachineBasicBlock*)> GetPredecessor = 150 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 151 Order.push_back(MBB); 152 if (MBB->pred_size() == 1) 153 GetPredecessor(*MBB->pred_begin()); 154 }; 155 156 if (auto *Preheader = ML.getLoopPreheader()) 157 GetPredecessor(Preheader); 158 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true)) 159 GetPredecessor(Preheader); 160 } 161 }; 162 163 struct PredicatedMI { 164 MachineInstr *MI = nullptr; 165 SetVector<MachineInstr*> Predicates; 166 167 public: 168 PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) { 169 assert(I && "Instruction must not be null!"); 170 Predicates.insert(Preds.begin(), Preds.end()); 171 } 172 }; 173 174 // Represent the current state of the VPR and hold all instances which 175 // represent a VPT block, which is a list of instructions that begins with a 176 // VPT/VPST and has a maximum of four proceeding instructions. All 177 // instructions within the block are predicated upon the vpr and we allow 178 // instructions to define the vpr within in the block too. 179 class VPTState { 180 friend struct LowOverheadLoop; 181 182 SmallVector<MachineInstr *, 4> Insts; 183 184 static SmallVector<VPTState, 4> Blocks; 185 static SetVector<MachineInstr *> CurrentPredicates; 186 static std::map<MachineInstr *, 187 std::unique_ptr<PredicatedMI>> PredicatedInsts; 188 189 static void CreateVPTBlock(MachineInstr *MI) { 190 assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR)) 191 && "Can't begin VPT without predicate"); 192 Blocks.emplace_back(MI); 193 // The execution of MI is predicated upon the current set of instructions 194 // that are AND'ed together to form the VPR predicate value. In the case 195 // that MI is a VPT, CurrentPredicates will also just be MI. 196 PredicatedInsts.emplace( 197 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 198 } 199 200 static void reset() { 201 Blocks.clear(); 202 PredicatedInsts.clear(); 203 CurrentPredicates.clear(); 204 } 205 206 static void addInst(MachineInstr *MI) { 207 Blocks.back().insert(MI); 208 PredicatedInsts.emplace( 209 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 210 } 211 212 static void addPredicate(MachineInstr *MI) { 213 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI); 214 CurrentPredicates.insert(MI); 215 } 216 217 static void resetPredicate(MachineInstr *MI) { 218 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI); 219 CurrentPredicates.clear(); 220 CurrentPredicates.insert(MI); 221 } 222 223 public: 224 // Have we found an instruction within the block which defines the vpr? If 225 // so, not all the instructions in the block will have the same predicate. 226 static bool hasUniformPredicate(VPTState &Block) { 227 return getDivergent(Block) == nullptr; 228 } 229 230 // If it exists, return the first internal instruction which modifies the 231 // VPR. 232 static MachineInstr *getDivergent(VPTState &Block) { 233 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 234 for (unsigned i = 1; i < Insts.size(); ++i) { 235 MachineInstr *Next = Insts[i]; 236 if (isVectorPredicate(Next)) 237 return Next; // Found an instruction altering the vpr. 238 } 239 return nullptr; 240 } 241 242 // Return whether the given instruction is predicated upon a VCTP. 243 static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) { 244 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates; 245 if (Exclusive && Predicates.size() != 1) 246 return false; 247 for (auto *PredMI : Predicates) 248 if (isVCTP(PredMI)) 249 return true; 250 return false; 251 } 252 253 // Is the VPST, controlling the block entry, predicated upon a VCTP. 254 static bool isEntryPredicatedOnVCTP(VPTState &Block, 255 bool Exclusive = false) { 256 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 257 return isPredicatedOnVCTP(Insts.front(), Exclusive); 258 } 259 260 // If this block begins with a VPT, we can check whether it's using 261 // at least one predicated input(s), as well as possible loop invariant 262 // which would result in it being implicitly predicated. 263 static bool hasImplicitlyValidVPT(VPTState &Block, 264 ReachingDefAnalysis &RDA) { 265 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 266 MachineInstr *VPT = Insts.front(); 267 assert(isVPTOpcode(VPT->getOpcode()) && 268 "Expected VPT block to begin with VPT/VPST"); 269 270 if (VPT->getOpcode() == ARM::MVE_VPST) 271 return false; 272 273 auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) { 274 MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx)); 275 return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op); 276 }; 277 278 auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) { 279 MachineOperand &MO = MI->getOperand(Idx); 280 if (!MO.isReg() || !MO.getReg()) 281 return true; 282 283 SmallPtrSet<MachineInstr *, 2> Defs; 284 RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs); 285 if (Defs.empty()) 286 return true; 287 288 for (auto *Def : Defs) 289 if (Def->getParent() == VPT->getParent()) 290 return false; 291 return true; 292 }; 293 294 // Check that at least one of the operands is directly predicated on a 295 // vctp and allow an invariant value too. 296 return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) && 297 (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) && 298 (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2)); 299 } 300 301 static bool isValid(ReachingDefAnalysis &RDA) { 302 // All predication within the loop should be based on vctp. If the block 303 // isn't predicated on entry, check whether the vctp is within the block 304 // and that all other instructions are then predicated on it. 305 for (auto &Block : Blocks) { 306 if (isEntryPredicatedOnVCTP(Block, false) || 307 hasImplicitlyValidVPT(Block, RDA)) 308 continue; 309 310 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 311 for (auto *MI : Insts) { 312 // Check that any internal VCTPs are 'Then' predicated. 313 if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then) 314 return false; 315 // Skip other instructions that build up the predicate. 316 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI)) 317 continue; 318 // Check that any other instructions are predicated upon a vctp. 319 // TODO: We could infer when VPTs are implicitly predicated on the 320 // vctp (when the operands are predicated). 321 if (!isPredicatedOnVCTP(MI)) { 322 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI); 323 return false; 324 } 325 } 326 } 327 return true; 328 } 329 330 VPTState(MachineInstr *MI) { Insts.push_back(MI); } 331 332 void insert(MachineInstr *MI) { 333 Insts.push_back(MI); 334 // VPT/VPST + 4 predicated instructions. 335 assert(Insts.size() <= 5 && "Too many instructions in VPT block!"); 336 } 337 338 bool containsVCTP() const { 339 for (auto *MI : Insts) 340 if (isVCTP(MI)) 341 return true; 342 return false; 343 } 344 345 unsigned size() const { return Insts.size(); } 346 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; } 347 }; 348 349 struct LowOverheadLoop { 350 351 MachineLoop &ML; 352 MachineBasicBlock *Preheader = nullptr; 353 MachineLoopInfo &MLI; 354 ReachingDefAnalysis &RDA; 355 const TargetRegisterInfo &TRI; 356 const ARMBaseInstrInfo &TII; 357 MachineFunction *MF = nullptr; 358 MachineBasicBlock::iterator StartInsertPt; 359 MachineBasicBlock *StartInsertBB = nullptr; 360 MachineInstr *Start = nullptr; 361 MachineInstr *Dec = nullptr; 362 MachineInstr *End = nullptr; 363 MachineOperand TPNumElements; 364 SmallVector<MachineInstr*, 4> VCTPs; 365 SmallPtrSet<MachineInstr*, 4> ToRemove; 366 SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute; 367 bool Revert = false; 368 bool CannotTailPredicate = false; 369 370 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 371 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI, 372 const ARMBaseInstrInfo &TII) 373 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII), 374 TPNumElements(MachineOperand::CreateImm(0)) { 375 MF = ML.getHeader()->getParent(); 376 if (auto *MBB = ML.getLoopPreheader()) 377 Preheader = MBB; 378 else if (auto *MBB = MLI.findLoopPreheader(&ML, true)) 379 Preheader = MBB; 380 VPTState::reset(); 381 } 382 383 // If this is an MVE instruction, check that we know how to use tail 384 // predication with it. Record VPT blocks and return whether the 385 // instruction is valid for tail predication. 386 bool ValidateMVEInst(MachineInstr *MI); 387 388 void AnalyseMVEInst(MachineInstr *MI) { 389 CannotTailPredicate = !ValidateMVEInst(MI); 390 } 391 392 bool IsTailPredicationLegal() const { 393 // For now, let's keep things really simple and only support a single 394 // block for tail predication. 395 return !Revert && FoundAllComponents() && !VCTPs.empty() && 396 !CannotTailPredicate && ML.getNumBlocks() == 1; 397 } 398 399 // Given that MI is a VCTP, check that is equivalent to any other VCTPs 400 // found. 401 bool AddVCTP(MachineInstr *MI); 402 403 // Check that the predication in the loop will be equivalent once we 404 // perform the conversion. Also ensure that we can provide the number 405 // of elements to the loop start instruction. 406 bool ValidateTailPredicate(); 407 408 // Check that any values available outside of the loop will be the same 409 // after tail predication conversion. 410 bool ValidateLiveOuts(); 411 412 // Is it safe to define LR with DLS/WLS? 413 // LR can be defined if it is the operand to start, because it's the same 414 // value, or if it's going to be equivalent to the operand to Start. 415 MachineInstr *isSafeToDefineLR(); 416 417 // Check the branch targets are within range and we satisfy our 418 // restrictions. 419 void Validate(ARMBasicBlockUtils *BBUtils); 420 421 bool FoundAllComponents() const { 422 return Start && Dec && End; 423 } 424 425 SmallVectorImpl<VPTState> &getVPTBlocks() { 426 return VPTState::Blocks; 427 } 428 429 // Return the operand for the loop start instruction. This will be the loop 430 // iteration count, or the number of elements if we're tail predicating. 431 MachineOperand &getLoopStartOperand() { 432 if (IsTailPredicationLegal()) 433 return TPNumElements; 434 return Start->getOpcode() == ARM::t2DoLoopStart ? Start->getOperand(1) 435 : Start->getOperand(0); 436 } 437 438 unsigned getStartOpcode() const { 439 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 440 if (!IsTailPredicationLegal()) 441 return IsDo ? ARM::t2DLS : ARM::t2WLS; 442 443 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo); 444 } 445 446 void dump() const { 447 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 448 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 449 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 450 if (!VCTPs.empty()) { 451 dbgs() << "ARM Loops: Found VCTP(s):\n"; 452 for (auto *MI : VCTPs) 453 dbgs() << " - " << *MI; 454 } 455 if (!FoundAllComponents()) 456 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 457 else if (!(Start && Dec && End)) 458 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 459 } 460 }; 461 462 class ARMLowOverheadLoops : public MachineFunctionPass { 463 MachineFunction *MF = nullptr; 464 MachineLoopInfo *MLI = nullptr; 465 ReachingDefAnalysis *RDA = nullptr; 466 const ARMBaseInstrInfo *TII = nullptr; 467 MachineRegisterInfo *MRI = nullptr; 468 const TargetRegisterInfo *TRI = nullptr; 469 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 470 471 public: 472 static char ID; 473 474 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 475 476 void getAnalysisUsage(AnalysisUsage &AU) const override { 477 AU.setPreservesCFG(); 478 AU.addRequired<MachineLoopInfo>(); 479 AU.addRequired<ReachingDefAnalysis>(); 480 MachineFunctionPass::getAnalysisUsage(AU); 481 } 482 483 bool runOnMachineFunction(MachineFunction &MF) override; 484 485 MachineFunctionProperties getRequiredProperties() const override { 486 return MachineFunctionProperties().set( 487 MachineFunctionProperties::Property::NoVRegs).set( 488 MachineFunctionProperties::Property::TracksLiveness); 489 } 490 491 StringRef getPassName() const override { 492 return ARM_LOW_OVERHEAD_LOOPS_NAME; 493 } 494 495 private: 496 bool ProcessLoop(MachineLoop *ML); 497 498 bool RevertNonLoops(); 499 500 void RevertWhile(MachineInstr *MI) const; 501 void RevertDo(MachineInstr *MI) const; 502 503 bool RevertLoopDec(MachineInstr *MI) const; 504 505 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 506 507 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 508 509 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 510 511 void Expand(LowOverheadLoop &LoLoop); 512 513 void IterationCountDCE(LowOverheadLoop &LoLoop); 514 }; 515 } 516 517 char ARMLowOverheadLoops::ID = 0; 518 519 SmallVector<VPTState, 4> VPTState::Blocks; 520 SetVector<MachineInstr *> VPTState::CurrentPredicates; 521 std::map<MachineInstr *, 522 std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts; 523 524 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 525 false, false) 526 527 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA, 528 InstSet &ToRemove, InstSet &Ignore) { 529 530 // Check that we can remove all of Killed without having to modify any IT 531 // blocks. 532 auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) { 533 // Collect the dead code and the MBBs in which they reside. 534 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 535 for (auto *Dead : Killed) 536 BasicBlocks.insert(Dead->getParent()); 537 538 // Collect IT blocks in all affected basic blocks. 539 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 540 for (auto *MBB : BasicBlocks) { 541 for (auto &IT : *MBB) { 542 if (IT.getOpcode() != ARM::t2IT) 543 continue; 544 RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE), 545 ITBlocks[&IT]); 546 } 547 } 548 549 // If we're removing all of the instructions within an IT block, then 550 // also remove the IT instruction. 551 SmallPtrSet<MachineInstr *, 2> ModifiedITs; 552 SmallPtrSet<MachineInstr *, 2> RemoveITs; 553 for (auto *Dead : Killed) { 554 if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) { 555 MachineInstr *IT = RDA.getMIOperand(Dead, *MO); 556 RemoveITs.insert(IT); 557 auto &CurrentBlock = ITBlocks[IT]; 558 CurrentBlock.erase(Dead); 559 if (CurrentBlock.empty()) 560 ModifiedITs.erase(IT); 561 else 562 ModifiedITs.insert(IT); 563 } 564 } 565 if (!ModifiedITs.empty()) 566 return false; 567 Killed.insert(RemoveITs.begin(), RemoveITs.end()); 568 return true; 569 }; 570 571 SmallPtrSet<MachineInstr *, 2> Uses; 572 if (!RDA.isSafeToRemove(MI, Uses, Ignore)) 573 return false; 574 575 if (WontCorruptITs(Uses, RDA)) { 576 ToRemove.insert(Uses.begin(), Uses.end()); 577 LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI 578 << " - can also remove:\n"; 579 for (auto *Use : Uses) 580 dbgs() << " - " << *Use); 581 582 SmallPtrSet<MachineInstr*, 4> Killed; 583 RDA.collectKilledOperands(MI, Killed); 584 if (WontCorruptITs(Killed, RDA)) { 585 ToRemove.insert(Killed.begin(), Killed.end()); 586 LLVM_DEBUG(for (auto *Dead : Killed) 587 dbgs() << " - " << *Dead); 588 } 589 return true; 590 } 591 return false; 592 } 593 594 bool LowOverheadLoop::ValidateTailPredicate() { 595 if (!IsTailPredicationLegal()) { 596 LLVM_DEBUG(if (VCTPs.empty()) 597 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 598 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 599 return false; 600 } 601 602 assert(!VCTPs.empty() && "VCTP instruction expected but is not set"); 603 assert(ML.getBlocks().size() == 1 && 604 "Shouldn't be processing a loop with more than one block"); 605 606 if (DisableTailPredication) { 607 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n"); 608 return false; 609 } 610 611 if (!VPTState::isValid(RDA)) { 612 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n"); 613 return false; 614 } 615 616 if (!ValidateLiveOuts()) { 617 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n"); 618 return false; 619 } 620 621 // Check that creating a [W|D]LSTP, which will define LR with an element 622 // count instead of iteration count, won't affect any other instructions 623 // than the LoopStart and LoopDec. 624 // TODO: We should try to insert the [W|D]LSTP after any of the other uses. 625 Register StartReg = Start->getOpcode() == ARM::t2DoLoopStart 626 ? Start->getOperand(1).getReg() 627 : Start->getOperand(0).getReg(); 628 if (StartInsertPt == Start && StartReg == ARM::LR) { 629 if (auto *IterCount = RDA.getMIOperand( 630 Start, Start->getOpcode() == ARM::t2DoLoopStart ? 1 : 0)) { 631 SmallPtrSet<MachineInstr *, 2> Uses; 632 RDA.getGlobalUses(IterCount, MCRegister::from(ARM::LR), Uses); 633 for (auto *Use : Uses) { 634 if (Use != Start && Use != Dec) { 635 LLVM_DEBUG(dbgs() << " ARM Loops: Found LR use: " << *Use); 636 return false; 637 } 638 } 639 } 640 } 641 642 // For tail predication, we need to provide the number of elements, instead 643 // of the iteration count, to the loop start instruction. The number of 644 // elements is provided to the vctp instruction, so we need to check that 645 // we can use this register at InsertPt. 646 MachineInstr *VCTP = VCTPs.back(); 647 TPNumElements = VCTP->getOperand(1); 648 MCRegister NumElements = TPNumElements.getReg().asMCReg(); 649 650 // If the register is defined within loop, then we can't perform TP. 651 // TODO: Check whether this is just a mov of a register that would be 652 // available. 653 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 654 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 655 return false; 656 } 657 658 // The element count register maybe defined after InsertPt, in which case we 659 // need to try to move either InsertPt or the def so that the [w|d]lstp can 660 // use the value. 661 662 if (StartInsertPt != StartInsertBB->end() && 663 !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) { 664 if (auto *ElemDef = RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) { 665 if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) { 666 ElemDef->removeFromParent(); 667 StartInsertBB->insert(StartInsertPt, ElemDef); 668 LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: " 669 << *ElemDef); 670 } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) { 671 StartInsertPt->removeFromParent(); 672 StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 673 &*StartInsertPt); 674 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 675 } else { 676 // If we fail to move an instruction and the element count is provided 677 // by a mov, use the mov operand if it will have the same value at the 678 // insertion point 679 MachineOperand Operand = ElemDef->getOperand(1); 680 if (isMovRegOpcode(ElemDef->getOpcode()) && 681 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) == 682 RDA.getUniqueReachingMIDef(&*StartInsertPt, 683 Operand.getReg().asMCReg())) { 684 TPNumElements = Operand; 685 NumElements = TPNumElements.getReg(); 686 } else { 687 LLVM_DEBUG(dbgs() 688 << "ARM Loops: Unable to move element count to loop " 689 << "start instruction.\n"); 690 return false; 691 } 692 } 693 } 694 } 695 696 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect 697 // world the [w|d]lstp instruction would be last instruction in the preheader 698 // and so it would only affect instructions within the loop body. But due to 699 // scheduling, and/or the logic in this pass (above), the insertion point can 700 // be moved earlier. So if the Loop Start isn't the last instruction in the 701 // preheader, and if the initial element count is smaller than the vector 702 // width, the Loop Start instruction will immediately generate one or more 703 // false lane mask which can, incorrectly, affect the proceeding MVE 704 // instructions in the preheader. 705 auto CannotInsertWDLSTPBetween = [](MachineBasicBlock::iterator I, 706 MachineBasicBlock::iterator E) { 707 for (; I != E; ++I) { 708 if (shouldInspect(*I)) { 709 LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP" 710 << " insertion: " << *I); 711 return true; 712 } 713 } 714 return false; 715 }; 716 717 if (CannotInsertWDLSTPBetween(StartInsertPt, StartInsertBB->end())) 718 return false; 719 720 // Especially in the case of while loops, InsertBB may not be the 721 // preheader, so we need to check that the register isn't redefined 722 // before entering the loop. 723 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 724 MCRegister NumElements) { 725 if (MBB->empty()) 726 return false; 727 // NumElements is redefined in this block. 728 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 729 return true; 730 731 // Don't continue searching up through multiple predecessors. 732 if (MBB->pred_size() > 1) 733 return true; 734 735 return false; 736 }; 737 738 // Search backwards for a def, until we get to InsertBB. 739 MachineBasicBlock *MBB = Preheader; 740 while (MBB && MBB != StartInsertBB) { 741 if (CannotProvideElements(MBB, NumElements)) { 742 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 743 return false; 744 } 745 MBB = *MBB->pred_begin(); 746 } 747 748 // Check that the value change of the element count is what we expect and 749 // that the predication will be equivalent. For this we need: 750 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 751 // and we can also allow register copies within the chain too. 752 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 753 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 754 }; 755 756 MBB = VCTP->getParent(); 757 // Remove modifications to the element count since they have no purpose in a 758 // tail predicated loop. Explicitly refer to the vctp operand no matter which 759 // register NumElements has been assigned to, since that is what the 760 // modifications will be using 761 if (auto *Def = RDA.getUniqueReachingMIDef( 762 &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) { 763 SmallPtrSet<MachineInstr*, 2> ElementChain; 764 SmallPtrSet<MachineInstr*, 2> Ignore; 765 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 766 767 Ignore.insert(VCTPs.begin(), VCTPs.end()); 768 769 if (TryRemove(Def, RDA, ElementChain, Ignore)) { 770 bool FoundSub = false; 771 772 for (auto *MI : ElementChain) { 773 if (isMovRegOpcode(MI->getOpcode())) 774 continue; 775 776 if (isSubImmOpcode(MI->getOpcode())) { 777 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) { 778 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 779 " count: " << *MI); 780 return false; 781 } 782 FoundSub = true; 783 } else { 784 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 785 " count: " << *MI); 786 return false; 787 } 788 } 789 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 790 } 791 } 792 return true; 793 } 794 795 static bool isRegInClass(const MachineOperand &MO, 796 const TargetRegisterClass *Class) { 797 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 798 } 799 800 // MVE 'narrowing' operate on half a lane, reading from half and writing 801 // to half, which are referred to has the top and bottom half. The other 802 // half retains its previous value. 803 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 804 const MCInstrDesc &MCID = MI.getDesc(); 805 uint64_t Flags = MCID.TSFlags; 806 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 807 } 808 809 // Some MVE instructions read from the top/bottom halves of their operand(s) 810 // and generate a vector result with result elements that are double the 811 // width of the input. 812 static bool producesDoubleWidthResult(const MachineInstr &MI) { 813 const MCInstrDesc &MCID = MI.getDesc(); 814 uint64_t Flags = MCID.TSFlags; 815 return (Flags & ARMII::DoubleWidthResult) != 0; 816 } 817 818 static bool isHorizontalReduction(const MachineInstr &MI) { 819 const MCInstrDesc &MCID = MI.getDesc(); 820 uint64_t Flags = MCID.TSFlags; 821 return (Flags & ARMII::HorizontalReduction) != 0; 822 } 823 824 // Can this instruction generate a non-zero result when given only zeroed 825 // operands? This allows us to know that, given operands with false bytes 826 // zeroed by masked loads, that the result will also contain zeros in those 827 // bytes. 828 static bool canGenerateNonZeros(const MachineInstr &MI) { 829 830 // Check for instructions which can write into a larger element size, 831 // possibly writing into a previous zero'd lane. 832 if (producesDoubleWidthResult(MI)) 833 return true; 834 835 switch (MI.getOpcode()) { 836 default: 837 break; 838 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 839 // fp16 -> fp32 vector conversions. 840 // Instructions that perform a NOT will generate 1s from 0s. 841 case ARM::MVE_VMVN: 842 case ARM::MVE_VORN: 843 // Count leading zeros will do just that! 844 case ARM::MVE_VCLZs8: 845 case ARM::MVE_VCLZs16: 846 case ARM::MVE_VCLZs32: 847 return true; 848 } 849 return false; 850 } 851 852 // Look at its register uses to see if it only can only receive zeros 853 // into its false lanes which would then produce zeros. Also check that 854 // the output register is also defined by an FalseLanesZero instruction 855 // so that if tail-predication happens, the lanes that aren't updated will 856 // still be zeros. 857 static bool producesFalseLanesZero(MachineInstr &MI, 858 const TargetRegisterClass *QPRs, 859 const ReachingDefAnalysis &RDA, 860 InstSet &FalseLanesZero) { 861 if (canGenerateNonZeros(MI)) 862 return false; 863 864 bool isPredicated = isVectorPredicated(&MI); 865 // Predicated loads will write zeros to the falsely predicated bytes of the 866 // destination register. 867 if (MI.mayLoad()) 868 return isPredicated; 869 870 auto IsZeroInit = [](MachineInstr *Def) { 871 return !isVectorPredicated(Def) && 872 Def->getOpcode() == ARM::MVE_VMOVimmi32 && 873 Def->getOperand(1).getImm() == 0; 874 }; 875 876 bool AllowScalars = isHorizontalReduction(MI); 877 for (auto &MO : MI.operands()) { 878 if (!MO.isReg() || !MO.getReg()) 879 continue; 880 if (!isRegInClass(MO, QPRs) && AllowScalars) 881 continue; 882 883 // Check that this instruction will produce zeros in its false lanes: 884 // - If it only consumes false lanes zero or constant 0 (vmov #0) 885 // - If it's predicated, it only matters that it's def register already has 886 // false lane zeros, so we can ignore the uses. 887 SmallPtrSet<MachineInstr *, 2> Defs; 888 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs); 889 for (auto *Def : Defs) { 890 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def)) 891 continue; 892 if (MO.isUse() && isPredicated) 893 continue; 894 return false; 895 } 896 } 897 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 898 return true; 899 } 900 901 bool LowOverheadLoop::ValidateLiveOuts() { 902 // We want to find out if the tail-predicated version of this loop will 903 // produce the same values as the loop in its original form. For this to 904 // be true, the newly inserted implicit predication must not change the 905 // the (observable) results. 906 // We're doing this because many instructions in the loop will not be 907 // predicated and so the conversion from VPT predication to tail-predication 908 // can result in different values being produced; due to the tail-predication 909 // preventing many instructions from updating their falsely predicated 910 // lanes. This analysis assumes that all the instructions perform lane-wise 911 // operations and don't perform any exchanges. 912 // A masked load, whether through VPT or tail predication, will write zeros 913 // to any of the falsely predicated bytes. So, from the loads, we know that 914 // the false lanes are zeroed and here we're trying to track that those false 915 // lanes remain zero, or where they change, the differences are masked away 916 // by their user(s). 917 // All MVE stores have to be predicated, so we know that any predicate load 918 // operands, or stored results are equivalent already. Other explicitly 919 // predicated instructions will perform the same operation in the original 920 // loop and the tail-predicated form too. Because of this, we can insert 921 // loads, stores and other predicated instructions into our Predicated 922 // set and build from there. 923 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 924 SetVector<MachineInstr *> FalseLanesUnknown; 925 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 926 SmallPtrSet<MachineInstr *, 4> Predicated; 927 MachineBasicBlock *Header = ML.getHeader(); 928 929 for (auto &MI : *Header) { 930 if (!shouldInspect(MI)) 931 continue; 932 933 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) 934 continue; 935 936 bool isPredicated = isVectorPredicated(&MI); 937 bool retainsOrReduces = 938 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI); 939 940 if (isPredicated) 941 Predicated.insert(&MI); 942 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) 943 FalseLanesZero.insert(&MI); 944 else if (MI.getNumDefs() == 0) 945 continue; 946 else if (!isPredicated && retainsOrReduces) 947 return false; 948 else if (!isPredicated) 949 FalseLanesUnknown.insert(&MI); 950 } 951 952 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 953 SmallPtrSetImpl<MachineInstr *> &Predicated) { 954 SmallPtrSet<MachineInstr *, 2> Uses; 955 RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses); 956 for (auto *Use : Uses) { 957 if (Use != MI && !Predicated.count(Use)) 958 return false; 959 } 960 return true; 961 }; 962 963 // Visit the unknowns in reverse so that we can start at the values being 964 // stored and then we can work towards the leaves, hopefully adding more 965 // instructions to Predicated. Successfully terminating the loop means that 966 // all the unknown values have to found to be masked by predicated user(s). 967 // For any unpredicated values, we store them in NonPredicated so that we 968 // can later check whether these form a reduction. 969 SmallPtrSet<MachineInstr*, 2> NonPredicated; 970 for (auto *MI : reverse(FalseLanesUnknown)) { 971 for (auto &MO : MI->operands()) { 972 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 973 continue; 974 if (!HasPredicatedUsers(MI, MO, Predicated)) { 975 LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : " 976 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 977 NonPredicated.insert(MI); 978 break; 979 } 980 } 981 // Any unknown false lanes have been masked away by the user(s). 982 if (!NonPredicated.contains(MI)) 983 Predicated.insert(MI); 984 } 985 986 SmallPtrSet<MachineInstr *, 2> LiveOutMIs; 987 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 988 ML.getExitBlocks(ExitBlocks); 989 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 990 assert(ExitBlocks.size() == 1 && "Expected a single exit block"); 991 MachineBasicBlock *ExitBB = ExitBlocks.front(); 992 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) { 993 // TODO: Instead of blocking predication, we could move the vctp to the exit 994 // block and calculate it's operand there in or the preheader. 995 if (RegMask.PhysReg == ARM::VPR) 996 return false; 997 // Check Q-regs that are live in the exit blocks. We don't collect scalars 998 // because they won't be affected by lane predication. 999 if (QPRs->contains(RegMask.PhysReg)) 1000 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg)) 1001 LiveOutMIs.insert(MI); 1002 } 1003 1004 // We've already validated that any VPT predication within the loop will be 1005 // equivalent when we perform the predication transformation; so we know that 1006 // any VPT predicated instruction is predicated upon VCTP. Any live-out 1007 // instruction needs to be predicated, so check this here. The instructions 1008 // in NonPredicated have been found to be a reduction that we can ensure its 1009 // legality. 1010 for (auto *MI : LiveOutMIs) { 1011 if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) { 1012 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to handle live out: " << *MI); 1013 return false; 1014 } 1015 } 1016 1017 return true; 1018 } 1019 1020 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) { 1021 if (Revert) 1022 return; 1023 1024 // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP] 1025 // can only jump back. 1026 auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End, 1027 ARMBasicBlockUtils *BBUtils, MachineLoop &ML) { 1028 if (!End->getOperand(1).isMBB()) 1029 report_fatal_error("Expected LoopEnd to target basic block"); 1030 1031 // TODO Maybe there's cases where the target doesn't have to be the header, 1032 // but for now be safe and revert. 1033 if (End->getOperand(1).getMBB() != ML.getHeader()) { 1034 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n"); 1035 return false; 1036 } 1037 1038 // The WLS and LE instructions have 12-bits for the label offset. WLS 1039 // requires a positive offset, while LE uses negative. 1040 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 1041 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 1042 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 1043 return false; 1044 } 1045 1046 if (Start->getOpcode() == ARM::t2WhileLoopStart && 1047 (BBUtils->getOffsetOf(Start) > 1048 BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || 1049 !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { 1050 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 1051 return false; 1052 } 1053 return true; 1054 }; 1055 1056 // Find a suitable position to insert the loop start instruction. It needs to 1057 // be able to safely define LR. 1058 auto FindStartInsertionPoint = [](MachineInstr *Start, 1059 MachineInstr *Dec, 1060 MachineBasicBlock::iterator &InsertPt, 1061 MachineBasicBlock *&InsertBB, 1062 ReachingDefAnalysis &RDA, 1063 InstSet &ToRemove) { 1064 // For a t2DoLoopStart it is always valid to use the start insertion point. 1065 // For WLS we can define LR if LR already contains the same value. 1066 if (Start->getOpcode() == ARM::t2DoLoopStart || 1067 Start->getOperand(0).getReg() == ARM::LR) { 1068 InsertPt = MachineBasicBlock::iterator(Start); 1069 InsertBB = Start->getParent(); 1070 return true; 1071 } 1072 1073 // We've found no suitable LR def and Start doesn't use LR directly. Can we 1074 // just define LR anyway? 1075 if (!RDA.isSafeToDefRegAt(Start, MCRegister::from(ARM::LR))) 1076 return false; 1077 1078 InsertPt = MachineBasicBlock::iterator(Start); 1079 InsertBB = Start->getParent(); 1080 return true; 1081 }; 1082 1083 if (!FindStartInsertionPoint(Start, Dec, StartInsertPt, StartInsertBB, RDA, 1084 ToRemove)) { 1085 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n"); 1086 Revert = true; 1087 return; 1088 } 1089 LLVM_DEBUG(if (StartInsertPt == StartInsertBB->end()) 1090 dbgs() << "ARM Loops: Will insert LoopStart at end of block\n"; 1091 else 1092 dbgs() << "ARM Loops: Will insert LoopStart at " 1093 << *StartInsertPt 1094 ); 1095 1096 Revert = !ValidateRanges(Start, End, BBUtils, ML); 1097 CannotTailPredicate = !ValidateTailPredicate(); 1098 } 1099 1100 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) { 1101 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI); 1102 if (VCTPs.empty()) { 1103 VCTPs.push_back(MI); 1104 return true; 1105 } 1106 1107 // If we find another VCTP, check whether it uses the same value as the main VCTP. 1108 // If it does, store it in the VCTPs set, else refuse it. 1109 MachineInstr *Prev = VCTPs.back(); 1110 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) || 1111 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) { 1112 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " 1113 "definition from the main VCTP"); 1114 return false; 1115 } 1116 VCTPs.push_back(MI); 1117 return true; 1118 } 1119 1120 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) { 1121 if (CannotTailPredicate) 1122 return false; 1123 1124 if (!shouldInspect(*MI)) 1125 return true; 1126 1127 if (MI->getOpcode() == ARM::MVE_VPSEL || 1128 MI->getOpcode() == ARM::MVE_VPNOT) { 1129 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 1130 // 1) It will use the VPR as a predicate operand, but doesn't have to be 1131 // instead a VPT block, which means we can assert while building up 1132 // the VPT block because we don't find another VPT or VPST to being a new 1133 // one. 1134 // 2) VPSEL still requires a VPR operand even after tail predicating, 1135 // which means we can't remove it unless there is another 1136 // instruction, such as vcmp, that can provide the VPR def. 1137 return false; 1138 } 1139 1140 // Record all VCTPs and check that they're equivalent to one another. 1141 if (isVCTP(MI) && !AddVCTP(MI)) 1142 return false; 1143 1144 // Inspect uses first so that any instructions that alter the VPR don't 1145 // alter the predicate upon themselves. 1146 const MCInstrDesc &MCID = MI->getDesc(); 1147 bool IsUse = false; 1148 unsigned LastOpIdx = MI->getNumOperands() - 1; 1149 for (auto &Op : enumerate(reverse(MCID.operands()))) { 1150 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index()); 1151 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR) 1152 continue; 1153 1154 if (ARM::isVpred(Op.value().OperandType)) { 1155 VPTState::addInst(MI); 1156 IsUse = true; 1157 } else if (MI->getOpcode() != ARM::MVE_VPST) { 1158 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 1159 return false; 1160 } 1161 } 1162 1163 // If we find an instruction that has been marked as not valid for tail 1164 // predication, only allow the instruction if it's contained within a valid 1165 // VPT block. 1166 bool RequiresExplicitPredication = 1167 (MCID.TSFlags & ARMII::ValidForTailPredication) == 0; 1168 if (isDomainMVE(MI) && RequiresExplicitPredication) { 1169 LLVM_DEBUG(if (!IsUse) 1170 dbgs() << "ARM Loops: Can't tail predicate: " << *MI); 1171 return IsUse; 1172 } 1173 1174 // If the instruction is already explicitly predicated, then the conversion 1175 // will be fine, but ensure that all store operations are predicated. 1176 if (MI->mayStore()) 1177 return IsUse; 1178 1179 // If this instruction defines the VPR, update the predicate for the 1180 // proceeding instructions. 1181 if (isVectorPredicate(MI)) { 1182 // Clear the existing predicate when we're not in VPT Active state, 1183 // otherwise we add to it. 1184 if (!isVectorPredicated(MI)) 1185 VPTState::resetPredicate(MI); 1186 else 1187 VPTState::addPredicate(MI); 1188 } 1189 1190 // Finally once the predicate has been modified, we can start a new VPT 1191 // block if necessary. 1192 if (isVPTOpcode(MI->getOpcode())) 1193 VPTState::CreateVPTBlock(MI); 1194 1195 return true; 1196 } 1197 1198 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 1199 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 1200 if (!ST.hasLOB()) 1201 return false; 1202 1203 MF = &mf; 1204 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 1205 1206 MLI = &getAnalysis<MachineLoopInfo>(); 1207 RDA = &getAnalysis<ReachingDefAnalysis>(); 1208 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 1209 MRI = &MF->getRegInfo(); 1210 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 1211 TRI = ST.getRegisterInfo(); 1212 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 1213 BBUtils->computeAllBlockSizes(); 1214 BBUtils->adjustBBOffsetsAfter(&MF->front()); 1215 1216 bool Changed = false; 1217 for (auto ML : *MLI) { 1218 if (ML->isOutermost()) 1219 Changed |= ProcessLoop(ML); 1220 } 1221 Changed |= RevertNonLoops(); 1222 return Changed; 1223 } 1224 1225 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 1226 1227 bool Changed = false; 1228 1229 // Process inner loops first. 1230 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 1231 Changed |= ProcessLoop(*I); 1232 1233 LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; 1234 if (auto *Preheader = ML->getLoopPreheader()) 1235 dbgs() << " - " << Preheader->getName() << "\n"; 1236 else if (auto *Preheader = MLI->findLoopPreheader(ML)) 1237 dbgs() << " - " << Preheader->getName() << "\n"; 1238 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 1239 dbgs() << " - " << Preheader->getName() << "\n"; 1240 for (auto *MBB : ML->getBlocks()) 1241 dbgs() << " - " << MBB->getName() << "\n"; 1242 ); 1243 1244 // Search the given block for a loop start instruction. If one isn't found, 1245 // and there's only one predecessor block, search that one too. 1246 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 1247 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 1248 for (auto &MI : *MBB) { 1249 if (isLoopStart(MI)) 1250 return &MI; 1251 } 1252 if (MBB->pred_size() == 1) 1253 return SearchForStart(*MBB->pred_begin()); 1254 return nullptr; 1255 }; 1256 1257 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII); 1258 // Search the preheader for the start intrinsic. 1259 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 1260 // with potentially multiple set.loop.iterations, so we need to enable this. 1261 if (LoLoop.Preheader) 1262 LoLoop.Start = SearchForStart(LoLoop.Preheader); 1263 else 1264 return false; 1265 1266 // Find the low-overhead loop components and decide whether or not to fall 1267 // back to a normal loop. Also look for a vctp instructions and decide 1268 // whether we can convert that predicate using tail predication. 1269 for (auto *MBB : reverse(ML->getBlocks())) { 1270 for (auto &MI : *MBB) { 1271 if (MI.isDebugValue()) 1272 continue; 1273 else if (MI.getOpcode() == ARM::t2LoopDec) 1274 LoLoop.Dec = &MI; 1275 else if (MI.getOpcode() == ARM::t2LoopEnd) 1276 LoLoop.End = &MI; 1277 else if (isLoopStart(MI)) 1278 LoLoop.Start = &MI; 1279 else if (MI.getDesc().isCall()) { 1280 // TODO: Though the call will require LE to execute again, does this 1281 // mean we should revert? Always executing LE hopefully should be 1282 // faster than performing a sub,cmp,br or even subs,br. 1283 LoLoop.Revert = true; 1284 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 1285 } else { 1286 // Record VPR defs and build up their corresponding vpt blocks. 1287 // Check we know how to tail predicate any mve instructions. 1288 LoLoop.AnalyseMVEInst(&MI); 1289 } 1290 } 1291 } 1292 1293 LLVM_DEBUG(LoLoop.dump()); 1294 if (!LoLoop.FoundAllComponents()) { 1295 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 1296 return false; 1297 } 1298 1299 // Check that the only instruction using LoopDec is LoopEnd. 1300 // TODO: Check for copy chains that really have no effect. 1301 SmallPtrSet<MachineInstr*, 2> Uses; 1302 RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses); 1303 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 1304 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 1305 LoLoop.Revert = true; 1306 } 1307 LoLoop.Validate(BBUtils.get()); 1308 Expand(LoLoop); 1309 return true; 1310 } 1311 1312 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 1313 // beq that branches to the exit branch. 1314 // TODO: We could also try to generate a cbz if the value in LR is also in 1315 // another low register. 1316 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 1317 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 1318 MachineBasicBlock *MBB = MI->getParent(); 1319 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1320 TII->get(ARM::t2CMPri)); 1321 MIB.add(MI->getOperand(0)); 1322 MIB.addImm(0); 1323 MIB.addImm(ARMCC::AL); 1324 MIB.addReg(ARM::NoRegister); 1325 1326 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1327 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1328 ARM::tBcc : ARM::t2Bcc; 1329 1330 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1331 MIB.add(MI->getOperand(1)); // branch target 1332 MIB.addImm(ARMCC::EQ); // condition code 1333 MIB.addReg(ARM::CPSR); 1334 MI->eraseFromParent(); 1335 } 1336 1337 void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const { 1338 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI); 1339 MachineBasicBlock *MBB = MI->getParent(); 1340 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::tMOVr)) 1341 .add(MI->getOperand(0)) 1342 .add(MI->getOperand(1)) 1343 .add(predOps(ARMCC::AL)); 1344 MI->eraseFromParent(); 1345 } 1346 1347 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 1348 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 1349 MachineBasicBlock *MBB = MI->getParent(); 1350 SmallPtrSet<MachineInstr*, 1> Ignore; 1351 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 1352 if (I->getOpcode() == ARM::t2LoopEnd) { 1353 Ignore.insert(&*I); 1354 break; 1355 } 1356 } 1357 1358 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1359 bool SetFlags = 1360 RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore); 1361 1362 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1363 TII->get(ARM::t2SUBri)); 1364 MIB.addDef(ARM::LR); 1365 MIB.add(MI->getOperand(1)); 1366 MIB.add(MI->getOperand(2)); 1367 MIB.addImm(ARMCC::AL); 1368 MIB.addReg(0); 1369 1370 if (SetFlags) { 1371 MIB.addReg(ARM::CPSR); 1372 MIB->getOperand(5).setIsDef(true); 1373 } else 1374 MIB.addReg(0); 1375 1376 MI->eraseFromParent(); 1377 return SetFlags; 1378 } 1379 1380 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1381 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1382 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1383 1384 MachineBasicBlock *MBB = MI->getParent(); 1385 // Create cmp 1386 if (!SkipCmp) { 1387 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1388 TII->get(ARM::t2CMPri)); 1389 MIB.addReg(ARM::LR); 1390 MIB.addImm(0); 1391 MIB.addImm(ARMCC::AL); 1392 MIB.addReg(ARM::NoRegister); 1393 } 1394 1395 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1396 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1397 ARM::tBcc : ARM::t2Bcc; 1398 1399 // Create bne 1400 MachineInstrBuilder MIB = 1401 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1402 MIB.add(MI->getOperand(1)); // branch target 1403 MIB.addImm(ARMCC::NE); // condition code 1404 MIB.addReg(ARM::CPSR); 1405 MI->eraseFromParent(); 1406 } 1407 1408 // Perform dead code elimation on the loop iteration count setup expression. 1409 // If we are tail-predicating, the number of elements to be processed is the 1410 // operand of the VCTP instruction in the vector body, see getCount(), which is 1411 // register $r3 in this example: 1412 // 1413 // $lr = big-itercount-expression 1414 // .. 1415 // $lr = t2DoLoopStart renamable $lr 1416 // vector.body: 1417 // .. 1418 // $vpr = MVE_VCTP32 renamable $r3 1419 // renamable $lr = t2LoopDec killed renamable $lr, 1 1420 // t2LoopEnd renamable $lr, %vector.body 1421 // tB %end 1422 // 1423 // What we would like achieve here is to replace the do-loop start pseudo 1424 // instruction t2DoLoopStart with: 1425 // 1426 // $lr = MVE_DLSTP_32 killed renamable $r3 1427 // 1428 // Thus, $r3 which defines the number of elements, is written to $lr, 1429 // and then we want to delete the whole chain that used to define $lr, 1430 // see the comment below how this chain could look like. 1431 // 1432 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1433 if (!LoLoop.IsTailPredicationLegal()) 1434 return; 1435 1436 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1437 1438 MachineInstr *Def = RDA->getMIOperand( 1439 LoLoop.Start, LoLoop.Start->getOpcode() == ARM::t2DoLoopStart ? 1 : 0); 1440 if (!Def) { 1441 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1442 return; 1443 } 1444 1445 // Collect and remove the users of iteration count. 1446 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1447 LoLoop.End }; 1448 if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed)) 1449 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1450 } 1451 1452 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1453 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1454 // When using tail-predication, try to delete the dead code that was used to 1455 // calculate the number of loop iterations. 1456 IterationCountDCE(LoLoop); 1457 1458 MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt; 1459 MachineInstr *Start = LoLoop.Start; 1460 MachineBasicBlock *MBB = LoLoop.StartInsertBB; 1461 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 1462 unsigned Opc = LoLoop.getStartOpcode(); 1463 MachineOperand &Count = LoLoop.getLoopStartOperand(); 1464 1465 MachineInstrBuilder MIB = 1466 BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc)); 1467 1468 MIB.addDef(ARM::LR); 1469 MIB.add(Count); 1470 if (!IsDo) 1471 MIB.add(Start->getOperand(1)); 1472 1473 LoLoop.ToRemove.insert(Start); 1474 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1475 return &*MIB; 1476 } 1477 1478 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1479 auto RemovePredicate = [](MachineInstr *MI) { 1480 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1481 if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) { 1482 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1483 "Expected Then predicate!"); 1484 MI->getOperand(PIdx).setImm(ARMVCC::None); 1485 MI->getOperand(PIdx+1).setReg(0); 1486 } else 1487 llvm_unreachable("trying to unpredicate a non-predicated instruction"); 1488 }; 1489 1490 for (auto &Block : LoLoop.getVPTBlocks()) { 1491 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 1492 1493 if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/true)) { 1494 if (VPTState::hasUniformPredicate(Block)) { 1495 // A vpt block starting with VPST, is only predicated upon vctp and has no 1496 // internal vpr defs: 1497 // - Remove vpst. 1498 // - Unpredicate the remaining instructions. 1499 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front()); 1500 LoLoop.ToRemove.insert(Insts.front()); 1501 for (unsigned i = 1; i < Insts.size(); ++i) 1502 RemovePredicate(Insts[i]); 1503 } else { 1504 // The VPT block has a non-uniform predicate but it uses a vpst and its 1505 // entry is guarded only by a vctp, which means we: 1506 // - Need to remove the original vpst. 1507 // - Then need to unpredicate any following instructions, until 1508 // we come across the divergent vpr def. 1509 // - Insert a new vpst to predicate the instruction(s) that following 1510 // the divergent vpr def. 1511 // TODO: We could be producing more VPT blocks than necessary and could 1512 // fold the newly created one into a proceeding one. 1513 MachineInstr *Divergent = VPTState::getDivergent(Block); 1514 MachineInstr *VPST = Insts.front(); 1515 auto DivergentNext = ++MachineBasicBlock::iterator(Divergent); 1516 bool DivergentNextIsPredicated = 1517 getVPTInstrPredicate(*DivergentNext) != ARMVCC::None; 1518 1519 for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext; 1520 I != E; ++I) 1521 RemovePredicate(&*I); 1522 1523 // Check if the instruction defining vpr is a vcmp so it can be combined 1524 // with the VPST This should be the divergent instruction 1525 MachineInstr *VCMP = 1526 VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr; 1527 1528 auto ReplaceVCMPWithVPT = [&]() { 1529 // Replace the VCMP with a VPT 1530 MachineInstrBuilder MIB = BuildMI( 1531 *Divergent->getParent(), Divergent, Divergent->getDebugLoc(), 1532 TII->get(VCMPOpcodeToVPT(VCMP->getOpcode()))); 1533 MIB.addImm(ARMVCC::Then); 1534 // Register one 1535 MIB.add(VCMP->getOperand(1)); 1536 // Register two 1537 MIB.add(VCMP->getOperand(2)); 1538 // The comparison code, e.g. ge, eq, lt 1539 MIB.add(VCMP->getOperand(3)); 1540 LLVM_DEBUG(dbgs() 1541 << "ARM Loops: Combining with VCMP to VPT: " << *MIB); 1542 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1543 LoLoop.ToRemove.insert(VCMP); 1544 }; 1545 1546 if (DivergentNextIsPredicated) { 1547 // Insert a VPST at the divergent only if the next instruction 1548 // would actually use it. A VCMP following a VPST can be 1549 // merged into a VPT so do that instead if the VCMP exists. 1550 if (!VCMP) { 1551 // Create a VPST (with a null mask for now, we'll recompute it 1552 // later) 1553 MachineInstrBuilder MIB = 1554 BuildMI(*Divergent->getParent(), Divergent, 1555 Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST)); 1556 MIB.addImm(0); 1557 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1558 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1559 } else { 1560 // No RDA checks are necessary here since the VPST would have been 1561 // directly before the VCMP 1562 ReplaceVCMPWithVPT(); 1563 } 1564 } 1565 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1566 LoLoop.ToRemove.insert(VPST); 1567 } 1568 } else if (Block.containsVCTP()) { 1569 // The vctp will be removed, so the block mask of the vp(s)t will need 1570 // to be recomputed. 1571 LoLoop.BlockMasksToRecompute.insert(Insts.front()); 1572 } 1573 } 1574 1575 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end()); 1576 } 1577 1578 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1579 1580 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1581 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1582 MachineInstr *End = LoLoop.End; 1583 MachineBasicBlock *MBB = End->getParent(); 1584 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1585 ARM::MVE_LETP : ARM::t2LEUpdate; 1586 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1587 TII->get(Opc)); 1588 MIB.addDef(ARM::LR); 1589 MIB.add(End->getOperand(0)); 1590 MIB.add(End->getOperand(1)); 1591 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1592 LoLoop.ToRemove.insert(LoLoop.Dec); 1593 LoLoop.ToRemove.insert(End); 1594 return &*MIB; 1595 }; 1596 1597 // TODO: We should be able to automatically remove these branches before we 1598 // get here - probably by teaching analyzeBranch about the pseudo 1599 // instructions. 1600 // If there is an unconditional branch, after I, that just branches to the 1601 // next block, remove it. 1602 auto RemoveDeadBranch = [](MachineInstr *I) { 1603 MachineBasicBlock *BB = I->getParent(); 1604 MachineInstr *Terminator = &BB->instr_back(); 1605 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1606 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1607 if (BB->isLayoutSuccessor(Succ)) { 1608 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1609 Terminator->eraseFromParent(); 1610 } 1611 } 1612 }; 1613 1614 if (LoLoop.Revert) { 1615 if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) 1616 RevertWhile(LoLoop.Start); 1617 else 1618 RevertDo(LoLoop.Start); 1619 bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec); 1620 RevertLoopEnd(LoLoop.End, FlagsAlreadySet); 1621 } else { 1622 LoLoop.Start = ExpandLoopStart(LoLoop); 1623 RemoveDeadBranch(LoLoop.Start); 1624 LoLoop.End = ExpandLoopEnd(LoLoop); 1625 RemoveDeadBranch(LoLoop.End); 1626 if (LoLoop.IsTailPredicationLegal()) 1627 ConvertVPTBlocks(LoLoop); 1628 for (auto *I : LoLoop.ToRemove) { 1629 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1630 I->eraseFromParent(); 1631 } 1632 for (auto *I : LoLoop.BlockMasksToRecompute) { 1633 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1634 recomputeVPTBlockMask(*I); 1635 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1636 } 1637 } 1638 1639 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1640 DFS.ProcessLoop(); 1641 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1642 for (auto *MBB : PostOrder) { 1643 recomputeLiveIns(*MBB); 1644 // FIXME: For some reason, the live-in print order is non-deterministic for 1645 // our tests and I can't out why... So just sort them. 1646 MBB->sortUniqueLiveIns(); 1647 } 1648 1649 for (auto *MBB : reverse(PostOrder)) 1650 recomputeLivenessFlags(*MBB); 1651 1652 // We've moved, removed and inserted new instructions, so update RDA. 1653 RDA->reset(); 1654 } 1655 1656 bool ARMLowOverheadLoops::RevertNonLoops() { 1657 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1658 bool Changed = false; 1659 1660 for (auto &MBB : *MF) { 1661 SmallVector<MachineInstr*, 4> Starts; 1662 SmallVector<MachineInstr*, 4> Decs; 1663 SmallVector<MachineInstr*, 4> Ends; 1664 1665 for (auto &I : MBB) { 1666 if (isLoopStart(I)) 1667 Starts.push_back(&I); 1668 else if (I.getOpcode() == ARM::t2LoopDec) 1669 Decs.push_back(&I); 1670 else if (I.getOpcode() == ARM::t2LoopEnd) 1671 Ends.push_back(&I); 1672 } 1673 1674 if (Starts.empty() && Decs.empty() && Ends.empty()) 1675 continue; 1676 1677 Changed = true; 1678 1679 for (auto *Start : Starts) { 1680 if (Start->getOpcode() == ARM::t2WhileLoopStart) 1681 RevertWhile(Start); 1682 else 1683 RevertDo(Start); 1684 } 1685 for (auto *Dec : Decs) 1686 RevertLoopDec(Dec); 1687 1688 for (auto *End : Ends) 1689 RevertLoopEnd(End); 1690 } 1691 return Changed; 1692 } 1693 1694 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1695 return new ARMLowOverheadLoops(); 1696 } 1697