1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 /// A note on VPR.P0 (the lane mask): 39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a 40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks). 41 /// They will simply "and" the result of their calculation with the current 42 /// value of VPR.P0. You can think of it like this: 43 /// \verbatim 44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs 45 /// VPR.P0 &= Value 46 /// else 47 /// VPR.P0 = Value 48 /// \endverbatim 49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always 50 /// fall in the "VPT active" case, so we can consider that all VPR writes by 51 /// one of those instruction is actually a "and". 52 //===----------------------------------------------------------------------===// 53 54 #include "ARM.h" 55 #include "ARMBaseInstrInfo.h" 56 #include "ARMBaseRegisterInfo.h" 57 #include "ARMBasicBlockInfo.h" 58 #include "ARMSubtarget.h" 59 #include "Thumb2InstrInfo.h" 60 #include "llvm/ADT/SetOperations.h" 61 #include "llvm/ADT/SmallSet.h" 62 #include "llvm/CodeGen/LivePhysRegs.h" 63 #include "llvm/CodeGen/MachineFunctionPass.h" 64 #include "llvm/CodeGen/MachineLoopInfo.h" 65 #include "llvm/CodeGen/MachineLoopUtils.h" 66 #include "llvm/CodeGen/MachineRegisterInfo.h" 67 #include "llvm/CodeGen/Passes.h" 68 #include "llvm/CodeGen/ReachingDefAnalysis.h" 69 #include "llvm/MC/MCInstrDesc.h" 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "arm-low-overhead-loops" 74 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 75 76 static bool isVectorPredicated(MachineInstr *MI) { 77 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 78 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 79 } 80 81 static bool isVectorPredicate(MachineInstr *MI) { 82 return MI->findRegisterDefOperandIdx(ARM::VPR) != -1; 83 } 84 85 static bool hasVPRUse(MachineInstr *MI) { 86 return MI->findRegisterUseOperandIdx(ARM::VPR) != -1; 87 } 88 89 static bool isDomainMVE(MachineInstr *MI) { 90 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask; 91 return Domain == ARMII::DomainMVE; 92 } 93 94 static bool shouldInspect(MachineInstr &MI) { 95 return isDomainMVE(&MI) || isVectorPredicate(&MI) || 96 hasVPRUse(&MI); 97 } 98 99 namespace { 100 101 using InstSet = SmallPtrSetImpl<MachineInstr *>; 102 103 class PostOrderLoopTraversal { 104 MachineLoop &ML; 105 MachineLoopInfo &MLI; 106 SmallPtrSet<MachineBasicBlock*, 4> Visited; 107 SmallVector<MachineBasicBlock*, 4> Order; 108 109 public: 110 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 111 : ML(ML), MLI(MLI) { } 112 113 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 114 return Order; 115 } 116 117 // Visit all the blocks within the loop, as well as exit blocks and any 118 // blocks properly dominating the header. 119 void ProcessLoop() { 120 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 121 (MachineBasicBlock *MBB) -> void { 122 if (Visited.count(MBB)) 123 return; 124 125 Visited.insert(MBB); 126 for (auto *Succ : MBB->successors()) { 127 if (!ML.contains(Succ)) 128 continue; 129 Search(Succ); 130 } 131 Order.push_back(MBB); 132 }; 133 134 // Insert exit blocks. 135 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 136 ML.getExitBlocks(ExitBlocks); 137 for (auto *MBB : ExitBlocks) 138 Order.push_back(MBB); 139 140 // Then add the loop body. 141 Search(ML.getHeader()); 142 143 // Then try the preheader and its predecessors. 144 std::function<void(MachineBasicBlock*)> GetPredecessor = 145 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 146 Order.push_back(MBB); 147 if (MBB->pred_size() == 1) 148 GetPredecessor(*MBB->pred_begin()); 149 }; 150 151 if (auto *Preheader = ML.getLoopPreheader()) 152 GetPredecessor(Preheader); 153 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true)) 154 GetPredecessor(Preheader); 155 } 156 }; 157 158 struct PredicatedMI { 159 MachineInstr *MI = nullptr; 160 SetVector<MachineInstr*> Predicates; 161 162 public: 163 PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) { 164 assert(I && "Instruction must not be null!"); 165 Predicates.insert(Preds.begin(), Preds.end()); 166 } 167 }; 168 169 // Represent the current state of the VPR and hold all instances which 170 // represent a VPT block, which is a list of instructions that begins with a 171 // VPT/VPST and has a maximum of four proceeding instructions. All 172 // instructions within the block are predicated upon the vpr and we allow 173 // instructions to define the vpr within in the block too. 174 class VPTState { 175 friend struct LowOverheadLoop; 176 177 SmallVector<MachineInstr *, 4> Insts; 178 179 static SmallVector<VPTState, 4> Blocks; 180 static SetVector<MachineInstr *> CurrentPredicates; 181 static std::map<MachineInstr *, 182 std::unique_ptr<PredicatedMI>> PredicatedInsts; 183 184 static void CreateVPTBlock(MachineInstr *MI) { 185 assert(CurrentPredicates.size() && "Can't begin VPT without predicate"); 186 Blocks.emplace_back(MI); 187 // The execution of MI is predicated upon the current set of instructions 188 // that are AND'ed together to form the VPR predicate value. In the case 189 // that MI is a VPT, CurrentPredicates will also just be MI. 190 PredicatedInsts.emplace( 191 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 192 } 193 194 static void reset() { 195 Blocks.clear(); 196 PredicatedInsts.clear(); 197 CurrentPredicates.clear(); 198 } 199 200 static void addInst(MachineInstr *MI) { 201 Blocks.back().insert(MI); 202 PredicatedInsts.emplace( 203 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 204 } 205 206 static void addPredicate(MachineInstr *MI) { 207 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI); 208 CurrentPredicates.insert(MI); 209 } 210 211 static void resetPredicate(MachineInstr *MI) { 212 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI); 213 CurrentPredicates.clear(); 214 CurrentPredicates.insert(MI); 215 } 216 217 public: 218 // Have we found an instruction within the block which defines the vpr? If 219 // so, not all the instructions in the block will have the same predicate. 220 static bool hasUniformPredicate(VPTState &Block) { 221 return getDivergent(Block) == nullptr; 222 } 223 224 // If it exists, return the first internal instruction which modifies the 225 // VPR. 226 static MachineInstr *getDivergent(VPTState &Block) { 227 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 228 for (unsigned i = 1; i < Insts.size(); ++i) { 229 MachineInstr *Next = Insts[i]; 230 if (isVectorPredicate(Next)) 231 return Next; // Found an instruction altering the vpr. 232 } 233 return nullptr; 234 } 235 236 // Return whether the given instruction is predicated upon a VCTP. 237 static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) { 238 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates; 239 if (Exclusive && Predicates.size() != 1) 240 return false; 241 for (auto *PredMI : Predicates) 242 if (isVCTP(PredMI)) 243 return true; 244 return false; 245 } 246 247 // Is the VPST, controlling the block entry, predicated upon a VCTP. 248 static bool isEntryPredicatedOnVCTP(VPTState &Block, 249 bool Exclusive = false) { 250 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 251 return isPredicatedOnVCTP(Insts.front(), Exclusive); 252 } 253 254 static bool isValid() { 255 // All predication within the loop should be based on vctp. If the block 256 // isn't predicated on entry, check whether the vctp is within the block 257 // and that all other instructions are then predicated on it. 258 for (auto &Block : Blocks) { 259 if (isEntryPredicatedOnVCTP(Block)) 260 continue; 261 262 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 263 for (auto *MI : Insts) { 264 // Check that any internal VCTPs are 'Then' predicated. 265 if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then) 266 return false; 267 // Skip other instructions that build up the predicate. 268 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI)) 269 continue; 270 // Check that any other instructions are predicated upon a vctp. 271 // TODO: We could infer when VPTs are implicitly predicated on the 272 // vctp (when the operands are predicated). 273 if (!isPredicatedOnVCTP(MI)) { 274 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI); 275 return false; 276 } 277 } 278 } 279 return true; 280 } 281 282 VPTState(MachineInstr *MI) { Insts.push_back(MI); } 283 284 void insert(MachineInstr *MI) { 285 Insts.push_back(MI); 286 // VPT/VPST + 4 predicated instructions. 287 assert(Insts.size() <= 5 && "Too many instructions in VPT block!"); 288 } 289 290 bool containsVCTP() const { 291 for (auto *MI : Insts) 292 if (isVCTP(MI)) 293 return true; 294 return false; 295 } 296 297 unsigned size() const { return Insts.size(); } 298 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; } 299 }; 300 301 struct LowOverheadLoop { 302 303 MachineLoop &ML; 304 MachineBasicBlock *Preheader = nullptr; 305 MachineLoopInfo &MLI; 306 ReachingDefAnalysis &RDA; 307 const TargetRegisterInfo &TRI; 308 const ARMBaseInstrInfo &TII; 309 MachineFunction *MF = nullptr; 310 MachineInstr *InsertPt = nullptr; 311 MachineInstr *Start = nullptr; 312 MachineInstr *Dec = nullptr; 313 MachineInstr *End = nullptr; 314 MachineOperand TPNumElements; 315 SmallVector<MachineInstr*, 4> VCTPs; 316 SmallPtrSet<MachineInstr*, 4> ToRemove; 317 SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute; 318 bool Revert = false; 319 bool CannotTailPredicate = false; 320 321 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 322 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI, 323 const ARMBaseInstrInfo &TII) 324 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII), 325 TPNumElements(MachineOperand::CreateImm(0)) { 326 MF = ML.getHeader()->getParent(); 327 if (auto *MBB = ML.getLoopPreheader()) 328 Preheader = MBB; 329 else if (auto *MBB = MLI.findLoopPreheader(&ML, true)) 330 Preheader = MBB; 331 VPTState::reset(); 332 } 333 334 // If this is an MVE instruction, check that we know how to use tail 335 // predication with it. Record VPT blocks and return whether the 336 // instruction is valid for tail predication. 337 bool ValidateMVEInst(MachineInstr *MI); 338 339 void AnalyseMVEInst(MachineInstr *MI) { 340 CannotTailPredicate = !ValidateMVEInst(MI); 341 } 342 343 bool IsTailPredicationLegal() const { 344 // For now, let's keep things really simple and only support a single 345 // block for tail predication. 346 return !Revert && FoundAllComponents() && !VCTPs.empty() && 347 !CannotTailPredicate && ML.getNumBlocks() == 1; 348 } 349 350 // Given that MI is a VCTP, check that is equivalent to any other VCTPs 351 // found. 352 bool AddVCTP(MachineInstr *MI); 353 354 // Check that the predication in the loop will be equivalent once we 355 // perform the conversion. Also ensure that we can provide the number 356 // of elements to the loop start instruction. 357 bool ValidateTailPredicate(MachineInstr *StartInsertPt); 358 359 // Check that any values available outside of the loop will be the same 360 // after tail predication conversion. 361 bool ValidateLiveOuts(); 362 363 // Is it safe to define LR with DLS/WLS? 364 // LR can be defined if it is the operand to start, because it's the same 365 // value, or if it's going to be equivalent to the operand to Start. 366 MachineInstr *isSafeToDefineLR(); 367 368 // Check the branch targets are within range and we satisfy our 369 // restrictions. 370 void CheckLegality(ARMBasicBlockUtils *BBUtils); 371 372 bool FoundAllComponents() const { 373 return Start && Dec && End; 374 } 375 376 SmallVectorImpl<VPTState> &getVPTBlocks() { 377 return VPTState::Blocks; 378 } 379 380 // Return the operand for the loop start instruction. This will be the loop 381 // iteration count, or the number of elements if we're tail predicating. 382 MachineOperand &getLoopStartOperand() { 383 return IsTailPredicationLegal() ? TPNumElements : Start->getOperand(0); 384 } 385 386 unsigned getStartOpcode() const { 387 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 388 if (!IsTailPredicationLegal()) 389 return IsDo ? ARM::t2DLS : ARM::t2WLS; 390 391 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo); 392 } 393 394 void dump() const { 395 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 396 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 397 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 398 if (!VCTPs.empty()) { 399 dbgs() << "ARM Loops: Found VCTP(s):\n"; 400 for (auto *MI : VCTPs) 401 dbgs() << " - " << *MI; 402 } 403 if (!FoundAllComponents()) 404 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 405 else if (!(Start && Dec && End)) 406 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 407 } 408 }; 409 410 class ARMLowOverheadLoops : public MachineFunctionPass { 411 MachineFunction *MF = nullptr; 412 MachineLoopInfo *MLI = nullptr; 413 ReachingDefAnalysis *RDA = nullptr; 414 const ARMBaseInstrInfo *TII = nullptr; 415 MachineRegisterInfo *MRI = nullptr; 416 const TargetRegisterInfo *TRI = nullptr; 417 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 418 419 public: 420 static char ID; 421 422 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 423 424 void getAnalysisUsage(AnalysisUsage &AU) const override { 425 AU.setPreservesCFG(); 426 AU.addRequired<MachineLoopInfo>(); 427 AU.addRequired<ReachingDefAnalysis>(); 428 MachineFunctionPass::getAnalysisUsage(AU); 429 } 430 431 bool runOnMachineFunction(MachineFunction &MF) override; 432 433 MachineFunctionProperties getRequiredProperties() const override { 434 return MachineFunctionProperties().set( 435 MachineFunctionProperties::Property::NoVRegs).set( 436 MachineFunctionProperties::Property::TracksLiveness); 437 } 438 439 StringRef getPassName() const override { 440 return ARM_LOW_OVERHEAD_LOOPS_NAME; 441 } 442 443 private: 444 bool ProcessLoop(MachineLoop *ML); 445 446 bool RevertNonLoops(); 447 448 void RevertWhile(MachineInstr *MI) const; 449 450 bool RevertLoopDec(MachineInstr *MI) const; 451 452 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 453 454 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 455 456 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 457 458 void Expand(LowOverheadLoop &LoLoop); 459 460 void IterationCountDCE(LowOverheadLoop &LoLoop); 461 }; 462 } 463 464 char ARMLowOverheadLoops::ID = 0; 465 466 SmallVector<VPTState, 4> VPTState::Blocks; 467 SetVector<MachineInstr *> VPTState::CurrentPredicates; 468 std::map<MachineInstr *, 469 std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts; 470 471 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 472 false, false) 473 474 MachineInstr *LowOverheadLoop::isSafeToDefineLR() { 475 // We can define LR because LR already contains the same value. 476 if (Start->getOperand(0).getReg() == ARM::LR) 477 return Start; 478 479 unsigned CountReg = Start->getOperand(0).getReg(); 480 auto IsMoveLR = [&CountReg](MachineInstr *MI) { 481 return MI->getOpcode() == ARM::tMOVr && 482 MI->getOperand(0).getReg() == ARM::LR && 483 MI->getOperand(1).getReg() == CountReg && 484 MI->getOperand(2).getImm() == ARMCC::AL; 485 }; 486 487 MachineBasicBlock *MBB = Start->getParent(); 488 489 // Find an insertion point: 490 // - Is there a (mov lr, Count) before Start? If so, and nothing else writes 491 // to Count before Start, we can insert at that mov. 492 if (auto *LRDef = RDA.getUniqueReachingMIDef(Start, ARM::LR)) 493 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 494 return LRDef; 495 496 // - Is there a (mov lr, Count) after Start? If so, and nothing else writes 497 // to Count after Start, we can insert at that mov. 498 if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR)) 499 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 500 return LRDef; 501 502 // We've found no suitable LR def and Start doesn't use LR directly. Can we 503 // just define LR anyway? 504 return RDA.isSafeToDefRegAt(Start, ARM::LR) ? Start : nullptr; 505 } 506 507 bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt) { 508 assert(!VCTPs.empty() && "VCTP instruction expected but is not set"); 509 510 if (!VPTState::isValid()) 511 return false; 512 513 if (!ValidateLiveOuts()) { 514 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n"); 515 return false; 516 } 517 518 // For tail predication, we need to provide the number of elements, instead 519 // of the iteration count, to the loop start instruction. The number of 520 // elements is provided to the vctp instruction, so we need to check that 521 // we can use this register at InsertPt. 522 MachineInstr *VCTP = VCTPs.back(); 523 TPNumElements = VCTP->getOperand(1); 524 Register NumElements = TPNumElements.getReg(); 525 526 // If the register is defined within loop, then we can't perform TP. 527 // TODO: Check whether this is just a mov of a register that would be 528 // available. 529 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 530 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 531 return false; 532 } 533 534 // The element count register maybe defined after InsertPt, in which case we 535 // need to try to move either InsertPt or the def so that the [w|d]lstp can 536 // use the value. 537 MachineBasicBlock *InsertBB = StartInsertPt->getParent(); 538 539 if (!RDA.isReachingDefLiveOut(StartInsertPt, NumElements)) { 540 if (auto *ElemDef = RDA.getLocalLiveOutMIDef(InsertBB, NumElements)) { 541 if (RDA.isSafeToMoveForwards(ElemDef, StartInsertPt)) { 542 ElemDef->removeFromParent(); 543 InsertBB->insert(MachineBasicBlock::iterator(StartInsertPt), ElemDef); 544 LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: " 545 << *ElemDef); 546 } else if (RDA.isSafeToMoveBackwards(StartInsertPt, ElemDef)) { 547 StartInsertPt->removeFromParent(); 548 InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 549 StartInsertPt); 550 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 551 } else { 552 // If we fail to move an instruction and the element count is provided 553 // by a mov, use the mov operand if it will have the same value at the 554 // insertion point 555 MachineOperand Operand = ElemDef->getOperand(1); 556 if (isMovRegOpcode(ElemDef->getOpcode()) && 557 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg()) == 558 RDA.getUniqueReachingMIDef(StartInsertPt, Operand.getReg())) { 559 TPNumElements = Operand; 560 NumElements = TPNumElements.getReg(); 561 } else { 562 LLVM_DEBUG(dbgs() 563 << "ARM Loops: Unable to move element count to loop " 564 << "start instruction.\n"); 565 return false; 566 } 567 } 568 } 569 } 570 571 // Especially in the case of while loops, InsertBB may not be the 572 // preheader, so we need to check that the register isn't redefined 573 // before entering the loop. 574 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 575 Register NumElements) { 576 // NumElements is redefined in this block. 577 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 578 return true; 579 580 // Don't continue searching up through multiple predecessors. 581 if (MBB->pred_size() > 1) 582 return true; 583 584 return false; 585 }; 586 587 // First, find the block that looks like the preheader. 588 MachineBasicBlock *MBB = Preheader; 589 if (!MBB) { 590 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find preheader.\n"); 591 return false; 592 } 593 594 // Then search backwards for a def, until we get to InsertBB. 595 while (MBB != InsertBB) { 596 if (CannotProvideElements(MBB, NumElements)) { 597 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 598 return false; 599 } 600 MBB = *MBB->pred_begin(); 601 } 602 603 // Check that the value change of the element count is what we expect and 604 // that the predication will be equivalent. For this we need: 605 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 606 // and we can also allow register copies within the chain too. 607 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 608 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 609 }; 610 611 MBB = VCTP->getParent(); 612 // Remove modifications to the element count since they have no purpose in a 613 // tail predicated loop. Explicitly refer to the vctp operand no matter which 614 // register NumElements has been assigned to, since that is what the 615 // modifications will be using 616 if (auto *Def = RDA.getUniqueReachingMIDef(&MBB->back(), 617 VCTP->getOperand(1).getReg())) { 618 SmallPtrSet<MachineInstr*, 2> ElementChain; 619 SmallPtrSet<MachineInstr*, 2> Ignore; 620 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 621 622 Ignore.insert(VCTPs.begin(), VCTPs.end()); 623 624 if (RDA.isSafeToRemove(Def, ElementChain, Ignore)) { 625 bool FoundSub = false; 626 627 for (auto *MI : ElementChain) { 628 if (isMovRegOpcode(MI->getOpcode())) 629 continue; 630 631 if (isSubImmOpcode(MI->getOpcode())) { 632 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) 633 return false; 634 FoundSub = true; 635 } else 636 return false; 637 } 638 639 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove element count chain:\n"; 640 for (auto *MI : ElementChain) 641 dbgs() << " - " << *MI); 642 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 643 } 644 } 645 return true; 646 } 647 648 static bool isRegInClass(const MachineOperand &MO, 649 const TargetRegisterClass *Class) { 650 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 651 } 652 653 // MVE 'narrowing' operate on half a lane, reading from half and writing 654 // to half, which are referred to has the top and bottom half. The other 655 // half retains its previous value. 656 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 657 const MCInstrDesc &MCID = MI.getDesc(); 658 uint64_t Flags = MCID.TSFlags; 659 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 660 } 661 662 // Some MVE instructions read from the top/bottom halves of their operand(s) 663 // and generate a vector result with result elements that are double the 664 // width of the input. 665 static bool producesDoubleWidthResult(const MachineInstr &MI) { 666 const MCInstrDesc &MCID = MI.getDesc(); 667 uint64_t Flags = MCID.TSFlags; 668 return (Flags & ARMII::DoubleWidthResult) != 0; 669 } 670 671 static bool isHorizontalReduction(const MachineInstr &MI) { 672 const MCInstrDesc &MCID = MI.getDesc(); 673 uint64_t Flags = MCID.TSFlags; 674 return (Flags & ARMII::HorizontalReduction) != 0; 675 } 676 677 // Can this instruction generate a non-zero result when given only zeroed 678 // operands? This allows us to know that, given operands with false bytes 679 // zeroed by masked loads, that the result will also contain zeros in those 680 // bytes. 681 static bool canGenerateNonZeros(const MachineInstr &MI) { 682 683 // Check for instructions which can write into a larger element size, 684 // possibly writing into a previous zero'd lane. 685 if (producesDoubleWidthResult(MI)) 686 return true; 687 688 switch (MI.getOpcode()) { 689 default: 690 break; 691 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 692 // fp16 -> fp32 vector conversions. 693 // Instructions that perform a NOT will generate 1s from 0s. 694 case ARM::MVE_VMVN: 695 case ARM::MVE_VORN: 696 // Count leading zeros will do just that! 697 case ARM::MVE_VCLZs8: 698 case ARM::MVE_VCLZs16: 699 case ARM::MVE_VCLZs32: 700 return true; 701 } 702 return false; 703 } 704 705 // Look at its register uses to see if it only can only receive zeros 706 // into its false lanes which would then produce zeros. Also check that 707 // the output register is also defined by an FalseLanesZero instruction 708 // so that if tail-predication happens, the lanes that aren't updated will 709 // still be zeros. 710 static bool producesFalseLanesZero(MachineInstr &MI, 711 const TargetRegisterClass *QPRs, 712 const ReachingDefAnalysis &RDA, 713 InstSet &FalseLanesZero) { 714 if (canGenerateNonZeros(MI)) 715 return false; 716 717 bool isPredicated = isVectorPredicated(&MI); 718 // Predicated loads will write zeros to the falsely predicated bytes of the 719 // destination register. 720 if (MI.mayLoad()) 721 return isPredicated; 722 723 auto IsZeroInit = [](MachineInstr *Def) { 724 return !isVectorPredicated(Def) && 725 Def->getOpcode() == ARM::MVE_VMOVimmi32 && 726 Def->getOperand(1).getImm() == 0; 727 }; 728 729 bool AllowScalars = isHorizontalReduction(MI); 730 for (auto &MO : MI.operands()) { 731 if (!MO.isReg() || !MO.getReg()) 732 continue; 733 if (!isRegInClass(MO, QPRs) && AllowScalars) 734 continue; 735 736 // Check that this instruction will produce zeros in its false lanes: 737 // - If it only consumes false lanes zero or constant 0 (vmov #0) 738 // - If it's predicated, it only matters that it's def register already has 739 // false lane zeros, so we can ignore the uses. 740 SmallPtrSet<MachineInstr *, 2> Defs; 741 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs); 742 for (auto *Def : Defs) { 743 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def)) 744 continue; 745 if (MO.isUse() && isPredicated) 746 continue; 747 return false; 748 } 749 } 750 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 751 return true; 752 } 753 754 bool LowOverheadLoop::ValidateLiveOuts() { 755 // We want to find out if the tail-predicated version of this loop will 756 // produce the same values as the loop in its original form. For this to 757 // be true, the newly inserted implicit predication must not change the 758 // the (observable) results. 759 // We're doing this because many instructions in the loop will not be 760 // predicated and so the conversion from VPT predication to tail-predication 761 // can result in different values being produced; due to the tail-predication 762 // preventing many instructions from updating their falsely predicated 763 // lanes. This analysis assumes that all the instructions perform lane-wise 764 // operations and don't perform any exchanges. 765 // A masked load, whether through VPT or tail predication, will write zeros 766 // to any of the falsely predicated bytes. So, from the loads, we know that 767 // the false lanes are zeroed and here we're trying to track that those false 768 // lanes remain zero, or where they change, the differences are masked away 769 // by their user(s). 770 // All MVE stores have to be predicated, so we know that any predicate load 771 // operands, or stored results are equivalent already. Other explicitly 772 // predicated instructions will perform the same operation in the original 773 // loop and the tail-predicated form too. Because of this, we can insert 774 // loads, stores and other predicated instructions into our Predicated 775 // set and build from there. 776 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 777 SetVector<MachineInstr *> FalseLanesUnknown; 778 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 779 SmallPtrSet<MachineInstr *, 4> Predicated; 780 MachineBasicBlock *Header = ML.getHeader(); 781 782 for (auto &MI : *Header) { 783 if (!shouldInspect(MI)) 784 continue; 785 786 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) 787 continue; 788 789 bool isPredicated = isVectorPredicated(&MI); 790 bool retainsOrReduces = 791 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI); 792 793 if (isPredicated) 794 Predicated.insert(&MI); 795 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) 796 FalseLanesZero.insert(&MI); 797 else if (MI.getNumDefs() == 0) 798 continue; 799 else if (!isPredicated && retainsOrReduces) 800 return false; 801 else if (!isPredicated) 802 FalseLanesUnknown.insert(&MI); 803 } 804 805 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 806 SmallPtrSetImpl<MachineInstr *> &Predicated) { 807 SmallPtrSet<MachineInstr *, 2> Uses; 808 RDA.getGlobalUses(MI, MO.getReg(), Uses); 809 for (auto *Use : Uses) { 810 if (Use != MI && !Predicated.count(Use)) 811 return false; 812 } 813 return true; 814 }; 815 816 // Visit the unknowns in reverse so that we can start at the values being 817 // stored and then we can work towards the leaves, hopefully adding more 818 // instructions to Predicated. Successfully terminating the loop means that 819 // all the unknown values have to found to be masked by predicated user(s). 820 // For any unpredicated values, we store them in NonPredicated so that we 821 // can later check whether these form a reduction. 822 SmallPtrSet<MachineInstr*, 2> NonPredicated; 823 for (auto *MI : reverse(FalseLanesUnknown)) { 824 for (auto &MO : MI->operands()) { 825 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 826 continue; 827 if (!HasPredicatedUsers(MI, MO, Predicated)) { 828 LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : " 829 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 830 NonPredicated.insert(MI); 831 break; 832 } 833 } 834 // Any unknown false lanes have been masked away by the user(s). 835 if (!NonPredicated.contains(MI)) 836 Predicated.insert(MI); 837 } 838 839 SmallPtrSet<MachineInstr *, 2> LiveOutMIs; 840 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 841 ML.getExitBlocks(ExitBlocks); 842 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 843 assert(ExitBlocks.size() == 1 && "Expected a single exit block"); 844 MachineBasicBlock *ExitBB = ExitBlocks.front(); 845 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) { 846 // TODO: Instead of blocking predication, we could move the vctp to the exit 847 // block and calculate it's operand there in or the preheader. 848 if (RegMask.PhysReg == ARM::VPR) 849 return false; 850 // Check Q-regs that are live in the exit blocks. We don't collect scalars 851 // because they won't be affected by lane predication. 852 if (QPRs->contains(RegMask.PhysReg)) 853 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg)) 854 LiveOutMIs.insert(MI); 855 } 856 857 // We've already validated that any VPT predication within the loop will be 858 // equivalent when we perform the predication transformation; so we know that 859 // any VPT predicated instruction is predicated upon VCTP. Any live-out 860 // instruction needs to be predicated, so check this here. The instructions 861 // in NonPredicated have been found to be a reduction that we can ensure its 862 // legality. 863 for (auto *MI : LiveOutMIs) { 864 if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) { 865 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to handle live out: " << *MI); 866 return false; 867 } 868 } 869 870 return true; 871 } 872 873 void LowOverheadLoop::CheckLegality(ARMBasicBlockUtils *BBUtils) { 874 if (Revert) 875 return; 876 877 if (!End->getOperand(1).isMBB()) 878 report_fatal_error("Expected LoopEnd to target basic block"); 879 880 // TODO Maybe there's cases where the target doesn't have to be the header, 881 // but for now be safe and revert. 882 if (End->getOperand(1).getMBB() != ML.getHeader()) { 883 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targetting header.\n"); 884 Revert = true; 885 return; 886 } 887 888 // The WLS and LE instructions have 12-bits for the label offset. WLS 889 // requires a positive offset, while LE uses negative. 890 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 891 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 892 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 893 Revert = true; 894 return; 895 } 896 897 if (Start->getOpcode() == ARM::t2WhileLoopStart && 898 (BBUtils->getOffsetOf(Start) > 899 BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || 900 !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { 901 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 902 Revert = true; 903 return; 904 } 905 906 InsertPt = Revert ? nullptr : isSafeToDefineLR(); 907 if (!InsertPt) { 908 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n"); 909 Revert = true; 910 return; 911 } else 912 LLVM_DEBUG(dbgs() << "ARM Loops: Start insertion point: " << *InsertPt); 913 914 if (!IsTailPredicationLegal()) { 915 LLVM_DEBUG(if (VCTPs.empty()) 916 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 917 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 918 return; 919 } 920 921 assert(ML.getBlocks().size() == 1 && 922 "Shouldn't be processing a loop with more than one block"); 923 CannotTailPredicate = !ValidateTailPredicate(InsertPt); 924 LLVM_DEBUG(if (CannotTailPredicate) 925 dbgs() << "ARM Loops: Couldn't validate tail predicate.\n"); 926 } 927 928 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) { 929 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI); 930 if (VCTPs.empty()) { 931 VCTPs.push_back(MI); 932 return true; 933 } 934 935 // If we find another VCTP, check whether it uses the same value as the main VCTP. 936 // If it does, store it in the VCTPs set, else refuse it. 937 MachineInstr *Prev = VCTPs.back(); 938 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) || 939 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg())) { 940 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " 941 "definition from the main VCTP"); 942 return false; 943 } 944 VCTPs.push_back(MI); 945 return true; 946 } 947 948 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) { 949 if (CannotTailPredicate) 950 return false; 951 952 if (!shouldInspect(*MI)) 953 return true; 954 955 if (MI->getOpcode() == ARM::MVE_VPSEL || 956 MI->getOpcode() == ARM::MVE_VPNOT) { 957 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 958 // 1) It will use the VPR as a predicate operand, but doesn't have to be 959 // instead a VPT block, which means we can assert while building up 960 // the VPT block because we don't find another VPT or VPST to being a new 961 // one. 962 // 2) VPSEL still requires a VPR operand even after tail predicating, 963 // which means we can't remove it unless there is another 964 // instruction, such as vcmp, that can provide the VPR def. 965 return false; 966 } 967 968 // Record all VCTPs and check that they're equivalent to one another. 969 if (isVCTP(MI) && !AddVCTP(MI)) 970 return false; 971 972 // Inspect uses first so that any instructions that alter the VPR don't 973 // alter the predicate upon themselves. 974 const MCInstrDesc &MCID = MI->getDesc(); 975 bool IsUse = false; 976 unsigned LastOpIdx = MI->getNumOperands() - 1; 977 for (auto &Op : enumerate(reverse(MCID.operands()))) { 978 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index()); 979 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR) 980 continue; 981 982 if (ARM::isVpred(Op.value().OperandType)) { 983 VPTState::addInst(MI); 984 IsUse = true; 985 } else if (MI->getOpcode() != ARM::MVE_VPST) { 986 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 987 return false; 988 } 989 } 990 991 // If we find an instruction that has been marked as not valid for tail 992 // predication, only allow the instruction if it's contained within a valid 993 // VPT block. 994 bool RequiresExplicitPredication = 995 (MCID.TSFlags & ARMII::ValidForTailPredication) == 0; 996 if (isDomainMVE(MI) && RequiresExplicitPredication) { 997 LLVM_DEBUG(if (!IsUse) 998 dbgs() << "ARM Loops: Can't tail predicate: " << *MI); 999 return IsUse; 1000 } 1001 1002 // If the instruction is already explicitly predicated, then the conversion 1003 // will be fine, but ensure that all store operations are predicated. 1004 if (MI->mayStore()) 1005 return IsUse; 1006 1007 // If this instruction defines the VPR, update the predicate for the 1008 // proceeding instructions. 1009 if (isVectorPredicate(MI)) { 1010 // Clear the existing predicate when we're not in VPT Active state, 1011 // otherwise we add to it. 1012 if (!isVectorPredicated(MI)) 1013 VPTState::resetPredicate(MI); 1014 else 1015 VPTState::addPredicate(MI); 1016 } 1017 1018 // Finally once the predicate has been modified, we can start a new VPT 1019 // block if necessary. 1020 if (isVPTOpcode(MI->getOpcode())) 1021 VPTState::CreateVPTBlock(MI); 1022 1023 return true; 1024 } 1025 1026 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 1027 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 1028 if (!ST.hasLOB()) 1029 return false; 1030 1031 MF = &mf; 1032 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 1033 1034 MLI = &getAnalysis<MachineLoopInfo>(); 1035 RDA = &getAnalysis<ReachingDefAnalysis>(); 1036 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 1037 MRI = &MF->getRegInfo(); 1038 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 1039 TRI = ST.getRegisterInfo(); 1040 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 1041 BBUtils->computeAllBlockSizes(); 1042 BBUtils->adjustBBOffsetsAfter(&MF->front()); 1043 1044 bool Changed = false; 1045 for (auto ML : *MLI) { 1046 if (ML->isOutermost()) 1047 Changed |= ProcessLoop(ML); 1048 } 1049 Changed |= RevertNonLoops(); 1050 return Changed; 1051 } 1052 1053 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 1054 1055 bool Changed = false; 1056 1057 // Process inner loops first. 1058 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 1059 Changed |= ProcessLoop(*I); 1060 1061 LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; 1062 if (auto *Preheader = ML->getLoopPreheader()) 1063 dbgs() << " - " << Preheader->getName() << "\n"; 1064 else if (auto *Preheader = MLI->findLoopPreheader(ML)) 1065 dbgs() << " - " << Preheader->getName() << "\n"; 1066 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 1067 dbgs() << " - " << Preheader->getName() << "\n"; 1068 for (auto *MBB : ML->getBlocks()) 1069 dbgs() << " - " << MBB->getName() << "\n"; 1070 ); 1071 1072 // Search the given block for a loop start instruction. If one isn't found, 1073 // and there's only one predecessor block, search that one too. 1074 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 1075 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 1076 for (auto &MI : *MBB) { 1077 if (isLoopStart(MI)) 1078 return &MI; 1079 } 1080 if (MBB->pred_size() == 1) 1081 return SearchForStart(*MBB->pred_begin()); 1082 return nullptr; 1083 }; 1084 1085 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII); 1086 // Search the preheader for the start intrinsic. 1087 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 1088 // with potentially multiple set.loop.iterations, so we need to enable this. 1089 if (LoLoop.Preheader) 1090 LoLoop.Start = SearchForStart(LoLoop.Preheader); 1091 else 1092 return false; 1093 1094 // Find the low-overhead loop components and decide whether or not to fall 1095 // back to a normal loop. Also look for a vctp instructions and decide 1096 // whether we can convert that predicate using tail predication. 1097 for (auto *MBB : reverse(ML->getBlocks())) { 1098 for (auto &MI : *MBB) { 1099 if (MI.isDebugValue()) 1100 continue; 1101 else if (MI.getOpcode() == ARM::t2LoopDec) 1102 LoLoop.Dec = &MI; 1103 else if (MI.getOpcode() == ARM::t2LoopEnd) 1104 LoLoop.End = &MI; 1105 else if (isLoopStart(MI)) 1106 LoLoop.Start = &MI; 1107 else if (MI.getDesc().isCall()) { 1108 // TODO: Though the call will require LE to execute again, does this 1109 // mean we should revert? Always executing LE hopefully should be 1110 // faster than performing a sub,cmp,br or even subs,br. 1111 LoLoop.Revert = true; 1112 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 1113 } else { 1114 // Record VPR defs and build up their corresponding vpt blocks. 1115 // Check we know how to tail predicate any mve instructions. 1116 LoLoop.AnalyseMVEInst(&MI); 1117 } 1118 } 1119 } 1120 1121 LLVM_DEBUG(LoLoop.dump()); 1122 if (!LoLoop.FoundAllComponents()) { 1123 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 1124 return false; 1125 } 1126 1127 // Check that the only instruction using LoopDec is LoopEnd. 1128 // TODO: Check for copy chains that really have no effect. 1129 SmallPtrSet<MachineInstr*, 2> Uses; 1130 RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses); 1131 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 1132 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 1133 LoLoop.Revert = true; 1134 } 1135 LoLoop.CheckLegality(BBUtils.get()); 1136 Expand(LoLoop); 1137 return true; 1138 } 1139 1140 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 1141 // beq that branches to the exit branch. 1142 // TODO: We could also try to generate a cbz if the value in LR is also in 1143 // another low register. 1144 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 1145 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 1146 MachineBasicBlock *MBB = MI->getParent(); 1147 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1148 TII->get(ARM::t2CMPri)); 1149 MIB.add(MI->getOperand(0)); 1150 MIB.addImm(0); 1151 MIB.addImm(ARMCC::AL); 1152 MIB.addReg(ARM::NoRegister); 1153 1154 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1155 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1156 ARM::tBcc : ARM::t2Bcc; 1157 1158 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1159 MIB.add(MI->getOperand(1)); // branch target 1160 MIB.addImm(ARMCC::EQ); // condition code 1161 MIB.addReg(ARM::CPSR); 1162 MI->eraseFromParent(); 1163 } 1164 1165 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 1166 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 1167 MachineBasicBlock *MBB = MI->getParent(); 1168 SmallPtrSet<MachineInstr*, 1> Ignore; 1169 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 1170 if (I->getOpcode() == ARM::t2LoopEnd) { 1171 Ignore.insert(&*I); 1172 break; 1173 } 1174 } 1175 1176 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1177 bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore); 1178 1179 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1180 TII->get(ARM::t2SUBri)); 1181 MIB.addDef(ARM::LR); 1182 MIB.add(MI->getOperand(1)); 1183 MIB.add(MI->getOperand(2)); 1184 MIB.addImm(ARMCC::AL); 1185 MIB.addReg(0); 1186 1187 if (SetFlags) { 1188 MIB.addReg(ARM::CPSR); 1189 MIB->getOperand(5).setIsDef(true); 1190 } else 1191 MIB.addReg(0); 1192 1193 MI->eraseFromParent(); 1194 return SetFlags; 1195 } 1196 1197 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1198 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1199 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1200 1201 MachineBasicBlock *MBB = MI->getParent(); 1202 // Create cmp 1203 if (!SkipCmp) { 1204 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1205 TII->get(ARM::t2CMPri)); 1206 MIB.addReg(ARM::LR); 1207 MIB.addImm(0); 1208 MIB.addImm(ARMCC::AL); 1209 MIB.addReg(ARM::NoRegister); 1210 } 1211 1212 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1213 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1214 ARM::tBcc : ARM::t2Bcc; 1215 1216 // Create bne 1217 MachineInstrBuilder MIB = 1218 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1219 MIB.add(MI->getOperand(1)); // branch target 1220 MIB.addImm(ARMCC::NE); // condition code 1221 MIB.addReg(ARM::CPSR); 1222 MI->eraseFromParent(); 1223 } 1224 1225 // Perform dead code elimation on the loop iteration count setup expression. 1226 // If we are tail-predicating, the number of elements to be processed is the 1227 // operand of the VCTP instruction in the vector body, see getCount(), which is 1228 // register $r3 in this example: 1229 // 1230 // $lr = big-itercount-expression 1231 // .. 1232 // t2DoLoopStart renamable $lr 1233 // vector.body: 1234 // .. 1235 // $vpr = MVE_VCTP32 renamable $r3 1236 // renamable $lr = t2LoopDec killed renamable $lr, 1 1237 // t2LoopEnd renamable $lr, %vector.body 1238 // tB %end 1239 // 1240 // What we would like achieve here is to replace the do-loop start pseudo 1241 // instruction t2DoLoopStart with: 1242 // 1243 // $lr = MVE_DLSTP_32 killed renamable $r3 1244 // 1245 // Thus, $r3 which defines the number of elements, is written to $lr, 1246 // and then we want to delete the whole chain that used to define $lr, 1247 // see the comment below how this chain could look like. 1248 // 1249 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1250 if (!LoLoop.IsTailPredicationLegal()) 1251 return; 1252 1253 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1254 1255 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0); 1256 if (!Def) { 1257 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1258 return; 1259 } 1260 1261 // Collect and remove the users of iteration count. 1262 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1263 LoLoop.End, LoLoop.InsertPt }; 1264 SmallPtrSet<MachineInstr*, 2> Remove; 1265 if (RDA->isSafeToRemove(Def, Remove, Killed)) 1266 LoLoop.ToRemove.insert(Remove.begin(), Remove.end()); 1267 else { 1268 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1269 return; 1270 } 1271 1272 // Collect the dead code and the MBBs in which they reside. 1273 RDA->collectKilledOperands(Def, Killed); 1274 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 1275 for (auto *MI : Killed) 1276 BasicBlocks.insert(MI->getParent()); 1277 1278 // Collect IT blocks in all affected basic blocks. 1279 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 1280 for (auto *MBB : BasicBlocks) { 1281 for (auto &MI : *MBB) { 1282 if (MI.getOpcode() != ARM::t2IT) 1283 continue; 1284 RDA->getReachingLocalUses(&MI, ARM::ITSTATE, ITBlocks[&MI]); 1285 } 1286 } 1287 1288 // If we're removing all of the instructions within an IT block, then 1289 // also remove the IT instruction. 1290 SmallPtrSet<MachineInstr*, 2> ModifiedITs; 1291 for (auto *MI : Killed) { 1292 if (MachineOperand *MO = MI->findRegisterUseOperand(ARM::ITSTATE)) { 1293 MachineInstr *IT = RDA->getMIOperand(MI, *MO); 1294 auto &CurrentBlock = ITBlocks[IT]; 1295 CurrentBlock.erase(MI); 1296 if (CurrentBlock.empty()) 1297 ModifiedITs.erase(IT); 1298 else 1299 ModifiedITs.insert(IT); 1300 } 1301 } 1302 1303 // Delete the killed instructions only if we don't have any IT blocks that 1304 // need to be modified because we need to fixup the mask. 1305 // TODO: Handle cases where IT blocks are modified. 1306 if (ModifiedITs.empty()) { 1307 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove iteration count:\n"; 1308 for (auto *MI : Killed) 1309 dbgs() << " - " << *MI); 1310 LoLoop.ToRemove.insert(Killed.begin(), Killed.end()); 1311 } else 1312 LLVM_DEBUG(dbgs() << "ARM Loops: Would need to modify IT block(s).\n"); 1313 } 1314 1315 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1316 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1317 // When using tail-predication, try to delete the dead code that was used to 1318 // calculate the number of loop iterations. 1319 IterationCountDCE(LoLoop); 1320 1321 MachineInstr *InsertPt = LoLoop.InsertPt; 1322 MachineInstr *Start = LoLoop.Start; 1323 MachineBasicBlock *MBB = InsertPt->getParent(); 1324 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 1325 unsigned Opc = LoLoop.getStartOpcode(); 1326 MachineOperand &Count = LoLoop.getLoopStartOperand(); 1327 1328 MachineInstrBuilder MIB = 1329 BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc)); 1330 1331 MIB.addDef(ARM::LR); 1332 MIB.add(Count); 1333 if (!IsDo) 1334 MIB.add(Start->getOperand(1)); 1335 1336 // If we're inserting at a mov lr, then remove it as it's redundant. 1337 if (InsertPt != Start) 1338 LoLoop.ToRemove.insert(InsertPt); 1339 LoLoop.ToRemove.insert(Start); 1340 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1341 return &*MIB; 1342 } 1343 1344 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1345 auto RemovePredicate = [](MachineInstr *MI) { 1346 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1347 if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) { 1348 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1349 "Expected Then predicate!"); 1350 MI->getOperand(PIdx).setImm(ARMVCC::None); 1351 MI->getOperand(PIdx+1).setReg(0); 1352 } else 1353 llvm_unreachable("trying to unpredicate a non-predicated instruction"); 1354 }; 1355 1356 for (auto &Block : LoLoop.getVPTBlocks()) { 1357 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 1358 1359 if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/true)) { 1360 if (VPTState::hasUniformPredicate(Block)) { 1361 // A vpt block starting with VPST, is only predicated upon vctp and has no 1362 // internal vpr defs: 1363 // - Remove vpst. 1364 // - Unpredicate the remaining instructions. 1365 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front()); 1366 LoLoop.ToRemove.insert(Insts.front()); 1367 for (unsigned i = 1; i < Insts.size(); ++i) 1368 RemovePredicate(Insts[i]); 1369 } else { 1370 // The VPT block has a non-uniform predicate but it uses a vpst and its 1371 // entry is guarded only by a vctp, which means we: 1372 // - Need to remove the original vpst. 1373 // - Then need to unpredicate any following instructions, until 1374 // we come across the divergent vpr def. 1375 // - Insert a new vpst to predicate the instruction(s) that following 1376 // the divergent vpr def. 1377 // TODO: We could be producing more VPT blocks than necessary and could 1378 // fold the newly created one into a proceeding one. 1379 MachineInstr *Divergent = VPTState::getDivergent(Block); 1380 for (auto I = ++MachineBasicBlock::iterator(Insts.front()), 1381 E = ++MachineBasicBlock::iterator(Divergent); I != E; ++I) 1382 RemovePredicate(&*I); 1383 1384 // Check if the instruction defining vpr is a vcmp so it can be combined 1385 // with the VPST This should be the divergent instruction 1386 MachineInstr *VCMP = VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 1387 ? Divergent 1388 : nullptr; 1389 1390 unsigned Size = 0; 1391 auto E = MachineBasicBlock::reverse_iterator(Divergent); 1392 auto I = MachineBasicBlock::reverse_iterator(Insts.back()); 1393 MachineInstr *InsertAt = nullptr; 1394 while (I != E) { 1395 InsertAt = &*I; 1396 ++Size; 1397 ++I; 1398 } 1399 1400 MachineInstrBuilder MIB; 1401 if (VCMP) { 1402 // Combine the VPST and VCMP into a VPT 1403 MIB = 1404 BuildMI(*InsertAt->getParent(), InsertAt, InsertAt->getDebugLoc(), 1405 TII->get(VCMPOpcodeToVPT(VCMP->getOpcode()))); 1406 MIB.addImm(ARMVCC::Then); 1407 // Register one 1408 MIB.add(VCMP->getOperand(1)); 1409 // Register two 1410 MIB.add(VCMP->getOperand(2)); 1411 // The comparison code, e.g. ge, eq, lt 1412 MIB.add(VCMP->getOperand(3)); 1413 LLVM_DEBUG(dbgs() 1414 << "ARM Loops: Combining with VCMP to VPT: " << *MIB); 1415 LoLoop.ToRemove.insert(VCMP); 1416 } else { 1417 // Create a VPST (with a null mask for now, we'll recompute it later) 1418 // or a VPT in case there was a VCMP right before it 1419 MIB = BuildMI(*InsertAt->getParent(), InsertAt, 1420 InsertAt->getDebugLoc(), TII->get(ARM::MVE_VPST)); 1421 MIB.addImm(0); 1422 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1423 } 1424 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front()); 1425 LoLoop.ToRemove.insert(Insts.front()); 1426 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1427 } 1428 } else if (Block.containsVCTP()) { 1429 // The vctp will be removed, so the block mask of the vp(s)t will need 1430 // to be recomputed. 1431 LoLoop.BlockMasksToRecompute.insert(Insts.front()); 1432 } 1433 } 1434 1435 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end()); 1436 } 1437 1438 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1439 1440 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1441 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1442 MachineInstr *End = LoLoop.End; 1443 MachineBasicBlock *MBB = End->getParent(); 1444 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1445 ARM::MVE_LETP : ARM::t2LEUpdate; 1446 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1447 TII->get(Opc)); 1448 MIB.addDef(ARM::LR); 1449 MIB.add(End->getOperand(0)); 1450 MIB.add(End->getOperand(1)); 1451 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1452 LoLoop.ToRemove.insert(LoLoop.Dec); 1453 LoLoop.ToRemove.insert(End); 1454 return &*MIB; 1455 }; 1456 1457 // TODO: We should be able to automatically remove these branches before we 1458 // get here - probably by teaching analyzeBranch about the pseudo 1459 // instructions. 1460 // If there is an unconditional branch, after I, that just branches to the 1461 // next block, remove it. 1462 auto RemoveDeadBranch = [](MachineInstr *I) { 1463 MachineBasicBlock *BB = I->getParent(); 1464 MachineInstr *Terminator = &BB->instr_back(); 1465 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1466 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1467 if (BB->isLayoutSuccessor(Succ)) { 1468 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1469 Terminator->eraseFromParent(); 1470 } 1471 } 1472 }; 1473 1474 if (LoLoop.Revert) { 1475 if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) 1476 RevertWhile(LoLoop.Start); 1477 else 1478 LoLoop.Start->eraseFromParent(); 1479 bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec); 1480 RevertLoopEnd(LoLoop.End, FlagsAlreadySet); 1481 } else { 1482 LoLoop.Start = ExpandLoopStart(LoLoop); 1483 RemoveDeadBranch(LoLoop.Start); 1484 LoLoop.End = ExpandLoopEnd(LoLoop); 1485 RemoveDeadBranch(LoLoop.End); 1486 if (LoLoop.IsTailPredicationLegal()) 1487 ConvertVPTBlocks(LoLoop); 1488 for (auto *I : LoLoop.ToRemove) { 1489 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1490 I->eraseFromParent(); 1491 } 1492 for (auto *I : LoLoop.BlockMasksToRecompute) { 1493 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1494 recomputeVPTBlockMask(*I); 1495 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1496 } 1497 } 1498 1499 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1500 DFS.ProcessLoop(); 1501 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1502 for (auto *MBB : PostOrder) { 1503 recomputeLiveIns(*MBB); 1504 // FIXME: For some reason, the live-in print order is non-deterministic for 1505 // our tests and I can't out why... So just sort them. 1506 MBB->sortUniqueLiveIns(); 1507 } 1508 1509 for (auto *MBB : reverse(PostOrder)) 1510 recomputeLivenessFlags(*MBB); 1511 1512 // We've moved, removed and inserted new instructions, so update RDA. 1513 RDA->reset(); 1514 } 1515 1516 bool ARMLowOverheadLoops::RevertNonLoops() { 1517 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1518 bool Changed = false; 1519 1520 for (auto &MBB : *MF) { 1521 SmallVector<MachineInstr*, 4> Starts; 1522 SmallVector<MachineInstr*, 4> Decs; 1523 SmallVector<MachineInstr*, 4> Ends; 1524 1525 for (auto &I : MBB) { 1526 if (isLoopStart(I)) 1527 Starts.push_back(&I); 1528 else if (I.getOpcode() == ARM::t2LoopDec) 1529 Decs.push_back(&I); 1530 else if (I.getOpcode() == ARM::t2LoopEnd) 1531 Ends.push_back(&I); 1532 } 1533 1534 if (Starts.empty() && Decs.empty() && Ends.empty()) 1535 continue; 1536 1537 Changed = true; 1538 1539 for (auto *Start : Starts) { 1540 if (Start->getOpcode() == ARM::t2WhileLoopStart) 1541 RevertWhile(Start); 1542 else 1543 Start->eraseFromParent(); 1544 } 1545 for (auto *Dec : Decs) 1546 RevertLoopDec(Dec); 1547 1548 for (auto *End : Ends) 1549 RevertLoopEnd(End); 1550 } 1551 return Changed; 1552 } 1553 1554 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1555 return new ARMLowOverheadLoops(); 1556 } 1557