1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStartLR and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 /// A note on VPR.P0 (the lane mask): 39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a 40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks). 41 /// They will simply "and" the result of their calculation with the current 42 /// value of VPR.P0. You can think of it like this: 43 /// \verbatim 44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs 45 /// VPR.P0 &= Value 46 /// else 47 /// VPR.P0 = Value 48 /// \endverbatim 49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always 50 /// fall in the "VPT active" case, so we can consider that all VPR writes by 51 /// one of those instruction is actually a "and". 52 //===----------------------------------------------------------------------===// 53 54 #include "ARM.h" 55 #include "ARMBaseInstrInfo.h" 56 #include "ARMBaseRegisterInfo.h" 57 #include "ARMBasicBlockInfo.h" 58 #include "ARMSubtarget.h" 59 #include "MVETailPredUtils.h" 60 #include "Thumb2InstrInfo.h" 61 #include "llvm/ADT/SetOperations.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/CodeGen/LivePhysRegs.h" 64 #include "llvm/CodeGen/MachineFrameInfo.h" 65 #include "llvm/CodeGen/MachineFunctionPass.h" 66 #include "llvm/CodeGen/MachineLoopInfo.h" 67 #include "llvm/CodeGen/MachineLoopUtils.h" 68 #include "llvm/CodeGen/MachineRegisterInfo.h" 69 #include "llvm/CodeGen/Passes.h" 70 #include "llvm/CodeGen/ReachingDefAnalysis.h" 71 #include "llvm/MC/MCInstrDesc.h" 72 73 using namespace llvm; 74 75 #define DEBUG_TYPE "arm-low-overhead-loops" 76 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 77 78 static cl::opt<bool> 79 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden, 80 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"), 81 cl::init(false)); 82 83 static cl::opt<bool> 84 DisableOmitDLS("arm-disable-omit-dls", cl::Hidden, 85 cl::desc("Disable omitting 'dls lr, lr' instructions"), 86 cl::init(false)); 87 88 static bool isVectorPredicated(MachineInstr *MI) { 89 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 90 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 91 } 92 93 static bool isVectorPredicate(MachineInstr *MI) { 94 return MI->findRegisterDefOperandIdx(ARM::VPR, /*TRI=*/nullptr) != -1; 95 } 96 97 static bool hasVPRUse(MachineInstr &MI) { 98 return MI.findRegisterUseOperandIdx(ARM::VPR, /*TRI=*/nullptr) != -1; 99 } 100 101 static bool isDomainMVE(MachineInstr *MI) { 102 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask; 103 return Domain == ARMII::DomainMVE; 104 } 105 106 static int getVecSize(const MachineInstr &MI) { 107 const MCInstrDesc &MCID = MI.getDesc(); 108 uint64_t Flags = MCID.TSFlags; 109 return (Flags & ARMII::VecSize) >> ARMII::VecSizeShift; 110 } 111 112 static bool shouldInspect(MachineInstr &MI) { 113 if (MI.isDebugInstr()) 114 return false; 115 return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI); 116 } 117 118 namespace { 119 120 using InstSet = SmallPtrSetImpl<MachineInstr *>; 121 122 class PostOrderLoopTraversal { 123 MachineLoop &ML; 124 MachineLoopInfo &MLI; 125 SmallPtrSet<MachineBasicBlock*, 4> Visited; 126 SmallVector<MachineBasicBlock*, 4> Order; 127 128 public: 129 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 130 : ML(ML), MLI(MLI) { } 131 132 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 133 return Order; 134 } 135 136 // Visit all the blocks within the loop, as well as exit blocks and any 137 // blocks properly dominating the header. 138 void ProcessLoop() { 139 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 140 (MachineBasicBlock *MBB) -> void { 141 if (Visited.count(MBB)) 142 return; 143 144 Visited.insert(MBB); 145 for (auto *Succ : MBB->successors()) { 146 if (!ML.contains(Succ)) 147 continue; 148 Search(Succ); 149 } 150 Order.push_back(MBB); 151 }; 152 153 // Insert exit blocks. 154 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 155 ML.getExitBlocks(ExitBlocks); 156 append_range(Order, ExitBlocks); 157 158 // Then add the loop body. 159 Search(ML.getHeader()); 160 161 // Then try the preheader and its predecessors. 162 std::function<void(MachineBasicBlock*)> GetPredecessor = 163 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 164 Order.push_back(MBB); 165 if (MBB->pred_size() == 1) 166 GetPredecessor(*MBB->pred_begin()); 167 }; 168 169 if (auto *Preheader = ML.getLoopPreheader()) 170 GetPredecessor(Preheader); 171 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true, true)) 172 GetPredecessor(Preheader); 173 } 174 }; 175 176 class VPTBlock { 177 SmallVector<MachineInstr *, 4> Insts; 178 179 public: 180 VPTBlock(MachineInstr *MI) { Insts.push_back(MI); } 181 182 // Have we found an instruction within the block which defines the vpr? If 183 // so, not all the instructions in the block will have the same predicate. 184 bool hasUniformPredicate() { return getDivergent() == nullptr; } 185 186 // If it exists, return the first internal instruction which modifies the 187 // VPR. 188 MachineInstr *getDivergent() { 189 SmallVectorImpl<MachineInstr *> &Insts = getInsts(); 190 for (unsigned i = 1; i < Insts.size(); ++i) { 191 MachineInstr *Next = Insts[i]; 192 if (isVectorPredicate(Next)) 193 return Next; // Found an instruction altering the vpr. 194 } 195 return nullptr; 196 } 197 198 void insert(MachineInstr *MI) { 199 Insts.push_back(MI); 200 // VPT/VPST + 4 predicated instructions. 201 assert(Insts.size() <= 5 && "Too many instructions in VPT block!"); 202 } 203 204 bool containsVCTP() const { return llvm::any_of(Insts, isVCTP); } 205 206 unsigned size() const { return Insts.size(); } 207 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; } 208 }; 209 210 // Represent the current state of the VPR and hold all instances which 211 // represent a VPT block, which is a list of instructions that begins with a 212 // VPT/VPST and has a maximum of four proceeding instructions. All 213 // instructions within the block are predicated upon the vpr and we allow 214 // instructions to define the vpr within in the block too. 215 class VPTState { 216 friend struct LowOverheadLoop; 217 218 SmallVector<VPTBlock, 4> Blocks; 219 SetVector<MachineInstr *> CurrentPredicates; 220 std::map<MachineInstr *, SetVector<MachineInstr *>> PredicatedInsts; 221 222 void CreateVPTBlock(MachineInstr *MI) { 223 assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR)) 224 && "Can't begin VPT without predicate"); 225 Blocks.emplace_back(MI); 226 // The execution of MI is predicated upon the current set of instructions 227 // that are AND'ed together to form the VPR predicate value. In the case 228 // that MI is a VPT, CurrentPredicates will also just be MI. 229 PredicatedInsts[MI] = CurrentPredicates; 230 } 231 232 void addInst(MachineInstr *MI) { 233 Blocks.back().insert(MI); 234 PredicatedInsts[MI] = CurrentPredicates; 235 } 236 237 void addPredicate(MachineInstr *MI) { 238 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI); 239 CurrentPredicates.insert(MI); 240 } 241 242 void resetPredicate(MachineInstr *MI) { 243 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI); 244 CurrentPredicates.clear(); 245 CurrentPredicates.insert(MI); 246 } 247 248 public: 249 // Return whether the given instruction is predicated upon a VCTP. 250 bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) { 251 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]; 252 if (Exclusive && Predicates.size() != 1) 253 return false; 254 return llvm::any_of(Predicates, isVCTP); 255 } 256 257 // Is the VPST, controlling the block entry, predicated upon a VCTP. 258 bool isEntryPredicatedOnVCTP(VPTBlock &Block, bool Exclusive = false) { 259 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 260 return isPredicatedOnVCTP(Insts.front(), Exclusive); 261 } 262 263 // If this block begins with a VPT, we can check whether it's using 264 // at least one predicated input(s), as well as possible loop invariant 265 // which would result in it being implicitly predicated. 266 bool hasImplicitlyValidVPT(VPTBlock &Block, ReachingDefAnalysis &RDA) { 267 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 268 MachineInstr *VPT = Insts.front(); 269 assert(isVPTOpcode(VPT->getOpcode()) && 270 "Expected VPT block to begin with VPT/VPST"); 271 272 if (VPT->getOpcode() == ARM::MVE_VPST) 273 return false; 274 275 auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) { 276 MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx)); 277 return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op); 278 }; 279 280 auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) { 281 MachineOperand &MO = MI->getOperand(Idx); 282 if (!MO.isReg() || !MO.getReg()) 283 return true; 284 285 SmallPtrSet<MachineInstr *, 2> Defs; 286 RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs); 287 if (Defs.empty()) 288 return true; 289 290 for (auto *Def : Defs) 291 if (Def->getParent() == VPT->getParent()) 292 return false; 293 return true; 294 }; 295 296 // Check that at least one of the operands is directly predicated on a 297 // vctp and allow an invariant value too. 298 return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) && 299 (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) && 300 (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2)); 301 } 302 303 bool isValid(ReachingDefAnalysis &RDA) { 304 // All predication within the loop should be based on vctp. If the block 305 // isn't predicated on entry, check whether the vctp is within the block 306 // and that all other instructions are then predicated on it. 307 for (auto &Block : Blocks) { 308 if (isEntryPredicatedOnVCTP(Block, false) || 309 hasImplicitlyValidVPT(Block, RDA)) 310 continue; 311 312 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 313 // We don't know how to convert a block with just a VPT;VCTP into 314 // anything valid once we remove the VCTP. For now just bail out. 315 assert(isVPTOpcode(Insts.front()->getOpcode()) && 316 "Expected VPT block to start with a VPST or VPT!"); 317 if (Insts.size() == 2 && Insts.front()->getOpcode() != ARM::MVE_VPST && 318 isVCTP(Insts.back())) 319 return false; 320 321 for (auto *MI : Insts) { 322 // Check that any internal VCTPs are 'Then' predicated. 323 if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then) 324 return false; 325 // Skip other instructions that build up the predicate. 326 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI)) 327 continue; 328 // Check that any other instructions are predicated upon a vctp. 329 // TODO: We could infer when VPTs are implicitly predicated on the 330 // vctp (when the operands are predicated). 331 if (!isPredicatedOnVCTP(MI)) { 332 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI); 333 return false; 334 } 335 } 336 } 337 return true; 338 } 339 }; 340 341 struct LowOverheadLoop { 342 343 MachineLoop &ML; 344 MachineBasicBlock *Preheader = nullptr; 345 MachineLoopInfo &MLI; 346 ReachingDefAnalysis &RDA; 347 const TargetRegisterInfo &TRI; 348 const ARMBaseInstrInfo &TII; 349 MachineFunction *MF = nullptr; 350 MachineBasicBlock::iterator StartInsertPt; 351 MachineBasicBlock *StartInsertBB = nullptr; 352 MachineInstr *Start = nullptr; 353 MachineInstr *Dec = nullptr; 354 MachineInstr *End = nullptr; 355 MachineOperand TPNumElements; 356 SmallVector<MachineInstr *, 4> VCTPs; 357 SmallPtrSet<MachineInstr *, 4> ToRemove; 358 SmallPtrSet<MachineInstr *, 4> BlockMasksToRecompute; 359 SmallPtrSet<MachineInstr *, 4> DoubleWidthResultInstrs; 360 SmallPtrSet<MachineInstr *, 4> VMOVCopies; 361 bool Revert = false; 362 bool CannotTailPredicate = false; 363 VPTState VPTstate; 364 365 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 366 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI, 367 const ARMBaseInstrInfo &TII) 368 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII), 369 TPNumElements(MachineOperand::CreateImm(0)) { 370 MF = ML.getHeader()->getParent(); 371 if (auto *MBB = ML.getLoopPreheader()) 372 Preheader = MBB; 373 else if (auto *MBB = MLI.findLoopPreheader(&ML, true, true)) 374 Preheader = MBB; 375 } 376 377 // If this is an MVE instruction, check that we know how to use tail 378 // predication with it. Record VPT blocks and return whether the 379 // instruction is valid for tail predication. 380 bool ValidateMVEInst(MachineInstr *MI); 381 382 void AnalyseMVEInst(MachineInstr *MI) { 383 CannotTailPredicate = !ValidateMVEInst(MI); 384 } 385 386 bool IsTailPredicationLegal() const { 387 // For now, let's keep things really simple and only support a single 388 // block for tail predication. 389 return !Revert && FoundAllComponents() && !VCTPs.empty() && 390 !CannotTailPredicate && ML.getNumBlocks() == 1; 391 } 392 393 // Given that MI is a VCTP, check that is equivalent to any other VCTPs 394 // found. 395 bool AddVCTP(MachineInstr *MI); 396 397 // Check that the predication in the loop will be equivalent once we 398 // perform the conversion. Also ensure that we can provide the number 399 // of elements to the loop start instruction. 400 bool ValidateTailPredicate(); 401 402 // Check that any values available outside of the loop will be the same 403 // after tail predication conversion. 404 bool ValidateLiveOuts(); 405 406 // Check the branch targets are within range and we satisfy our 407 // restrictions. 408 void Validate(ARMBasicBlockUtils *BBUtils); 409 410 bool FoundAllComponents() const { 411 return Start && Dec && End; 412 } 413 414 SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTstate.Blocks; } 415 416 // Return the operand for the loop start instruction. This will be the loop 417 // iteration count, or the number of elements if we're tail predicating. 418 MachineOperand &getLoopStartOperand() { 419 if (IsTailPredicationLegal()) 420 return TPNumElements; 421 return Start->getOperand(1); 422 } 423 424 unsigned getStartOpcode() const { 425 bool IsDo = isDoLoopStart(*Start); 426 if (!IsTailPredicationLegal()) 427 return IsDo ? ARM::t2DLS : ARM::t2WLS; 428 429 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo); 430 } 431 432 void dump() const { 433 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 434 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 435 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 436 if (!VCTPs.empty()) { 437 dbgs() << "ARM Loops: Found VCTP(s):\n"; 438 for (auto *MI : VCTPs) 439 dbgs() << " - " << *MI; 440 } 441 if (!FoundAllComponents()) 442 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 443 else if (!(Start && Dec && End)) 444 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 445 } 446 }; 447 448 class ARMLowOverheadLoops : public MachineFunctionPass { 449 MachineFunction *MF = nullptr; 450 MachineLoopInfo *MLI = nullptr; 451 ReachingDefAnalysis *RDA = nullptr; 452 const ARMBaseInstrInfo *TII = nullptr; 453 MachineRegisterInfo *MRI = nullptr; 454 const TargetRegisterInfo *TRI = nullptr; 455 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 456 457 public: 458 static char ID; 459 460 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 461 462 void getAnalysisUsage(AnalysisUsage &AU) const override { 463 AU.setPreservesCFG(); 464 AU.addRequired<MachineLoopInfo>(); 465 AU.addRequired<ReachingDefAnalysis>(); 466 MachineFunctionPass::getAnalysisUsage(AU); 467 } 468 469 bool runOnMachineFunction(MachineFunction &MF) override; 470 471 MachineFunctionProperties getRequiredProperties() const override { 472 return MachineFunctionProperties().set( 473 MachineFunctionProperties::Property::NoVRegs).set( 474 MachineFunctionProperties::Property::TracksLiveness); 475 } 476 477 StringRef getPassName() const override { 478 return ARM_LOW_OVERHEAD_LOOPS_NAME; 479 } 480 481 private: 482 bool ProcessLoop(MachineLoop *ML); 483 484 bool RevertNonLoops(); 485 486 void RevertWhile(MachineInstr *MI) const; 487 void RevertDo(MachineInstr *MI) const; 488 489 bool RevertLoopDec(MachineInstr *MI) const; 490 491 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 492 493 void RevertLoopEndDec(MachineInstr *MI) const; 494 495 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 496 497 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 498 499 void Expand(LowOverheadLoop &LoLoop); 500 501 void IterationCountDCE(LowOverheadLoop &LoLoop); 502 }; 503 } 504 505 char ARMLowOverheadLoops::ID = 0; 506 507 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 508 false, false) 509 510 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA, 511 InstSet &ToRemove, InstSet &Ignore) { 512 513 // Check that we can remove all of Killed without having to modify any IT 514 // blocks. 515 auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) { 516 // Collect the dead code and the MBBs in which they reside. 517 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 518 for (auto *Dead : Killed) 519 BasicBlocks.insert(Dead->getParent()); 520 521 // Collect IT blocks in all affected basic blocks. 522 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 523 for (auto *MBB : BasicBlocks) { 524 for (auto &IT : *MBB) { 525 if (IT.getOpcode() != ARM::t2IT) 526 continue; 527 RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE), 528 ITBlocks[&IT]); 529 } 530 } 531 532 // If we're removing all of the instructions within an IT block, then 533 // also remove the IT instruction. 534 SmallPtrSet<MachineInstr *, 2> ModifiedITs; 535 SmallPtrSet<MachineInstr *, 2> RemoveITs; 536 for (auto *Dead : Killed) { 537 if (MachineOperand *MO = 538 Dead->findRegisterUseOperand(ARM::ITSTATE, /*TRI=*/nullptr)) { 539 MachineInstr *IT = RDA.getMIOperand(Dead, *MO); 540 RemoveITs.insert(IT); 541 auto &CurrentBlock = ITBlocks[IT]; 542 CurrentBlock.erase(Dead); 543 if (CurrentBlock.empty()) 544 ModifiedITs.erase(IT); 545 else 546 ModifiedITs.insert(IT); 547 } 548 } 549 if (!ModifiedITs.empty()) 550 return false; 551 Killed.insert(RemoveITs.begin(), RemoveITs.end()); 552 return true; 553 }; 554 555 SmallPtrSet<MachineInstr *, 2> Uses; 556 if (!RDA.isSafeToRemove(MI, Uses, Ignore)) 557 return false; 558 559 if (WontCorruptITs(Uses, RDA)) { 560 ToRemove.insert(Uses.begin(), Uses.end()); 561 LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI 562 << " - can also remove:\n"; 563 for (auto *Use : Uses) 564 dbgs() << " - " << *Use); 565 566 SmallPtrSet<MachineInstr*, 4> Killed; 567 RDA.collectKilledOperands(MI, Killed); 568 if (WontCorruptITs(Killed, RDA)) { 569 ToRemove.insert(Killed.begin(), Killed.end()); 570 LLVM_DEBUG(for (auto *Dead : Killed) 571 dbgs() << " - " << *Dead); 572 } 573 return true; 574 } 575 return false; 576 } 577 578 bool LowOverheadLoop::ValidateTailPredicate() { 579 if (!IsTailPredicationLegal()) { 580 LLVM_DEBUG(if (VCTPs.empty()) 581 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 582 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 583 return false; 584 } 585 586 assert(!VCTPs.empty() && "VCTP instruction expected but is not set"); 587 assert(ML.getBlocks().size() == 1 && 588 "Shouldn't be processing a loop with more than one block"); 589 590 if (DisableTailPredication) { 591 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n"); 592 return false; 593 } 594 595 if (!VPTstate.isValid(RDA)) { 596 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n"); 597 return false; 598 } 599 600 if (!ValidateLiveOuts()) { 601 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n"); 602 return false; 603 } 604 605 // For tail predication, we need to provide the number of elements, instead 606 // of the iteration count, to the loop start instruction. The number of 607 // elements is provided to the vctp instruction, so we need to check that 608 // we can use this register at InsertPt. 609 MachineInstr *VCTP = VCTPs.back(); 610 if (Start->getOpcode() == ARM::t2DoLoopStartTP || 611 Start->getOpcode() == ARM::t2WhileLoopStartTP) { 612 TPNumElements = Start->getOperand(2); 613 StartInsertPt = Start; 614 StartInsertBB = Start->getParent(); 615 } else { 616 TPNumElements = VCTP->getOperand(1); 617 MCRegister NumElements = TPNumElements.getReg().asMCReg(); 618 619 // If the register is defined within loop, then we can't perform TP. 620 // TODO: Check whether this is just a mov of a register that would be 621 // available. 622 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 623 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 624 return false; 625 } 626 627 // The element count register maybe defined after InsertPt, in which case we 628 // need to try to move either InsertPt or the def so that the [w|d]lstp can 629 // use the value. 630 631 if (StartInsertPt != StartInsertBB->end() && 632 !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) { 633 if (auto *ElemDef = 634 RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) { 635 if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) { 636 ElemDef->removeFromParent(); 637 StartInsertBB->insert(StartInsertPt, ElemDef); 638 LLVM_DEBUG(dbgs() 639 << "ARM Loops: Moved element count def: " << *ElemDef); 640 } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) { 641 StartInsertPt->removeFromParent(); 642 StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 643 &*StartInsertPt); 644 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 645 } else { 646 // If we fail to move an instruction and the element count is provided 647 // by a mov, use the mov operand if it will have the same value at the 648 // insertion point 649 MachineOperand Operand = ElemDef->getOperand(1); 650 if (isMovRegOpcode(ElemDef->getOpcode()) && 651 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) == 652 RDA.getUniqueReachingMIDef(&*StartInsertPt, 653 Operand.getReg().asMCReg())) { 654 TPNumElements = Operand; 655 NumElements = TPNumElements.getReg(); 656 } else { 657 LLVM_DEBUG(dbgs() 658 << "ARM Loops: Unable to move element count to loop " 659 << "start instruction.\n"); 660 return false; 661 } 662 } 663 } 664 } 665 666 // Especially in the case of while loops, InsertBB may not be the 667 // preheader, so we need to check that the register isn't redefined 668 // before entering the loop. 669 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 670 MCRegister NumElements) { 671 if (MBB->empty()) 672 return false; 673 // NumElements is redefined in this block. 674 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 675 return true; 676 677 // Don't continue searching up through multiple predecessors. 678 if (MBB->pred_size() > 1) 679 return true; 680 681 return false; 682 }; 683 684 // Search backwards for a def, until we get to InsertBB. 685 MachineBasicBlock *MBB = Preheader; 686 while (MBB && MBB != StartInsertBB) { 687 if (CannotProvideElements(MBB, NumElements)) { 688 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 689 return false; 690 } 691 MBB = *MBB->pred_begin(); 692 } 693 } 694 695 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect 696 // world the [w|d]lstp instruction would be last instruction in the preheader 697 // and so it would only affect instructions within the loop body. But due to 698 // scheduling, and/or the logic in this pass (above), the insertion point can 699 // be moved earlier. So if the Loop Start isn't the last instruction in the 700 // preheader, and if the initial element count is smaller than the vector 701 // width, the Loop Start instruction will immediately generate one or more 702 // false lane mask which can, incorrectly, affect the proceeding MVE 703 // instructions in the preheader. 704 if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) { 705 LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n"); 706 return false; 707 } 708 709 // For any DoubleWidthResultInstrs we found whilst scanning instructions, they 710 // need to compute an output size that is smaller than the VCTP mask operates 711 // on. The VecSize of the DoubleWidthResult is the larger vector size - the 712 // size it extends into, so any VCTP VecSize <= is valid. 713 unsigned VCTPVecSize = getVecSize(*VCTP); 714 for (MachineInstr *MI : DoubleWidthResultInstrs) { 715 unsigned InstrVecSize = getVecSize(*MI); 716 if (InstrVecSize > VCTPVecSize) { 717 LLVM_DEBUG(dbgs() << "ARM Loops: Double width result larger than VCTP " 718 << "VecSize:\n" << *MI); 719 return false; 720 } 721 } 722 723 // Check that the value change of the element count is what we expect and 724 // that the predication will be equivalent. For this we need: 725 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 726 // and we can also allow register copies within the chain too. 727 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 728 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 729 }; 730 731 MachineBasicBlock *MBB = VCTP->getParent(); 732 // Remove modifications to the element count since they have no purpose in a 733 // tail predicated loop. Explicitly refer to the vctp operand no matter which 734 // register NumElements has been assigned to, since that is what the 735 // modifications will be using 736 if (auto *Def = RDA.getUniqueReachingMIDef( 737 &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) { 738 SmallPtrSet<MachineInstr*, 2> ElementChain; 739 SmallPtrSet<MachineInstr*, 2> Ignore; 740 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 741 742 Ignore.insert(VCTPs.begin(), VCTPs.end()); 743 744 if (TryRemove(Def, RDA, ElementChain, Ignore)) { 745 bool FoundSub = false; 746 747 for (auto *MI : ElementChain) { 748 if (isMovRegOpcode(MI->getOpcode())) 749 continue; 750 751 if (isSubImmOpcode(MI->getOpcode())) { 752 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) { 753 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 754 " count: " << *MI); 755 return false; 756 } 757 FoundSub = true; 758 } else { 759 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 760 " count: " << *MI); 761 return false; 762 } 763 } 764 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 765 } 766 } 767 768 // If we converted the LoopStart to a t2DoLoopStartTP/t2WhileLoopStartTP, we 769 // can also remove any extra instructions in the preheader, which often 770 // includes a now unused MOV. 771 if ((Start->getOpcode() == ARM::t2DoLoopStartTP || 772 Start->getOpcode() == ARM::t2WhileLoopStartTP) && 773 Preheader && !Preheader->empty() && 774 !RDA.hasLocalDefBefore(VCTP, VCTP->getOperand(1).getReg())) { 775 if (auto *Def = RDA.getUniqueReachingMIDef( 776 &Preheader->back(), VCTP->getOperand(1).getReg().asMCReg())) { 777 SmallPtrSet<MachineInstr*, 2> Ignore; 778 Ignore.insert(VCTPs.begin(), VCTPs.end()); 779 TryRemove(Def, RDA, ToRemove, Ignore); 780 } 781 } 782 783 return true; 784 } 785 786 static bool isRegInClass(const MachineOperand &MO, 787 const TargetRegisterClass *Class) { 788 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 789 } 790 791 // MVE 'narrowing' operate on half a lane, reading from half and writing 792 // to half, which are referred to has the top and bottom half. The other 793 // half retains its previous value. 794 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 795 const MCInstrDesc &MCID = MI.getDesc(); 796 uint64_t Flags = MCID.TSFlags; 797 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 798 } 799 800 // Some MVE instructions read from the top/bottom halves of their operand(s) 801 // and generate a vector result with result elements that are double the 802 // width of the input. 803 static bool producesDoubleWidthResult(const MachineInstr &MI) { 804 const MCInstrDesc &MCID = MI.getDesc(); 805 uint64_t Flags = MCID.TSFlags; 806 return (Flags & ARMII::DoubleWidthResult) != 0; 807 } 808 809 static bool isHorizontalReduction(const MachineInstr &MI) { 810 const MCInstrDesc &MCID = MI.getDesc(); 811 uint64_t Flags = MCID.TSFlags; 812 return (Flags & ARMII::HorizontalReduction) != 0; 813 } 814 815 // Can this instruction generate a non-zero result when given only zeroed 816 // operands? This allows us to know that, given operands with false bytes 817 // zeroed by masked loads, that the result will also contain zeros in those 818 // bytes. 819 static bool canGenerateNonZeros(const MachineInstr &MI) { 820 821 // Check for instructions which can write into a larger element size, 822 // possibly writing into a previous zero'd lane. 823 if (producesDoubleWidthResult(MI)) 824 return true; 825 826 switch (MI.getOpcode()) { 827 default: 828 break; 829 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 830 // fp16 -> fp32 vector conversions. 831 // Instructions that perform a NOT will generate 1s from 0s. 832 case ARM::MVE_VMVN: 833 case ARM::MVE_VORN: 834 // Count leading zeros will do just that! 835 case ARM::MVE_VCLZs8: 836 case ARM::MVE_VCLZs16: 837 case ARM::MVE_VCLZs32: 838 return true; 839 } 840 return false; 841 } 842 843 // Look at its register uses to see if it only can only receive zeros 844 // into its false lanes which would then produce zeros. Also check that 845 // the output register is also defined by an FalseLanesZero instruction 846 // so that if tail-predication happens, the lanes that aren't updated will 847 // still be zeros. 848 static bool producesFalseLanesZero(MachineInstr &MI, 849 const TargetRegisterClass *QPRs, 850 const ReachingDefAnalysis &RDA, 851 InstSet &FalseLanesZero) { 852 if (canGenerateNonZeros(MI)) 853 return false; 854 855 bool isPredicated = isVectorPredicated(&MI); 856 // Predicated loads will write zeros to the falsely predicated bytes of the 857 // destination register. 858 if (MI.mayLoad()) 859 return isPredicated; 860 861 auto IsZeroInit = [](MachineInstr *Def) { 862 return !isVectorPredicated(Def) && 863 Def->getOpcode() == ARM::MVE_VMOVimmi32 && 864 Def->getOperand(1).getImm() == 0; 865 }; 866 867 bool AllowScalars = isHorizontalReduction(MI); 868 for (auto &MO : MI.operands()) { 869 if (!MO.isReg() || !MO.getReg()) 870 continue; 871 if (!isRegInClass(MO, QPRs) && AllowScalars) 872 continue; 873 // Skip the lr predicate reg 874 int PIdx = llvm::findFirstVPTPredOperandIdx(MI); 875 if (PIdx != -1 && (int)MO.getOperandNo() == PIdx + 2) 876 continue; 877 878 // Check that this instruction will produce zeros in its false lanes: 879 // - If it only consumes false lanes zero or constant 0 (vmov #0) 880 // - If it's predicated, it only matters that it's def register already has 881 // false lane zeros, so we can ignore the uses. 882 SmallPtrSet<MachineInstr *, 2> Defs; 883 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs); 884 if (Defs.empty()) 885 return false; 886 for (auto *Def : Defs) { 887 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def)) 888 continue; 889 if (MO.isUse() && isPredicated) 890 continue; 891 return false; 892 } 893 } 894 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 895 return true; 896 } 897 898 bool LowOverheadLoop::ValidateLiveOuts() { 899 // We want to find out if the tail-predicated version of this loop will 900 // produce the same values as the loop in its original form. For this to 901 // be true, the newly inserted implicit predication must not change the 902 // the (observable) results. 903 // We're doing this because many instructions in the loop will not be 904 // predicated and so the conversion from VPT predication to tail-predication 905 // can result in different values being produced; due to the tail-predication 906 // preventing many instructions from updating their falsely predicated 907 // lanes. This analysis assumes that all the instructions perform lane-wise 908 // operations and don't perform any exchanges. 909 // A masked load, whether through VPT or tail predication, will write zeros 910 // to any of the falsely predicated bytes. So, from the loads, we know that 911 // the false lanes are zeroed and here we're trying to track that those false 912 // lanes remain zero, or where they change, the differences are masked away 913 // by their user(s). 914 // All MVE stores have to be predicated, so we know that any predicate load 915 // operands, or stored results are equivalent already. Other explicitly 916 // predicated instructions will perform the same operation in the original 917 // loop and the tail-predicated form too. Because of this, we can insert 918 // loads, stores and other predicated instructions into our Predicated 919 // set and build from there. 920 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 921 SetVector<MachineInstr *> FalseLanesUnknown; 922 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 923 SmallPtrSet<MachineInstr *, 4> Predicated; 924 MachineBasicBlock *Header = ML.getHeader(); 925 926 LLVM_DEBUG(dbgs() << "ARM Loops: Validating Live outs\n"); 927 928 for (auto &MI : *Header) { 929 if (!shouldInspect(MI)) 930 continue; 931 932 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) 933 continue; 934 935 bool isPredicated = isVectorPredicated(&MI); 936 bool retainsOrReduces = 937 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI); 938 939 if (isPredicated) 940 Predicated.insert(&MI); 941 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) 942 FalseLanesZero.insert(&MI); 943 else if (MI.getNumDefs() == 0) 944 continue; 945 else if (!isPredicated && retainsOrReduces) { 946 LLVM_DEBUG(dbgs() << " Unpredicated instruction that retainsOrReduces: " << MI); 947 return false; 948 } else if (!isPredicated && MI.getOpcode() != ARM::MQPRCopy) 949 FalseLanesUnknown.insert(&MI); 950 } 951 952 LLVM_DEBUG({ 953 dbgs() << " Predicated:\n"; 954 for (auto *I : Predicated) 955 dbgs() << " " << *I; 956 dbgs() << " FalseLanesZero:\n"; 957 for (auto *I : FalseLanesZero) 958 dbgs() << " " << *I; 959 dbgs() << " FalseLanesUnknown:\n"; 960 for (auto *I : FalseLanesUnknown) 961 dbgs() << " " << *I; 962 }); 963 964 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 965 SmallPtrSetImpl<MachineInstr *> &Predicated) { 966 SmallPtrSet<MachineInstr *, 2> Uses; 967 RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses); 968 for (auto *Use : Uses) { 969 if (Use != MI && !Predicated.count(Use)) 970 return false; 971 } 972 return true; 973 }; 974 975 // Visit the unknowns in reverse so that we can start at the values being 976 // stored and then we can work towards the leaves, hopefully adding more 977 // instructions to Predicated. Successfully terminating the loop means that 978 // all the unknown values have to found to be masked by predicated user(s). 979 // For any unpredicated values, we store them in NonPredicated so that we 980 // can later check whether these form a reduction. 981 SmallPtrSet<MachineInstr*, 2> NonPredicated; 982 for (auto *MI : reverse(FalseLanesUnknown)) { 983 for (auto &MO : MI->operands()) { 984 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 985 continue; 986 if (!HasPredicatedUsers(MI, MO, Predicated)) { 987 LLVM_DEBUG(dbgs() << " Found an unknown def of : " 988 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 989 NonPredicated.insert(MI); 990 break; 991 } 992 } 993 // Any unknown false lanes have been masked away by the user(s). 994 if (!NonPredicated.contains(MI)) 995 Predicated.insert(MI); 996 } 997 998 SmallPtrSet<MachineInstr *, 2> LiveOutMIs; 999 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 1000 ML.getExitBlocks(ExitBlocks); 1001 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 1002 assert(ExitBlocks.size() == 1 && "Expected a single exit block"); 1003 MachineBasicBlock *ExitBB = ExitBlocks.front(); 1004 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) { 1005 // TODO: Instead of blocking predication, we could move the vctp to the exit 1006 // block and calculate it's operand there in or the preheader. 1007 if (RegMask.PhysReg == ARM::VPR) { 1008 LLVM_DEBUG(dbgs() << " VPR is live in to the exit block."); 1009 return false; 1010 } 1011 // Check Q-regs that are live in the exit blocks. We don't collect scalars 1012 // because they won't be affected by lane predication. 1013 if (QPRs->contains(RegMask.PhysReg)) 1014 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg)) 1015 LiveOutMIs.insert(MI); 1016 } 1017 1018 // We've already validated that any VPT predication within the loop will be 1019 // equivalent when we perform the predication transformation; so we know that 1020 // any VPT predicated instruction is predicated upon VCTP. Any live-out 1021 // instruction needs to be predicated, so check this here. The instructions 1022 // in NonPredicated have been found to be a reduction that we can ensure its 1023 // legality. Any MQPRCopy found will need to validate its input as if it was 1024 // live out. 1025 SmallVector<MachineInstr *> Worklist(LiveOutMIs.begin(), LiveOutMIs.end()); 1026 while (!Worklist.empty()) { 1027 MachineInstr *MI = Worklist.pop_back_val(); 1028 if (MI->getOpcode() == ARM::MQPRCopy) { 1029 VMOVCopies.insert(MI); 1030 MachineInstr *CopySrc = 1031 RDA.getUniqueReachingMIDef(MI, MI->getOperand(1).getReg()); 1032 if (CopySrc) 1033 Worklist.push_back(CopySrc); 1034 } else if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) { 1035 LLVM_DEBUG(dbgs() << " Unable to handle live out: " << *MI); 1036 VMOVCopies.clear(); 1037 return false; 1038 } 1039 } 1040 1041 return true; 1042 } 1043 1044 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) { 1045 if (Revert) 1046 return; 1047 1048 // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP] 1049 // can only jump back. 1050 auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End, 1051 ARMBasicBlockUtils *BBUtils, MachineLoop &ML) { 1052 MachineBasicBlock *TgtBB = End->getOpcode() == ARM::t2LoopEnd 1053 ? End->getOperand(1).getMBB() 1054 : End->getOperand(2).getMBB(); 1055 // TODO Maybe there's cases where the target doesn't have to be the header, 1056 // but for now be safe and revert. 1057 if (TgtBB != ML.getHeader()) { 1058 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n"); 1059 return false; 1060 } 1061 1062 // The WLS and LE instructions have 12-bits for the label offset. WLS 1063 // requires a positive offset, while LE uses negative. 1064 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 1065 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 1066 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 1067 return false; 1068 } 1069 1070 if (isWhileLoopStart(*Start)) { 1071 MachineBasicBlock *TargetBB = getWhileLoopStartTargetBB(*Start); 1072 if (BBUtils->getOffsetOf(Start) > BBUtils->getOffsetOf(TargetBB) || 1073 !BBUtils->isBBInRange(Start, TargetBB, 4094)) { 1074 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 1075 return false; 1076 } 1077 } 1078 return true; 1079 }; 1080 1081 StartInsertPt = MachineBasicBlock::iterator(Start); 1082 StartInsertBB = Start->getParent(); 1083 LLVM_DEBUG(dbgs() << "ARM Loops: Will insert LoopStart at " 1084 << *StartInsertPt); 1085 1086 Revert = !ValidateRanges(Start, End, BBUtils, ML); 1087 CannotTailPredicate = !ValidateTailPredicate(); 1088 } 1089 1090 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) { 1091 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI); 1092 if (VCTPs.empty()) { 1093 VCTPs.push_back(MI); 1094 return true; 1095 } 1096 1097 // If we find another VCTP, check whether it uses the same value as the main VCTP. 1098 // If it does, store it in the VCTPs set, else refuse it. 1099 MachineInstr *Prev = VCTPs.back(); 1100 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) || 1101 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) { 1102 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " 1103 "definition from the main VCTP"); 1104 return false; 1105 } 1106 VCTPs.push_back(MI); 1107 return true; 1108 } 1109 1110 static bool ValidateMVEStore(MachineInstr *MI, MachineLoop *ML) { 1111 1112 auto GetFrameIndex = [](MachineMemOperand *Operand) { 1113 const PseudoSourceValue *PseudoValue = Operand->getPseudoValue(); 1114 if (PseudoValue && PseudoValue->kind() == PseudoSourceValue::FixedStack) { 1115 if (const auto *FS = dyn_cast<FixedStackPseudoSourceValue>(PseudoValue)) { 1116 return FS->getFrameIndex(); 1117 } 1118 } 1119 return -1; 1120 }; 1121 1122 auto IsStackOp = [GetFrameIndex](MachineInstr *I) { 1123 switch (I->getOpcode()) { 1124 case ARM::MVE_VSTRWU32: 1125 case ARM::MVE_VLDRWU32: { 1126 return I->getOperand(1).getReg() == ARM::SP && 1127 I->memoperands().size() == 1 && 1128 GetFrameIndex(I->memoperands().front()) >= 0; 1129 } 1130 default: 1131 return false; 1132 } 1133 }; 1134 1135 // An unpredicated vector register spill is allowed if all of the uses of the 1136 // stack slot are within the loop 1137 if (MI->getOpcode() != ARM::MVE_VSTRWU32 || !IsStackOp(MI)) 1138 return false; 1139 1140 // Search all blocks after the loop for accesses to the same stack slot. 1141 // ReachingDefAnalysis doesn't work for sp as it relies on registers being 1142 // live-out (which sp never is) to know what blocks to look in 1143 if (MI->memoperands().size() == 0) 1144 return false; 1145 int FI = GetFrameIndex(MI->memoperands().front()); 1146 1147 auto &FrameInfo = MI->getParent()->getParent()->getFrameInfo(); 1148 if (FI == -1 || !FrameInfo.isSpillSlotObjectIndex(FI)) 1149 return false; 1150 1151 SmallVector<MachineBasicBlock *> Frontier; 1152 ML->getExitBlocks(Frontier); 1153 SmallPtrSet<MachineBasicBlock *, 4> Visited{MI->getParent()}; 1154 unsigned Idx = 0; 1155 while (Idx < Frontier.size()) { 1156 MachineBasicBlock *BB = Frontier[Idx]; 1157 bool LookAtSuccessors = true; 1158 for (auto &I : *BB) { 1159 if (!IsStackOp(&I) || I.memoperands().size() == 0) 1160 continue; 1161 if (GetFrameIndex(I.memoperands().front()) != FI) 1162 continue; 1163 // If this block has a store to the stack slot before any loads then we 1164 // can ignore the block 1165 if (I.getOpcode() == ARM::MVE_VSTRWU32) { 1166 LookAtSuccessors = false; 1167 break; 1168 } 1169 // If the store and the load are using the same stack slot then the 1170 // store isn't valid for tail predication 1171 if (I.getOpcode() == ARM::MVE_VLDRWU32) 1172 return false; 1173 } 1174 1175 if (LookAtSuccessors) { 1176 for (auto *Succ : BB->successors()) { 1177 if (!Visited.contains(Succ) && !is_contained(Frontier, Succ)) 1178 Frontier.push_back(Succ); 1179 } 1180 } 1181 Visited.insert(BB); 1182 Idx++; 1183 } 1184 1185 return true; 1186 } 1187 1188 bool LowOverheadLoop::ValidateMVEInst(MachineInstr *MI) { 1189 if (CannotTailPredicate) 1190 return false; 1191 1192 if (!shouldInspect(*MI)) 1193 return true; 1194 1195 if (MI->getOpcode() == ARM::MVE_VPSEL || 1196 MI->getOpcode() == ARM::MVE_VPNOT) { 1197 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 1198 // 1) It will use the VPR as a predicate operand, but doesn't have to be 1199 // instead a VPT block, which means we can assert while building up 1200 // the VPT block because we don't find another VPT or VPST to being a new 1201 // one. 1202 // 2) VPSEL still requires a VPR operand even after tail predicating, 1203 // which means we can't remove it unless there is another 1204 // instruction, such as vcmp, that can provide the VPR def. 1205 return false; 1206 } 1207 1208 // Record all VCTPs and check that they're equivalent to one another. 1209 if (isVCTP(MI) && !AddVCTP(MI)) 1210 return false; 1211 1212 // Inspect uses first so that any instructions that alter the VPR don't 1213 // alter the predicate upon themselves. 1214 const MCInstrDesc &MCID = MI->getDesc(); 1215 bool IsUse = false; 1216 unsigned LastOpIdx = MI->getNumOperands() - 1; 1217 for (const auto &Op : enumerate(reverse(MCID.operands()))) { 1218 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index()); 1219 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR) 1220 continue; 1221 1222 if (ARM::isVpred(Op.value().OperandType)) { 1223 VPTstate.addInst(MI); 1224 IsUse = true; 1225 } else if (MI->getOpcode() != ARM::MVE_VPST) { 1226 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 1227 return false; 1228 } 1229 } 1230 1231 // If we find an instruction that has been marked as not valid for tail 1232 // predication, only allow the instruction if it's contained within a valid 1233 // VPT block. 1234 bool RequiresExplicitPredication = 1235 (MCID.TSFlags & ARMII::ValidForTailPredication) == 0; 1236 if (isDomainMVE(MI) && RequiresExplicitPredication) { 1237 if (MI->getOpcode() == ARM::MQPRCopy) 1238 return true; 1239 if (!IsUse && producesDoubleWidthResult(*MI)) { 1240 DoubleWidthResultInstrs.insert(MI); 1241 return true; 1242 } 1243 1244 LLVM_DEBUG(if (!IsUse) dbgs() 1245 << "ARM Loops: Can't tail predicate: " << *MI); 1246 return IsUse; 1247 } 1248 1249 // If the instruction is already explicitly predicated, then the conversion 1250 // will be fine, but ensure that all store operations are predicated. 1251 if (MI->mayStore() && !ValidateMVEStore(MI, &ML)) 1252 return IsUse; 1253 1254 // If this instruction defines the VPR, update the predicate for the 1255 // proceeding instructions. 1256 if (isVectorPredicate(MI)) { 1257 // Clear the existing predicate when we're not in VPT Active state, 1258 // otherwise we add to it. 1259 if (!isVectorPredicated(MI)) 1260 VPTstate.resetPredicate(MI); 1261 else 1262 VPTstate.addPredicate(MI); 1263 } 1264 1265 // Finally once the predicate has been modified, we can start a new VPT 1266 // block if necessary. 1267 if (isVPTOpcode(MI->getOpcode())) 1268 VPTstate.CreateVPTBlock(MI); 1269 1270 return true; 1271 } 1272 1273 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 1274 const ARMSubtarget &ST = mf.getSubtarget<ARMSubtarget>(); 1275 if (!ST.hasLOB()) 1276 return false; 1277 1278 MF = &mf; 1279 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 1280 1281 MLI = &getAnalysis<MachineLoopInfo>(); 1282 RDA = &getAnalysis<ReachingDefAnalysis>(); 1283 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 1284 MRI = &MF->getRegInfo(); 1285 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 1286 TRI = ST.getRegisterInfo(); 1287 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 1288 BBUtils->computeAllBlockSizes(); 1289 BBUtils->adjustBBOffsetsAfter(&MF->front()); 1290 1291 bool Changed = false; 1292 for (auto *ML : *MLI) { 1293 if (ML->isOutermost()) 1294 Changed |= ProcessLoop(ML); 1295 } 1296 Changed |= RevertNonLoops(); 1297 return Changed; 1298 } 1299 1300 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 1301 bool Changed = false; 1302 1303 // Process inner loops first. 1304 for (MachineLoop *L : *ML) 1305 Changed |= ProcessLoop(L); 1306 1307 LLVM_DEBUG({ 1308 dbgs() << "ARM Loops: Processing loop containing:\n"; 1309 if (auto *Preheader = ML->getLoopPreheader()) 1310 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n"; 1311 else if (auto *Preheader = MLI->findLoopPreheader(ML, true, true)) 1312 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n"; 1313 for (auto *MBB : ML->getBlocks()) 1314 dbgs() << " - Block: " << printMBBReference(*MBB) << "\n"; 1315 }); 1316 1317 // Search the given block for a loop start instruction. If one isn't found, 1318 // and there's only one predecessor block, search that one too. 1319 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 1320 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 1321 for (auto &MI : *MBB) { 1322 if (isLoopStart(MI)) 1323 return &MI; 1324 } 1325 if (MBB->pred_size() == 1) 1326 return SearchForStart(*MBB->pred_begin()); 1327 return nullptr; 1328 }; 1329 1330 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII); 1331 // Search the preheader for the start intrinsic. 1332 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 1333 // with potentially multiple set.loop.iterations, so we need to enable this. 1334 if (LoLoop.Preheader) 1335 LoLoop.Start = SearchForStart(LoLoop.Preheader); 1336 else 1337 return Changed; 1338 1339 // Find the low-overhead loop components and decide whether or not to fall 1340 // back to a normal loop. Also look for a vctp instructions and decide 1341 // whether we can convert that predicate using tail predication. 1342 for (auto *MBB : reverse(ML->getBlocks())) { 1343 for (auto &MI : *MBB) { 1344 if (MI.isDebugValue()) 1345 continue; 1346 else if (MI.getOpcode() == ARM::t2LoopDec) 1347 LoLoop.Dec = &MI; 1348 else if (MI.getOpcode() == ARM::t2LoopEnd) 1349 LoLoop.End = &MI; 1350 else if (MI.getOpcode() == ARM::t2LoopEndDec) 1351 LoLoop.End = LoLoop.Dec = &MI; 1352 else if (isLoopStart(MI)) 1353 LoLoop.Start = &MI; 1354 else if (MI.getDesc().isCall()) { 1355 // TODO: Though the call will require LE to execute again, does this 1356 // mean we should revert? Always executing LE hopefully should be 1357 // faster than performing a sub,cmp,br or even subs,br. 1358 LoLoop.Revert = true; 1359 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 1360 } else { 1361 // Record VPR defs and build up their corresponding vpt blocks. 1362 // Check we know how to tail predicate any mve instructions. 1363 LoLoop.AnalyseMVEInst(&MI); 1364 } 1365 } 1366 } 1367 1368 LLVM_DEBUG(LoLoop.dump()); 1369 if (!LoLoop.FoundAllComponents()) { 1370 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 1371 return Changed; 1372 } 1373 1374 assert(LoLoop.Start->getOpcode() != ARM::t2WhileLoopStart && 1375 "Expected t2WhileLoopStart to be removed before regalloc!"); 1376 1377 // Check that the only instruction using LoopDec is LoopEnd. This can only 1378 // happen when the Dec and End are separate, not a single t2LoopEndDec. 1379 // TODO: Check for copy chains that really have no effect. 1380 if (LoLoop.Dec != LoLoop.End) { 1381 SmallPtrSet<MachineInstr *, 2> Uses; 1382 RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses); 1383 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 1384 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 1385 LoLoop.Revert = true; 1386 } 1387 } 1388 LoLoop.Validate(BBUtils.get()); 1389 Expand(LoLoop); 1390 return true; 1391 } 1392 1393 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 1394 // beq that branches to the exit branch. 1395 // TODO: We could also try to generate a cbz if the value in LR is also in 1396 // another low register. 1397 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 1398 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 1399 MachineBasicBlock *DestBB = getWhileLoopStartTargetBB(*MI); 1400 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1401 ARM::tBcc : ARM::t2Bcc; 1402 1403 RevertWhileLoopStartLR(MI, TII, BrOpc); 1404 } 1405 1406 void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const { 1407 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI); 1408 RevertDoLoopStart(MI, TII); 1409 } 1410 1411 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 1412 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 1413 MachineBasicBlock *MBB = MI->getParent(); 1414 SmallPtrSet<MachineInstr*, 1> Ignore; 1415 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 1416 if (I->getOpcode() == ARM::t2LoopEnd) { 1417 Ignore.insert(&*I); 1418 break; 1419 } 1420 } 1421 1422 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1423 bool SetFlags = 1424 RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore); 1425 1426 llvm::RevertLoopDec(MI, TII, SetFlags); 1427 return SetFlags; 1428 } 1429 1430 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1431 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1432 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1433 1434 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1435 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1436 ARM::tBcc : ARM::t2Bcc; 1437 1438 llvm::RevertLoopEnd(MI, TII, BrOpc, SkipCmp); 1439 } 1440 1441 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1442 void ARMLowOverheadLoops::RevertLoopEndDec(MachineInstr *MI) const { 1443 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to subs, br: " << *MI); 1444 assert(MI->getOpcode() == ARM::t2LoopEndDec && "Expected a t2LoopEndDec!"); 1445 MachineBasicBlock *MBB = MI->getParent(); 1446 1447 MachineInstrBuilder MIB = 1448 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2SUBri)); 1449 MIB.addDef(ARM::LR); 1450 MIB.add(MI->getOperand(1)); 1451 MIB.addImm(1); 1452 MIB.addImm(ARMCC::AL); 1453 MIB.addReg(ARM::NoRegister); 1454 MIB.addReg(ARM::CPSR); 1455 MIB->getOperand(5).setIsDef(true); 1456 1457 MachineBasicBlock *DestBB = MI->getOperand(2).getMBB(); 1458 unsigned BrOpc = 1459 BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc; 1460 1461 // Create bne 1462 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1463 MIB.add(MI->getOperand(2)); // branch target 1464 MIB.addImm(ARMCC::NE); // condition code 1465 MIB.addReg(ARM::CPSR); 1466 1467 MI->eraseFromParent(); 1468 } 1469 1470 // Perform dead code elimation on the loop iteration count setup expression. 1471 // If we are tail-predicating, the number of elements to be processed is the 1472 // operand of the VCTP instruction in the vector body, see getCount(), which is 1473 // register $r3 in this example: 1474 // 1475 // $lr = big-itercount-expression 1476 // .. 1477 // $lr = t2DoLoopStart renamable $lr 1478 // vector.body: 1479 // .. 1480 // $vpr = MVE_VCTP32 renamable $r3 1481 // renamable $lr = t2LoopDec killed renamable $lr, 1 1482 // t2LoopEnd renamable $lr, %vector.body 1483 // tB %end 1484 // 1485 // What we would like achieve here is to replace the do-loop start pseudo 1486 // instruction t2DoLoopStart with: 1487 // 1488 // $lr = MVE_DLSTP_32 killed renamable $r3 1489 // 1490 // Thus, $r3 which defines the number of elements, is written to $lr, 1491 // and then we want to delete the whole chain that used to define $lr, 1492 // see the comment below how this chain could look like. 1493 // 1494 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1495 if (!LoLoop.IsTailPredicationLegal()) 1496 return; 1497 1498 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1499 1500 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 1); 1501 if (!Def) { 1502 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1503 return; 1504 } 1505 1506 // Collect and remove the users of iteration count. 1507 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1508 LoLoop.End }; 1509 if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed)) 1510 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1511 } 1512 1513 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1514 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1515 // When using tail-predication, try to delete the dead code that was used to 1516 // calculate the number of loop iterations. 1517 IterationCountDCE(LoLoop); 1518 1519 MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt; 1520 MachineInstr *Start = LoLoop.Start; 1521 MachineBasicBlock *MBB = LoLoop.StartInsertBB; 1522 unsigned Opc = LoLoop.getStartOpcode(); 1523 MachineOperand &Count = LoLoop.getLoopStartOperand(); 1524 1525 // A DLS lr, lr we needn't emit 1526 MachineInstr* NewStart; 1527 if (!DisableOmitDLS && Opc == ARM::t2DLS && Count.isReg() && 1528 Count.getReg() == ARM::LR) { 1529 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't insert start: DLS lr, lr"); 1530 NewStart = nullptr; 1531 } else { 1532 MachineInstrBuilder MIB = 1533 BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc)); 1534 1535 MIB.addDef(ARM::LR); 1536 MIB.add(Count); 1537 if (isWhileLoopStart(*Start)) 1538 MIB.addMBB(getWhileLoopStartTargetBB(*Start)); 1539 1540 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1541 NewStart = &*MIB; 1542 } 1543 1544 LoLoop.ToRemove.insert(Start); 1545 return NewStart; 1546 } 1547 1548 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1549 auto RemovePredicate = [](MachineInstr *MI) { 1550 if (MI->isDebugInstr()) 1551 return; 1552 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1553 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 1554 assert(PIdx >= 1 && "Trying to unpredicate a non-predicated instruction"); 1555 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1556 "Expected Then predicate!"); 1557 MI->getOperand(PIdx).setImm(ARMVCC::None); 1558 MI->getOperand(PIdx + 1).setReg(0); 1559 }; 1560 1561 for (auto &Block : LoLoop.getVPTBlocks()) { 1562 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 1563 1564 auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) { 1565 assert(TheVCMP && "Replacing a removed or non-existent VCMP"); 1566 // Replace the VCMP with a VPT 1567 MachineInstrBuilder MIB = 1568 BuildMI(*At->getParent(), At, At->getDebugLoc(), 1569 TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode()))); 1570 MIB.addImm(ARMVCC::Then); 1571 // Register one 1572 MIB.add(TheVCMP->getOperand(1)); 1573 // Register two 1574 MIB.add(TheVCMP->getOperand(2)); 1575 // The comparison code, e.g. ge, eq, lt 1576 MIB.add(TheVCMP->getOperand(3)); 1577 LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB); 1578 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1579 LoLoop.ToRemove.insert(TheVCMP); 1580 TheVCMP = nullptr; 1581 }; 1582 1583 if (LoLoop.VPTstate.isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) { 1584 MachineInstr *VPST = Insts.front(); 1585 if (Block.hasUniformPredicate()) { 1586 // A vpt block starting with VPST, is only predicated upon vctp and has no 1587 // internal vpr defs: 1588 // - Remove vpst. 1589 // - Unpredicate the remaining instructions. 1590 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1591 for (unsigned i = 1; i < Insts.size(); ++i) 1592 RemovePredicate(Insts[i]); 1593 } else { 1594 // The VPT block has a non-uniform predicate but it uses a vpst and its 1595 // entry is guarded only by a vctp, which means we: 1596 // - Need to remove the original vpst. 1597 // - Then need to unpredicate any following instructions, until 1598 // we come across the divergent vpr def. 1599 // - Insert a new vpst to predicate the instruction(s) that following 1600 // the divergent vpr def. 1601 MachineInstr *Divergent = Block.getDivergent(); 1602 MachineBasicBlock *MBB = Divergent->getParent(); 1603 auto DivergentNext = ++MachineBasicBlock::iterator(Divergent); 1604 while (DivergentNext != MBB->end() && DivergentNext->isDebugInstr()) 1605 ++DivergentNext; 1606 1607 bool DivergentNextIsPredicated = 1608 DivergentNext != MBB->end() && 1609 getVPTInstrPredicate(*DivergentNext) != ARMVCC::None; 1610 1611 for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext; 1612 I != E; ++I) 1613 RemovePredicate(&*I); 1614 1615 // Check if the instruction defining vpr is a vcmp so it can be combined 1616 // with the VPST This should be the divergent instruction 1617 MachineInstr *VCMP = 1618 VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr; 1619 1620 if (DivergentNextIsPredicated) { 1621 // Insert a VPST at the divergent only if the next instruction 1622 // would actually use it. A VCMP following a VPST can be 1623 // merged into a VPT so do that instead if the VCMP exists. 1624 if (!VCMP) { 1625 // Create a VPST (with a null mask for now, we'll recompute it 1626 // later) 1627 MachineInstrBuilder MIB = 1628 BuildMI(*Divergent->getParent(), Divergent, 1629 Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST)); 1630 MIB.addImm(0); 1631 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1632 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1633 } else { 1634 // No RDA checks are necessary here since the VPST would have been 1635 // directly after the VCMP 1636 ReplaceVCMPWithVPT(VCMP, VCMP); 1637 } 1638 } 1639 } 1640 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1641 LoLoop.ToRemove.insert(VPST); 1642 } else if (Block.containsVCTP()) { 1643 // The vctp will be removed, so either the entire block will be dead or 1644 // the block mask of the vp(s)t will need to be recomputed. 1645 MachineInstr *VPST = Insts.front(); 1646 if (Block.size() == 2) { 1647 assert(VPST->getOpcode() == ARM::MVE_VPST && 1648 "Found a VPST in an otherwise empty vpt block"); 1649 LoLoop.ToRemove.insert(VPST); 1650 } else 1651 LoLoop.BlockMasksToRecompute.insert(VPST); 1652 } else if (Insts.front()->getOpcode() == ARM::MVE_VPST) { 1653 // If this block starts with a VPST then attempt to merge it with the 1654 // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT 1655 // block that no longer exists 1656 MachineInstr *VPST = Insts.front(); 1657 auto Next = ++MachineBasicBlock::iterator(VPST); 1658 assert(getVPTInstrPredicate(*Next) != ARMVCC::None && 1659 "The instruction after a VPST must be predicated"); 1660 (void)Next; 1661 MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR); 1662 if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) && 1663 !LoLoop.ToRemove.contains(VprDef)) { 1664 MachineInstr *VCMP = VprDef; 1665 // The VCMP and VPST can only be merged if the VCMP's operands will have 1666 // the same values at the VPST. 1667 // If any of the instructions between the VCMP and VPST are predicated 1668 // then a different code path is expected to have merged the VCMP and 1669 // VPST already. 1670 if (std::none_of(++MachineBasicBlock::iterator(VCMP), 1671 MachineBasicBlock::iterator(VPST), hasVPRUse) && 1672 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) && 1673 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) { 1674 ReplaceVCMPWithVPT(VCMP, VPST); 1675 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1676 LoLoop.ToRemove.insert(VPST); 1677 } 1678 } 1679 } 1680 } 1681 1682 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end()); 1683 } 1684 1685 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1686 1687 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1688 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1689 MachineInstr *End = LoLoop.End; 1690 MachineBasicBlock *MBB = End->getParent(); 1691 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1692 ARM::MVE_LETP : ARM::t2LEUpdate; 1693 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1694 TII->get(Opc)); 1695 MIB.addDef(ARM::LR); 1696 unsigned Off = LoLoop.Dec == LoLoop.End ? 1 : 0; 1697 MIB.add(End->getOperand(Off + 0)); 1698 MIB.add(End->getOperand(Off + 1)); 1699 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1700 LoLoop.ToRemove.insert(LoLoop.Dec); 1701 LoLoop.ToRemove.insert(End); 1702 return &*MIB; 1703 }; 1704 1705 // TODO: We should be able to automatically remove these branches before we 1706 // get here - probably by teaching analyzeBranch about the pseudo 1707 // instructions. 1708 // If there is an unconditional branch, after I, that just branches to the 1709 // next block, remove it. 1710 auto RemoveDeadBranch = [](MachineInstr *I) { 1711 MachineBasicBlock *BB = I->getParent(); 1712 MachineInstr *Terminator = &BB->instr_back(); 1713 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1714 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1715 if (BB->isLayoutSuccessor(Succ)) { 1716 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1717 Terminator->eraseFromParent(); 1718 } 1719 } 1720 }; 1721 1722 // And VMOVCopies need to become 2xVMOVD for tail predication to be valid. 1723 // Anything other MQPRCopy can be converted to MVE_VORR later on. 1724 auto ExpandVMOVCopies = [this](SmallPtrSet<MachineInstr *, 4> &VMOVCopies) { 1725 for (auto *MI : VMOVCopies) { 1726 LLVM_DEBUG(dbgs() << "Converting copy to VMOVD: " << *MI); 1727 assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!"); 1728 MachineBasicBlock *MBB = MI->getParent(); 1729 Register Dst = MI->getOperand(0).getReg(); 1730 Register Src = MI->getOperand(1).getReg(); 1731 auto MIB1 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD), 1732 ARM::D0 + (Dst - ARM::Q0) * 2) 1733 .addReg(ARM::D0 + (Src - ARM::Q0) * 2) 1734 .add(predOps(ARMCC::AL)); 1735 (void)MIB1; 1736 LLVM_DEBUG(dbgs() << " into " << *MIB1); 1737 auto MIB2 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD), 1738 ARM::D0 + (Dst - ARM::Q0) * 2 + 1) 1739 .addReg(ARM::D0 + (Src - ARM::Q0) * 2 + 1) 1740 .add(predOps(ARMCC::AL)); 1741 LLVM_DEBUG(dbgs() << " and " << *MIB2); 1742 (void)MIB2; 1743 MI->eraseFromParent(); 1744 } 1745 }; 1746 1747 if (LoLoop.Revert) { 1748 if (isWhileLoopStart(*LoLoop.Start)) 1749 RevertWhile(LoLoop.Start); 1750 else 1751 RevertDo(LoLoop.Start); 1752 if (LoLoop.Dec == LoLoop.End) 1753 RevertLoopEndDec(LoLoop.End); 1754 else 1755 RevertLoopEnd(LoLoop.End, RevertLoopDec(LoLoop.Dec)); 1756 } else { 1757 ExpandVMOVCopies(LoLoop.VMOVCopies); 1758 LoLoop.Start = ExpandLoopStart(LoLoop); 1759 if (LoLoop.Start) 1760 RemoveDeadBranch(LoLoop.Start); 1761 LoLoop.End = ExpandLoopEnd(LoLoop); 1762 RemoveDeadBranch(LoLoop.End); 1763 if (LoLoop.IsTailPredicationLegal()) 1764 ConvertVPTBlocks(LoLoop); 1765 for (auto *I : LoLoop.ToRemove) { 1766 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1767 I->eraseFromParent(); 1768 } 1769 for (auto *I : LoLoop.BlockMasksToRecompute) { 1770 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1771 recomputeVPTBlockMask(*I); 1772 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1773 } 1774 } 1775 1776 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1777 DFS.ProcessLoop(); 1778 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1779 fullyRecomputeLiveIns(PostOrder); 1780 1781 for (auto *MBB : reverse(PostOrder)) 1782 recomputeLivenessFlags(*MBB); 1783 1784 // We've moved, removed and inserted new instructions, so update RDA. 1785 RDA->reset(); 1786 } 1787 1788 bool ARMLowOverheadLoops::RevertNonLoops() { 1789 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1790 bool Changed = false; 1791 1792 for (auto &MBB : *MF) { 1793 SmallVector<MachineInstr*, 4> Starts; 1794 SmallVector<MachineInstr*, 4> Decs; 1795 SmallVector<MachineInstr*, 4> Ends; 1796 SmallVector<MachineInstr *, 4> EndDecs; 1797 SmallVector<MachineInstr *, 4> MQPRCopies; 1798 1799 for (auto &I : MBB) { 1800 if (isLoopStart(I)) 1801 Starts.push_back(&I); 1802 else if (I.getOpcode() == ARM::t2LoopDec) 1803 Decs.push_back(&I); 1804 else if (I.getOpcode() == ARM::t2LoopEnd) 1805 Ends.push_back(&I); 1806 else if (I.getOpcode() == ARM::t2LoopEndDec) 1807 EndDecs.push_back(&I); 1808 else if (I.getOpcode() == ARM::MQPRCopy) 1809 MQPRCopies.push_back(&I); 1810 } 1811 1812 if (Starts.empty() && Decs.empty() && Ends.empty() && EndDecs.empty() && 1813 MQPRCopies.empty()) 1814 continue; 1815 1816 Changed = true; 1817 1818 for (auto *Start : Starts) { 1819 if (isWhileLoopStart(*Start)) 1820 RevertWhile(Start); 1821 else 1822 RevertDo(Start); 1823 } 1824 for (auto *Dec : Decs) 1825 RevertLoopDec(Dec); 1826 1827 for (auto *End : Ends) 1828 RevertLoopEnd(End); 1829 for (auto *End : EndDecs) 1830 RevertLoopEndDec(End); 1831 for (auto *MI : MQPRCopies) { 1832 LLVM_DEBUG(dbgs() << "Converting copy to VORR: " << *MI); 1833 assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!"); 1834 MachineBasicBlock *MBB = MI->getParent(); 1835 auto MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::MVE_VORR), 1836 MI->getOperand(0).getReg()) 1837 .add(MI->getOperand(1)) 1838 .add(MI->getOperand(1)); 1839 addUnpredicatedMveVpredROp(MIB, MI->getOperand(0).getReg()); 1840 MI->eraseFromParent(); 1841 } 1842 } 1843 return Changed; 1844 } 1845 1846 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1847 return new ARMLowOverheadLoops(); 1848 } 1849