1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 //===----------------------------------------------------------------------===// 39 40 #include "ARM.h" 41 #include "ARMBaseInstrInfo.h" 42 #include "ARMBaseRegisterInfo.h" 43 #include "ARMBasicBlockInfo.h" 44 #include "ARMSubtarget.h" 45 #include "Thumb2InstrInfo.h" 46 #include "llvm/ADT/SetOperations.h" 47 #include "llvm/ADT/SmallSet.h" 48 #include "llvm/CodeGen/LivePhysRegs.h" 49 #include "llvm/CodeGen/MachineFunctionPass.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineLoopUtils.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/Passes.h" 54 #include "llvm/CodeGen/ReachingDefAnalysis.h" 55 #include "llvm/MC/MCInstrDesc.h" 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "arm-low-overhead-loops" 60 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 61 62 namespace { 63 64 class PostOrderLoopTraversal { 65 MachineLoop &ML; 66 MachineLoopInfo &MLI; 67 SmallPtrSet<MachineBasicBlock*, 4> Visited; 68 SmallVector<MachineBasicBlock*, 4> Order; 69 70 public: 71 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 72 : ML(ML), MLI(MLI) { } 73 74 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 75 return Order; 76 } 77 78 // Visit all the blocks within the loop, as well as exit blocks and any 79 // blocks properly dominating the header. 80 void ProcessLoop() { 81 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 82 (MachineBasicBlock *MBB) -> void { 83 if (Visited.count(MBB)) 84 return; 85 86 Visited.insert(MBB); 87 for (auto *Succ : MBB->successors()) { 88 if (!ML.contains(Succ)) 89 continue; 90 Search(Succ); 91 } 92 Order.push_back(MBB); 93 }; 94 95 // Insert exit blocks. 96 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 97 ML.getExitBlocks(ExitBlocks); 98 for (auto *MBB : ExitBlocks) 99 Order.push_back(MBB); 100 101 // Then add the loop body. 102 Search(ML.getHeader()); 103 104 // Then try the preheader and its predecessors. 105 std::function<void(MachineBasicBlock*)> GetPredecessor = 106 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 107 Order.push_back(MBB); 108 if (MBB->pred_size() == 1) 109 GetPredecessor(*MBB->pred_begin()); 110 }; 111 112 if (auto *Preheader = ML.getLoopPreheader()) 113 GetPredecessor(Preheader); 114 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true)) 115 GetPredecessor(Preheader); 116 } 117 }; 118 119 struct PredicatedMI { 120 MachineInstr *MI = nullptr; 121 SetVector<MachineInstr*> Predicates; 122 123 public: 124 PredicatedMI(MachineInstr *I, SetVector<MachineInstr*> &Preds) : 125 MI(I) { Predicates.insert(Preds.begin(), Preds.end()); } 126 }; 127 128 // Represent a VPT block, a list of instructions that begins with a VPST and 129 // has a maximum of four proceeding instructions. All instructions within the 130 // block are predicated upon the vpr and we allow instructions to define the 131 // vpr within in the block too. 132 class VPTBlock { 133 std::unique_ptr<PredicatedMI> VPST; 134 PredicatedMI *Divergent = nullptr; 135 SmallVector<PredicatedMI, 4> Insts; 136 137 public: 138 VPTBlock(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { 139 VPST = std::make_unique<PredicatedMI>(MI, Preds); 140 } 141 142 void addInst(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { 143 LLVM_DEBUG(dbgs() << "ARM Loops: Adding predicated MI: " << *MI); 144 if (!Divergent && !set_difference(Preds, VPST->Predicates).empty()) { 145 Divergent = &Insts.back(); 146 LLVM_DEBUG(dbgs() << " - has divergent predicate: " << *Divergent->MI); 147 } 148 Insts.emplace_back(MI, Preds); 149 assert(Insts.size() <= 4 && "Too many instructions in VPT block!"); 150 } 151 152 // Have we found an instruction within the block which defines the vpr? If 153 // so, not all the instructions in the block will have the same predicate. 154 bool HasNonUniformPredicate() const { 155 return Divergent != nullptr; 156 } 157 158 // Is the given instruction part of the predicate set controlling the entry 159 // to the block. 160 bool IsPredicatedOn(MachineInstr *MI) const { 161 return VPST->Predicates.count(MI); 162 } 163 164 // Is the given instruction the only predicate which controls the entry to 165 // the block. 166 bool IsOnlyPredicatedOn(MachineInstr *MI) const { 167 return IsPredicatedOn(MI) && VPST->Predicates.size() == 1; 168 } 169 170 unsigned size() const { return Insts.size(); } 171 SmallVectorImpl<PredicatedMI> &getInsts() { return Insts; } 172 MachineInstr *getVPST() const { return VPST->MI; } 173 PredicatedMI *getDivergent() const { return Divergent; } 174 }; 175 176 struct LowOverheadLoop { 177 178 MachineLoop *ML = nullptr; 179 MachineLoopInfo *MLI = nullptr; 180 ReachingDefAnalysis *RDA = nullptr; 181 MachineFunction *MF = nullptr; 182 MachineInstr *InsertPt = nullptr; 183 MachineInstr *Start = nullptr; 184 MachineInstr *Dec = nullptr; 185 MachineInstr *End = nullptr; 186 MachineInstr *VCTP = nullptr; 187 VPTBlock *CurrentBlock = nullptr; 188 SetVector<MachineInstr*> CurrentPredicate; 189 SmallVector<VPTBlock, 4> VPTBlocks; 190 SmallPtrSet<MachineInstr*, 4> ToRemove; 191 bool Revert = false; 192 bool CannotTailPredicate = false; 193 194 LowOverheadLoop(MachineLoop *ML, MachineLoopInfo *MLI, 195 ReachingDefAnalysis *RDA) : ML(ML), MLI(MLI), RDA(RDA) { 196 MF = ML->getHeader()->getParent(); 197 } 198 199 // If this is an MVE instruction, check that we know how to use tail 200 // predication with it. Record VPT blocks and return whether the 201 // instruction is valid for tail predication. 202 bool ValidateMVEInst(MachineInstr *MI); 203 204 void AnalyseMVEInst(MachineInstr *MI) { 205 CannotTailPredicate = !ValidateMVEInst(MI); 206 } 207 208 bool IsTailPredicationLegal() const { 209 // For now, let's keep things really simple and only support a single 210 // block for tail predication. 211 return !Revert && FoundAllComponents() && VCTP && 212 !CannotTailPredicate && ML->getNumBlocks() == 1; 213 } 214 215 bool ValidateTailPredicate(MachineInstr *StartInsertPt); 216 217 // Is it safe to define LR with DLS/WLS? 218 // LR can be defined if it is the operand to start, because it's the same 219 // value, or if it's going to be equivalent to the operand to Start. 220 MachineInstr *isSafeToDefineLR(); 221 222 // Check the branch targets are within range and we satisfy our 223 // restrictions. 224 void CheckLegality(ARMBasicBlockUtils *BBUtils); 225 226 bool FoundAllComponents() const { 227 return Start && Dec && End; 228 } 229 230 SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTBlocks; } 231 232 // Return the loop iteration count, or the number of elements if we're tail 233 // predicating. 234 MachineOperand &getCount() { 235 return IsTailPredicationLegal() ? 236 VCTP->getOperand(1) : Start->getOperand(0); 237 } 238 239 unsigned getStartOpcode() const { 240 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 241 if (!IsTailPredicationLegal()) 242 return IsDo ? ARM::t2DLS : ARM::t2WLS; 243 244 return VCTPOpcodeToLSTP(VCTP->getOpcode(), IsDo); 245 } 246 247 void dump() const { 248 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 249 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 250 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 251 if (VCTP) dbgs() << "ARM Loops: Found VCTP: " << *VCTP; 252 if (!FoundAllComponents()) 253 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 254 else if (!(Start && Dec && End)) 255 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 256 } 257 }; 258 259 class ARMLowOverheadLoops : public MachineFunctionPass { 260 MachineFunction *MF = nullptr; 261 MachineLoopInfo *MLI = nullptr; 262 ReachingDefAnalysis *RDA = nullptr; 263 const ARMBaseInstrInfo *TII = nullptr; 264 MachineRegisterInfo *MRI = nullptr; 265 const TargetRegisterInfo *TRI = nullptr; 266 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 267 268 public: 269 static char ID; 270 271 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 272 273 void getAnalysisUsage(AnalysisUsage &AU) const override { 274 AU.setPreservesCFG(); 275 AU.addRequired<MachineLoopInfo>(); 276 AU.addRequired<ReachingDefAnalysis>(); 277 MachineFunctionPass::getAnalysisUsage(AU); 278 } 279 280 bool runOnMachineFunction(MachineFunction &MF) override; 281 282 MachineFunctionProperties getRequiredProperties() const override { 283 return MachineFunctionProperties().set( 284 MachineFunctionProperties::Property::NoVRegs).set( 285 MachineFunctionProperties::Property::TracksLiveness); 286 } 287 288 StringRef getPassName() const override { 289 return ARM_LOW_OVERHEAD_LOOPS_NAME; 290 } 291 292 private: 293 bool ProcessLoop(MachineLoop *ML); 294 295 bool RevertNonLoops(); 296 297 void RevertWhile(MachineInstr *MI) const; 298 299 bool RevertLoopDec(MachineInstr *MI) const; 300 301 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 302 303 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 304 305 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 306 307 void Expand(LowOverheadLoop &LoLoop); 308 309 }; 310 } 311 312 char ARMLowOverheadLoops::ID = 0; 313 314 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 315 false, false) 316 317 MachineInstr *LowOverheadLoop::isSafeToDefineLR() { 318 // We can define LR because LR already contains the same value. 319 if (Start->getOperand(0).getReg() == ARM::LR) 320 return Start; 321 322 unsigned CountReg = Start->getOperand(0).getReg(); 323 auto IsMoveLR = [&CountReg](MachineInstr *MI) { 324 return MI->getOpcode() == ARM::tMOVr && 325 MI->getOperand(0).getReg() == ARM::LR && 326 MI->getOperand(1).getReg() == CountReg && 327 MI->getOperand(2).getImm() == ARMCC::AL; 328 }; 329 330 MachineBasicBlock *MBB = Start->getParent(); 331 332 // Find an insertion point: 333 // - Is there a (mov lr, Count) before Start? If so, and nothing else writes 334 // to Count before Start, we can insert at that mov. 335 if (auto *LRDef = RDA->getReachingMIDef(Start, ARM::LR)) 336 if (IsMoveLR(LRDef) && RDA->hasSameReachingDef(Start, LRDef, CountReg)) 337 return LRDef; 338 339 // - Is there a (mov lr, Count) after Start? If so, and nothing else writes 340 // to Count after Start, we can insert at that mov. 341 if (auto *LRDef = RDA->getLocalLiveOutMIDef(MBB, ARM::LR)) 342 if (IsMoveLR(LRDef) && RDA->hasSameReachingDef(Start, LRDef, CountReg)) 343 return LRDef; 344 345 // We've found no suitable LR def and Start doesn't use LR directly. Can we 346 // just define LR anyway? 347 return RDA->isSafeToDefRegAt(Start, ARM::LR) ? Start : nullptr; 348 } 349 350 bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt) { 351 assert(VCTP && "VCTP instruction expected but is not set"); 352 // All predication within the loop should be based on vctp. If the block 353 // isn't predicated on entry, check whether the vctp is within the block 354 // and that all other instructions are then predicated on it. 355 for (auto &Block : VPTBlocks) { 356 if (Block.IsPredicatedOn(VCTP)) 357 continue; 358 if (!Block.HasNonUniformPredicate() || !isVCTP(Block.getDivergent()->MI)) { 359 LLVM_DEBUG(dbgs() << "ARM Loops: Found unsupported diverging predicate: " 360 << *Block.getDivergent()->MI); 361 return false; 362 } 363 SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); 364 for (auto &PredMI : Insts) { 365 if (PredMI.Predicates.count(VCTP) || isVCTP(PredMI.MI)) 366 continue; 367 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *PredMI.MI 368 << " - which is predicated on:\n"; 369 for (auto *MI : PredMI.Predicates) 370 dbgs() << " - " << *MI); 371 return false; 372 } 373 } 374 375 // For tail predication, we need to provide the number of elements, instead 376 // of the iteration count, to the loop start instruction. The number of 377 // elements is provided to the vctp instruction, so we need to check that 378 // we can use this register at InsertPt. 379 Register NumElements = VCTP->getOperand(1).getReg(); 380 381 // If the register is defined within loop, then we can't perform TP. 382 // TODO: Check whether this is just a mov of a register that would be 383 // available. 384 if (RDA->hasLocalDefBefore(VCTP, NumElements)) { 385 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 386 return false; 387 } 388 389 // The element count register maybe defined after InsertPt, in which case we 390 // need to try to move either InsertPt or the def so that the [w|d]lstp can 391 // use the value. 392 MachineBasicBlock *InsertBB = StartInsertPt->getParent(); 393 if (!RDA->isReachingDefLiveOut(StartInsertPt, NumElements)) { 394 if (auto *ElemDef = RDA->getLocalLiveOutMIDef(InsertBB, NumElements)) { 395 if (RDA->isSafeToMoveForwards(ElemDef, StartInsertPt)) { 396 ElemDef->removeFromParent(); 397 InsertBB->insert(MachineBasicBlock::iterator(StartInsertPt), ElemDef); 398 LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: " 399 << *ElemDef); 400 } else if (RDA->isSafeToMoveBackwards(StartInsertPt, ElemDef)) { 401 StartInsertPt->removeFromParent(); 402 InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 403 StartInsertPt); 404 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 405 } else { 406 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to move element count to loop " 407 << "start instruction.\n"); 408 return false; 409 } 410 } 411 } 412 413 // Especially in the case of while loops, InsertBB may not be the 414 // preheader, so we need to check that the register isn't redefined 415 // before entering the loop. 416 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 417 Register NumElements) { 418 // NumElements is redefined in this block. 419 if (RDA->hasLocalDefBefore(&MBB->back(), NumElements)) 420 return true; 421 422 // Don't continue searching up through multiple predecessors. 423 if (MBB->pred_size() > 1) 424 return true; 425 426 return false; 427 }; 428 429 // First, find the block that looks like the preheader. 430 MachineBasicBlock *MBB = MLI->findLoopPreheader(ML, true); 431 if (!MBB) { 432 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find preheader.\n"); 433 return false; 434 } 435 436 // Then search backwards for a def, until we get to InsertBB. 437 while (MBB != InsertBB) { 438 if (CannotProvideElements(MBB, NumElements)) { 439 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 440 return false; 441 } 442 MBB = *MBB->pred_begin(); 443 } 444 445 // Check that the value change of the element count is what we expect and 446 // that the predication will be equivalent. For this we need: 447 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 448 // and we can also allow register copies within the chain too. 449 auto IsValidSub = [](MachineInstr *MI, unsigned ExpectedVecWidth) { 450 unsigned ImmOpIdx = 0; 451 switch (MI->getOpcode()) { 452 default: 453 llvm_unreachable("unhandled sub opcode"); 454 case ARM::tSUBi3: 455 case ARM::tSUBi8: 456 ImmOpIdx = 3; 457 break; 458 case ARM::t2SUBri: 459 case ARM::t2SUBri12: 460 ImmOpIdx = 2; 461 break; 462 } 463 return MI->getOperand(ImmOpIdx).getImm() == ExpectedVecWidth; 464 }; 465 466 MBB = VCTP->getParent(); 467 if (MachineInstr *Def = RDA->getReachingMIDef(&MBB->back(), NumElements)) { 468 SmallPtrSet<MachineInstr*, 2> ElementChain; 469 SmallPtrSet<MachineInstr*, 2> Ignore = { VCTP }; 470 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 471 472 if (RDA->isSafeToRemove(Def, ElementChain, Ignore)) { 473 bool FoundSub = false; 474 475 for (auto *MI : ElementChain) { 476 if (isMovRegOpcode(MI->getOpcode())) 477 continue; 478 479 if (isSubImmOpcode(MI->getOpcode())) { 480 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) 481 return false; 482 FoundSub = true; 483 } else 484 return false; 485 } 486 487 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove element count chain:\n"; 488 for (auto *MI : ElementChain) 489 dbgs() << " - " << *MI); 490 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 491 } 492 } 493 return true; 494 } 495 496 void LowOverheadLoop::CheckLegality(ARMBasicBlockUtils *BBUtils) { 497 if (Revert) 498 return; 499 500 if (!End->getOperand(1).isMBB()) 501 report_fatal_error("Expected LoopEnd to target basic block"); 502 503 // TODO Maybe there's cases where the target doesn't have to be the header, 504 // but for now be safe and revert. 505 if (End->getOperand(1).getMBB() != ML->getHeader()) { 506 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targetting header.\n"); 507 Revert = true; 508 return; 509 } 510 511 // The WLS and LE instructions have 12-bits for the label offset. WLS 512 // requires a positive offset, while LE uses negative. 513 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML->getHeader()) || 514 !BBUtils->isBBInRange(End, ML->getHeader(), 4094)) { 515 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 516 Revert = true; 517 return; 518 } 519 520 if (Start->getOpcode() == ARM::t2WhileLoopStart && 521 (BBUtils->getOffsetOf(Start) > 522 BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || 523 !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { 524 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 525 Revert = true; 526 return; 527 } 528 529 InsertPt = Revert ? nullptr : isSafeToDefineLR(); 530 if (!InsertPt) { 531 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n"); 532 Revert = true; 533 return; 534 } else 535 LLVM_DEBUG(dbgs() << "ARM Loops: Start insertion point: " << *InsertPt); 536 537 if (!IsTailPredicationLegal()) { 538 LLVM_DEBUG(if (!VCTP) 539 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 540 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 541 return; 542 } 543 544 assert(ML->getBlocks().size() == 1 && 545 "Shouldn't be processing a loop with more than one block"); 546 CannotTailPredicate = !ValidateTailPredicate(InsertPt); 547 LLVM_DEBUG(if (CannotTailPredicate) 548 dbgs() << "ARM Loops: Couldn't validate tail predicate.\n"); 549 } 550 551 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) { 552 if (CannotTailPredicate) 553 return false; 554 555 // Only support a single vctp. 556 if (isVCTP(MI) && VCTP) 557 return false; 558 559 // Start a new vpt block when we discover a vpt. 560 if (MI->getOpcode() == ARM::MVE_VPST) { 561 VPTBlocks.emplace_back(MI, CurrentPredicate); 562 CurrentBlock = &VPTBlocks.back(); 563 return true; 564 } else if (isVCTP(MI)) 565 VCTP = MI; 566 else if (MI->getOpcode() == ARM::MVE_VPSEL || 567 MI->getOpcode() == ARM::MVE_VPNOT) 568 return false; 569 570 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 571 // 1) It will use the VPR as a predicate operand, but doesn't have to be 572 // instead a VPT block, which means we can assert while building up 573 // the VPT block because we don't find another VPST to being a new 574 // one. 575 // 2) VPSEL still requires a VPR operand even after tail predicating, 576 // which means we can't remove it unless there is another 577 // instruction, such as vcmp, that can provide the VPR def. 578 579 bool IsUse = false; 580 bool IsDef = false; 581 const MCInstrDesc &MCID = MI->getDesc(); 582 for (int i = MI->getNumOperands() - 1; i >= 0; --i) { 583 const MachineOperand &MO = MI->getOperand(i); 584 if (!MO.isReg() || MO.getReg() != ARM::VPR) 585 continue; 586 587 if (MO.isDef()) { 588 CurrentPredicate.insert(MI); 589 IsDef = true; 590 } else if (ARM::isVpred(MCID.OpInfo[i].OperandType)) { 591 CurrentBlock->addInst(MI, CurrentPredicate); 592 IsUse = true; 593 } else { 594 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 595 return false; 596 } 597 } 598 599 // If we find a vpr def that is not already predicated on the vctp, we've 600 // got disjoint predicates that may not be equivalent when we do the 601 // conversion. 602 if (IsDef && !IsUse && VCTP && !isVCTP(MI)) { 603 LLVM_DEBUG(dbgs() << "ARM Loops: Found disjoint vpr def: " << *MI); 604 return false; 605 } 606 607 uint64_t Flags = MCID.TSFlags; 608 if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE) 609 return true; 610 611 // If we find an instruction that has been marked as not valid for tail 612 // predication, only allow the instruction if it's contained within a valid 613 // VPT block. 614 if ((Flags & ARMII::ValidForTailPredication) == 0 && !IsUse) { 615 LLVM_DEBUG(dbgs() << "ARM Loops: Can't tail predicate: " << *MI); 616 return false; 617 } 618 619 return true; 620 } 621 622 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 623 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 624 if (!ST.hasLOB()) 625 return false; 626 627 MF = &mf; 628 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 629 630 MLI = &getAnalysis<MachineLoopInfo>(); 631 RDA = &getAnalysis<ReachingDefAnalysis>(); 632 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 633 MRI = &MF->getRegInfo(); 634 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 635 TRI = ST.getRegisterInfo(); 636 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 637 BBUtils->computeAllBlockSizes(); 638 BBUtils->adjustBBOffsetsAfter(&MF->front()); 639 640 bool Changed = false; 641 for (auto ML : *MLI) { 642 if (!ML->getParentLoop()) 643 Changed |= ProcessLoop(ML); 644 } 645 Changed |= RevertNonLoops(); 646 return Changed; 647 } 648 649 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 650 651 bool Changed = false; 652 653 // Process inner loops first. 654 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 655 Changed |= ProcessLoop(*I); 656 657 LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; 658 if (auto *Preheader = ML->getLoopPreheader()) 659 dbgs() << " - " << Preheader->getName() << "\n"; 660 else if (auto *Preheader = MLI->findLoopPreheader(ML)) 661 dbgs() << " - " << Preheader->getName() << "\n"; 662 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 663 dbgs() << " - " << Preheader->getName() << "\n"; 664 for (auto *MBB : ML->getBlocks()) 665 dbgs() << " - " << MBB->getName() << "\n"; 666 ); 667 668 // Search the given block for a loop start instruction. If one isn't found, 669 // and there's only one predecessor block, search that one too. 670 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 671 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 672 for (auto &MI : *MBB) { 673 if (isLoopStart(MI)) 674 return &MI; 675 } 676 if (MBB->pred_size() == 1) 677 return SearchForStart(*MBB->pred_begin()); 678 return nullptr; 679 }; 680 681 LowOverheadLoop LoLoop(ML, MLI, RDA); 682 // Search the preheader for the start intrinsic. 683 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 684 // with potentially multiple set.loop.iterations, so we need to enable this. 685 if (auto *Preheader = ML->getLoopPreheader()) 686 LoLoop.Start = SearchForStart(Preheader); 687 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 688 LoLoop.Start = SearchForStart(Preheader); 689 else 690 return false; 691 692 // Find the low-overhead loop components and decide whether or not to fall 693 // back to a normal loop. Also look for a vctp instructions and decide 694 // whether we can convert that predicate using tail predication. 695 for (auto *MBB : reverse(ML->getBlocks())) { 696 for (auto &MI : *MBB) { 697 if (MI.getOpcode() == ARM::t2LoopDec) 698 LoLoop.Dec = &MI; 699 else if (MI.getOpcode() == ARM::t2LoopEnd) 700 LoLoop.End = &MI; 701 else if (isLoopStart(MI)) 702 LoLoop.Start = &MI; 703 else if (MI.getDesc().isCall()) { 704 // TODO: Though the call will require LE to execute again, does this 705 // mean we should revert? Always executing LE hopefully should be 706 // faster than performing a sub,cmp,br or even subs,br. 707 LoLoop.Revert = true; 708 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 709 } else { 710 // Record VPR defs and build up their corresponding vpt blocks. 711 // Check we know how to tail predicate any mve instructions. 712 LoLoop.AnalyseMVEInst(&MI); 713 } 714 } 715 } 716 717 LLVM_DEBUG(LoLoop.dump()); 718 if (!LoLoop.FoundAllComponents()) { 719 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 720 return false; 721 } 722 723 SmallPtrSet<MachineInstr*, 2> Ignore = { LoLoop.End }; 724 SmallPtrSet<MachineInstr*, 4> Remove; 725 if (!RDA->isSafeToRemove(LoLoop.Dec, Remove, Ignore)) { 726 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove loop count chain.\n"); 727 LoLoop.Revert = true; 728 } else { 729 LLVM_DEBUG(dbgs() << "ARM Loops: Will need to remove:\n"; 730 for (auto *I : Remove) 731 dbgs() << " - " << *I); 732 LoLoop.ToRemove.insert(Remove.begin(), Remove.end()); 733 } 734 735 LoLoop.CheckLegality(BBUtils.get()); 736 Expand(LoLoop); 737 return true; 738 } 739 740 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 741 // beq that branches to the exit branch. 742 // TODO: We could also try to generate a cbz if the value in LR is also in 743 // another low register. 744 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 745 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 746 MachineBasicBlock *MBB = MI->getParent(); 747 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 748 TII->get(ARM::t2CMPri)); 749 MIB.add(MI->getOperand(0)); 750 MIB.addImm(0); 751 MIB.addImm(ARMCC::AL); 752 MIB.addReg(ARM::NoRegister); 753 754 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 755 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 756 ARM::tBcc : ARM::t2Bcc; 757 758 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 759 MIB.add(MI->getOperand(1)); // branch target 760 MIB.addImm(ARMCC::EQ); // condition code 761 MIB.addReg(ARM::CPSR); 762 MI->eraseFromParent(); 763 } 764 765 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 766 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 767 MachineBasicBlock *MBB = MI->getParent(); 768 MachineInstr *Last = &MBB->back(); 769 SmallPtrSet<MachineInstr*, 1> Ignore; 770 if (Last->getOpcode() == ARM::t2LoopEnd) 771 Ignore.insert(Last); 772 773 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 774 bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore); 775 776 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 777 TII->get(ARM::t2SUBri)); 778 MIB.addDef(ARM::LR); 779 MIB.add(MI->getOperand(1)); 780 MIB.add(MI->getOperand(2)); 781 MIB.addImm(ARMCC::AL); 782 MIB.addReg(0); 783 784 if (SetFlags) { 785 MIB.addReg(ARM::CPSR); 786 MIB->getOperand(5).setIsDef(true); 787 } else 788 MIB.addReg(0); 789 790 MI->eraseFromParent(); 791 return SetFlags; 792 } 793 794 // Generate a subs, or sub and cmp, and a branch instead of an LE. 795 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 796 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 797 798 MachineBasicBlock *MBB = MI->getParent(); 799 // Create cmp 800 if (!SkipCmp) { 801 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 802 TII->get(ARM::t2CMPri)); 803 MIB.addReg(ARM::LR); 804 MIB.addImm(0); 805 MIB.addImm(ARMCC::AL); 806 MIB.addReg(ARM::NoRegister); 807 } 808 809 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 810 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 811 ARM::tBcc : ARM::t2Bcc; 812 813 // Create bne 814 MachineInstrBuilder MIB = 815 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 816 MIB.add(MI->getOperand(1)); // branch target 817 MIB.addImm(ARMCC::NE); // condition code 818 MIB.addReg(ARM::CPSR); 819 MI->eraseFromParent(); 820 } 821 822 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 823 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 824 // When using tail-predication, try to delete the dead code that was used to 825 // calculate the number of loop iterations. 826 if (LoLoop.IsTailPredicationLegal()) { 827 SmallVector<MachineInstr*, 4> Killed; 828 SmallVector<MachineInstr*, 4> Dead; 829 if (auto *Def = RDA->getReachingMIDef(LoLoop.Start, 830 LoLoop.Start->getOperand(0).getReg())) { 831 SmallPtrSet<MachineInstr*, 4> Remove; 832 SmallPtrSet<MachineInstr*, 4> Ignore = { LoLoop.Start, LoLoop.Dec, 833 LoLoop.End, LoLoop.InsertPt }; 834 SmallVector<MachineInstr*, 4> Chain = { Def }; 835 while (!Chain.empty()) { 836 MachineInstr *MI = Chain.back(); 837 Chain.pop_back(); 838 if (RDA->isSafeToRemove(MI, Remove, Ignore)) { 839 for (auto &MO : MI->operands()) { 840 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0) 841 continue; 842 if (auto *Op = RDA->getReachingMIDef(MI, MO.getReg())) 843 Chain.push_back(Op); 844 } 845 Ignore.insert(MI); 846 } 847 } 848 LoLoop.ToRemove.insert(Remove.begin(), Remove.end()); 849 } 850 } 851 852 MachineInstr *InsertPt = LoLoop.InsertPt; 853 MachineInstr *Start = LoLoop.Start; 854 MachineBasicBlock *MBB = InsertPt->getParent(); 855 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 856 unsigned Opc = LoLoop.getStartOpcode(); 857 MachineOperand &Count = LoLoop.getCount(); 858 859 MachineInstrBuilder MIB = 860 BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc)); 861 862 MIB.addDef(ARM::LR); 863 MIB.add(Count); 864 if (!IsDo) 865 MIB.add(Start->getOperand(1)); 866 867 // If we're inserting at a mov lr, then remove it as it's redundant. 868 if (InsertPt != Start) 869 LoLoop.ToRemove.insert(InsertPt); 870 LoLoop.ToRemove.insert(Start); 871 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 872 return &*MIB; 873 } 874 875 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 876 auto RemovePredicate = [](MachineInstr *MI) { 877 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 878 if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) { 879 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 880 "Expected Then predicate!"); 881 MI->getOperand(PIdx).setImm(ARMVCC::None); 882 MI->getOperand(PIdx+1).setReg(0); 883 } else 884 llvm_unreachable("trying to unpredicate a non-predicated instruction"); 885 }; 886 887 // There are a few scenarios which we have to fix up: 888 // 1) A VPT block with is only predicated by the vctp and has no internal vpr 889 // defs. 890 // 2) A VPT block which is only predicated by the vctp but has an internal 891 // vpr def. 892 // 3) A VPT block which is predicated upon the vctp as well as another vpr 893 // def. 894 // 4) A VPT block which is not predicated upon a vctp, but contains it and 895 // all instructions within the block are predicated upon in. 896 897 for (auto &Block : LoLoop.getVPTBlocks()) { 898 SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); 899 if (Block.HasNonUniformPredicate()) { 900 PredicatedMI *Divergent = Block.getDivergent(); 901 if (isVCTP(Divergent->MI)) { 902 // The vctp will be removed, so the size of the vpt block needs to be 903 // modified. 904 uint64_t Size = getARMVPTBlockMask(Block.size() - 1); 905 Block.getVPST()->getOperand(0).setImm(Size); 906 LLVM_DEBUG(dbgs() << "ARM Loops: Modified VPT block mask.\n"); 907 } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { 908 // The VPT block has a non-uniform predicate but it's entry is guarded 909 // only by a vctp, which means we: 910 // - Need to remove the original vpst. 911 // - Then need to unpredicate any following instructions, until 912 // we come across the divergent vpr def. 913 // - Insert a new vpst to predicate the instruction(s) that following 914 // the divergent vpr def. 915 // TODO: We could be producing more VPT blocks than necessary and could 916 // fold the newly created one into a proceeding one. 917 for (auto I = ++MachineBasicBlock::iterator(Block.getVPST()), 918 E = ++MachineBasicBlock::iterator(Divergent->MI); I != E; ++I) 919 RemovePredicate(&*I); 920 921 unsigned Size = 0; 922 auto E = MachineBasicBlock::reverse_iterator(Divergent->MI); 923 auto I = MachineBasicBlock::reverse_iterator(Insts.back().MI); 924 MachineInstr *InsertAt = nullptr; 925 while (I != E) { 926 InsertAt = &*I; 927 ++Size; 928 ++I; 929 } 930 MachineInstrBuilder MIB = BuildMI(*InsertAt->getParent(), InsertAt, 931 InsertAt->getDebugLoc(), 932 TII->get(ARM::MVE_VPST)); 933 MIB.addImm(getARMVPTBlockMask(Size)); 934 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST()); 935 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 936 LoLoop.ToRemove.insert(Block.getVPST()); 937 } 938 } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { 939 // A vpt block which is only predicated upon vctp and has no internal vpr 940 // defs: 941 // - Remove vpst. 942 // - Unpredicate the remaining instructions. 943 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST()); 944 LoLoop.ToRemove.insert(Block.getVPST()); 945 for (auto &PredMI : Insts) 946 RemovePredicate(PredMI.MI); 947 } 948 } 949 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VCTP: " << *LoLoop.VCTP); 950 LoLoop.ToRemove.insert(LoLoop.VCTP); 951 } 952 953 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 954 955 // Combine the LoopDec and LoopEnd instructions into LE(TP). 956 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 957 MachineInstr *End = LoLoop.End; 958 MachineBasicBlock *MBB = End->getParent(); 959 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 960 ARM::MVE_LETP : ARM::t2LEUpdate; 961 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 962 TII->get(Opc)); 963 MIB.addDef(ARM::LR); 964 MIB.add(End->getOperand(0)); 965 MIB.add(End->getOperand(1)); 966 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 967 End->eraseFromParent(); 968 return &*MIB; 969 }; 970 971 // TODO: We should be able to automatically remove these branches before we 972 // get here - probably by teaching analyzeBranch about the pseudo 973 // instructions. 974 // If there is an unconditional branch, after I, that just branches to the 975 // next block, remove it. 976 auto RemoveDeadBranch = [](MachineInstr *I) { 977 MachineBasicBlock *BB = I->getParent(); 978 MachineInstr *Terminator = &BB->instr_back(); 979 if (Terminator->isUnconditionalBranch() && I != Terminator) { 980 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 981 if (BB->isLayoutSuccessor(Succ)) { 982 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 983 Terminator->eraseFromParent(); 984 } 985 } 986 }; 987 988 if (LoLoop.Revert) { 989 if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) 990 RevertWhile(LoLoop.Start); 991 else 992 LoLoop.Start->eraseFromParent(); 993 bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec); 994 RevertLoopEnd(LoLoop.End, FlagsAlreadySet); 995 } else { 996 LoLoop.Start = ExpandLoopStart(LoLoop); 997 RemoveDeadBranch(LoLoop.Start); 998 LoLoop.End = ExpandLoopEnd(LoLoop); 999 RemoveDeadBranch(LoLoop.End); 1000 if (LoLoop.IsTailPredicationLegal()) 1001 ConvertVPTBlocks(LoLoop); 1002 for (auto *I : LoLoop.ToRemove) { 1003 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1004 I->eraseFromParent(); 1005 } 1006 } 1007 1008 PostOrderLoopTraversal DFS(*LoLoop.ML, *MLI); 1009 DFS.ProcessLoop(); 1010 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1011 for (auto *MBB : PostOrder) { 1012 recomputeLiveIns(*MBB); 1013 // FIXME: For some reason, the live-in print order is non-deterministic for 1014 // our tests and I can't out why... So just sort them. 1015 MBB->sortUniqueLiveIns(); 1016 } 1017 1018 for (auto *MBB : reverse(PostOrder)) 1019 recomputeLivenessFlags(*MBB); 1020 } 1021 1022 bool ARMLowOverheadLoops::RevertNonLoops() { 1023 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1024 bool Changed = false; 1025 1026 for (auto &MBB : *MF) { 1027 SmallVector<MachineInstr*, 4> Starts; 1028 SmallVector<MachineInstr*, 4> Decs; 1029 SmallVector<MachineInstr*, 4> Ends; 1030 1031 for (auto &I : MBB) { 1032 if (isLoopStart(I)) 1033 Starts.push_back(&I); 1034 else if (I.getOpcode() == ARM::t2LoopDec) 1035 Decs.push_back(&I); 1036 else if (I.getOpcode() == ARM::t2LoopEnd) 1037 Ends.push_back(&I); 1038 } 1039 1040 if (Starts.empty() && Decs.empty() && Ends.empty()) 1041 continue; 1042 1043 Changed = true; 1044 1045 for (auto *Start : Starts) { 1046 if (Start->getOpcode() == ARM::t2WhileLoopStart) 1047 RevertWhile(Start); 1048 else 1049 Start->eraseFromParent(); 1050 } 1051 for (auto *Dec : Decs) 1052 RevertLoopDec(Dec); 1053 1054 for (auto *End : Ends) 1055 RevertLoopEnd(End); 1056 } 1057 return Changed; 1058 } 1059 1060 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1061 return new ARMLowOverheadLoops(); 1062 } 1063