1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 //===----------------------------------------------------------------------===// 39 40 #include "ARM.h" 41 #include "ARMBaseInstrInfo.h" 42 #include "ARMBaseRegisterInfo.h" 43 #include "ARMBasicBlockInfo.h" 44 #include "ARMSubtarget.h" 45 #include "Thumb2InstrInfo.h" 46 #include "llvm/ADT/SetOperations.h" 47 #include "llvm/ADT/SmallSet.h" 48 #include "llvm/CodeGen/LivePhysRegs.h" 49 #include "llvm/CodeGen/MachineFunctionPass.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineLoopUtils.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/Passes.h" 54 #include "llvm/CodeGen/ReachingDefAnalysis.h" 55 #include "llvm/MC/MCInstrDesc.h" 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "arm-low-overhead-loops" 60 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 61 62 namespace { 63 64 using InstSet = SmallPtrSetImpl<MachineInstr *>; 65 66 class PostOrderLoopTraversal { 67 MachineLoop &ML; 68 MachineLoopInfo &MLI; 69 SmallPtrSet<MachineBasicBlock*, 4> Visited; 70 SmallVector<MachineBasicBlock*, 4> Order; 71 72 public: 73 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 74 : ML(ML), MLI(MLI) { } 75 76 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 77 return Order; 78 } 79 80 // Visit all the blocks within the loop, as well as exit blocks and any 81 // blocks properly dominating the header. 82 void ProcessLoop() { 83 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 84 (MachineBasicBlock *MBB) -> void { 85 if (Visited.count(MBB)) 86 return; 87 88 Visited.insert(MBB); 89 for (auto *Succ : MBB->successors()) { 90 if (!ML.contains(Succ)) 91 continue; 92 Search(Succ); 93 } 94 Order.push_back(MBB); 95 }; 96 97 // Insert exit blocks. 98 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 99 ML.getExitBlocks(ExitBlocks); 100 for (auto *MBB : ExitBlocks) 101 Order.push_back(MBB); 102 103 // Then add the loop body. 104 Search(ML.getHeader()); 105 106 // Then try the preheader and its predecessors. 107 std::function<void(MachineBasicBlock*)> GetPredecessor = 108 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 109 Order.push_back(MBB); 110 if (MBB->pred_size() == 1) 111 GetPredecessor(*MBB->pred_begin()); 112 }; 113 114 if (auto *Preheader = ML.getLoopPreheader()) 115 GetPredecessor(Preheader); 116 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true)) 117 GetPredecessor(Preheader); 118 } 119 }; 120 121 struct PredicatedMI { 122 MachineInstr *MI = nullptr; 123 SetVector<MachineInstr*> Predicates; 124 125 public: 126 PredicatedMI(MachineInstr *I, SetVector<MachineInstr*> &Preds) : 127 MI(I) { Predicates.insert(Preds.begin(), Preds.end()); } 128 }; 129 130 // Represent a VPT block, a list of instructions that begins with a VPST and 131 // has a maximum of four proceeding instructions. All instructions within the 132 // block are predicated upon the vpr and we allow instructions to define the 133 // vpr within in the block too. 134 class VPTBlock { 135 std::unique_ptr<PredicatedMI> VPST; 136 PredicatedMI *Divergent = nullptr; 137 SmallVector<PredicatedMI, 4> Insts; 138 139 public: 140 VPTBlock(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { 141 VPST = std::make_unique<PredicatedMI>(MI, Preds); 142 } 143 144 void addInst(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { 145 LLVM_DEBUG(dbgs() << "ARM Loops: Adding predicated MI: " << *MI); 146 if (!Divergent && !set_difference(Preds, VPST->Predicates).empty()) { 147 Divergent = &Insts.back(); 148 LLVM_DEBUG(dbgs() << " - has divergent predicate: " << *Divergent->MI); 149 } 150 Insts.emplace_back(MI, Preds); 151 assert(Insts.size() <= 4 && "Too many instructions in VPT block!"); 152 } 153 154 // Have we found an instruction within the block which defines the vpr? If 155 // so, not all the instructions in the block will have the same predicate. 156 bool HasNonUniformPredicate() const { 157 return Divergent != nullptr; 158 } 159 160 // Is the given instruction part of the predicate set controlling the entry 161 // to the block. 162 bool IsPredicatedOn(MachineInstr *MI) const { 163 return VPST->Predicates.count(MI); 164 } 165 166 // Is the given instruction the only predicate which controls the entry to 167 // the block. 168 bool IsOnlyPredicatedOn(MachineInstr *MI) const { 169 return IsPredicatedOn(MI) && VPST->Predicates.size() == 1; 170 } 171 172 unsigned size() const { return Insts.size(); } 173 SmallVectorImpl<PredicatedMI> &getInsts() { return Insts; } 174 MachineInstr *getVPST() const { return VPST->MI; } 175 PredicatedMI *getDivergent() const { return Divergent; } 176 }; 177 178 struct LowOverheadLoop { 179 180 MachineLoop &ML; 181 MachineLoopInfo &MLI; 182 ReachingDefAnalysis &RDA; 183 const TargetRegisterInfo &TRI; 184 MachineFunction *MF = nullptr; 185 MachineInstr *InsertPt = nullptr; 186 MachineInstr *Start = nullptr; 187 MachineInstr *Dec = nullptr; 188 MachineInstr *End = nullptr; 189 MachineInstr *VCTP = nullptr; 190 VPTBlock *CurrentBlock = nullptr; 191 SetVector<MachineInstr*> CurrentPredicate; 192 SmallVector<VPTBlock, 4> VPTBlocks; 193 SmallPtrSet<MachineInstr*, 4> ToRemove; 194 bool Revert = false; 195 bool CannotTailPredicate = false; 196 197 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 198 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI) 199 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI) { 200 MF = ML.getHeader()->getParent(); 201 } 202 203 // If this is an MVE instruction, check that we know how to use tail 204 // predication with it. Record VPT blocks and return whether the 205 // instruction is valid for tail predication. 206 bool ValidateMVEInst(MachineInstr *MI); 207 208 void AnalyseMVEInst(MachineInstr *MI) { 209 CannotTailPredicate = !ValidateMVEInst(MI); 210 } 211 212 bool IsTailPredicationLegal() const { 213 // For now, let's keep things really simple and only support a single 214 // block for tail predication. 215 return !Revert && FoundAllComponents() && VCTP && 216 !CannotTailPredicate && ML.getNumBlocks() == 1; 217 } 218 219 // Check that the predication in the loop will be equivalent once we 220 // perform the conversion. Also ensure that we can provide the number 221 // of elements to the loop start instruction. 222 bool ValidateTailPredicate(MachineInstr *StartInsertPt); 223 224 // Check that any values available outside of the loop will be the same 225 // after tail predication conversion. 226 bool ValidateLiveOuts() const; 227 228 // Is it safe to define LR with DLS/WLS? 229 // LR can be defined if it is the operand to start, because it's the same 230 // value, or if it's going to be equivalent to the operand to Start. 231 MachineInstr *isSafeToDefineLR(); 232 233 // Check the branch targets are within range and we satisfy our 234 // restrictions. 235 void CheckLegality(ARMBasicBlockUtils *BBUtils); 236 237 bool FoundAllComponents() const { 238 return Start && Dec && End; 239 } 240 241 SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTBlocks; } 242 243 // Return the loop iteration count, or the number of elements if we're tail 244 // predicating. 245 MachineOperand &getCount() { 246 return IsTailPredicationLegal() ? 247 VCTP->getOperand(1) : Start->getOperand(0); 248 } 249 250 unsigned getStartOpcode() const { 251 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 252 if (!IsTailPredicationLegal()) 253 return IsDo ? ARM::t2DLS : ARM::t2WLS; 254 255 return VCTPOpcodeToLSTP(VCTP->getOpcode(), IsDo); 256 } 257 258 void dump() const { 259 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 260 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 261 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 262 if (VCTP) dbgs() << "ARM Loops: Found VCTP: " << *VCTP; 263 if (!FoundAllComponents()) 264 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 265 else if (!(Start && Dec && End)) 266 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 267 } 268 }; 269 270 class ARMLowOverheadLoops : public MachineFunctionPass { 271 MachineFunction *MF = nullptr; 272 MachineLoopInfo *MLI = nullptr; 273 ReachingDefAnalysis *RDA = nullptr; 274 const ARMBaseInstrInfo *TII = nullptr; 275 MachineRegisterInfo *MRI = nullptr; 276 const TargetRegisterInfo *TRI = nullptr; 277 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 278 279 public: 280 static char ID; 281 282 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 283 284 void getAnalysisUsage(AnalysisUsage &AU) const override { 285 AU.setPreservesCFG(); 286 AU.addRequired<MachineLoopInfo>(); 287 AU.addRequired<ReachingDefAnalysis>(); 288 MachineFunctionPass::getAnalysisUsage(AU); 289 } 290 291 bool runOnMachineFunction(MachineFunction &MF) override; 292 293 MachineFunctionProperties getRequiredProperties() const override { 294 return MachineFunctionProperties().set( 295 MachineFunctionProperties::Property::NoVRegs).set( 296 MachineFunctionProperties::Property::TracksLiveness); 297 } 298 299 StringRef getPassName() const override { 300 return ARM_LOW_OVERHEAD_LOOPS_NAME; 301 } 302 303 private: 304 bool ProcessLoop(MachineLoop *ML); 305 306 bool RevertNonLoops(); 307 308 void RevertWhile(MachineInstr *MI) const; 309 310 bool RevertLoopDec(MachineInstr *MI) const; 311 312 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 313 314 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 315 316 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 317 318 void Expand(LowOverheadLoop &LoLoop); 319 320 void IterationCountDCE(LowOverheadLoop &LoLoop); 321 }; 322 } 323 324 char ARMLowOverheadLoops::ID = 0; 325 326 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 327 false, false) 328 329 MachineInstr *LowOverheadLoop::isSafeToDefineLR() { 330 // We can define LR because LR already contains the same value. 331 if (Start->getOperand(0).getReg() == ARM::LR) 332 return Start; 333 334 unsigned CountReg = Start->getOperand(0).getReg(); 335 auto IsMoveLR = [&CountReg](MachineInstr *MI) { 336 return MI->getOpcode() == ARM::tMOVr && 337 MI->getOperand(0).getReg() == ARM::LR && 338 MI->getOperand(1).getReg() == CountReg && 339 MI->getOperand(2).getImm() == ARMCC::AL; 340 }; 341 342 MachineBasicBlock *MBB = Start->getParent(); 343 344 // Find an insertion point: 345 // - Is there a (mov lr, Count) before Start? If so, and nothing else writes 346 // to Count before Start, we can insert at that mov. 347 if (auto *LRDef = RDA.getUniqueReachingMIDef(Start, ARM::LR)) 348 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 349 return LRDef; 350 351 // - Is there a (mov lr, Count) after Start? If so, and nothing else writes 352 // to Count after Start, we can insert at that mov. 353 if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR)) 354 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 355 return LRDef; 356 357 // We've found no suitable LR def and Start doesn't use LR directly. Can we 358 // just define LR anyway? 359 return RDA.isSafeToDefRegAt(Start, ARM::LR) ? Start : nullptr; 360 } 361 362 bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt) { 363 assert(VCTP && "VCTP instruction expected but is not set"); 364 // All predication within the loop should be based on vctp. If the block 365 // isn't predicated on entry, check whether the vctp is within the block 366 // and that all other instructions are then predicated on it. 367 for (auto &Block : VPTBlocks) { 368 if (Block.IsPredicatedOn(VCTP)) 369 continue; 370 if (!Block.HasNonUniformPredicate() || !isVCTP(Block.getDivergent()->MI)) { 371 LLVM_DEBUG(dbgs() << "ARM Loops: Found unsupported diverging predicate: " 372 << *Block.getDivergent()->MI); 373 return false; 374 } 375 SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); 376 for (auto &PredMI : Insts) { 377 if (PredMI.Predicates.count(VCTP) || isVCTP(PredMI.MI)) 378 continue; 379 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *PredMI.MI 380 << " - which is predicated on:\n"; 381 for (auto *MI : PredMI.Predicates) 382 dbgs() << " - " << *MI); 383 return false; 384 } 385 } 386 387 if (!ValidateLiveOuts()) 388 return false; 389 390 // For tail predication, we need to provide the number of elements, instead 391 // of the iteration count, to the loop start instruction. The number of 392 // elements is provided to the vctp instruction, so we need to check that 393 // we can use this register at InsertPt. 394 Register NumElements = VCTP->getOperand(1).getReg(); 395 396 // If the register is defined within loop, then we can't perform TP. 397 // TODO: Check whether this is just a mov of a register that would be 398 // available. 399 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 400 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 401 return false; 402 } 403 404 // The element count register maybe defined after InsertPt, in which case we 405 // need to try to move either InsertPt or the def so that the [w|d]lstp can 406 // use the value. 407 // TODO: On failing to move an instruction, check if the count is provided by 408 // a mov and whether we can use the mov operand directly. 409 MachineBasicBlock *InsertBB = StartInsertPt->getParent(); 410 if (!RDA.isReachingDefLiveOut(StartInsertPt, NumElements)) { 411 if (auto *ElemDef = RDA.getLocalLiveOutMIDef(InsertBB, NumElements)) { 412 if (RDA.isSafeToMoveForwards(ElemDef, StartInsertPt)) { 413 ElemDef->removeFromParent(); 414 InsertBB->insert(MachineBasicBlock::iterator(StartInsertPt), ElemDef); 415 LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: " 416 << *ElemDef); 417 } else if (RDA.isSafeToMoveBackwards(StartInsertPt, ElemDef)) { 418 StartInsertPt->removeFromParent(); 419 InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 420 StartInsertPt); 421 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 422 } else { 423 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to move element count to loop " 424 << "start instruction.\n"); 425 return false; 426 } 427 } 428 } 429 430 // Especially in the case of while loops, InsertBB may not be the 431 // preheader, so we need to check that the register isn't redefined 432 // before entering the loop. 433 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 434 Register NumElements) { 435 // NumElements is redefined in this block. 436 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 437 return true; 438 439 // Don't continue searching up through multiple predecessors. 440 if (MBB->pred_size() > 1) 441 return true; 442 443 return false; 444 }; 445 446 // First, find the block that looks like the preheader. 447 MachineBasicBlock *MBB = MLI.findLoopPreheader(&ML, true); 448 if (!MBB) { 449 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find preheader.\n"); 450 return false; 451 } 452 453 // Then search backwards for a def, until we get to InsertBB. 454 while (MBB != InsertBB) { 455 if (CannotProvideElements(MBB, NumElements)) { 456 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 457 return false; 458 } 459 MBB = *MBB->pred_begin(); 460 } 461 462 // Check that the value change of the element count is what we expect and 463 // that the predication will be equivalent. For this we need: 464 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 465 // and we can also allow register copies within the chain too. 466 auto IsValidSub = [](MachineInstr *MI, unsigned ExpectedVecWidth) { 467 unsigned ImmOpIdx = 0; 468 switch (MI->getOpcode()) { 469 default: 470 llvm_unreachable("unhandled sub opcode"); 471 case ARM::tSUBi3: 472 case ARM::tSUBi8: 473 ImmOpIdx = 3; 474 break; 475 case ARM::t2SUBri: 476 case ARM::t2SUBri12: 477 ImmOpIdx = 2; 478 break; 479 } 480 return MI->getOperand(ImmOpIdx).getImm() == ExpectedVecWidth; 481 }; 482 483 MBB = VCTP->getParent(); 484 if (auto *Def = RDA.getUniqueReachingMIDef(&MBB->back(), NumElements)) { 485 SmallPtrSet<MachineInstr*, 2> ElementChain; 486 SmallPtrSet<MachineInstr*, 2> Ignore = { VCTP }; 487 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 488 489 if (RDA.isSafeToRemove(Def, ElementChain, Ignore)) { 490 bool FoundSub = false; 491 492 for (auto *MI : ElementChain) { 493 if (isMovRegOpcode(MI->getOpcode())) 494 continue; 495 496 if (isSubImmOpcode(MI->getOpcode())) { 497 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) 498 return false; 499 FoundSub = true; 500 } else 501 return false; 502 } 503 504 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove element count chain:\n"; 505 for (auto *MI : ElementChain) 506 dbgs() << " - " << *MI); 507 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 508 } 509 } 510 return true; 511 } 512 513 static bool isVectorPredicated(MachineInstr *MI) { 514 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 515 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 516 } 517 518 static bool isRegInClass(const MachineOperand &MO, 519 const TargetRegisterClass *Class) { 520 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 521 } 522 523 // Can this instruction generate a non-zero result when given only zeroed 524 // operands? This allows us to know that, given operands with false bytes 525 // zeroed by masked loads, that the result will also contain zeros in those 526 // bytes. 527 static bool canGenerateNonZeros(const MachineInstr &MI) { 528 switch (MI.getOpcode()) { 529 default: 530 break; 531 // FIXME: FP minus 0? 532 //case ARM::MVE_VNEGf16: 533 //case ARM::MVE_VNEGf32: 534 case ARM::MVE_VMVN: 535 case ARM::MVE_VORN: 536 case ARM::MVE_VCLZs8: 537 case ARM::MVE_VCLZs16: 538 case ARM::MVE_VCLZs32: 539 return true; 540 } 541 return false; 542 } 543 544 // MVE 'narrowing' operate on half a lane, reading from half and writing 545 // to half, which are referred to has the top and bottom half. The other 546 // half retains its previous value. 547 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 548 const MCInstrDesc &MCID = MI.getDesc(); 549 uint64_t Flags = MCID.TSFlags; 550 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 551 } 552 553 // Look at its register uses to see if it only can only receive zeros 554 // into its false lanes which would then produce zeros. Also check that 555 // the output register is also defined by an FalseLaneZeros instruction 556 // so that if tail-predication happens, the lanes that aren't updated will 557 // still be zeros. 558 static bool producesFalseLaneZeros(MachineInstr &MI, 559 const TargetRegisterClass *QPRs, 560 const ReachingDefAnalysis &RDA, 561 InstSet &FalseLaneZeros) { 562 if (canGenerateNonZeros(MI)) 563 return false; 564 for (auto &MO : MI.operands()) { 565 if (!MO.isReg() || !MO.getReg()) 566 continue; 567 if (auto *OpDef = RDA.getMIOperand(&MI, MO)) 568 if (FalseLaneZeros.count(OpDef)) 569 continue; 570 return false; 571 } 572 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 573 return true; 574 } 575 576 bool LowOverheadLoop::ValidateLiveOuts() const { 577 // We want to find out if the tail-predicated version of this loop will 578 // produce the same values as the loop in its original form. For this to 579 // be true, the newly inserted implicit predication must not change the 580 // the (observable) results. 581 // We're doing this because many instructions in the loop will not be 582 // predicated and so the conversion from VPT predication to tail-predication 583 // can result in different values being produced; due to the tail-predication 584 // preventing many instructions from updating their falsely predicated 585 // lanes. This analysis assumes that all the instructions perform lane-wise 586 // operations and don't perform any exchanges. 587 // A masked load, whether through VPT or tail predication, will write zeros 588 // to any of the falsely predicated bytes. So, from the loads, we know that 589 // the false lanes are zeroed and here we're trying to track that those false 590 // lanes remain zero, or where they change, the differences are masked away 591 // by their user(s). 592 // All MVE loads and stores have to be predicated, so we know that any load 593 // operands, or stored results are equivalent already. Other explicitly 594 // predicated instructions will perform the same operation in the original 595 // loop and the tail-predicated form too. Because of this, we can insert 596 // loads, stores and other predicated instructions into our Predicated 597 // set and build from there. 598 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 599 SetVector<MachineInstr *> Unknown; 600 SmallPtrSet<MachineInstr *, 4> FalseLaneZeros; 601 SmallPtrSet<MachineInstr *, 4> Predicated; 602 MachineBasicBlock *MBB = ML.getHeader(); 603 604 for (auto &MI : *MBB) { 605 const MCInstrDesc &MCID = MI.getDesc(); 606 uint64_t Flags = MCID.TSFlags; 607 if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE) 608 continue; 609 610 if (isVectorPredicated(&MI)) { 611 if (MI.mayLoad()) 612 FalseLaneZeros.insert(&MI); 613 Predicated.insert(&MI); 614 continue; 615 } 616 617 if (MI.getNumDefs() == 0) 618 continue; 619 620 if (producesFalseLaneZeros(MI, QPRs, RDA, FalseLaneZeros)) 621 FalseLaneZeros.insert(&MI); 622 else if (retainsPreviousHalfElement(MI)) 623 return false; 624 else 625 Unknown.insert(&MI); 626 } 627 628 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 629 SmallPtrSetImpl<MachineInstr *> &Predicated) { 630 SmallPtrSet<MachineInstr *, 2> Uses; 631 RDA.getGlobalUses(MI, MO.getReg(), Uses); 632 for (auto *Use : Uses) { 633 if (Use != MI && !Predicated.count(Use)) 634 return false; 635 } 636 return true; 637 }; 638 639 // Visit the unknowns in reverse so that we can start at the values being 640 // stored and then we can work towards the leaves, hopefully adding more 641 // instructions to Predicated. 642 for (auto *MI : reverse(Unknown)) { 643 for (auto &MO : MI->operands()) { 644 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 645 continue; 646 if (!HasPredicatedUsers(MI, MO, Predicated)) { 647 LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : " 648 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 649 return false; 650 } 651 } 652 // Any unknown false lanes have been masked away by the user(s). 653 Predicated.insert(MI); 654 } 655 656 // Collect Q-regs that are live in the exit blocks. We don't collect scalars 657 // because they won't be affected by lane predication. 658 SmallSet<Register, 2> LiveOuts; 659 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 660 ML.getExitBlocks(ExitBlocks); 661 for (auto *MBB : ExitBlocks) 662 for (const MachineBasicBlock::RegisterMaskPair &RegMask : MBB->liveins()) 663 if (QPRs->contains(RegMask.PhysReg)) 664 LiveOuts.insert(RegMask.PhysReg); 665 666 // Collect the instructions in the loop body that define the live-out values. 667 SmallPtrSet<MachineInstr *, 2> LiveMIs; 668 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 669 for (auto Reg : LiveOuts) 670 if (auto *MI = RDA.getLocalLiveOutMIDef(MBB, Reg)) 671 LiveMIs.insert(MI); 672 673 LLVM_DEBUG(dbgs() << "ARM Loops: Found loop live-outs:\n"; 674 for (auto *MI : LiveMIs) 675 dbgs() << " - " << *MI); 676 // We've already validated that any VPT predication within the loop will be 677 // equivalent when we perform the predication transformation; so we know that 678 // any VPT predicated instruction is predicated upon VCTP. Any live-out 679 // instruction needs to be predicated, so check this here. 680 for (auto *MI : LiveMIs) 681 if (!isVectorPredicated(MI)) 682 return false; 683 684 return true; 685 } 686 687 void LowOverheadLoop::CheckLegality(ARMBasicBlockUtils *BBUtils) { 688 if (Revert) 689 return; 690 691 if (!End->getOperand(1).isMBB()) 692 report_fatal_error("Expected LoopEnd to target basic block"); 693 694 // TODO Maybe there's cases where the target doesn't have to be the header, 695 // but for now be safe and revert. 696 if (End->getOperand(1).getMBB() != ML.getHeader()) { 697 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targetting header.\n"); 698 Revert = true; 699 return; 700 } 701 702 // The WLS and LE instructions have 12-bits for the label offset. WLS 703 // requires a positive offset, while LE uses negative. 704 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 705 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 706 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 707 Revert = true; 708 return; 709 } 710 711 if (Start->getOpcode() == ARM::t2WhileLoopStart && 712 (BBUtils->getOffsetOf(Start) > 713 BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || 714 !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { 715 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 716 Revert = true; 717 return; 718 } 719 720 InsertPt = Revert ? nullptr : isSafeToDefineLR(); 721 if (!InsertPt) { 722 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n"); 723 Revert = true; 724 return; 725 } else 726 LLVM_DEBUG(dbgs() << "ARM Loops: Start insertion point: " << *InsertPt); 727 728 if (!IsTailPredicationLegal()) { 729 LLVM_DEBUG(if (!VCTP) 730 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 731 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 732 return; 733 } 734 735 assert(ML.getBlocks().size() == 1 && 736 "Shouldn't be processing a loop with more than one block"); 737 CannotTailPredicate = !ValidateTailPredicate(InsertPt); 738 LLVM_DEBUG(if (CannotTailPredicate) 739 dbgs() << "ARM Loops: Couldn't validate tail predicate.\n"); 740 } 741 742 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) { 743 if (CannotTailPredicate) 744 return false; 745 746 // Only support a single vctp. 747 if (isVCTP(MI) && VCTP) 748 return false; 749 750 // Start a new vpt block when we discover a vpt. 751 if (MI->getOpcode() == ARM::MVE_VPST) { 752 VPTBlocks.emplace_back(MI, CurrentPredicate); 753 CurrentBlock = &VPTBlocks.back(); 754 return true; 755 } else if (isVCTP(MI)) 756 VCTP = MI; 757 else if (MI->getOpcode() == ARM::MVE_VPSEL || 758 MI->getOpcode() == ARM::MVE_VPNOT) 759 return false; 760 761 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 762 // 1) It will use the VPR as a predicate operand, but doesn't have to be 763 // instead a VPT block, which means we can assert while building up 764 // the VPT block because we don't find another VPST to being a new 765 // one. 766 // 2) VPSEL still requires a VPR operand even after tail predicating, 767 // which means we can't remove it unless there is another 768 // instruction, such as vcmp, that can provide the VPR def. 769 770 bool IsUse = false; 771 bool IsDef = false; 772 const MCInstrDesc &MCID = MI->getDesc(); 773 for (int i = MI->getNumOperands() - 1; i >= 0; --i) { 774 const MachineOperand &MO = MI->getOperand(i); 775 if (!MO.isReg() || MO.getReg() != ARM::VPR) 776 continue; 777 778 if (MO.isDef()) { 779 CurrentPredicate.insert(MI); 780 IsDef = true; 781 } else if (ARM::isVpred(MCID.OpInfo[i].OperandType)) { 782 CurrentBlock->addInst(MI, CurrentPredicate); 783 IsUse = true; 784 } else { 785 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 786 return false; 787 } 788 } 789 790 // If we find a vpr def that is not already predicated on the vctp, we've 791 // got disjoint predicates that may not be equivalent when we do the 792 // conversion. 793 if (IsDef && !IsUse && VCTP && !isVCTP(MI)) { 794 LLVM_DEBUG(dbgs() << "ARM Loops: Found disjoint vpr def: " << *MI); 795 return false; 796 } 797 798 uint64_t Flags = MCID.TSFlags; 799 if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE) 800 return true; 801 802 // If we find an instruction that has been marked as not valid for tail 803 // predication, only allow the instruction if it's contained within a valid 804 // VPT block. 805 if ((Flags & ARMII::ValidForTailPredication) == 0 && !IsUse) { 806 LLVM_DEBUG(dbgs() << "ARM Loops: Can't tail predicate: " << *MI); 807 return false; 808 } 809 810 // If the instruction is already explicitly predicated, then the conversion 811 // will be fine, but ensure that all memory operations are predicated. 812 return !IsUse && MI->mayLoadOrStore() ? false : true; 813 } 814 815 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 816 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 817 if (!ST.hasLOB()) 818 return false; 819 820 MF = &mf; 821 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 822 823 MLI = &getAnalysis<MachineLoopInfo>(); 824 RDA = &getAnalysis<ReachingDefAnalysis>(); 825 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 826 MRI = &MF->getRegInfo(); 827 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 828 TRI = ST.getRegisterInfo(); 829 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 830 BBUtils->computeAllBlockSizes(); 831 BBUtils->adjustBBOffsetsAfter(&MF->front()); 832 833 bool Changed = false; 834 for (auto ML : *MLI) { 835 if (!ML->getParentLoop()) 836 Changed |= ProcessLoop(ML); 837 } 838 Changed |= RevertNonLoops(); 839 return Changed; 840 } 841 842 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 843 844 bool Changed = false; 845 846 // Process inner loops first. 847 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 848 Changed |= ProcessLoop(*I); 849 850 LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; 851 if (auto *Preheader = ML->getLoopPreheader()) 852 dbgs() << " - " << Preheader->getName() << "\n"; 853 else if (auto *Preheader = MLI->findLoopPreheader(ML)) 854 dbgs() << " - " << Preheader->getName() << "\n"; 855 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 856 dbgs() << " - " << Preheader->getName() << "\n"; 857 for (auto *MBB : ML->getBlocks()) 858 dbgs() << " - " << MBB->getName() << "\n"; 859 ); 860 861 // Search the given block for a loop start instruction. If one isn't found, 862 // and there's only one predecessor block, search that one too. 863 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 864 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 865 for (auto &MI : *MBB) { 866 if (isLoopStart(MI)) 867 return &MI; 868 } 869 if (MBB->pred_size() == 1) 870 return SearchForStart(*MBB->pred_begin()); 871 return nullptr; 872 }; 873 874 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI); 875 // Search the preheader for the start intrinsic. 876 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 877 // with potentially multiple set.loop.iterations, so we need to enable this. 878 if (auto *Preheader = ML->getLoopPreheader()) 879 LoLoop.Start = SearchForStart(Preheader); 880 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 881 LoLoop.Start = SearchForStart(Preheader); 882 else 883 return false; 884 885 // Find the low-overhead loop components and decide whether or not to fall 886 // back to a normal loop. Also look for a vctp instructions and decide 887 // whether we can convert that predicate using tail predication. 888 for (auto *MBB : reverse(ML->getBlocks())) { 889 for (auto &MI : *MBB) { 890 if (MI.isDebugValue()) 891 continue; 892 else if (MI.getOpcode() == ARM::t2LoopDec) 893 LoLoop.Dec = &MI; 894 else if (MI.getOpcode() == ARM::t2LoopEnd) 895 LoLoop.End = &MI; 896 else if (isLoopStart(MI)) 897 LoLoop.Start = &MI; 898 else if (MI.getDesc().isCall()) { 899 // TODO: Though the call will require LE to execute again, does this 900 // mean we should revert? Always executing LE hopefully should be 901 // faster than performing a sub,cmp,br or even subs,br. 902 LoLoop.Revert = true; 903 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 904 } else { 905 // Record VPR defs and build up their corresponding vpt blocks. 906 // Check we know how to tail predicate any mve instructions. 907 LoLoop.AnalyseMVEInst(&MI); 908 } 909 } 910 } 911 912 LLVM_DEBUG(LoLoop.dump()); 913 if (!LoLoop.FoundAllComponents()) { 914 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 915 return false; 916 } 917 918 // Check that the only instruction using LoopDec is LoopEnd. 919 // TODO: Check for copy chains that really have no effect. 920 SmallPtrSet<MachineInstr*, 2> Uses; 921 RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses); 922 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 923 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 924 LoLoop.Revert = true; 925 } 926 LoLoop.CheckLegality(BBUtils.get()); 927 Expand(LoLoop); 928 return true; 929 } 930 931 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 932 // beq that branches to the exit branch. 933 // TODO: We could also try to generate a cbz if the value in LR is also in 934 // another low register. 935 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 936 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 937 MachineBasicBlock *MBB = MI->getParent(); 938 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 939 TII->get(ARM::t2CMPri)); 940 MIB.add(MI->getOperand(0)); 941 MIB.addImm(0); 942 MIB.addImm(ARMCC::AL); 943 MIB.addReg(ARM::NoRegister); 944 945 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 946 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 947 ARM::tBcc : ARM::t2Bcc; 948 949 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 950 MIB.add(MI->getOperand(1)); // branch target 951 MIB.addImm(ARMCC::EQ); // condition code 952 MIB.addReg(ARM::CPSR); 953 MI->eraseFromParent(); 954 } 955 956 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 957 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 958 MachineBasicBlock *MBB = MI->getParent(); 959 SmallPtrSet<MachineInstr*, 1> Ignore; 960 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 961 if (I->getOpcode() == ARM::t2LoopEnd) { 962 Ignore.insert(&*I); 963 break; 964 } 965 } 966 967 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 968 bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore); 969 970 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 971 TII->get(ARM::t2SUBri)); 972 MIB.addDef(ARM::LR); 973 MIB.add(MI->getOperand(1)); 974 MIB.add(MI->getOperand(2)); 975 MIB.addImm(ARMCC::AL); 976 MIB.addReg(0); 977 978 if (SetFlags) { 979 MIB.addReg(ARM::CPSR); 980 MIB->getOperand(5).setIsDef(true); 981 } else 982 MIB.addReg(0); 983 984 MI->eraseFromParent(); 985 return SetFlags; 986 } 987 988 // Generate a subs, or sub and cmp, and a branch instead of an LE. 989 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 990 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 991 992 MachineBasicBlock *MBB = MI->getParent(); 993 // Create cmp 994 if (!SkipCmp) { 995 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 996 TII->get(ARM::t2CMPri)); 997 MIB.addReg(ARM::LR); 998 MIB.addImm(0); 999 MIB.addImm(ARMCC::AL); 1000 MIB.addReg(ARM::NoRegister); 1001 } 1002 1003 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1004 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1005 ARM::tBcc : ARM::t2Bcc; 1006 1007 // Create bne 1008 MachineInstrBuilder MIB = 1009 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1010 MIB.add(MI->getOperand(1)); // branch target 1011 MIB.addImm(ARMCC::NE); // condition code 1012 MIB.addReg(ARM::CPSR); 1013 MI->eraseFromParent(); 1014 } 1015 1016 // Perform dead code elimation on the loop iteration count setup expression. 1017 // If we are tail-predicating, the number of elements to be processed is the 1018 // operand of the VCTP instruction in the vector body, see getCount(), which is 1019 // register $r3 in this example: 1020 // 1021 // $lr = big-itercount-expression 1022 // .. 1023 // t2DoLoopStart renamable $lr 1024 // vector.body: 1025 // .. 1026 // $vpr = MVE_VCTP32 renamable $r3 1027 // renamable $lr = t2LoopDec killed renamable $lr, 1 1028 // t2LoopEnd renamable $lr, %vector.body 1029 // tB %end 1030 // 1031 // What we would like achieve here is to replace the do-loop start pseudo 1032 // instruction t2DoLoopStart with: 1033 // 1034 // $lr = MVE_DLSTP_32 killed renamable $r3 1035 // 1036 // Thus, $r3 which defines the number of elements, is written to $lr, 1037 // and then we want to delete the whole chain that used to define $lr, 1038 // see the comment below how this chain could look like. 1039 // 1040 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1041 if (!LoLoop.IsTailPredicationLegal()) 1042 return; 1043 1044 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1045 1046 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0); 1047 if (!Def) { 1048 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1049 return; 1050 } 1051 1052 // Collect and remove the users of iteration count. 1053 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1054 LoLoop.End, LoLoop.InsertPt }; 1055 SmallPtrSet<MachineInstr*, 2> Remove; 1056 if (RDA->isSafeToRemove(Def, Remove, Killed)) 1057 LoLoop.ToRemove.insert(Remove.begin(), Remove.end()); 1058 else { 1059 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1060 return; 1061 } 1062 1063 // Collect the dead code and the MBBs in which they reside. 1064 RDA->collectKilledOperands(Def, Killed); 1065 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 1066 for (auto *MI : Killed) 1067 BasicBlocks.insert(MI->getParent()); 1068 1069 // Collect IT blocks in all affected basic blocks. 1070 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 1071 for (auto *MBB : BasicBlocks) { 1072 for (auto &MI : *MBB) { 1073 if (MI.getOpcode() != ARM::t2IT) 1074 continue; 1075 RDA->getReachingLocalUses(&MI, ARM::ITSTATE, ITBlocks[&MI]); 1076 } 1077 } 1078 1079 // If we're removing all of the instructions within an IT block, then 1080 // also remove the IT instruction. 1081 SmallPtrSet<MachineInstr*, 2> ModifiedITs; 1082 for (auto *MI : Killed) { 1083 if (MachineOperand *MO = MI->findRegisterUseOperand(ARM::ITSTATE)) { 1084 MachineInstr *IT = RDA->getMIOperand(MI, *MO); 1085 auto &CurrentBlock = ITBlocks[IT]; 1086 CurrentBlock.erase(MI); 1087 if (CurrentBlock.empty()) 1088 ModifiedITs.erase(IT); 1089 else 1090 ModifiedITs.insert(IT); 1091 } 1092 } 1093 1094 // Delete the killed instructions only if we don't have any IT blocks that 1095 // need to be modified because we need to fixup the mask. 1096 // TODO: Handle cases where IT blocks are modified. 1097 if (ModifiedITs.empty()) { 1098 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove iteration count:\n"; 1099 for (auto *MI : Killed) 1100 dbgs() << " - " << *MI); 1101 LoLoop.ToRemove.insert(Killed.begin(), Killed.end()); 1102 } else 1103 LLVM_DEBUG(dbgs() << "ARM Loops: Would need to modify IT block(s).\n"); 1104 } 1105 1106 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1107 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1108 // When using tail-predication, try to delete the dead code that was used to 1109 // calculate the number of loop iterations. 1110 IterationCountDCE(LoLoop); 1111 1112 MachineInstr *InsertPt = LoLoop.InsertPt; 1113 MachineInstr *Start = LoLoop.Start; 1114 MachineBasicBlock *MBB = InsertPt->getParent(); 1115 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 1116 unsigned Opc = LoLoop.getStartOpcode(); 1117 MachineOperand &Count = LoLoop.getCount(); 1118 1119 MachineInstrBuilder MIB = 1120 BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc)); 1121 1122 MIB.addDef(ARM::LR); 1123 MIB.add(Count); 1124 if (!IsDo) 1125 MIB.add(Start->getOperand(1)); 1126 1127 // If we're inserting at a mov lr, then remove it as it's redundant. 1128 if (InsertPt != Start) 1129 LoLoop.ToRemove.insert(InsertPt); 1130 LoLoop.ToRemove.insert(Start); 1131 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1132 return &*MIB; 1133 } 1134 1135 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1136 auto RemovePredicate = [](MachineInstr *MI) { 1137 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1138 if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) { 1139 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1140 "Expected Then predicate!"); 1141 MI->getOperand(PIdx).setImm(ARMVCC::None); 1142 MI->getOperand(PIdx+1).setReg(0); 1143 } else 1144 llvm_unreachable("trying to unpredicate a non-predicated instruction"); 1145 }; 1146 1147 // There are a few scenarios which we have to fix up: 1148 // 1) A VPT block with is only predicated by the vctp and has no internal vpr 1149 // defs. 1150 // 2) A VPT block which is only predicated by the vctp but has an internal 1151 // vpr def. 1152 // 3) A VPT block which is predicated upon the vctp as well as another vpr 1153 // def. 1154 // 4) A VPT block which is not predicated upon a vctp, but contains it and 1155 // all instructions within the block are predicated upon in. 1156 1157 for (auto &Block : LoLoop.getVPTBlocks()) { 1158 SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); 1159 if (Block.HasNonUniformPredicate()) { 1160 PredicatedMI *Divergent = Block.getDivergent(); 1161 if (isVCTP(Divergent->MI)) { 1162 // The vctp will be removed, so the size of the vpt block needs to be 1163 // modified. 1164 uint64_t Size = getARMVPTBlockMask(Block.size() - 1); 1165 Block.getVPST()->getOperand(0).setImm(Size); 1166 LLVM_DEBUG(dbgs() << "ARM Loops: Modified VPT block mask.\n"); 1167 } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { 1168 // The VPT block has a non-uniform predicate but it's entry is guarded 1169 // only by a vctp, which means we: 1170 // - Need to remove the original vpst. 1171 // - Then need to unpredicate any following instructions, until 1172 // we come across the divergent vpr def. 1173 // - Insert a new vpst to predicate the instruction(s) that following 1174 // the divergent vpr def. 1175 // TODO: We could be producing more VPT blocks than necessary and could 1176 // fold the newly created one into a proceeding one. 1177 for (auto I = ++MachineBasicBlock::iterator(Block.getVPST()), 1178 E = ++MachineBasicBlock::iterator(Divergent->MI); I != E; ++I) 1179 RemovePredicate(&*I); 1180 1181 unsigned Size = 0; 1182 auto E = MachineBasicBlock::reverse_iterator(Divergent->MI); 1183 auto I = MachineBasicBlock::reverse_iterator(Insts.back().MI); 1184 MachineInstr *InsertAt = nullptr; 1185 while (I != E) { 1186 InsertAt = &*I; 1187 ++Size; 1188 ++I; 1189 } 1190 MachineInstrBuilder MIB = BuildMI(*InsertAt->getParent(), InsertAt, 1191 InsertAt->getDebugLoc(), 1192 TII->get(ARM::MVE_VPST)); 1193 MIB.addImm(getARMVPTBlockMask(Size)); 1194 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST()); 1195 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1196 LoLoop.ToRemove.insert(Block.getVPST()); 1197 } 1198 } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { 1199 // A vpt block which is only predicated upon vctp and has no internal vpr 1200 // defs: 1201 // - Remove vpst. 1202 // - Unpredicate the remaining instructions. 1203 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST()); 1204 LoLoop.ToRemove.insert(Block.getVPST()); 1205 for (auto &PredMI : Insts) 1206 RemovePredicate(PredMI.MI); 1207 } 1208 } 1209 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VCTP: " << *LoLoop.VCTP); 1210 LoLoop.ToRemove.insert(LoLoop.VCTP); 1211 } 1212 1213 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1214 1215 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1216 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1217 MachineInstr *End = LoLoop.End; 1218 MachineBasicBlock *MBB = End->getParent(); 1219 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1220 ARM::MVE_LETP : ARM::t2LEUpdate; 1221 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1222 TII->get(Opc)); 1223 MIB.addDef(ARM::LR); 1224 MIB.add(End->getOperand(0)); 1225 MIB.add(End->getOperand(1)); 1226 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1227 LoLoop.ToRemove.insert(LoLoop.Dec); 1228 LoLoop.ToRemove.insert(End); 1229 return &*MIB; 1230 }; 1231 1232 // TODO: We should be able to automatically remove these branches before we 1233 // get here - probably by teaching analyzeBranch about the pseudo 1234 // instructions. 1235 // If there is an unconditional branch, after I, that just branches to the 1236 // next block, remove it. 1237 auto RemoveDeadBranch = [](MachineInstr *I) { 1238 MachineBasicBlock *BB = I->getParent(); 1239 MachineInstr *Terminator = &BB->instr_back(); 1240 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1241 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1242 if (BB->isLayoutSuccessor(Succ)) { 1243 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1244 Terminator->eraseFromParent(); 1245 } 1246 } 1247 }; 1248 1249 if (LoLoop.Revert) { 1250 if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) 1251 RevertWhile(LoLoop.Start); 1252 else 1253 LoLoop.Start->eraseFromParent(); 1254 bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec); 1255 RevertLoopEnd(LoLoop.End, FlagsAlreadySet); 1256 } else { 1257 LoLoop.Start = ExpandLoopStart(LoLoop); 1258 RemoveDeadBranch(LoLoop.Start); 1259 LoLoop.End = ExpandLoopEnd(LoLoop); 1260 RemoveDeadBranch(LoLoop.End); 1261 if (LoLoop.IsTailPredicationLegal()) 1262 ConvertVPTBlocks(LoLoop); 1263 for (auto *I : LoLoop.ToRemove) { 1264 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1265 I->eraseFromParent(); 1266 } 1267 } 1268 1269 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1270 DFS.ProcessLoop(); 1271 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1272 for (auto *MBB : PostOrder) { 1273 recomputeLiveIns(*MBB); 1274 // FIXME: For some reason, the live-in print order is non-deterministic for 1275 // our tests and I can't out why... So just sort them. 1276 MBB->sortUniqueLiveIns(); 1277 } 1278 1279 for (auto *MBB : reverse(PostOrder)) 1280 recomputeLivenessFlags(*MBB); 1281 1282 // We've moved, removed and inserted new instructions, so update RDA. 1283 RDA->reset(); 1284 } 1285 1286 bool ARMLowOverheadLoops::RevertNonLoops() { 1287 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1288 bool Changed = false; 1289 1290 for (auto &MBB : *MF) { 1291 SmallVector<MachineInstr*, 4> Starts; 1292 SmallVector<MachineInstr*, 4> Decs; 1293 SmallVector<MachineInstr*, 4> Ends; 1294 1295 for (auto &I : MBB) { 1296 if (isLoopStart(I)) 1297 Starts.push_back(&I); 1298 else if (I.getOpcode() == ARM::t2LoopDec) 1299 Decs.push_back(&I); 1300 else if (I.getOpcode() == ARM::t2LoopEnd) 1301 Ends.push_back(&I); 1302 } 1303 1304 if (Starts.empty() && Decs.empty() && Ends.empty()) 1305 continue; 1306 1307 Changed = true; 1308 1309 for (auto *Start : Starts) { 1310 if (Start->getOpcode() == ARM::t2WhileLoopStart) 1311 RevertWhile(Start); 1312 else 1313 Start->eraseFromParent(); 1314 } 1315 for (auto *Dec : Decs) 1316 RevertLoopDec(Dec); 1317 1318 for (auto *End : Ends) 1319 RevertLoopEnd(End); 1320 } 1321 return Changed; 1322 } 1323 1324 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1325 return new ARMLowOverheadLoops(); 1326 } 1327