1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStartLR and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 /// A note on VPR.P0 (the lane mask): 39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a 40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks). 41 /// They will simply "and" the result of their calculation with the current 42 /// value of VPR.P0. You can think of it like this: 43 /// \verbatim 44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs 45 /// VPR.P0 &= Value 46 /// else 47 /// VPR.P0 = Value 48 /// \endverbatim 49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always 50 /// fall in the "VPT active" case, so we can consider that all VPR writes by 51 /// one of those instruction is actually a "and". 52 //===----------------------------------------------------------------------===// 53 54 #include "ARM.h" 55 #include "ARMBaseInstrInfo.h" 56 #include "ARMBaseRegisterInfo.h" 57 #include "ARMBasicBlockInfo.h" 58 #include "ARMSubtarget.h" 59 #include "MVETailPredUtils.h" 60 #include "Thumb2InstrInfo.h" 61 #include "llvm/ADT/SetOperations.h" 62 #include "llvm/ADT/SmallSet.h" 63 #include "llvm/CodeGen/LivePhysRegs.h" 64 #include "llvm/CodeGen/MachineFunctionPass.h" 65 #include "llvm/CodeGen/MachineLoopInfo.h" 66 #include "llvm/CodeGen/MachineLoopUtils.h" 67 #include "llvm/CodeGen/MachineRegisterInfo.h" 68 #include "llvm/CodeGen/Passes.h" 69 #include "llvm/CodeGen/ReachingDefAnalysis.h" 70 #include "llvm/MC/MCInstrDesc.h" 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "arm-low-overhead-loops" 75 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 76 77 static cl::opt<bool> 78 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden, 79 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"), 80 cl::init(false)); 81 82 static bool isVectorPredicated(MachineInstr *MI) { 83 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 84 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 85 } 86 87 static bool isVectorPredicate(MachineInstr *MI) { 88 return MI->findRegisterDefOperandIdx(ARM::VPR) != -1; 89 } 90 91 static bool hasVPRUse(MachineInstr &MI) { 92 return MI.findRegisterUseOperandIdx(ARM::VPR) != -1; 93 } 94 95 static bool isDomainMVE(MachineInstr *MI) { 96 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask; 97 return Domain == ARMII::DomainMVE; 98 } 99 100 static bool shouldInspect(MachineInstr &MI) { 101 return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI); 102 } 103 104 namespace { 105 106 using InstSet = SmallPtrSetImpl<MachineInstr *>; 107 108 class PostOrderLoopTraversal { 109 MachineLoop &ML; 110 MachineLoopInfo &MLI; 111 SmallPtrSet<MachineBasicBlock*, 4> Visited; 112 SmallVector<MachineBasicBlock*, 4> Order; 113 114 public: 115 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 116 : ML(ML), MLI(MLI) { } 117 118 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 119 return Order; 120 } 121 122 // Visit all the blocks within the loop, as well as exit blocks and any 123 // blocks properly dominating the header. 124 void ProcessLoop() { 125 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 126 (MachineBasicBlock *MBB) -> void { 127 if (Visited.count(MBB)) 128 return; 129 130 Visited.insert(MBB); 131 for (auto *Succ : MBB->successors()) { 132 if (!ML.contains(Succ)) 133 continue; 134 Search(Succ); 135 } 136 Order.push_back(MBB); 137 }; 138 139 // Insert exit blocks. 140 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 141 ML.getExitBlocks(ExitBlocks); 142 append_range(Order, ExitBlocks); 143 144 // Then add the loop body. 145 Search(ML.getHeader()); 146 147 // Then try the preheader and its predecessors. 148 std::function<void(MachineBasicBlock*)> GetPredecessor = 149 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 150 Order.push_back(MBB); 151 if (MBB->pred_size() == 1) 152 GetPredecessor(*MBB->pred_begin()); 153 }; 154 155 if (auto *Preheader = ML.getLoopPreheader()) 156 GetPredecessor(Preheader); 157 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true, true)) 158 GetPredecessor(Preheader); 159 } 160 }; 161 162 struct PredicatedMI { 163 MachineInstr *MI = nullptr; 164 SetVector<MachineInstr*> Predicates; 165 166 public: 167 PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) { 168 assert(I && "Instruction must not be null!"); 169 Predicates.insert(Preds.begin(), Preds.end()); 170 } 171 }; 172 173 // Represent the current state of the VPR and hold all instances which 174 // represent a VPT block, which is a list of instructions that begins with a 175 // VPT/VPST and has a maximum of four proceeding instructions. All 176 // instructions within the block are predicated upon the vpr and we allow 177 // instructions to define the vpr within in the block too. 178 class VPTState { 179 friend struct LowOverheadLoop; 180 181 SmallVector<MachineInstr *, 4> Insts; 182 183 static SmallVector<VPTState, 4> Blocks; 184 static SetVector<MachineInstr *> CurrentPredicates; 185 static std::map<MachineInstr *, 186 std::unique_ptr<PredicatedMI>> PredicatedInsts; 187 188 static void CreateVPTBlock(MachineInstr *MI) { 189 assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR)) 190 && "Can't begin VPT without predicate"); 191 Blocks.emplace_back(MI); 192 // The execution of MI is predicated upon the current set of instructions 193 // that are AND'ed together to form the VPR predicate value. In the case 194 // that MI is a VPT, CurrentPredicates will also just be MI. 195 PredicatedInsts.emplace( 196 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 197 } 198 199 static void reset() { 200 Blocks.clear(); 201 PredicatedInsts.clear(); 202 CurrentPredicates.clear(); 203 } 204 205 static void addInst(MachineInstr *MI) { 206 Blocks.back().insert(MI); 207 PredicatedInsts.emplace( 208 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 209 } 210 211 static void addPredicate(MachineInstr *MI) { 212 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI); 213 CurrentPredicates.insert(MI); 214 } 215 216 static void resetPredicate(MachineInstr *MI) { 217 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI); 218 CurrentPredicates.clear(); 219 CurrentPredicates.insert(MI); 220 } 221 222 public: 223 // Have we found an instruction within the block which defines the vpr? If 224 // so, not all the instructions in the block will have the same predicate. 225 static bool hasUniformPredicate(VPTState &Block) { 226 return getDivergent(Block) == nullptr; 227 } 228 229 // If it exists, return the first internal instruction which modifies the 230 // VPR. 231 static MachineInstr *getDivergent(VPTState &Block) { 232 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 233 for (unsigned i = 1; i < Insts.size(); ++i) { 234 MachineInstr *Next = Insts[i]; 235 if (isVectorPredicate(Next)) 236 return Next; // Found an instruction altering the vpr. 237 } 238 return nullptr; 239 } 240 241 // Return whether the given instruction is predicated upon a VCTP. 242 static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) { 243 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates; 244 if (Exclusive && Predicates.size() != 1) 245 return false; 246 for (auto *PredMI : Predicates) 247 if (isVCTP(PredMI)) 248 return true; 249 return false; 250 } 251 252 // Is the VPST, controlling the block entry, predicated upon a VCTP. 253 static bool isEntryPredicatedOnVCTP(VPTState &Block, 254 bool Exclusive = false) { 255 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 256 return isPredicatedOnVCTP(Insts.front(), Exclusive); 257 } 258 259 // If this block begins with a VPT, we can check whether it's using 260 // at least one predicated input(s), as well as possible loop invariant 261 // which would result in it being implicitly predicated. 262 static bool hasImplicitlyValidVPT(VPTState &Block, 263 ReachingDefAnalysis &RDA) { 264 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 265 MachineInstr *VPT = Insts.front(); 266 assert(isVPTOpcode(VPT->getOpcode()) && 267 "Expected VPT block to begin with VPT/VPST"); 268 269 if (VPT->getOpcode() == ARM::MVE_VPST) 270 return false; 271 272 auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) { 273 MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx)); 274 return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op); 275 }; 276 277 auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) { 278 MachineOperand &MO = MI->getOperand(Idx); 279 if (!MO.isReg() || !MO.getReg()) 280 return true; 281 282 SmallPtrSet<MachineInstr *, 2> Defs; 283 RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs); 284 if (Defs.empty()) 285 return true; 286 287 for (auto *Def : Defs) 288 if (Def->getParent() == VPT->getParent()) 289 return false; 290 return true; 291 }; 292 293 // Check that at least one of the operands is directly predicated on a 294 // vctp and allow an invariant value too. 295 return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) && 296 (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) && 297 (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2)); 298 } 299 300 static bool isValid(ReachingDefAnalysis &RDA) { 301 // All predication within the loop should be based on vctp. If the block 302 // isn't predicated on entry, check whether the vctp is within the block 303 // and that all other instructions are then predicated on it. 304 for (auto &Block : Blocks) { 305 if (isEntryPredicatedOnVCTP(Block, false) || 306 hasImplicitlyValidVPT(Block, RDA)) 307 continue; 308 309 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 310 // We don't know how to convert a block with just a VPT;VCTP into 311 // anything valid once we remove the VCTP. For now just bail out. 312 assert(isVPTOpcode(Insts.front()->getOpcode()) && 313 "Expected VPT block to start with a VPST or VPT!"); 314 if (Insts.size() == 2 && Insts.front()->getOpcode() != ARM::MVE_VPST && 315 isVCTP(Insts.back())) 316 return false; 317 318 for (auto *MI : Insts) { 319 // Check that any internal VCTPs are 'Then' predicated. 320 if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then) 321 return false; 322 // Skip other instructions that build up the predicate. 323 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI)) 324 continue; 325 // Check that any other instructions are predicated upon a vctp. 326 // TODO: We could infer when VPTs are implicitly predicated on the 327 // vctp (when the operands are predicated). 328 if (!isPredicatedOnVCTP(MI)) { 329 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI); 330 return false; 331 } 332 } 333 } 334 return true; 335 } 336 337 VPTState(MachineInstr *MI) { Insts.push_back(MI); } 338 339 void insert(MachineInstr *MI) { 340 Insts.push_back(MI); 341 // VPT/VPST + 4 predicated instructions. 342 assert(Insts.size() <= 5 && "Too many instructions in VPT block!"); 343 } 344 345 bool containsVCTP() const { 346 for (auto *MI : Insts) 347 if (isVCTP(MI)) 348 return true; 349 return false; 350 } 351 352 unsigned size() const { return Insts.size(); } 353 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; } 354 }; 355 356 struct LowOverheadLoop { 357 358 MachineLoop &ML; 359 MachineBasicBlock *Preheader = nullptr; 360 MachineLoopInfo &MLI; 361 ReachingDefAnalysis &RDA; 362 const TargetRegisterInfo &TRI; 363 const ARMBaseInstrInfo &TII; 364 MachineFunction *MF = nullptr; 365 MachineBasicBlock::iterator StartInsertPt; 366 MachineBasicBlock *StartInsertBB = nullptr; 367 MachineInstr *Start = nullptr; 368 MachineInstr *Dec = nullptr; 369 MachineInstr *End = nullptr; 370 MachineOperand TPNumElements; 371 SmallVector<MachineInstr*, 4> VCTPs; 372 SmallPtrSet<MachineInstr*, 4> ToRemove; 373 SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute; 374 bool Revert = false; 375 bool CannotTailPredicate = false; 376 377 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 378 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI, 379 const ARMBaseInstrInfo &TII) 380 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII), 381 TPNumElements(MachineOperand::CreateImm(0)) { 382 MF = ML.getHeader()->getParent(); 383 if (auto *MBB = ML.getLoopPreheader()) 384 Preheader = MBB; 385 else if (auto *MBB = MLI.findLoopPreheader(&ML, true, true)) 386 Preheader = MBB; 387 VPTState::reset(); 388 } 389 390 // If this is an MVE instruction, check that we know how to use tail 391 // predication with it. Record VPT blocks and return whether the 392 // instruction is valid for tail predication. 393 bool ValidateMVEInst(MachineInstr *MI); 394 395 void AnalyseMVEInst(MachineInstr *MI) { 396 CannotTailPredicate = !ValidateMVEInst(MI); 397 } 398 399 bool IsTailPredicationLegal() const { 400 // For now, let's keep things really simple and only support a single 401 // block for tail predication. 402 return !Revert && FoundAllComponents() && !VCTPs.empty() && 403 !CannotTailPredicate && ML.getNumBlocks() == 1; 404 } 405 406 // Given that MI is a VCTP, check that is equivalent to any other VCTPs 407 // found. 408 bool AddVCTP(MachineInstr *MI); 409 410 // Check that the predication in the loop will be equivalent once we 411 // perform the conversion. Also ensure that we can provide the number 412 // of elements to the loop start instruction. 413 bool ValidateTailPredicate(); 414 415 // Check that any values available outside of the loop will be the same 416 // after tail predication conversion. 417 bool ValidateLiveOuts(); 418 419 // Is it safe to define LR with DLS/WLS? 420 // LR can be defined if it is the operand to start, because it's the same 421 // value, or if it's going to be equivalent to the operand to Start. 422 MachineInstr *isSafeToDefineLR(); 423 424 // Check the branch targets are within range and we satisfy our 425 // restrictions. 426 void Validate(ARMBasicBlockUtils *BBUtils); 427 428 bool FoundAllComponents() const { 429 return Start && Dec && End; 430 } 431 432 SmallVectorImpl<VPTState> &getVPTBlocks() { 433 return VPTState::Blocks; 434 } 435 436 // Return the operand for the loop start instruction. This will be the loop 437 // iteration count, or the number of elements if we're tail predicating. 438 MachineOperand &getLoopStartOperand() { 439 if (IsTailPredicationLegal()) 440 return TPNumElements; 441 return Start->getOperand(1); 442 } 443 444 unsigned getStartOpcode() const { 445 bool IsDo = isDoLoopStart(*Start); 446 if (!IsTailPredicationLegal()) 447 return IsDo ? ARM::t2DLS : ARM::t2WLS; 448 449 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo); 450 } 451 452 void dump() const { 453 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 454 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 455 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 456 if (!VCTPs.empty()) { 457 dbgs() << "ARM Loops: Found VCTP(s):\n"; 458 for (auto *MI : VCTPs) 459 dbgs() << " - " << *MI; 460 } 461 if (!FoundAllComponents()) 462 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 463 else if (!(Start && Dec && End)) 464 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 465 } 466 }; 467 468 class ARMLowOverheadLoops : public MachineFunctionPass { 469 MachineFunction *MF = nullptr; 470 MachineLoopInfo *MLI = nullptr; 471 ReachingDefAnalysis *RDA = nullptr; 472 const ARMBaseInstrInfo *TII = nullptr; 473 MachineRegisterInfo *MRI = nullptr; 474 const TargetRegisterInfo *TRI = nullptr; 475 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 476 477 public: 478 static char ID; 479 480 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 481 482 void getAnalysisUsage(AnalysisUsage &AU) const override { 483 AU.setPreservesCFG(); 484 AU.addRequired<MachineLoopInfo>(); 485 AU.addRequired<ReachingDefAnalysis>(); 486 MachineFunctionPass::getAnalysisUsage(AU); 487 } 488 489 bool runOnMachineFunction(MachineFunction &MF) override; 490 491 MachineFunctionProperties getRequiredProperties() const override { 492 return MachineFunctionProperties().set( 493 MachineFunctionProperties::Property::NoVRegs).set( 494 MachineFunctionProperties::Property::TracksLiveness); 495 } 496 497 StringRef getPassName() const override { 498 return ARM_LOW_OVERHEAD_LOOPS_NAME; 499 } 500 501 private: 502 bool ProcessLoop(MachineLoop *ML); 503 504 bool RevertNonLoops(); 505 506 void RevertWhile(MachineInstr *MI) const; 507 void RevertDo(MachineInstr *MI) const; 508 509 bool RevertLoopDec(MachineInstr *MI) const; 510 511 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 512 513 void RevertLoopEndDec(MachineInstr *MI) const; 514 515 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 516 517 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 518 519 void Expand(LowOverheadLoop &LoLoop); 520 521 void IterationCountDCE(LowOverheadLoop &LoLoop); 522 }; 523 } 524 525 char ARMLowOverheadLoops::ID = 0; 526 527 SmallVector<VPTState, 4> VPTState::Blocks; 528 SetVector<MachineInstr *> VPTState::CurrentPredicates; 529 std::map<MachineInstr *, 530 std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts; 531 532 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 533 false, false) 534 535 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA, 536 InstSet &ToRemove, InstSet &Ignore) { 537 538 // Check that we can remove all of Killed without having to modify any IT 539 // blocks. 540 auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) { 541 // Collect the dead code and the MBBs in which they reside. 542 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 543 for (auto *Dead : Killed) 544 BasicBlocks.insert(Dead->getParent()); 545 546 // Collect IT blocks in all affected basic blocks. 547 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 548 for (auto *MBB : BasicBlocks) { 549 for (auto &IT : *MBB) { 550 if (IT.getOpcode() != ARM::t2IT) 551 continue; 552 RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE), 553 ITBlocks[&IT]); 554 } 555 } 556 557 // If we're removing all of the instructions within an IT block, then 558 // also remove the IT instruction. 559 SmallPtrSet<MachineInstr *, 2> ModifiedITs; 560 SmallPtrSet<MachineInstr *, 2> RemoveITs; 561 for (auto *Dead : Killed) { 562 if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) { 563 MachineInstr *IT = RDA.getMIOperand(Dead, *MO); 564 RemoveITs.insert(IT); 565 auto &CurrentBlock = ITBlocks[IT]; 566 CurrentBlock.erase(Dead); 567 if (CurrentBlock.empty()) 568 ModifiedITs.erase(IT); 569 else 570 ModifiedITs.insert(IT); 571 } 572 } 573 if (!ModifiedITs.empty()) 574 return false; 575 Killed.insert(RemoveITs.begin(), RemoveITs.end()); 576 return true; 577 }; 578 579 SmallPtrSet<MachineInstr *, 2> Uses; 580 if (!RDA.isSafeToRemove(MI, Uses, Ignore)) 581 return false; 582 583 if (WontCorruptITs(Uses, RDA)) { 584 ToRemove.insert(Uses.begin(), Uses.end()); 585 LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI 586 << " - can also remove:\n"; 587 for (auto *Use : Uses) 588 dbgs() << " - " << *Use); 589 590 SmallPtrSet<MachineInstr*, 4> Killed; 591 RDA.collectKilledOperands(MI, Killed); 592 if (WontCorruptITs(Killed, RDA)) { 593 ToRemove.insert(Killed.begin(), Killed.end()); 594 LLVM_DEBUG(for (auto *Dead : Killed) 595 dbgs() << " - " << *Dead); 596 } 597 return true; 598 } 599 return false; 600 } 601 602 bool LowOverheadLoop::ValidateTailPredicate() { 603 if (!IsTailPredicationLegal()) { 604 LLVM_DEBUG(if (VCTPs.empty()) 605 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 606 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 607 return false; 608 } 609 610 assert(!VCTPs.empty() && "VCTP instruction expected but is not set"); 611 assert(ML.getBlocks().size() == 1 && 612 "Shouldn't be processing a loop with more than one block"); 613 614 if (DisableTailPredication) { 615 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n"); 616 return false; 617 } 618 619 if (!VPTState::isValid(RDA)) { 620 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n"); 621 return false; 622 } 623 624 if (!ValidateLiveOuts()) { 625 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n"); 626 return false; 627 } 628 629 // For tail predication, we need to provide the number of elements, instead 630 // of the iteration count, to the loop start instruction. The number of 631 // elements is provided to the vctp instruction, so we need to check that 632 // we can use this register at InsertPt. 633 MachineInstr *VCTP = VCTPs.back(); 634 if (Start->getOpcode() == ARM::t2DoLoopStartTP || 635 Start->getOpcode() == ARM::t2WhileLoopStartTP) { 636 TPNumElements = Start->getOperand(2); 637 StartInsertPt = Start; 638 StartInsertBB = Start->getParent(); 639 } else { 640 TPNumElements = VCTP->getOperand(1); 641 MCRegister NumElements = TPNumElements.getReg().asMCReg(); 642 643 // If the register is defined within loop, then we can't perform TP. 644 // TODO: Check whether this is just a mov of a register that would be 645 // available. 646 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 647 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 648 return false; 649 } 650 651 // The element count register maybe defined after InsertPt, in which case we 652 // need to try to move either InsertPt or the def so that the [w|d]lstp can 653 // use the value. 654 655 if (StartInsertPt != StartInsertBB->end() && 656 !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) { 657 if (auto *ElemDef = 658 RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) { 659 if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) { 660 ElemDef->removeFromParent(); 661 StartInsertBB->insert(StartInsertPt, ElemDef); 662 LLVM_DEBUG(dbgs() 663 << "ARM Loops: Moved element count def: " << *ElemDef); 664 } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) { 665 StartInsertPt->removeFromParent(); 666 StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 667 &*StartInsertPt); 668 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 669 } else { 670 // If we fail to move an instruction and the element count is provided 671 // by a mov, use the mov operand if it will have the same value at the 672 // insertion point 673 MachineOperand Operand = ElemDef->getOperand(1); 674 if (isMovRegOpcode(ElemDef->getOpcode()) && 675 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) == 676 RDA.getUniqueReachingMIDef(&*StartInsertPt, 677 Operand.getReg().asMCReg())) { 678 TPNumElements = Operand; 679 NumElements = TPNumElements.getReg(); 680 } else { 681 LLVM_DEBUG(dbgs() 682 << "ARM Loops: Unable to move element count to loop " 683 << "start instruction.\n"); 684 return false; 685 } 686 } 687 } 688 } 689 690 // Especially in the case of while loops, InsertBB may not be the 691 // preheader, so we need to check that the register isn't redefined 692 // before entering the loop. 693 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 694 MCRegister NumElements) { 695 if (MBB->empty()) 696 return false; 697 // NumElements is redefined in this block. 698 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 699 return true; 700 701 // Don't continue searching up through multiple predecessors. 702 if (MBB->pred_size() > 1) 703 return true; 704 705 return false; 706 }; 707 708 // Search backwards for a def, until we get to InsertBB. 709 MachineBasicBlock *MBB = Preheader; 710 while (MBB && MBB != StartInsertBB) { 711 if (CannotProvideElements(MBB, NumElements)) { 712 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 713 return false; 714 } 715 MBB = *MBB->pred_begin(); 716 } 717 } 718 719 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect 720 // world the [w|d]lstp instruction would be last instruction in the preheader 721 // and so it would only affect instructions within the loop body. But due to 722 // scheduling, and/or the logic in this pass (above), the insertion point can 723 // be moved earlier. So if the Loop Start isn't the last instruction in the 724 // preheader, and if the initial element count is smaller than the vector 725 // width, the Loop Start instruction will immediately generate one or more 726 // false lane mask which can, incorrectly, affect the proceeding MVE 727 // instructions in the preheader. 728 if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) { 729 LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n"); 730 return false; 731 } 732 733 // Check that the value change of the element count is what we expect and 734 // that the predication will be equivalent. For this we need: 735 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 736 // and we can also allow register copies within the chain too. 737 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 738 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 739 }; 740 741 MachineBasicBlock *MBB = VCTP->getParent(); 742 // Remove modifications to the element count since they have no purpose in a 743 // tail predicated loop. Explicitly refer to the vctp operand no matter which 744 // register NumElements has been assigned to, since that is what the 745 // modifications will be using 746 if (auto *Def = RDA.getUniqueReachingMIDef( 747 &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) { 748 SmallPtrSet<MachineInstr*, 2> ElementChain; 749 SmallPtrSet<MachineInstr*, 2> Ignore; 750 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 751 752 Ignore.insert(VCTPs.begin(), VCTPs.end()); 753 754 if (TryRemove(Def, RDA, ElementChain, Ignore)) { 755 bool FoundSub = false; 756 757 for (auto *MI : ElementChain) { 758 if (isMovRegOpcode(MI->getOpcode())) 759 continue; 760 761 if (isSubImmOpcode(MI->getOpcode())) { 762 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) { 763 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 764 " count: " << *MI); 765 return false; 766 } 767 FoundSub = true; 768 } else { 769 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 770 " count: " << *MI); 771 return false; 772 } 773 } 774 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 775 } 776 } 777 778 // If we converted the LoopStart to a t2DoLoopStartTP/t2WhileLoopStartTP, we 779 // can also remove any extra instructions in the preheader, which often 780 // includes a now unused MOV. 781 if ((Start->getOpcode() == ARM::t2DoLoopStartTP || 782 Start->getOpcode() == ARM::t2WhileLoopStartTP) && 783 Preheader && !Preheader->empty() && 784 !RDA.hasLocalDefBefore(VCTP, VCTP->getOperand(1).getReg())) { 785 if (auto *Def = RDA.getUniqueReachingMIDef( 786 &Preheader->back(), VCTP->getOperand(1).getReg().asMCReg())) { 787 SmallPtrSet<MachineInstr*, 2> Ignore; 788 Ignore.insert(VCTPs.begin(), VCTPs.end()); 789 TryRemove(Def, RDA, ToRemove, Ignore); 790 } 791 } 792 793 return true; 794 } 795 796 static bool isRegInClass(const MachineOperand &MO, 797 const TargetRegisterClass *Class) { 798 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 799 } 800 801 // MVE 'narrowing' operate on half a lane, reading from half and writing 802 // to half, which are referred to has the top and bottom half. The other 803 // half retains its previous value. 804 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 805 const MCInstrDesc &MCID = MI.getDesc(); 806 uint64_t Flags = MCID.TSFlags; 807 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 808 } 809 810 // Some MVE instructions read from the top/bottom halves of their operand(s) 811 // and generate a vector result with result elements that are double the 812 // width of the input. 813 static bool producesDoubleWidthResult(const MachineInstr &MI) { 814 const MCInstrDesc &MCID = MI.getDesc(); 815 uint64_t Flags = MCID.TSFlags; 816 return (Flags & ARMII::DoubleWidthResult) != 0; 817 } 818 819 static bool isHorizontalReduction(const MachineInstr &MI) { 820 const MCInstrDesc &MCID = MI.getDesc(); 821 uint64_t Flags = MCID.TSFlags; 822 return (Flags & ARMII::HorizontalReduction) != 0; 823 } 824 825 // Can this instruction generate a non-zero result when given only zeroed 826 // operands? This allows us to know that, given operands with false bytes 827 // zeroed by masked loads, that the result will also contain zeros in those 828 // bytes. 829 static bool canGenerateNonZeros(const MachineInstr &MI) { 830 831 // Check for instructions which can write into a larger element size, 832 // possibly writing into a previous zero'd lane. 833 if (producesDoubleWidthResult(MI)) 834 return true; 835 836 switch (MI.getOpcode()) { 837 default: 838 break; 839 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 840 // fp16 -> fp32 vector conversions. 841 // Instructions that perform a NOT will generate 1s from 0s. 842 case ARM::MVE_VMVN: 843 case ARM::MVE_VORN: 844 // Count leading zeros will do just that! 845 case ARM::MVE_VCLZs8: 846 case ARM::MVE_VCLZs16: 847 case ARM::MVE_VCLZs32: 848 return true; 849 } 850 return false; 851 } 852 853 // Look at its register uses to see if it only can only receive zeros 854 // into its false lanes which would then produce zeros. Also check that 855 // the output register is also defined by an FalseLanesZero instruction 856 // so that if tail-predication happens, the lanes that aren't updated will 857 // still be zeros. 858 static bool producesFalseLanesZero(MachineInstr &MI, 859 const TargetRegisterClass *QPRs, 860 const ReachingDefAnalysis &RDA, 861 InstSet &FalseLanesZero) { 862 if (canGenerateNonZeros(MI)) 863 return false; 864 865 bool isPredicated = isVectorPredicated(&MI); 866 // Predicated loads will write zeros to the falsely predicated bytes of the 867 // destination register. 868 if (MI.mayLoad()) 869 return isPredicated; 870 871 auto IsZeroInit = [](MachineInstr *Def) { 872 return !isVectorPredicated(Def) && 873 Def->getOpcode() == ARM::MVE_VMOVimmi32 && 874 Def->getOperand(1).getImm() == 0; 875 }; 876 877 bool AllowScalars = isHorizontalReduction(MI); 878 for (auto &MO : MI.operands()) { 879 if (!MO.isReg() || !MO.getReg()) 880 continue; 881 if (!isRegInClass(MO, QPRs) && AllowScalars) 882 continue; 883 884 // Check that this instruction will produce zeros in its false lanes: 885 // - If it only consumes false lanes zero or constant 0 (vmov #0) 886 // - If it's predicated, it only matters that it's def register already has 887 // false lane zeros, so we can ignore the uses. 888 SmallPtrSet<MachineInstr *, 2> Defs; 889 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs); 890 for (auto *Def : Defs) { 891 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def)) 892 continue; 893 if (MO.isUse() && isPredicated) 894 continue; 895 return false; 896 } 897 } 898 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 899 return true; 900 } 901 902 bool LowOverheadLoop::ValidateLiveOuts() { 903 // We want to find out if the tail-predicated version of this loop will 904 // produce the same values as the loop in its original form. For this to 905 // be true, the newly inserted implicit predication must not change the 906 // the (observable) results. 907 // We're doing this because many instructions in the loop will not be 908 // predicated and so the conversion from VPT predication to tail-predication 909 // can result in different values being produced; due to the tail-predication 910 // preventing many instructions from updating their falsely predicated 911 // lanes. This analysis assumes that all the instructions perform lane-wise 912 // operations and don't perform any exchanges. 913 // A masked load, whether through VPT or tail predication, will write zeros 914 // to any of the falsely predicated bytes. So, from the loads, we know that 915 // the false lanes are zeroed and here we're trying to track that those false 916 // lanes remain zero, or where they change, the differences are masked away 917 // by their user(s). 918 // All MVE stores have to be predicated, so we know that any predicate load 919 // operands, or stored results are equivalent already. Other explicitly 920 // predicated instructions will perform the same operation in the original 921 // loop and the tail-predicated form too. Because of this, we can insert 922 // loads, stores and other predicated instructions into our Predicated 923 // set and build from there. 924 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 925 SetVector<MachineInstr *> FalseLanesUnknown; 926 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 927 SmallPtrSet<MachineInstr *, 4> Predicated; 928 MachineBasicBlock *Header = ML.getHeader(); 929 930 LLVM_DEBUG(dbgs() << "ARM Loops: Validating Live outs\n"); 931 932 for (auto &MI : *Header) { 933 if (!shouldInspect(MI)) 934 continue; 935 936 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) 937 continue; 938 939 bool isPredicated = isVectorPredicated(&MI); 940 bool retainsOrReduces = 941 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI); 942 943 if (isPredicated) 944 Predicated.insert(&MI); 945 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) 946 FalseLanesZero.insert(&MI); 947 else if (MI.getNumDefs() == 0) 948 continue; 949 else if (!isPredicated && retainsOrReduces) { 950 LLVM_DEBUG(dbgs() << " Unpredicated instruction that retainsOrReduces: " << MI); 951 return false; 952 } 953 else if (!isPredicated) 954 FalseLanesUnknown.insert(&MI); 955 } 956 957 LLVM_DEBUG({ 958 dbgs() << " Predicated:\n"; 959 for (auto *I : Predicated) 960 dbgs() << " " << *I; 961 dbgs() << " FalseLanesZero:\n"; 962 for (auto *I : FalseLanesZero) 963 dbgs() << " " << *I; 964 dbgs() << " FalseLanesUnknown:\n"; 965 for (auto *I : FalseLanesUnknown) 966 dbgs() << " " << *I; 967 }); 968 969 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 970 SmallPtrSetImpl<MachineInstr *> &Predicated) { 971 SmallPtrSet<MachineInstr *, 2> Uses; 972 RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses); 973 for (auto *Use : Uses) { 974 if (Use != MI && !Predicated.count(Use)) 975 return false; 976 } 977 return true; 978 }; 979 980 // Visit the unknowns in reverse so that we can start at the values being 981 // stored and then we can work towards the leaves, hopefully adding more 982 // instructions to Predicated. Successfully terminating the loop means that 983 // all the unknown values have to found to be masked by predicated user(s). 984 // For any unpredicated values, we store them in NonPredicated so that we 985 // can later check whether these form a reduction. 986 SmallPtrSet<MachineInstr*, 2> NonPredicated; 987 for (auto *MI : reverse(FalseLanesUnknown)) { 988 for (auto &MO : MI->operands()) { 989 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 990 continue; 991 if (!HasPredicatedUsers(MI, MO, Predicated)) { 992 LLVM_DEBUG(dbgs() << " Found an unknown def of : " 993 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 994 NonPredicated.insert(MI); 995 break; 996 } 997 } 998 // Any unknown false lanes have been masked away by the user(s). 999 if (!NonPredicated.contains(MI)) 1000 Predicated.insert(MI); 1001 } 1002 1003 SmallPtrSet<MachineInstr *, 2> LiveOutMIs; 1004 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 1005 ML.getExitBlocks(ExitBlocks); 1006 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 1007 assert(ExitBlocks.size() == 1 && "Expected a single exit block"); 1008 MachineBasicBlock *ExitBB = ExitBlocks.front(); 1009 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) { 1010 // TODO: Instead of blocking predication, we could move the vctp to the exit 1011 // block and calculate it's operand there in or the preheader. 1012 if (RegMask.PhysReg == ARM::VPR) { 1013 LLVM_DEBUG(dbgs() << " VPR is live in to the exit block."); 1014 return false; 1015 } 1016 // Check Q-regs that are live in the exit blocks. We don't collect scalars 1017 // because they won't be affected by lane predication. 1018 if (QPRs->contains(RegMask.PhysReg)) 1019 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg)) 1020 LiveOutMIs.insert(MI); 1021 } 1022 1023 // We've already validated that any VPT predication within the loop will be 1024 // equivalent when we perform the predication transformation; so we know that 1025 // any VPT predicated instruction is predicated upon VCTP. Any live-out 1026 // instruction needs to be predicated, so check this here. The instructions 1027 // in NonPredicated have been found to be a reduction that we can ensure its 1028 // legality. 1029 for (auto *MI : LiveOutMIs) { 1030 if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) { 1031 LLVM_DEBUG(dbgs() << " Unable to handle live out: " << *MI); 1032 return false; 1033 } 1034 } 1035 1036 return true; 1037 } 1038 1039 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) { 1040 if (Revert) 1041 return; 1042 1043 // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP] 1044 // can only jump back. 1045 auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End, 1046 ARMBasicBlockUtils *BBUtils, MachineLoop &ML) { 1047 MachineBasicBlock *TgtBB = End->getOpcode() == ARM::t2LoopEnd 1048 ? End->getOperand(1).getMBB() 1049 : End->getOperand(2).getMBB(); 1050 // TODO Maybe there's cases where the target doesn't have to be the header, 1051 // but for now be safe and revert. 1052 if (TgtBB != ML.getHeader()) { 1053 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n"); 1054 return false; 1055 } 1056 1057 // The WLS and LE instructions have 12-bits for the label offset. WLS 1058 // requires a positive offset, while LE uses negative. 1059 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 1060 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 1061 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 1062 return false; 1063 } 1064 1065 if (isWhileLoopStart(*Start)) { 1066 MachineBasicBlock *TargetBB = getWhileLoopStartTargetBB(*Start); 1067 if (BBUtils->getOffsetOf(Start) > BBUtils->getOffsetOf(TargetBB) || 1068 !BBUtils->isBBInRange(Start, TargetBB, 4094)) { 1069 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 1070 return false; 1071 } 1072 } 1073 return true; 1074 }; 1075 1076 StartInsertPt = MachineBasicBlock::iterator(Start); 1077 StartInsertBB = Start->getParent(); 1078 LLVM_DEBUG(dbgs() << "ARM Loops: Will insert LoopStart at " 1079 << *StartInsertPt); 1080 1081 Revert = !ValidateRanges(Start, End, BBUtils, ML); 1082 CannotTailPredicate = !ValidateTailPredicate(); 1083 } 1084 1085 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) { 1086 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI); 1087 if (VCTPs.empty()) { 1088 VCTPs.push_back(MI); 1089 return true; 1090 } 1091 1092 // If we find another VCTP, check whether it uses the same value as the main VCTP. 1093 // If it does, store it in the VCTPs set, else refuse it. 1094 MachineInstr *Prev = VCTPs.back(); 1095 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) || 1096 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) { 1097 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " 1098 "definition from the main VCTP"); 1099 return false; 1100 } 1101 VCTPs.push_back(MI); 1102 return true; 1103 } 1104 1105 static bool ValidateMVEStore(MachineInstr *MI, MachineLoop *ML) { 1106 1107 auto GetFrameIndex = [](MachineMemOperand *Operand) { 1108 const PseudoSourceValue *PseudoValue = Operand->getPseudoValue(); 1109 if (PseudoValue && PseudoValue->kind() == PseudoSourceValue::FixedStack) { 1110 if (const auto *FS = dyn_cast<FixedStackPseudoSourceValue>(PseudoValue)) { 1111 return FS->getFrameIndex(); 1112 } 1113 } 1114 return -1; 1115 }; 1116 1117 auto IsStackOp = [GetFrameIndex](MachineInstr *I) { 1118 switch (I->getOpcode()) { 1119 case ARM::MVE_VSTRWU32: 1120 case ARM::MVE_VLDRWU32: { 1121 return I->getOperand(1).getReg() == ARM::SP && 1122 I->memoperands().size() == 1 && 1123 GetFrameIndex(I->memoperands().front()) >= 0; 1124 } 1125 default: 1126 return false; 1127 } 1128 }; 1129 1130 // An unpredicated vector register spill is allowed if all of the uses of the 1131 // stack slot are within the loop 1132 if (MI->getOpcode() != ARM::MVE_VSTRWU32 || !IsStackOp(MI)) 1133 return false; 1134 1135 // Search all blocks after the loop for accesses to the same stack slot. 1136 // ReachingDefAnalysis doesn't work for sp as it relies on registers being 1137 // live-out (which sp never is) to know what blocks to look in 1138 if (MI->memoperands().size() == 0) 1139 return false; 1140 int FI = GetFrameIndex(MI->memoperands().front()); 1141 1142 auto &FrameInfo = MI->getParent()->getParent()->getFrameInfo(); 1143 if (FI == -1 || !FrameInfo.isSpillSlotObjectIndex(FI)) 1144 return false; 1145 1146 SmallVector<MachineBasicBlock *> Frontier; 1147 ML->getExitBlocks(Frontier); 1148 SmallPtrSet<MachineBasicBlock *, 4> Visited{MI->getParent()}; 1149 unsigned Idx = 0; 1150 while (Idx < Frontier.size()) { 1151 MachineBasicBlock *BB = Frontier[Idx]; 1152 bool LookAtSuccessors = true; 1153 for (auto &I : *BB) { 1154 if (!IsStackOp(&I) || I.memoperands().size() == 0) 1155 continue; 1156 if (GetFrameIndex(I.memoperands().front()) != FI) 1157 continue; 1158 // If this block has a store to the stack slot before any loads then we 1159 // can ignore the block 1160 if (I.getOpcode() == ARM::MVE_VSTRWU32) { 1161 LookAtSuccessors = false; 1162 break; 1163 } 1164 // If the store and the load are using the same stack slot then the 1165 // store isn't valid for tail predication 1166 if (I.getOpcode() == ARM::MVE_VLDRWU32) 1167 return false; 1168 } 1169 1170 if (LookAtSuccessors) { 1171 for (auto Succ : BB->successors()) { 1172 if (!Visited.contains(Succ) && !is_contained(Frontier, Succ)) 1173 Frontier.push_back(Succ); 1174 } 1175 } 1176 Visited.insert(BB); 1177 Idx++; 1178 } 1179 1180 return true; 1181 } 1182 1183 bool LowOverheadLoop::ValidateMVEInst(MachineInstr *MI) { 1184 if (CannotTailPredicate) 1185 return false; 1186 1187 if (!shouldInspect(*MI)) 1188 return true; 1189 1190 if (MI->getOpcode() == ARM::MVE_VPSEL || 1191 MI->getOpcode() == ARM::MVE_VPNOT) { 1192 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 1193 // 1) It will use the VPR as a predicate operand, but doesn't have to be 1194 // instead a VPT block, which means we can assert while building up 1195 // the VPT block because we don't find another VPT or VPST to being a new 1196 // one. 1197 // 2) VPSEL still requires a VPR operand even after tail predicating, 1198 // which means we can't remove it unless there is another 1199 // instruction, such as vcmp, that can provide the VPR def. 1200 return false; 1201 } 1202 1203 // Record all VCTPs and check that they're equivalent to one another. 1204 if (isVCTP(MI) && !AddVCTP(MI)) 1205 return false; 1206 1207 // Inspect uses first so that any instructions that alter the VPR don't 1208 // alter the predicate upon themselves. 1209 const MCInstrDesc &MCID = MI->getDesc(); 1210 bool IsUse = false; 1211 unsigned LastOpIdx = MI->getNumOperands() - 1; 1212 for (auto &Op : enumerate(reverse(MCID.operands()))) { 1213 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index()); 1214 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR) 1215 continue; 1216 1217 if (ARM::isVpred(Op.value().OperandType)) { 1218 VPTState::addInst(MI); 1219 IsUse = true; 1220 } else if (MI->getOpcode() != ARM::MVE_VPST) { 1221 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 1222 return false; 1223 } 1224 } 1225 1226 // If we find an instruction that has been marked as not valid for tail 1227 // predication, only allow the instruction if it's contained within a valid 1228 // VPT block. 1229 bool RequiresExplicitPredication = 1230 (MCID.TSFlags & ARMII::ValidForTailPredication) == 0; 1231 if (isDomainMVE(MI) && RequiresExplicitPredication) { 1232 LLVM_DEBUG(if (!IsUse) 1233 dbgs() << "ARM Loops: Can't tail predicate: " << *MI); 1234 return IsUse; 1235 } 1236 1237 // If the instruction is already explicitly predicated, then the conversion 1238 // will be fine, but ensure that all store operations are predicated. 1239 if (MI->mayStore() && !ValidateMVEStore(MI, &ML)) 1240 return IsUse; 1241 1242 // If this instruction defines the VPR, update the predicate for the 1243 // proceeding instructions. 1244 if (isVectorPredicate(MI)) { 1245 // Clear the existing predicate when we're not in VPT Active state, 1246 // otherwise we add to it. 1247 if (!isVectorPredicated(MI)) 1248 VPTState::resetPredicate(MI); 1249 else 1250 VPTState::addPredicate(MI); 1251 } 1252 1253 // Finally once the predicate has been modified, we can start a new VPT 1254 // block if necessary. 1255 if (isVPTOpcode(MI->getOpcode())) 1256 VPTState::CreateVPTBlock(MI); 1257 1258 return true; 1259 } 1260 1261 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 1262 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 1263 if (!ST.hasLOB()) 1264 return false; 1265 1266 MF = &mf; 1267 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 1268 1269 MLI = &getAnalysis<MachineLoopInfo>(); 1270 RDA = &getAnalysis<ReachingDefAnalysis>(); 1271 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 1272 MRI = &MF->getRegInfo(); 1273 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 1274 TRI = ST.getRegisterInfo(); 1275 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 1276 BBUtils->computeAllBlockSizes(); 1277 BBUtils->adjustBBOffsetsAfter(&MF->front()); 1278 1279 bool Changed = false; 1280 for (auto ML : *MLI) { 1281 if (ML->isOutermost()) 1282 Changed |= ProcessLoop(ML); 1283 } 1284 Changed |= RevertNonLoops(); 1285 return Changed; 1286 } 1287 1288 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 1289 1290 bool Changed = false; 1291 1292 // Process inner loops first. 1293 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 1294 Changed |= ProcessLoop(*I); 1295 1296 LLVM_DEBUG({ 1297 dbgs() << "ARM Loops: Processing loop containing:\n"; 1298 if (auto *Preheader = ML->getLoopPreheader()) 1299 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n"; 1300 else if (auto *Preheader = MLI->findLoopPreheader(ML, true, true)) 1301 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n"; 1302 for (auto *MBB : ML->getBlocks()) 1303 dbgs() << " - Block: " << printMBBReference(*MBB) << "\n"; 1304 }); 1305 1306 // Search the given block for a loop start instruction. If one isn't found, 1307 // and there's only one predecessor block, search that one too. 1308 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 1309 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 1310 for (auto &MI : *MBB) { 1311 if (isLoopStart(MI)) 1312 return &MI; 1313 } 1314 if (MBB->pred_size() == 1) 1315 return SearchForStart(*MBB->pred_begin()); 1316 return nullptr; 1317 }; 1318 1319 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII); 1320 // Search the preheader for the start intrinsic. 1321 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 1322 // with potentially multiple set.loop.iterations, so we need to enable this. 1323 if (LoLoop.Preheader) 1324 LoLoop.Start = SearchForStart(LoLoop.Preheader); 1325 else 1326 return Changed; 1327 1328 // Find the low-overhead loop components and decide whether or not to fall 1329 // back to a normal loop. Also look for a vctp instructions and decide 1330 // whether we can convert that predicate using tail predication. 1331 for (auto *MBB : reverse(ML->getBlocks())) { 1332 for (auto &MI : *MBB) { 1333 if (MI.isDebugValue()) 1334 continue; 1335 else if (MI.getOpcode() == ARM::t2LoopDec) 1336 LoLoop.Dec = &MI; 1337 else if (MI.getOpcode() == ARM::t2LoopEnd) 1338 LoLoop.End = &MI; 1339 else if (MI.getOpcode() == ARM::t2LoopEndDec) 1340 LoLoop.End = LoLoop.Dec = &MI; 1341 else if (isLoopStart(MI)) 1342 LoLoop.Start = &MI; 1343 else if (MI.getDesc().isCall()) { 1344 // TODO: Though the call will require LE to execute again, does this 1345 // mean we should revert? Always executing LE hopefully should be 1346 // faster than performing a sub,cmp,br or even subs,br. 1347 LoLoop.Revert = true; 1348 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 1349 } else { 1350 // Record VPR defs and build up their corresponding vpt blocks. 1351 // Check we know how to tail predicate any mve instructions. 1352 LoLoop.AnalyseMVEInst(&MI); 1353 } 1354 } 1355 } 1356 1357 LLVM_DEBUG(LoLoop.dump()); 1358 if (!LoLoop.FoundAllComponents()) { 1359 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 1360 return Changed; 1361 } 1362 1363 assert(LoLoop.Start->getOpcode() != ARM::t2WhileLoopStart && 1364 "Expected t2WhileLoopStart to be removed before regalloc!"); 1365 1366 // Check that the only instruction using LoopDec is LoopEnd. This can only 1367 // happen when the Dec and End are separate, not a single t2LoopEndDec. 1368 // TODO: Check for copy chains that really have no effect. 1369 if (LoLoop.Dec != LoLoop.End) { 1370 SmallPtrSet<MachineInstr *, 2> Uses; 1371 RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses); 1372 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 1373 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 1374 LoLoop.Revert = true; 1375 } 1376 } 1377 LoLoop.Validate(BBUtils.get()); 1378 Expand(LoLoop); 1379 return true; 1380 } 1381 1382 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 1383 // beq that branches to the exit branch. 1384 // TODO: We could also try to generate a cbz if the value in LR is also in 1385 // another low register. 1386 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 1387 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 1388 MachineBasicBlock *DestBB = getWhileLoopStartTargetBB(*MI); 1389 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1390 ARM::tBcc : ARM::t2Bcc; 1391 1392 RevertWhileLoopStartLR(MI, TII, BrOpc); 1393 } 1394 1395 void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const { 1396 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI); 1397 RevertDoLoopStart(MI, TII); 1398 } 1399 1400 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 1401 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 1402 MachineBasicBlock *MBB = MI->getParent(); 1403 SmallPtrSet<MachineInstr*, 1> Ignore; 1404 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 1405 if (I->getOpcode() == ARM::t2LoopEnd) { 1406 Ignore.insert(&*I); 1407 break; 1408 } 1409 } 1410 1411 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1412 bool SetFlags = 1413 RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore); 1414 1415 llvm::RevertLoopDec(MI, TII, SetFlags); 1416 return SetFlags; 1417 } 1418 1419 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1420 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1421 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1422 1423 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1424 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1425 ARM::tBcc : ARM::t2Bcc; 1426 1427 llvm::RevertLoopEnd(MI, TII, BrOpc, SkipCmp); 1428 } 1429 1430 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1431 void ARMLowOverheadLoops::RevertLoopEndDec(MachineInstr *MI) const { 1432 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to subs, br: " << *MI); 1433 assert(MI->getOpcode() == ARM::t2LoopEndDec && "Expected a t2LoopEndDec!"); 1434 MachineBasicBlock *MBB = MI->getParent(); 1435 1436 MachineInstrBuilder MIB = 1437 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2SUBri)); 1438 MIB.addDef(ARM::LR); 1439 MIB.add(MI->getOperand(1)); 1440 MIB.addImm(1); 1441 MIB.addImm(ARMCC::AL); 1442 MIB.addReg(ARM::NoRegister); 1443 MIB.addReg(ARM::CPSR); 1444 MIB->getOperand(5).setIsDef(true); 1445 1446 MachineBasicBlock *DestBB = MI->getOperand(2).getMBB(); 1447 unsigned BrOpc = 1448 BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc; 1449 1450 // Create bne 1451 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1452 MIB.add(MI->getOperand(2)); // branch target 1453 MIB.addImm(ARMCC::NE); // condition code 1454 MIB.addReg(ARM::CPSR); 1455 1456 MI->eraseFromParent(); 1457 } 1458 1459 // Perform dead code elimation on the loop iteration count setup expression. 1460 // If we are tail-predicating, the number of elements to be processed is the 1461 // operand of the VCTP instruction in the vector body, see getCount(), which is 1462 // register $r3 in this example: 1463 // 1464 // $lr = big-itercount-expression 1465 // .. 1466 // $lr = t2DoLoopStart renamable $lr 1467 // vector.body: 1468 // .. 1469 // $vpr = MVE_VCTP32 renamable $r3 1470 // renamable $lr = t2LoopDec killed renamable $lr, 1 1471 // t2LoopEnd renamable $lr, %vector.body 1472 // tB %end 1473 // 1474 // What we would like achieve here is to replace the do-loop start pseudo 1475 // instruction t2DoLoopStart with: 1476 // 1477 // $lr = MVE_DLSTP_32 killed renamable $r3 1478 // 1479 // Thus, $r3 which defines the number of elements, is written to $lr, 1480 // and then we want to delete the whole chain that used to define $lr, 1481 // see the comment below how this chain could look like. 1482 // 1483 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1484 if (!LoLoop.IsTailPredicationLegal()) 1485 return; 1486 1487 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1488 1489 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 1); 1490 if (!Def) { 1491 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1492 return; 1493 } 1494 1495 // Collect and remove the users of iteration count. 1496 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1497 LoLoop.End }; 1498 if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed)) 1499 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1500 } 1501 1502 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1503 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1504 // When using tail-predication, try to delete the dead code that was used to 1505 // calculate the number of loop iterations. 1506 IterationCountDCE(LoLoop); 1507 1508 MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt; 1509 MachineInstr *Start = LoLoop.Start; 1510 MachineBasicBlock *MBB = LoLoop.StartInsertBB; 1511 unsigned Opc = LoLoop.getStartOpcode(); 1512 MachineOperand &Count = LoLoop.getLoopStartOperand(); 1513 1514 // A DLS lr, lr we needn't emit 1515 MachineInstr* NewStart; 1516 if (Opc == ARM::t2DLS && Count.isReg() && Count.getReg() == ARM::LR) { 1517 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't insert start: DLS lr, lr"); 1518 NewStart = nullptr; 1519 } else { 1520 MachineInstrBuilder MIB = 1521 BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc)); 1522 1523 MIB.addDef(ARM::LR); 1524 MIB.add(Count); 1525 if (isWhileLoopStart(*Start)) 1526 MIB.addMBB(getWhileLoopStartTargetBB(*Start)); 1527 1528 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1529 NewStart = &*MIB; 1530 } 1531 1532 LoLoop.ToRemove.insert(Start); 1533 return NewStart; 1534 } 1535 1536 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1537 auto RemovePredicate = [](MachineInstr *MI) { 1538 if (MI->isDebugInstr()) 1539 return; 1540 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1541 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 1542 assert(PIdx >= 1 && "Trying to unpredicate a non-predicated instruction"); 1543 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1544 "Expected Then predicate!"); 1545 MI->getOperand(PIdx).setImm(ARMVCC::None); 1546 MI->getOperand(PIdx + 1).setReg(0); 1547 }; 1548 1549 for (auto &Block : LoLoop.getVPTBlocks()) { 1550 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 1551 1552 auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) { 1553 assert(TheVCMP && "Replacing a removed or non-existent VCMP"); 1554 // Replace the VCMP with a VPT 1555 MachineInstrBuilder MIB = 1556 BuildMI(*At->getParent(), At, At->getDebugLoc(), 1557 TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode()))); 1558 MIB.addImm(ARMVCC::Then); 1559 // Register one 1560 MIB.add(TheVCMP->getOperand(1)); 1561 // Register two 1562 MIB.add(TheVCMP->getOperand(2)); 1563 // The comparison code, e.g. ge, eq, lt 1564 MIB.add(TheVCMP->getOperand(3)); 1565 LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB); 1566 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1567 LoLoop.ToRemove.insert(TheVCMP); 1568 TheVCMP = nullptr; 1569 }; 1570 1571 if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) { 1572 MachineInstr *VPST = Insts.front(); 1573 if (VPTState::hasUniformPredicate(Block)) { 1574 // A vpt block starting with VPST, is only predicated upon vctp and has no 1575 // internal vpr defs: 1576 // - Remove vpst. 1577 // - Unpredicate the remaining instructions. 1578 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1579 for (unsigned i = 1; i < Insts.size(); ++i) 1580 RemovePredicate(Insts[i]); 1581 } else { 1582 // The VPT block has a non-uniform predicate but it uses a vpst and its 1583 // entry is guarded only by a vctp, which means we: 1584 // - Need to remove the original vpst. 1585 // - Then need to unpredicate any following instructions, until 1586 // we come across the divergent vpr def. 1587 // - Insert a new vpst to predicate the instruction(s) that following 1588 // the divergent vpr def. 1589 MachineInstr *Divergent = VPTState::getDivergent(Block); 1590 MachineBasicBlock *MBB = Divergent->getParent(); 1591 auto DivergentNext = ++MachineBasicBlock::iterator(Divergent); 1592 while (DivergentNext != MBB->end() && DivergentNext->isDebugInstr()) 1593 ++DivergentNext; 1594 1595 bool DivergentNextIsPredicated = 1596 DivergentNext != MBB->end() && 1597 getVPTInstrPredicate(*DivergentNext) != ARMVCC::None; 1598 1599 for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext; 1600 I != E; ++I) 1601 RemovePredicate(&*I); 1602 1603 // Check if the instruction defining vpr is a vcmp so it can be combined 1604 // with the VPST This should be the divergent instruction 1605 MachineInstr *VCMP = 1606 VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr; 1607 1608 if (DivergentNextIsPredicated) { 1609 // Insert a VPST at the divergent only if the next instruction 1610 // would actually use it. A VCMP following a VPST can be 1611 // merged into a VPT so do that instead if the VCMP exists. 1612 if (!VCMP) { 1613 // Create a VPST (with a null mask for now, we'll recompute it 1614 // later) 1615 MachineInstrBuilder MIB = 1616 BuildMI(*Divergent->getParent(), Divergent, 1617 Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST)); 1618 MIB.addImm(0); 1619 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1620 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1621 } else { 1622 // No RDA checks are necessary here since the VPST would have been 1623 // directly after the VCMP 1624 ReplaceVCMPWithVPT(VCMP, VCMP); 1625 } 1626 } 1627 } 1628 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1629 LoLoop.ToRemove.insert(VPST); 1630 } else if (Block.containsVCTP()) { 1631 // The vctp will be removed, so either the entire block will be dead or 1632 // the block mask of the vp(s)t will need to be recomputed. 1633 MachineInstr *VPST = Insts.front(); 1634 if (Block.size() == 2) { 1635 assert(VPST->getOpcode() == ARM::MVE_VPST && 1636 "Found a VPST in an otherwise empty vpt block"); 1637 LoLoop.ToRemove.insert(VPST); 1638 } else 1639 LoLoop.BlockMasksToRecompute.insert(VPST); 1640 } else if (Insts.front()->getOpcode() == ARM::MVE_VPST) { 1641 // If this block starts with a VPST then attempt to merge it with the 1642 // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT 1643 // block that no longer exists 1644 MachineInstr *VPST = Insts.front(); 1645 auto Next = ++MachineBasicBlock::iterator(VPST); 1646 assert(getVPTInstrPredicate(*Next) != ARMVCC::None && 1647 "The instruction after a VPST must be predicated"); 1648 (void)Next; 1649 MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR); 1650 if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) && 1651 !LoLoop.ToRemove.contains(VprDef)) { 1652 MachineInstr *VCMP = VprDef; 1653 // The VCMP and VPST can only be merged if the VCMP's operands will have 1654 // the same values at the VPST. 1655 // If any of the instructions between the VCMP and VPST are predicated 1656 // then a different code path is expected to have merged the VCMP and 1657 // VPST already. 1658 if (!std::any_of(++MachineBasicBlock::iterator(VCMP), 1659 MachineBasicBlock::iterator(VPST), hasVPRUse) && 1660 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) && 1661 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) { 1662 ReplaceVCMPWithVPT(VCMP, VPST); 1663 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1664 LoLoop.ToRemove.insert(VPST); 1665 } 1666 } 1667 } 1668 } 1669 1670 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end()); 1671 } 1672 1673 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1674 1675 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1676 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1677 MachineInstr *End = LoLoop.End; 1678 MachineBasicBlock *MBB = End->getParent(); 1679 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1680 ARM::MVE_LETP : ARM::t2LEUpdate; 1681 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1682 TII->get(Opc)); 1683 MIB.addDef(ARM::LR); 1684 unsigned Off = LoLoop.Dec == LoLoop.End ? 1 : 0; 1685 MIB.add(End->getOperand(Off + 0)); 1686 MIB.add(End->getOperand(Off + 1)); 1687 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1688 LoLoop.ToRemove.insert(LoLoop.Dec); 1689 LoLoop.ToRemove.insert(End); 1690 return &*MIB; 1691 }; 1692 1693 // TODO: We should be able to automatically remove these branches before we 1694 // get here - probably by teaching analyzeBranch about the pseudo 1695 // instructions. 1696 // If there is an unconditional branch, after I, that just branches to the 1697 // next block, remove it. 1698 auto RemoveDeadBranch = [](MachineInstr *I) { 1699 MachineBasicBlock *BB = I->getParent(); 1700 MachineInstr *Terminator = &BB->instr_back(); 1701 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1702 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1703 if (BB->isLayoutSuccessor(Succ)) { 1704 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1705 Terminator->eraseFromParent(); 1706 } 1707 } 1708 }; 1709 1710 if (LoLoop.Revert) { 1711 if (isWhileLoopStart(*LoLoop.Start)) 1712 RevertWhile(LoLoop.Start); 1713 else 1714 RevertDo(LoLoop.Start); 1715 if (LoLoop.Dec == LoLoop.End) 1716 RevertLoopEndDec(LoLoop.End); 1717 else 1718 RevertLoopEnd(LoLoop.End, RevertLoopDec(LoLoop.Dec)); 1719 } else { 1720 LoLoop.Start = ExpandLoopStart(LoLoop); 1721 if (LoLoop.Start) 1722 RemoveDeadBranch(LoLoop.Start); 1723 LoLoop.End = ExpandLoopEnd(LoLoop); 1724 RemoveDeadBranch(LoLoop.End); 1725 if (LoLoop.IsTailPredicationLegal()) 1726 ConvertVPTBlocks(LoLoop); 1727 for (auto *I : LoLoop.ToRemove) { 1728 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1729 I->eraseFromParent(); 1730 } 1731 for (auto *I : LoLoop.BlockMasksToRecompute) { 1732 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1733 recomputeVPTBlockMask(*I); 1734 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1735 } 1736 } 1737 1738 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1739 DFS.ProcessLoop(); 1740 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1741 for (auto *MBB : PostOrder) { 1742 recomputeLiveIns(*MBB); 1743 // FIXME: For some reason, the live-in print order is non-deterministic for 1744 // our tests and I can't out why... So just sort them. 1745 MBB->sortUniqueLiveIns(); 1746 } 1747 1748 for (auto *MBB : reverse(PostOrder)) 1749 recomputeLivenessFlags(*MBB); 1750 1751 // We've moved, removed and inserted new instructions, so update RDA. 1752 RDA->reset(); 1753 } 1754 1755 bool ARMLowOverheadLoops::RevertNonLoops() { 1756 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1757 bool Changed = false; 1758 1759 for (auto &MBB : *MF) { 1760 SmallVector<MachineInstr*, 4> Starts; 1761 SmallVector<MachineInstr*, 4> Decs; 1762 SmallVector<MachineInstr*, 4> Ends; 1763 SmallVector<MachineInstr *, 4> EndDecs; 1764 1765 for (auto &I : MBB) { 1766 if (isLoopStart(I)) 1767 Starts.push_back(&I); 1768 else if (I.getOpcode() == ARM::t2LoopDec) 1769 Decs.push_back(&I); 1770 else if (I.getOpcode() == ARM::t2LoopEnd) 1771 Ends.push_back(&I); 1772 else if (I.getOpcode() == ARM::t2LoopEndDec) 1773 EndDecs.push_back(&I); 1774 } 1775 1776 if (Starts.empty() && Decs.empty() && Ends.empty() && EndDecs.empty()) 1777 continue; 1778 1779 Changed = true; 1780 1781 for (auto *Start : Starts) { 1782 if (isWhileLoopStart(*Start)) 1783 RevertWhile(Start); 1784 else 1785 RevertDo(Start); 1786 } 1787 for (auto *Dec : Decs) 1788 RevertLoopDec(Dec); 1789 1790 for (auto *End : Ends) 1791 RevertLoopEnd(End); 1792 for (auto *End : EndDecs) 1793 RevertLoopEndDec(End); 1794 } 1795 return Changed; 1796 } 1797 1798 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1799 return new ARMLowOverheadLoops(); 1800 } 1801