1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStartLR and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 /// A note on VPR.P0 (the lane mask): 39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a 40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks). 41 /// They will simply "and" the result of their calculation with the current 42 /// value of VPR.P0. You can think of it like this: 43 /// \verbatim 44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs 45 /// VPR.P0 &= Value 46 /// else 47 /// VPR.P0 = Value 48 /// \endverbatim 49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always 50 /// fall in the "VPT active" case, so we can consider that all VPR writes by 51 /// one of those instruction is actually a "and". 52 //===----------------------------------------------------------------------===// 53 54 #include "ARM.h" 55 #include "ARMBaseInstrInfo.h" 56 #include "ARMBaseRegisterInfo.h" 57 #include "ARMBasicBlockInfo.h" 58 #include "ARMSubtarget.h" 59 #include "MVETailPredUtils.h" 60 #include "Thumb2InstrInfo.h" 61 #include "llvm/ADT/SetOperations.h" 62 #include "llvm/ADT/SmallSet.h" 63 #include "llvm/CodeGen/LivePhysRegs.h" 64 #include "llvm/CodeGen/MachineFrameInfo.h" 65 #include "llvm/CodeGen/MachineFunctionPass.h" 66 #include "llvm/CodeGen/MachineLoopInfo.h" 67 #include "llvm/CodeGen/MachineLoopUtils.h" 68 #include "llvm/CodeGen/MachineRegisterInfo.h" 69 #include "llvm/CodeGen/Passes.h" 70 #include "llvm/CodeGen/ReachingDefAnalysis.h" 71 #include "llvm/MC/MCInstrDesc.h" 72 73 using namespace llvm; 74 75 #define DEBUG_TYPE "arm-low-overhead-loops" 76 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 77 78 static cl::opt<bool> 79 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden, 80 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"), 81 cl::init(false)); 82 83 static bool isVectorPredicated(MachineInstr *MI) { 84 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 85 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 86 } 87 88 static bool isVectorPredicate(MachineInstr *MI) { 89 return MI->findRegisterDefOperandIdx(ARM::VPR) != -1; 90 } 91 92 static bool hasVPRUse(MachineInstr &MI) { 93 return MI.findRegisterUseOperandIdx(ARM::VPR) != -1; 94 } 95 96 static bool isDomainMVE(MachineInstr *MI) { 97 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask; 98 return Domain == ARMII::DomainMVE; 99 } 100 101 static int getVecSize(const MachineInstr &MI) { 102 const MCInstrDesc &MCID = MI.getDesc(); 103 uint64_t Flags = MCID.TSFlags; 104 return (Flags & ARMII::VecSize) >> ARMII::VecSizeShift; 105 } 106 107 static bool shouldInspect(MachineInstr &MI) { 108 if (MI.isDebugInstr()) 109 return false; 110 return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI); 111 } 112 113 namespace { 114 115 using InstSet = SmallPtrSetImpl<MachineInstr *>; 116 117 class PostOrderLoopTraversal { 118 MachineLoop &ML; 119 MachineLoopInfo &MLI; 120 SmallPtrSet<MachineBasicBlock*, 4> Visited; 121 SmallVector<MachineBasicBlock*, 4> Order; 122 123 public: 124 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 125 : ML(ML), MLI(MLI) { } 126 127 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 128 return Order; 129 } 130 131 // Visit all the blocks within the loop, as well as exit blocks and any 132 // blocks properly dominating the header. 133 void ProcessLoop() { 134 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 135 (MachineBasicBlock *MBB) -> void { 136 if (Visited.count(MBB)) 137 return; 138 139 Visited.insert(MBB); 140 for (auto *Succ : MBB->successors()) { 141 if (!ML.contains(Succ)) 142 continue; 143 Search(Succ); 144 } 145 Order.push_back(MBB); 146 }; 147 148 // Insert exit blocks. 149 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 150 ML.getExitBlocks(ExitBlocks); 151 append_range(Order, ExitBlocks); 152 153 // Then add the loop body. 154 Search(ML.getHeader()); 155 156 // Then try the preheader and its predecessors. 157 std::function<void(MachineBasicBlock*)> GetPredecessor = 158 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 159 Order.push_back(MBB); 160 if (MBB->pred_size() == 1) 161 GetPredecessor(*MBB->pred_begin()); 162 }; 163 164 if (auto *Preheader = ML.getLoopPreheader()) 165 GetPredecessor(Preheader); 166 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true, true)) 167 GetPredecessor(Preheader); 168 } 169 }; 170 171 struct PredicatedMI { 172 MachineInstr *MI = nullptr; 173 SetVector<MachineInstr*> Predicates; 174 175 public: 176 PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) { 177 assert(I && "Instruction must not be null!"); 178 Predicates.insert(Preds.begin(), Preds.end()); 179 } 180 }; 181 182 // Represent the current state of the VPR and hold all instances which 183 // represent a VPT block, which is a list of instructions that begins with a 184 // VPT/VPST and has a maximum of four proceeding instructions. All 185 // instructions within the block are predicated upon the vpr and we allow 186 // instructions to define the vpr within in the block too. 187 class VPTState { 188 friend struct LowOverheadLoop; 189 190 SmallVector<MachineInstr *, 4> Insts; 191 192 static SmallVector<VPTState, 4> Blocks; 193 static SetVector<MachineInstr *> CurrentPredicates; 194 static std::map<MachineInstr *, 195 std::unique_ptr<PredicatedMI>> PredicatedInsts; 196 197 static void CreateVPTBlock(MachineInstr *MI) { 198 assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR)) 199 && "Can't begin VPT without predicate"); 200 Blocks.emplace_back(MI); 201 // The execution of MI is predicated upon the current set of instructions 202 // that are AND'ed together to form the VPR predicate value. In the case 203 // that MI is a VPT, CurrentPredicates will also just be MI. 204 PredicatedInsts.emplace( 205 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 206 } 207 208 static void reset() { 209 Blocks.clear(); 210 PredicatedInsts.clear(); 211 CurrentPredicates.clear(); 212 } 213 214 static void addInst(MachineInstr *MI) { 215 Blocks.back().insert(MI); 216 PredicatedInsts.emplace( 217 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 218 } 219 220 static void addPredicate(MachineInstr *MI) { 221 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI); 222 CurrentPredicates.insert(MI); 223 } 224 225 static void resetPredicate(MachineInstr *MI) { 226 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI); 227 CurrentPredicates.clear(); 228 CurrentPredicates.insert(MI); 229 } 230 231 public: 232 // Have we found an instruction within the block which defines the vpr? If 233 // so, not all the instructions in the block will have the same predicate. 234 static bool hasUniformPredicate(VPTState &Block) { 235 return getDivergent(Block) == nullptr; 236 } 237 238 // If it exists, return the first internal instruction which modifies the 239 // VPR. 240 static MachineInstr *getDivergent(VPTState &Block) { 241 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 242 for (unsigned i = 1; i < Insts.size(); ++i) { 243 MachineInstr *Next = Insts[i]; 244 if (isVectorPredicate(Next)) 245 return Next; // Found an instruction altering the vpr. 246 } 247 return nullptr; 248 } 249 250 // Return whether the given instruction is predicated upon a VCTP. 251 static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) { 252 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates; 253 if (Exclusive && Predicates.size() != 1) 254 return false; 255 return llvm::any_of(Predicates, isVCTP); 256 } 257 258 // Is the VPST, controlling the block entry, predicated upon a VCTP. 259 static bool isEntryPredicatedOnVCTP(VPTState &Block, 260 bool Exclusive = false) { 261 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 262 return isPredicatedOnVCTP(Insts.front(), Exclusive); 263 } 264 265 // If this block begins with a VPT, we can check whether it's using 266 // at least one predicated input(s), as well as possible loop invariant 267 // which would result in it being implicitly predicated. 268 static bool hasImplicitlyValidVPT(VPTState &Block, 269 ReachingDefAnalysis &RDA) { 270 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 271 MachineInstr *VPT = Insts.front(); 272 assert(isVPTOpcode(VPT->getOpcode()) && 273 "Expected VPT block to begin with VPT/VPST"); 274 275 if (VPT->getOpcode() == ARM::MVE_VPST) 276 return false; 277 278 auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) { 279 MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx)); 280 return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op); 281 }; 282 283 auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) { 284 MachineOperand &MO = MI->getOperand(Idx); 285 if (!MO.isReg() || !MO.getReg()) 286 return true; 287 288 SmallPtrSet<MachineInstr *, 2> Defs; 289 RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs); 290 if (Defs.empty()) 291 return true; 292 293 for (auto *Def : Defs) 294 if (Def->getParent() == VPT->getParent()) 295 return false; 296 return true; 297 }; 298 299 // Check that at least one of the operands is directly predicated on a 300 // vctp and allow an invariant value too. 301 return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) && 302 (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) && 303 (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2)); 304 } 305 306 static bool isValid(ReachingDefAnalysis &RDA) { 307 // All predication within the loop should be based on vctp. If the block 308 // isn't predicated on entry, check whether the vctp is within the block 309 // and that all other instructions are then predicated on it. 310 for (auto &Block : Blocks) { 311 if (isEntryPredicatedOnVCTP(Block, false) || 312 hasImplicitlyValidVPT(Block, RDA)) 313 continue; 314 315 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 316 // We don't know how to convert a block with just a VPT;VCTP into 317 // anything valid once we remove the VCTP. For now just bail out. 318 assert(isVPTOpcode(Insts.front()->getOpcode()) && 319 "Expected VPT block to start with a VPST or VPT!"); 320 if (Insts.size() == 2 && Insts.front()->getOpcode() != ARM::MVE_VPST && 321 isVCTP(Insts.back())) 322 return false; 323 324 for (auto *MI : Insts) { 325 // Check that any internal VCTPs are 'Then' predicated. 326 if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then) 327 return false; 328 // Skip other instructions that build up the predicate. 329 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI)) 330 continue; 331 // Check that any other instructions are predicated upon a vctp. 332 // TODO: We could infer when VPTs are implicitly predicated on the 333 // vctp (when the operands are predicated). 334 if (!isPredicatedOnVCTP(MI)) { 335 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI); 336 return false; 337 } 338 } 339 } 340 return true; 341 } 342 343 VPTState(MachineInstr *MI) { Insts.push_back(MI); } 344 345 void insert(MachineInstr *MI) { 346 Insts.push_back(MI); 347 // VPT/VPST + 4 predicated instructions. 348 assert(Insts.size() <= 5 && "Too many instructions in VPT block!"); 349 } 350 351 bool containsVCTP() const { 352 return llvm::any_of(Insts, isVCTP); 353 } 354 355 unsigned size() const { return Insts.size(); } 356 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; } 357 }; 358 359 struct LowOverheadLoop { 360 361 MachineLoop &ML; 362 MachineBasicBlock *Preheader = nullptr; 363 MachineLoopInfo &MLI; 364 ReachingDefAnalysis &RDA; 365 const TargetRegisterInfo &TRI; 366 const ARMBaseInstrInfo &TII; 367 MachineFunction *MF = nullptr; 368 MachineBasicBlock::iterator StartInsertPt; 369 MachineBasicBlock *StartInsertBB = nullptr; 370 MachineInstr *Start = nullptr; 371 MachineInstr *Dec = nullptr; 372 MachineInstr *End = nullptr; 373 MachineOperand TPNumElements; 374 SmallVector<MachineInstr *, 4> VCTPs; 375 SmallPtrSet<MachineInstr *, 4> ToRemove; 376 SmallPtrSet<MachineInstr *, 4> BlockMasksToRecompute; 377 SmallPtrSet<MachineInstr *, 4> DoubleWidthResultInstrs; 378 SmallPtrSet<MachineInstr *, 4> VMOVCopies; 379 bool Revert = false; 380 bool CannotTailPredicate = false; 381 382 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 383 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI, 384 const ARMBaseInstrInfo &TII) 385 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII), 386 TPNumElements(MachineOperand::CreateImm(0)) { 387 MF = ML.getHeader()->getParent(); 388 if (auto *MBB = ML.getLoopPreheader()) 389 Preheader = MBB; 390 else if (auto *MBB = MLI.findLoopPreheader(&ML, true, true)) 391 Preheader = MBB; 392 VPTState::reset(); 393 } 394 395 // If this is an MVE instruction, check that we know how to use tail 396 // predication with it. Record VPT blocks and return whether the 397 // instruction is valid for tail predication. 398 bool ValidateMVEInst(MachineInstr *MI); 399 400 void AnalyseMVEInst(MachineInstr *MI) { 401 CannotTailPredicate = !ValidateMVEInst(MI); 402 } 403 404 bool IsTailPredicationLegal() const { 405 // For now, let's keep things really simple and only support a single 406 // block for tail predication. 407 return !Revert && FoundAllComponents() && !VCTPs.empty() && 408 !CannotTailPredicate && ML.getNumBlocks() == 1; 409 } 410 411 // Given that MI is a VCTP, check that is equivalent to any other VCTPs 412 // found. 413 bool AddVCTP(MachineInstr *MI); 414 415 // Check that the predication in the loop will be equivalent once we 416 // perform the conversion. Also ensure that we can provide the number 417 // of elements to the loop start instruction. 418 bool ValidateTailPredicate(); 419 420 // Check that any values available outside of the loop will be the same 421 // after tail predication conversion. 422 bool ValidateLiveOuts(); 423 424 // Is it safe to define LR with DLS/WLS? 425 // LR can be defined if it is the operand to start, because it's the same 426 // value, or if it's going to be equivalent to the operand to Start. 427 MachineInstr *isSafeToDefineLR(); 428 429 // Check the branch targets are within range and we satisfy our 430 // restrictions. 431 void Validate(ARMBasicBlockUtils *BBUtils); 432 433 bool FoundAllComponents() const { 434 return Start && Dec && End; 435 } 436 437 SmallVectorImpl<VPTState> &getVPTBlocks() { 438 return VPTState::Blocks; 439 } 440 441 // Return the operand for the loop start instruction. This will be the loop 442 // iteration count, or the number of elements if we're tail predicating. 443 MachineOperand &getLoopStartOperand() { 444 if (IsTailPredicationLegal()) 445 return TPNumElements; 446 return Start->getOperand(1); 447 } 448 449 unsigned getStartOpcode() const { 450 bool IsDo = isDoLoopStart(*Start); 451 if (!IsTailPredicationLegal()) 452 return IsDo ? ARM::t2DLS : ARM::t2WLS; 453 454 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo); 455 } 456 457 void dump() const { 458 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 459 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 460 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 461 if (!VCTPs.empty()) { 462 dbgs() << "ARM Loops: Found VCTP(s):\n"; 463 for (auto *MI : VCTPs) 464 dbgs() << " - " << *MI; 465 } 466 if (!FoundAllComponents()) 467 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 468 else if (!(Start && Dec && End)) 469 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 470 } 471 }; 472 473 class ARMLowOverheadLoops : public MachineFunctionPass { 474 MachineFunction *MF = nullptr; 475 MachineLoopInfo *MLI = nullptr; 476 ReachingDefAnalysis *RDA = nullptr; 477 const ARMBaseInstrInfo *TII = nullptr; 478 MachineRegisterInfo *MRI = nullptr; 479 const TargetRegisterInfo *TRI = nullptr; 480 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 481 482 public: 483 static char ID; 484 485 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 486 487 void getAnalysisUsage(AnalysisUsage &AU) const override { 488 AU.setPreservesCFG(); 489 AU.addRequired<MachineLoopInfo>(); 490 AU.addRequired<ReachingDefAnalysis>(); 491 MachineFunctionPass::getAnalysisUsage(AU); 492 } 493 494 bool runOnMachineFunction(MachineFunction &MF) override; 495 496 MachineFunctionProperties getRequiredProperties() const override { 497 return MachineFunctionProperties().set( 498 MachineFunctionProperties::Property::NoVRegs).set( 499 MachineFunctionProperties::Property::TracksLiveness); 500 } 501 502 StringRef getPassName() const override { 503 return ARM_LOW_OVERHEAD_LOOPS_NAME; 504 } 505 506 private: 507 bool ProcessLoop(MachineLoop *ML); 508 509 bool RevertNonLoops(); 510 511 void RevertWhile(MachineInstr *MI) const; 512 void RevertDo(MachineInstr *MI) const; 513 514 bool RevertLoopDec(MachineInstr *MI) const; 515 516 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 517 518 void RevertLoopEndDec(MachineInstr *MI) const; 519 520 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 521 522 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 523 524 void Expand(LowOverheadLoop &LoLoop); 525 526 void IterationCountDCE(LowOverheadLoop &LoLoop); 527 }; 528 } 529 530 char ARMLowOverheadLoops::ID = 0; 531 532 SmallVector<VPTState, 4> VPTState::Blocks; 533 SetVector<MachineInstr *> VPTState::CurrentPredicates; 534 std::map<MachineInstr *, 535 std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts; 536 537 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 538 false, false) 539 540 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA, 541 InstSet &ToRemove, InstSet &Ignore) { 542 543 // Check that we can remove all of Killed without having to modify any IT 544 // blocks. 545 auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) { 546 // Collect the dead code and the MBBs in which they reside. 547 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 548 for (auto *Dead : Killed) 549 BasicBlocks.insert(Dead->getParent()); 550 551 // Collect IT blocks in all affected basic blocks. 552 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 553 for (auto *MBB : BasicBlocks) { 554 for (auto &IT : *MBB) { 555 if (IT.getOpcode() != ARM::t2IT) 556 continue; 557 RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE), 558 ITBlocks[&IT]); 559 } 560 } 561 562 // If we're removing all of the instructions within an IT block, then 563 // also remove the IT instruction. 564 SmallPtrSet<MachineInstr *, 2> ModifiedITs; 565 SmallPtrSet<MachineInstr *, 2> RemoveITs; 566 for (auto *Dead : Killed) { 567 if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) { 568 MachineInstr *IT = RDA.getMIOperand(Dead, *MO); 569 RemoveITs.insert(IT); 570 auto &CurrentBlock = ITBlocks[IT]; 571 CurrentBlock.erase(Dead); 572 if (CurrentBlock.empty()) 573 ModifiedITs.erase(IT); 574 else 575 ModifiedITs.insert(IT); 576 } 577 } 578 if (!ModifiedITs.empty()) 579 return false; 580 Killed.insert(RemoveITs.begin(), RemoveITs.end()); 581 return true; 582 }; 583 584 SmallPtrSet<MachineInstr *, 2> Uses; 585 if (!RDA.isSafeToRemove(MI, Uses, Ignore)) 586 return false; 587 588 if (WontCorruptITs(Uses, RDA)) { 589 ToRemove.insert(Uses.begin(), Uses.end()); 590 LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI 591 << " - can also remove:\n"; 592 for (auto *Use : Uses) 593 dbgs() << " - " << *Use); 594 595 SmallPtrSet<MachineInstr*, 4> Killed; 596 RDA.collectKilledOperands(MI, Killed); 597 if (WontCorruptITs(Killed, RDA)) { 598 ToRemove.insert(Killed.begin(), Killed.end()); 599 LLVM_DEBUG(for (auto *Dead : Killed) 600 dbgs() << " - " << *Dead); 601 } 602 return true; 603 } 604 return false; 605 } 606 607 bool LowOverheadLoop::ValidateTailPredicate() { 608 if (!IsTailPredicationLegal()) { 609 LLVM_DEBUG(if (VCTPs.empty()) 610 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 611 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 612 return false; 613 } 614 615 assert(!VCTPs.empty() && "VCTP instruction expected but is not set"); 616 assert(ML.getBlocks().size() == 1 && 617 "Shouldn't be processing a loop with more than one block"); 618 619 if (DisableTailPredication) { 620 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n"); 621 return false; 622 } 623 624 if (!VPTState::isValid(RDA)) { 625 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n"); 626 return false; 627 } 628 629 if (!ValidateLiveOuts()) { 630 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n"); 631 return false; 632 } 633 634 // For tail predication, we need to provide the number of elements, instead 635 // of the iteration count, to the loop start instruction. The number of 636 // elements is provided to the vctp instruction, so we need to check that 637 // we can use this register at InsertPt. 638 MachineInstr *VCTP = VCTPs.back(); 639 if (Start->getOpcode() == ARM::t2DoLoopStartTP || 640 Start->getOpcode() == ARM::t2WhileLoopStartTP) { 641 TPNumElements = Start->getOperand(2); 642 StartInsertPt = Start; 643 StartInsertBB = Start->getParent(); 644 } else { 645 TPNumElements = VCTP->getOperand(1); 646 MCRegister NumElements = TPNumElements.getReg().asMCReg(); 647 648 // If the register is defined within loop, then we can't perform TP. 649 // TODO: Check whether this is just a mov of a register that would be 650 // available. 651 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 652 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 653 return false; 654 } 655 656 // The element count register maybe defined after InsertPt, in which case we 657 // need to try to move either InsertPt or the def so that the [w|d]lstp can 658 // use the value. 659 660 if (StartInsertPt != StartInsertBB->end() && 661 !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) { 662 if (auto *ElemDef = 663 RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) { 664 if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) { 665 ElemDef->removeFromParent(); 666 StartInsertBB->insert(StartInsertPt, ElemDef); 667 LLVM_DEBUG(dbgs() 668 << "ARM Loops: Moved element count def: " << *ElemDef); 669 } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) { 670 StartInsertPt->removeFromParent(); 671 StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 672 &*StartInsertPt); 673 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 674 } else { 675 // If we fail to move an instruction and the element count is provided 676 // by a mov, use the mov operand if it will have the same value at the 677 // insertion point 678 MachineOperand Operand = ElemDef->getOperand(1); 679 if (isMovRegOpcode(ElemDef->getOpcode()) && 680 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) == 681 RDA.getUniqueReachingMIDef(&*StartInsertPt, 682 Operand.getReg().asMCReg())) { 683 TPNumElements = Operand; 684 NumElements = TPNumElements.getReg(); 685 } else { 686 LLVM_DEBUG(dbgs() 687 << "ARM Loops: Unable to move element count to loop " 688 << "start instruction.\n"); 689 return false; 690 } 691 } 692 } 693 } 694 695 // Especially in the case of while loops, InsertBB may not be the 696 // preheader, so we need to check that the register isn't redefined 697 // before entering the loop. 698 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 699 MCRegister NumElements) { 700 if (MBB->empty()) 701 return false; 702 // NumElements is redefined in this block. 703 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 704 return true; 705 706 // Don't continue searching up through multiple predecessors. 707 if (MBB->pred_size() > 1) 708 return true; 709 710 return false; 711 }; 712 713 // Search backwards for a def, until we get to InsertBB. 714 MachineBasicBlock *MBB = Preheader; 715 while (MBB && MBB != StartInsertBB) { 716 if (CannotProvideElements(MBB, NumElements)) { 717 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 718 return false; 719 } 720 MBB = *MBB->pred_begin(); 721 } 722 } 723 724 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect 725 // world the [w|d]lstp instruction would be last instruction in the preheader 726 // and so it would only affect instructions within the loop body. But due to 727 // scheduling, and/or the logic in this pass (above), the insertion point can 728 // be moved earlier. So if the Loop Start isn't the last instruction in the 729 // preheader, and if the initial element count is smaller than the vector 730 // width, the Loop Start instruction will immediately generate one or more 731 // false lane mask which can, incorrectly, affect the proceeding MVE 732 // instructions in the preheader. 733 if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) { 734 LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n"); 735 return false; 736 } 737 738 // For any DoubleWidthResultInstrs we found whilst scanning instructions, they 739 // need to compute an output size that is smaller than the VCTP mask operates 740 // on. The VecSize of the DoubleWidthResult is the larger vector size - the 741 // size it extends into, so any VCTP VecSize <= is valid. 742 unsigned VCTPVecSize = getVecSize(*VCTP); 743 for (MachineInstr *MI : DoubleWidthResultInstrs) { 744 unsigned InstrVecSize = getVecSize(*MI); 745 if (InstrVecSize > VCTPVecSize) { 746 LLVM_DEBUG(dbgs() << "ARM Loops: Double width result larger than VCTP " 747 << "VecSize:\n" << *MI); 748 return false; 749 } 750 } 751 752 // Check that the value change of the element count is what we expect and 753 // that the predication will be equivalent. For this we need: 754 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 755 // and we can also allow register copies within the chain too. 756 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 757 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 758 }; 759 760 MachineBasicBlock *MBB = VCTP->getParent(); 761 // Remove modifications to the element count since they have no purpose in a 762 // tail predicated loop. Explicitly refer to the vctp operand no matter which 763 // register NumElements has been assigned to, since that is what the 764 // modifications will be using 765 if (auto *Def = RDA.getUniqueReachingMIDef( 766 &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) { 767 SmallPtrSet<MachineInstr*, 2> ElementChain; 768 SmallPtrSet<MachineInstr*, 2> Ignore; 769 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 770 771 Ignore.insert(VCTPs.begin(), VCTPs.end()); 772 773 if (TryRemove(Def, RDA, ElementChain, Ignore)) { 774 bool FoundSub = false; 775 776 for (auto *MI : ElementChain) { 777 if (isMovRegOpcode(MI->getOpcode())) 778 continue; 779 780 if (isSubImmOpcode(MI->getOpcode())) { 781 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) { 782 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 783 " count: " << *MI); 784 return false; 785 } 786 FoundSub = true; 787 } else { 788 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 789 " count: " << *MI); 790 return false; 791 } 792 } 793 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 794 } 795 } 796 797 // If we converted the LoopStart to a t2DoLoopStartTP/t2WhileLoopStartTP, we 798 // can also remove any extra instructions in the preheader, which often 799 // includes a now unused MOV. 800 if ((Start->getOpcode() == ARM::t2DoLoopStartTP || 801 Start->getOpcode() == ARM::t2WhileLoopStartTP) && 802 Preheader && !Preheader->empty() && 803 !RDA.hasLocalDefBefore(VCTP, VCTP->getOperand(1).getReg())) { 804 if (auto *Def = RDA.getUniqueReachingMIDef( 805 &Preheader->back(), VCTP->getOperand(1).getReg().asMCReg())) { 806 SmallPtrSet<MachineInstr*, 2> Ignore; 807 Ignore.insert(VCTPs.begin(), VCTPs.end()); 808 TryRemove(Def, RDA, ToRemove, Ignore); 809 } 810 } 811 812 return true; 813 } 814 815 static bool isRegInClass(const MachineOperand &MO, 816 const TargetRegisterClass *Class) { 817 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 818 } 819 820 // MVE 'narrowing' operate on half a lane, reading from half and writing 821 // to half, which are referred to has the top and bottom half. The other 822 // half retains its previous value. 823 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 824 const MCInstrDesc &MCID = MI.getDesc(); 825 uint64_t Flags = MCID.TSFlags; 826 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 827 } 828 829 // Some MVE instructions read from the top/bottom halves of their operand(s) 830 // and generate a vector result with result elements that are double the 831 // width of the input. 832 static bool producesDoubleWidthResult(const MachineInstr &MI) { 833 const MCInstrDesc &MCID = MI.getDesc(); 834 uint64_t Flags = MCID.TSFlags; 835 return (Flags & ARMII::DoubleWidthResult) != 0; 836 } 837 838 static bool isHorizontalReduction(const MachineInstr &MI) { 839 const MCInstrDesc &MCID = MI.getDesc(); 840 uint64_t Flags = MCID.TSFlags; 841 return (Flags & ARMII::HorizontalReduction) != 0; 842 } 843 844 // Can this instruction generate a non-zero result when given only zeroed 845 // operands? This allows us to know that, given operands with false bytes 846 // zeroed by masked loads, that the result will also contain zeros in those 847 // bytes. 848 static bool canGenerateNonZeros(const MachineInstr &MI) { 849 850 // Check for instructions which can write into a larger element size, 851 // possibly writing into a previous zero'd lane. 852 if (producesDoubleWidthResult(MI)) 853 return true; 854 855 switch (MI.getOpcode()) { 856 default: 857 break; 858 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 859 // fp16 -> fp32 vector conversions. 860 // Instructions that perform a NOT will generate 1s from 0s. 861 case ARM::MVE_VMVN: 862 case ARM::MVE_VORN: 863 // Count leading zeros will do just that! 864 case ARM::MVE_VCLZs8: 865 case ARM::MVE_VCLZs16: 866 case ARM::MVE_VCLZs32: 867 return true; 868 } 869 return false; 870 } 871 872 // Look at its register uses to see if it only can only receive zeros 873 // into its false lanes which would then produce zeros. Also check that 874 // the output register is also defined by an FalseLanesZero instruction 875 // so that if tail-predication happens, the lanes that aren't updated will 876 // still be zeros. 877 static bool producesFalseLanesZero(MachineInstr &MI, 878 const TargetRegisterClass *QPRs, 879 const ReachingDefAnalysis &RDA, 880 InstSet &FalseLanesZero) { 881 if (canGenerateNonZeros(MI)) 882 return false; 883 884 bool isPredicated = isVectorPredicated(&MI); 885 // Predicated loads will write zeros to the falsely predicated bytes of the 886 // destination register. 887 if (MI.mayLoad()) 888 return isPredicated; 889 890 auto IsZeroInit = [](MachineInstr *Def) { 891 return !isVectorPredicated(Def) && 892 Def->getOpcode() == ARM::MVE_VMOVimmi32 && 893 Def->getOperand(1).getImm() == 0; 894 }; 895 896 bool AllowScalars = isHorizontalReduction(MI); 897 for (auto &MO : MI.operands()) { 898 if (!MO.isReg() || !MO.getReg()) 899 continue; 900 if (!isRegInClass(MO, QPRs) && AllowScalars) 901 continue; 902 // Skip the lr predicate reg 903 int PIdx = llvm::findFirstVPTPredOperandIdx(MI); 904 if (PIdx != -1 && (int)MI.getOperandNo(&MO) == PIdx + 2) 905 continue; 906 907 // Check that this instruction will produce zeros in its false lanes: 908 // - If it only consumes false lanes zero or constant 0 (vmov #0) 909 // - If it's predicated, it only matters that it's def register already has 910 // false lane zeros, so we can ignore the uses. 911 SmallPtrSet<MachineInstr *, 2> Defs; 912 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs); 913 for (auto *Def : Defs) { 914 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def)) 915 continue; 916 if (MO.isUse() && isPredicated) 917 continue; 918 return false; 919 } 920 } 921 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 922 return true; 923 } 924 925 bool LowOverheadLoop::ValidateLiveOuts() { 926 // We want to find out if the tail-predicated version of this loop will 927 // produce the same values as the loop in its original form. For this to 928 // be true, the newly inserted implicit predication must not change the 929 // the (observable) results. 930 // We're doing this because many instructions in the loop will not be 931 // predicated and so the conversion from VPT predication to tail-predication 932 // can result in different values being produced; due to the tail-predication 933 // preventing many instructions from updating their falsely predicated 934 // lanes. This analysis assumes that all the instructions perform lane-wise 935 // operations and don't perform any exchanges. 936 // A masked load, whether through VPT or tail predication, will write zeros 937 // to any of the falsely predicated bytes. So, from the loads, we know that 938 // the false lanes are zeroed and here we're trying to track that those false 939 // lanes remain zero, or where they change, the differences are masked away 940 // by their user(s). 941 // All MVE stores have to be predicated, so we know that any predicate load 942 // operands, or stored results are equivalent already. Other explicitly 943 // predicated instructions will perform the same operation in the original 944 // loop and the tail-predicated form too. Because of this, we can insert 945 // loads, stores and other predicated instructions into our Predicated 946 // set and build from there. 947 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 948 SetVector<MachineInstr *> FalseLanesUnknown; 949 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 950 SmallPtrSet<MachineInstr *, 4> Predicated; 951 MachineBasicBlock *Header = ML.getHeader(); 952 953 LLVM_DEBUG(dbgs() << "ARM Loops: Validating Live outs\n"); 954 955 for (auto &MI : *Header) { 956 if (!shouldInspect(MI)) 957 continue; 958 959 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) 960 continue; 961 962 bool isPredicated = isVectorPredicated(&MI); 963 bool retainsOrReduces = 964 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI); 965 966 if (isPredicated) 967 Predicated.insert(&MI); 968 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) 969 FalseLanesZero.insert(&MI); 970 else if (MI.getNumDefs() == 0) 971 continue; 972 else if (!isPredicated && retainsOrReduces) { 973 LLVM_DEBUG(dbgs() << " Unpredicated instruction that retainsOrReduces: " << MI); 974 return false; 975 } else if (!isPredicated && MI.getOpcode() != ARM::MQPRCopy) 976 FalseLanesUnknown.insert(&MI); 977 } 978 979 LLVM_DEBUG({ 980 dbgs() << " Predicated:\n"; 981 for (auto *I : Predicated) 982 dbgs() << " " << *I; 983 dbgs() << " FalseLanesZero:\n"; 984 for (auto *I : FalseLanesZero) 985 dbgs() << " " << *I; 986 dbgs() << " FalseLanesUnknown:\n"; 987 for (auto *I : FalseLanesUnknown) 988 dbgs() << " " << *I; 989 }); 990 991 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 992 SmallPtrSetImpl<MachineInstr *> &Predicated) { 993 SmallPtrSet<MachineInstr *, 2> Uses; 994 RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses); 995 for (auto *Use : Uses) { 996 if (Use != MI && !Predicated.count(Use)) 997 return false; 998 } 999 return true; 1000 }; 1001 1002 // Visit the unknowns in reverse so that we can start at the values being 1003 // stored and then we can work towards the leaves, hopefully adding more 1004 // instructions to Predicated. Successfully terminating the loop means that 1005 // all the unknown values have to found to be masked by predicated user(s). 1006 // For any unpredicated values, we store them in NonPredicated so that we 1007 // can later check whether these form a reduction. 1008 SmallPtrSet<MachineInstr*, 2> NonPredicated; 1009 for (auto *MI : reverse(FalseLanesUnknown)) { 1010 for (auto &MO : MI->operands()) { 1011 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 1012 continue; 1013 if (!HasPredicatedUsers(MI, MO, Predicated)) { 1014 LLVM_DEBUG(dbgs() << " Found an unknown def of : " 1015 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 1016 NonPredicated.insert(MI); 1017 break; 1018 } 1019 } 1020 // Any unknown false lanes have been masked away by the user(s). 1021 if (!NonPredicated.contains(MI)) 1022 Predicated.insert(MI); 1023 } 1024 1025 SmallPtrSet<MachineInstr *, 2> LiveOutMIs; 1026 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 1027 ML.getExitBlocks(ExitBlocks); 1028 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 1029 assert(ExitBlocks.size() == 1 && "Expected a single exit block"); 1030 MachineBasicBlock *ExitBB = ExitBlocks.front(); 1031 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) { 1032 // TODO: Instead of blocking predication, we could move the vctp to the exit 1033 // block and calculate it's operand there in or the preheader. 1034 if (RegMask.PhysReg == ARM::VPR) { 1035 LLVM_DEBUG(dbgs() << " VPR is live in to the exit block."); 1036 return false; 1037 } 1038 // Check Q-regs that are live in the exit blocks. We don't collect scalars 1039 // because they won't be affected by lane predication. 1040 if (QPRs->contains(RegMask.PhysReg)) 1041 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg)) 1042 LiveOutMIs.insert(MI); 1043 } 1044 1045 // We've already validated that any VPT predication within the loop will be 1046 // equivalent when we perform the predication transformation; so we know that 1047 // any VPT predicated instruction is predicated upon VCTP. Any live-out 1048 // instruction needs to be predicated, so check this here. The instructions 1049 // in NonPredicated have been found to be a reduction that we can ensure its 1050 // legality. Any MQPRCopy found will need to validate its input as if it was 1051 // live out. 1052 SmallVector<MachineInstr *> Worklist(LiveOutMIs.begin(), LiveOutMIs.end()); 1053 while (!Worklist.empty()) { 1054 MachineInstr *MI = Worklist.pop_back_val(); 1055 if (MI->getOpcode() == ARM::MQPRCopy) { 1056 VMOVCopies.insert(MI); 1057 MachineInstr *CopySrc = 1058 RDA.getUniqueReachingMIDef(MI, MI->getOperand(1).getReg()); 1059 if (CopySrc) 1060 Worklist.push_back(CopySrc); 1061 } else if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) { 1062 LLVM_DEBUG(dbgs() << " Unable to handle live out: " << *MI); 1063 VMOVCopies.clear(); 1064 return false; 1065 } 1066 } 1067 1068 return true; 1069 } 1070 1071 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) { 1072 if (Revert) 1073 return; 1074 1075 // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP] 1076 // can only jump back. 1077 auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End, 1078 ARMBasicBlockUtils *BBUtils, MachineLoop &ML) { 1079 MachineBasicBlock *TgtBB = End->getOpcode() == ARM::t2LoopEnd 1080 ? End->getOperand(1).getMBB() 1081 : End->getOperand(2).getMBB(); 1082 // TODO Maybe there's cases where the target doesn't have to be the header, 1083 // but for now be safe and revert. 1084 if (TgtBB != ML.getHeader()) { 1085 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n"); 1086 return false; 1087 } 1088 1089 // The WLS and LE instructions have 12-bits for the label offset. WLS 1090 // requires a positive offset, while LE uses negative. 1091 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 1092 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 1093 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 1094 return false; 1095 } 1096 1097 if (isWhileLoopStart(*Start)) { 1098 MachineBasicBlock *TargetBB = getWhileLoopStartTargetBB(*Start); 1099 if (BBUtils->getOffsetOf(Start) > BBUtils->getOffsetOf(TargetBB) || 1100 !BBUtils->isBBInRange(Start, TargetBB, 4094)) { 1101 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 1102 return false; 1103 } 1104 } 1105 return true; 1106 }; 1107 1108 StartInsertPt = MachineBasicBlock::iterator(Start); 1109 StartInsertBB = Start->getParent(); 1110 LLVM_DEBUG(dbgs() << "ARM Loops: Will insert LoopStart at " 1111 << *StartInsertPt); 1112 1113 Revert = !ValidateRanges(Start, End, BBUtils, ML); 1114 CannotTailPredicate = !ValidateTailPredicate(); 1115 } 1116 1117 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) { 1118 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI); 1119 if (VCTPs.empty()) { 1120 VCTPs.push_back(MI); 1121 return true; 1122 } 1123 1124 // If we find another VCTP, check whether it uses the same value as the main VCTP. 1125 // If it does, store it in the VCTPs set, else refuse it. 1126 MachineInstr *Prev = VCTPs.back(); 1127 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) || 1128 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) { 1129 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " 1130 "definition from the main VCTP"); 1131 return false; 1132 } 1133 VCTPs.push_back(MI); 1134 return true; 1135 } 1136 1137 static bool ValidateMVEStore(MachineInstr *MI, MachineLoop *ML) { 1138 1139 auto GetFrameIndex = [](MachineMemOperand *Operand) { 1140 const PseudoSourceValue *PseudoValue = Operand->getPseudoValue(); 1141 if (PseudoValue && PseudoValue->kind() == PseudoSourceValue::FixedStack) { 1142 if (const auto *FS = dyn_cast<FixedStackPseudoSourceValue>(PseudoValue)) { 1143 return FS->getFrameIndex(); 1144 } 1145 } 1146 return -1; 1147 }; 1148 1149 auto IsStackOp = [GetFrameIndex](MachineInstr *I) { 1150 switch (I->getOpcode()) { 1151 case ARM::MVE_VSTRWU32: 1152 case ARM::MVE_VLDRWU32: { 1153 return I->getOperand(1).getReg() == ARM::SP && 1154 I->memoperands().size() == 1 && 1155 GetFrameIndex(I->memoperands().front()) >= 0; 1156 } 1157 default: 1158 return false; 1159 } 1160 }; 1161 1162 // An unpredicated vector register spill is allowed if all of the uses of the 1163 // stack slot are within the loop 1164 if (MI->getOpcode() != ARM::MVE_VSTRWU32 || !IsStackOp(MI)) 1165 return false; 1166 1167 // Search all blocks after the loop for accesses to the same stack slot. 1168 // ReachingDefAnalysis doesn't work for sp as it relies on registers being 1169 // live-out (which sp never is) to know what blocks to look in 1170 if (MI->memoperands().size() == 0) 1171 return false; 1172 int FI = GetFrameIndex(MI->memoperands().front()); 1173 1174 auto &FrameInfo = MI->getParent()->getParent()->getFrameInfo(); 1175 if (FI == -1 || !FrameInfo.isSpillSlotObjectIndex(FI)) 1176 return false; 1177 1178 SmallVector<MachineBasicBlock *> Frontier; 1179 ML->getExitBlocks(Frontier); 1180 SmallPtrSet<MachineBasicBlock *, 4> Visited{MI->getParent()}; 1181 unsigned Idx = 0; 1182 while (Idx < Frontier.size()) { 1183 MachineBasicBlock *BB = Frontier[Idx]; 1184 bool LookAtSuccessors = true; 1185 for (auto &I : *BB) { 1186 if (!IsStackOp(&I) || I.memoperands().size() == 0) 1187 continue; 1188 if (GetFrameIndex(I.memoperands().front()) != FI) 1189 continue; 1190 // If this block has a store to the stack slot before any loads then we 1191 // can ignore the block 1192 if (I.getOpcode() == ARM::MVE_VSTRWU32) { 1193 LookAtSuccessors = false; 1194 break; 1195 } 1196 // If the store and the load are using the same stack slot then the 1197 // store isn't valid for tail predication 1198 if (I.getOpcode() == ARM::MVE_VLDRWU32) 1199 return false; 1200 } 1201 1202 if (LookAtSuccessors) { 1203 for (auto Succ : BB->successors()) { 1204 if (!Visited.contains(Succ) && !is_contained(Frontier, Succ)) 1205 Frontier.push_back(Succ); 1206 } 1207 } 1208 Visited.insert(BB); 1209 Idx++; 1210 } 1211 1212 return true; 1213 } 1214 1215 bool LowOverheadLoop::ValidateMVEInst(MachineInstr *MI) { 1216 if (CannotTailPredicate) 1217 return false; 1218 1219 if (!shouldInspect(*MI)) 1220 return true; 1221 1222 if (MI->getOpcode() == ARM::MVE_VPSEL || 1223 MI->getOpcode() == ARM::MVE_VPNOT) { 1224 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 1225 // 1) It will use the VPR as a predicate operand, but doesn't have to be 1226 // instead a VPT block, which means we can assert while building up 1227 // the VPT block because we don't find another VPT or VPST to being a new 1228 // one. 1229 // 2) VPSEL still requires a VPR operand even after tail predicating, 1230 // which means we can't remove it unless there is another 1231 // instruction, such as vcmp, that can provide the VPR def. 1232 return false; 1233 } 1234 1235 // Record all VCTPs and check that they're equivalent to one another. 1236 if (isVCTP(MI) && !AddVCTP(MI)) 1237 return false; 1238 1239 // Inspect uses first so that any instructions that alter the VPR don't 1240 // alter the predicate upon themselves. 1241 const MCInstrDesc &MCID = MI->getDesc(); 1242 bool IsUse = false; 1243 unsigned LastOpIdx = MI->getNumOperands() - 1; 1244 for (auto &Op : enumerate(reverse(MCID.operands()))) { 1245 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index()); 1246 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR) 1247 continue; 1248 1249 if (ARM::isVpred(Op.value().OperandType)) { 1250 VPTState::addInst(MI); 1251 IsUse = true; 1252 } else if (MI->getOpcode() != ARM::MVE_VPST) { 1253 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 1254 return false; 1255 } 1256 } 1257 1258 // If we find an instruction that has been marked as not valid for tail 1259 // predication, only allow the instruction if it's contained within a valid 1260 // VPT block. 1261 bool RequiresExplicitPredication = 1262 (MCID.TSFlags & ARMII::ValidForTailPredication) == 0; 1263 if (isDomainMVE(MI) && RequiresExplicitPredication) { 1264 if (MI->getOpcode() == ARM::MQPRCopy) 1265 return true; 1266 if (!IsUse && producesDoubleWidthResult(*MI)) { 1267 DoubleWidthResultInstrs.insert(MI); 1268 return true; 1269 } 1270 1271 LLVM_DEBUG(if (!IsUse) dbgs() 1272 << "ARM Loops: Can't tail predicate: " << *MI); 1273 return IsUse; 1274 } 1275 1276 // If the instruction is already explicitly predicated, then the conversion 1277 // will be fine, but ensure that all store operations are predicated. 1278 if (MI->mayStore() && !ValidateMVEStore(MI, &ML)) 1279 return IsUse; 1280 1281 // If this instruction defines the VPR, update the predicate for the 1282 // proceeding instructions. 1283 if (isVectorPredicate(MI)) { 1284 // Clear the existing predicate when we're not in VPT Active state, 1285 // otherwise we add to it. 1286 if (!isVectorPredicated(MI)) 1287 VPTState::resetPredicate(MI); 1288 else 1289 VPTState::addPredicate(MI); 1290 } 1291 1292 // Finally once the predicate has been modified, we can start a new VPT 1293 // block if necessary. 1294 if (isVPTOpcode(MI->getOpcode())) 1295 VPTState::CreateVPTBlock(MI); 1296 1297 return true; 1298 } 1299 1300 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 1301 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 1302 if (!ST.hasLOB()) 1303 return false; 1304 1305 MF = &mf; 1306 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 1307 1308 MLI = &getAnalysis<MachineLoopInfo>(); 1309 RDA = &getAnalysis<ReachingDefAnalysis>(); 1310 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 1311 MRI = &MF->getRegInfo(); 1312 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 1313 TRI = ST.getRegisterInfo(); 1314 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 1315 BBUtils->computeAllBlockSizes(); 1316 BBUtils->adjustBBOffsetsAfter(&MF->front()); 1317 1318 bool Changed = false; 1319 for (auto ML : *MLI) { 1320 if (ML->isOutermost()) 1321 Changed |= ProcessLoop(ML); 1322 } 1323 Changed |= RevertNonLoops(); 1324 return Changed; 1325 } 1326 1327 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 1328 1329 bool Changed = false; 1330 1331 // Process inner loops first. 1332 for (MachineLoop *L : *ML) 1333 Changed |= ProcessLoop(L); 1334 1335 LLVM_DEBUG({ 1336 dbgs() << "ARM Loops: Processing loop containing:\n"; 1337 if (auto *Preheader = ML->getLoopPreheader()) 1338 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n"; 1339 else if (auto *Preheader = MLI->findLoopPreheader(ML, true, true)) 1340 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n"; 1341 for (auto *MBB : ML->getBlocks()) 1342 dbgs() << " - Block: " << printMBBReference(*MBB) << "\n"; 1343 }); 1344 1345 // Search the given block for a loop start instruction. If one isn't found, 1346 // and there's only one predecessor block, search that one too. 1347 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 1348 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 1349 for (auto &MI : *MBB) { 1350 if (isLoopStart(MI)) 1351 return &MI; 1352 } 1353 if (MBB->pred_size() == 1) 1354 return SearchForStart(*MBB->pred_begin()); 1355 return nullptr; 1356 }; 1357 1358 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII); 1359 // Search the preheader for the start intrinsic. 1360 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 1361 // with potentially multiple set.loop.iterations, so we need to enable this. 1362 if (LoLoop.Preheader) 1363 LoLoop.Start = SearchForStart(LoLoop.Preheader); 1364 else 1365 return Changed; 1366 1367 // Find the low-overhead loop components and decide whether or not to fall 1368 // back to a normal loop. Also look for a vctp instructions and decide 1369 // whether we can convert that predicate using tail predication. 1370 for (auto *MBB : reverse(ML->getBlocks())) { 1371 for (auto &MI : *MBB) { 1372 if (MI.isDebugValue()) 1373 continue; 1374 else if (MI.getOpcode() == ARM::t2LoopDec) 1375 LoLoop.Dec = &MI; 1376 else if (MI.getOpcode() == ARM::t2LoopEnd) 1377 LoLoop.End = &MI; 1378 else if (MI.getOpcode() == ARM::t2LoopEndDec) 1379 LoLoop.End = LoLoop.Dec = &MI; 1380 else if (isLoopStart(MI)) 1381 LoLoop.Start = &MI; 1382 else if (MI.getDesc().isCall()) { 1383 // TODO: Though the call will require LE to execute again, does this 1384 // mean we should revert? Always executing LE hopefully should be 1385 // faster than performing a sub,cmp,br or even subs,br. 1386 LoLoop.Revert = true; 1387 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 1388 } else { 1389 // Record VPR defs and build up their corresponding vpt blocks. 1390 // Check we know how to tail predicate any mve instructions. 1391 LoLoop.AnalyseMVEInst(&MI); 1392 } 1393 } 1394 } 1395 1396 LLVM_DEBUG(LoLoop.dump()); 1397 if (!LoLoop.FoundAllComponents()) { 1398 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 1399 return Changed; 1400 } 1401 1402 assert(LoLoop.Start->getOpcode() != ARM::t2WhileLoopStart && 1403 "Expected t2WhileLoopStart to be removed before regalloc!"); 1404 1405 // Check that the only instruction using LoopDec is LoopEnd. This can only 1406 // happen when the Dec and End are separate, not a single t2LoopEndDec. 1407 // TODO: Check for copy chains that really have no effect. 1408 if (LoLoop.Dec != LoLoop.End) { 1409 SmallPtrSet<MachineInstr *, 2> Uses; 1410 RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses); 1411 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 1412 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 1413 LoLoop.Revert = true; 1414 } 1415 } 1416 LoLoop.Validate(BBUtils.get()); 1417 Expand(LoLoop); 1418 return true; 1419 } 1420 1421 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 1422 // beq that branches to the exit branch. 1423 // TODO: We could also try to generate a cbz if the value in LR is also in 1424 // another low register. 1425 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 1426 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 1427 MachineBasicBlock *DestBB = getWhileLoopStartTargetBB(*MI); 1428 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1429 ARM::tBcc : ARM::t2Bcc; 1430 1431 RevertWhileLoopStartLR(MI, TII, BrOpc); 1432 } 1433 1434 void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const { 1435 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI); 1436 RevertDoLoopStart(MI, TII); 1437 } 1438 1439 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 1440 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 1441 MachineBasicBlock *MBB = MI->getParent(); 1442 SmallPtrSet<MachineInstr*, 1> Ignore; 1443 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 1444 if (I->getOpcode() == ARM::t2LoopEnd) { 1445 Ignore.insert(&*I); 1446 break; 1447 } 1448 } 1449 1450 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1451 bool SetFlags = 1452 RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore); 1453 1454 llvm::RevertLoopDec(MI, TII, SetFlags); 1455 return SetFlags; 1456 } 1457 1458 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1459 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1460 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1461 1462 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1463 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1464 ARM::tBcc : ARM::t2Bcc; 1465 1466 llvm::RevertLoopEnd(MI, TII, BrOpc, SkipCmp); 1467 } 1468 1469 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1470 void ARMLowOverheadLoops::RevertLoopEndDec(MachineInstr *MI) const { 1471 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to subs, br: " << *MI); 1472 assert(MI->getOpcode() == ARM::t2LoopEndDec && "Expected a t2LoopEndDec!"); 1473 MachineBasicBlock *MBB = MI->getParent(); 1474 1475 MachineInstrBuilder MIB = 1476 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2SUBri)); 1477 MIB.addDef(ARM::LR); 1478 MIB.add(MI->getOperand(1)); 1479 MIB.addImm(1); 1480 MIB.addImm(ARMCC::AL); 1481 MIB.addReg(ARM::NoRegister); 1482 MIB.addReg(ARM::CPSR); 1483 MIB->getOperand(5).setIsDef(true); 1484 1485 MachineBasicBlock *DestBB = MI->getOperand(2).getMBB(); 1486 unsigned BrOpc = 1487 BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc; 1488 1489 // Create bne 1490 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1491 MIB.add(MI->getOperand(2)); // branch target 1492 MIB.addImm(ARMCC::NE); // condition code 1493 MIB.addReg(ARM::CPSR); 1494 1495 MI->eraseFromParent(); 1496 } 1497 1498 // Perform dead code elimation on the loop iteration count setup expression. 1499 // If we are tail-predicating, the number of elements to be processed is the 1500 // operand of the VCTP instruction in the vector body, see getCount(), which is 1501 // register $r3 in this example: 1502 // 1503 // $lr = big-itercount-expression 1504 // .. 1505 // $lr = t2DoLoopStart renamable $lr 1506 // vector.body: 1507 // .. 1508 // $vpr = MVE_VCTP32 renamable $r3 1509 // renamable $lr = t2LoopDec killed renamable $lr, 1 1510 // t2LoopEnd renamable $lr, %vector.body 1511 // tB %end 1512 // 1513 // What we would like achieve here is to replace the do-loop start pseudo 1514 // instruction t2DoLoopStart with: 1515 // 1516 // $lr = MVE_DLSTP_32 killed renamable $r3 1517 // 1518 // Thus, $r3 which defines the number of elements, is written to $lr, 1519 // and then we want to delete the whole chain that used to define $lr, 1520 // see the comment below how this chain could look like. 1521 // 1522 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1523 if (!LoLoop.IsTailPredicationLegal()) 1524 return; 1525 1526 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1527 1528 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 1); 1529 if (!Def) { 1530 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1531 return; 1532 } 1533 1534 // Collect and remove the users of iteration count. 1535 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1536 LoLoop.End }; 1537 if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed)) 1538 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1539 } 1540 1541 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1542 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1543 // When using tail-predication, try to delete the dead code that was used to 1544 // calculate the number of loop iterations. 1545 IterationCountDCE(LoLoop); 1546 1547 MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt; 1548 MachineInstr *Start = LoLoop.Start; 1549 MachineBasicBlock *MBB = LoLoop.StartInsertBB; 1550 unsigned Opc = LoLoop.getStartOpcode(); 1551 MachineOperand &Count = LoLoop.getLoopStartOperand(); 1552 1553 // A DLS lr, lr we needn't emit 1554 MachineInstr* NewStart; 1555 if (Opc == ARM::t2DLS && Count.isReg() && Count.getReg() == ARM::LR) { 1556 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't insert start: DLS lr, lr"); 1557 NewStart = nullptr; 1558 } else { 1559 MachineInstrBuilder MIB = 1560 BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc)); 1561 1562 MIB.addDef(ARM::LR); 1563 MIB.add(Count); 1564 if (isWhileLoopStart(*Start)) 1565 MIB.addMBB(getWhileLoopStartTargetBB(*Start)); 1566 1567 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1568 NewStart = &*MIB; 1569 } 1570 1571 LoLoop.ToRemove.insert(Start); 1572 return NewStart; 1573 } 1574 1575 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1576 auto RemovePredicate = [](MachineInstr *MI) { 1577 if (MI->isDebugInstr()) 1578 return; 1579 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1580 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 1581 assert(PIdx >= 1 && "Trying to unpredicate a non-predicated instruction"); 1582 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1583 "Expected Then predicate!"); 1584 MI->getOperand(PIdx).setImm(ARMVCC::None); 1585 MI->getOperand(PIdx + 1).setReg(0); 1586 }; 1587 1588 for (auto &Block : LoLoop.getVPTBlocks()) { 1589 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 1590 1591 auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) { 1592 assert(TheVCMP && "Replacing a removed or non-existent VCMP"); 1593 // Replace the VCMP with a VPT 1594 MachineInstrBuilder MIB = 1595 BuildMI(*At->getParent(), At, At->getDebugLoc(), 1596 TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode()))); 1597 MIB.addImm(ARMVCC::Then); 1598 // Register one 1599 MIB.add(TheVCMP->getOperand(1)); 1600 // Register two 1601 MIB.add(TheVCMP->getOperand(2)); 1602 // The comparison code, e.g. ge, eq, lt 1603 MIB.add(TheVCMP->getOperand(3)); 1604 LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB); 1605 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1606 LoLoop.ToRemove.insert(TheVCMP); 1607 TheVCMP = nullptr; 1608 }; 1609 1610 if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) { 1611 MachineInstr *VPST = Insts.front(); 1612 if (VPTState::hasUniformPredicate(Block)) { 1613 // A vpt block starting with VPST, is only predicated upon vctp and has no 1614 // internal vpr defs: 1615 // - Remove vpst. 1616 // - Unpredicate the remaining instructions. 1617 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1618 for (unsigned i = 1; i < Insts.size(); ++i) 1619 RemovePredicate(Insts[i]); 1620 } else { 1621 // The VPT block has a non-uniform predicate but it uses a vpst and its 1622 // entry is guarded only by a vctp, which means we: 1623 // - Need to remove the original vpst. 1624 // - Then need to unpredicate any following instructions, until 1625 // we come across the divergent vpr def. 1626 // - Insert a new vpst to predicate the instruction(s) that following 1627 // the divergent vpr def. 1628 MachineInstr *Divergent = VPTState::getDivergent(Block); 1629 MachineBasicBlock *MBB = Divergent->getParent(); 1630 auto DivergentNext = ++MachineBasicBlock::iterator(Divergent); 1631 while (DivergentNext != MBB->end() && DivergentNext->isDebugInstr()) 1632 ++DivergentNext; 1633 1634 bool DivergentNextIsPredicated = 1635 DivergentNext != MBB->end() && 1636 getVPTInstrPredicate(*DivergentNext) != ARMVCC::None; 1637 1638 for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext; 1639 I != E; ++I) 1640 RemovePredicate(&*I); 1641 1642 // Check if the instruction defining vpr is a vcmp so it can be combined 1643 // with the VPST This should be the divergent instruction 1644 MachineInstr *VCMP = 1645 VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr; 1646 1647 if (DivergentNextIsPredicated) { 1648 // Insert a VPST at the divergent only if the next instruction 1649 // would actually use it. A VCMP following a VPST can be 1650 // merged into a VPT so do that instead if the VCMP exists. 1651 if (!VCMP) { 1652 // Create a VPST (with a null mask for now, we'll recompute it 1653 // later) 1654 MachineInstrBuilder MIB = 1655 BuildMI(*Divergent->getParent(), Divergent, 1656 Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST)); 1657 MIB.addImm(0); 1658 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1659 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1660 } else { 1661 // No RDA checks are necessary here since the VPST would have been 1662 // directly after the VCMP 1663 ReplaceVCMPWithVPT(VCMP, VCMP); 1664 } 1665 } 1666 } 1667 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1668 LoLoop.ToRemove.insert(VPST); 1669 } else if (Block.containsVCTP()) { 1670 // The vctp will be removed, so either the entire block will be dead or 1671 // the block mask of the vp(s)t will need to be recomputed. 1672 MachineInstr *VPST = Insts.front(); 1673 if (Block.size() == 2) { 1674 assert(VPST->getOpcode() == ARM::MVE_VPST && 1675 "Found a VPST in an otherwise empty vpt block"); 1676 LoLoop.ToRemove.insert(VPST); 1677 } else 1678 LoLoop.BlockMasksToRecompute.insert(VPST); 1679 } else if (Insts.front()->getOpcode() == ARM::MVE_VPST) { 1680 // If this block starts with a VPST then attempt to merge it with the 1681 // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT 1682 // block that no longer exists 1683 MachineInstr *VPST = Insts.front(); 1684 auto Next = ++MachineBasicBlock::iterator(VPST); 1685 assert(getVPTInstrPredicate(*Next) != ARMVCC::None && 1686 "The instruction after a VPST must be predicated"); 1687 (void)Next; 1688 MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR); 1689 if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) && 1690 !LoLoop.ToRemove.contains(VprDef)) { 1691 MachineInstr *VCMP = VprDef; 1692 // The VCMP and VPST can only be merged if the VCMP's operands will have 1693 // the same values at the VPST. 1694 // If any of the instructions between the VCMP and VPST are predicated 1695 // then a different code path is expected to have merged the VCMP and 1696 // VPST already. 1697 if (std::none_of(++MachineBasicBlock::iterator(VCMP), 1698 MachineBasicBlock::iterator(VPST), hasVPRUse) && 1699 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) && 1700 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) { 1701 ReplaceVCMPWithVPT(VCMP, VPST); 1702 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1703 LoLoop.ToRemove.insert(VPST); 1704 } 1705 } 1706 } 1707 } 1708 1709 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end()); 1710 } 1711 1712 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1713 1714 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1715 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1716 MachineInstr *End = LoLoop.End; 1717 MachineBasicBlock *MBB = End->getParent(); 1718 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1719 ARM::MVE_LETP : ARM::t2LEUpdate; 1720 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1721 TII->get(Opc)); 1722 MIB.addDef(ARM::LR); 1723 unsigned Off = LoLoop.Dec == LoLoop.End ? 1 : 0; 1724 MIB.add(End->getOperand(Off + 0)); 1725 MIB.add(End->getOperand(Off + 1)); 1726 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1727 LoLoop.ToRemove.insert(LoLoop.Dec); 1728 LoLoop.ToRemove.insert(End); 1729 return &*MIB; 1730 }; 1731 1732 // TODO: We should be able to automatically remove these branches before we 1733 // get here - probably by teaching analyzeBranch about the pseudo 1734 // instructions. 1735 // If there is an unconditional branch, after I, that just branches to the 1736 // next block, remove it. 1737 auto RemoveDeadBranch = [](MachineInstr *I) { 1738 MachineBasicBlock *BB = I->getParent(); 1739 MachineInstr *Terminator = &BB->instr_back(); 1740 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1741 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1742 if (BB->isLayoutSuccessor(Succ)) { 1743 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1744 Terminator->eraseFromParent(); 1745 } 1746 } 1747 }; 1748 1749 // And VMOVCopies need to become 2xVMOVD for tail predication to be valid. 1750 // Anything other MQPRCopy can be converted to MVE_VORR later on. 1751 auto ExpandVMOVCopies = [this](SmallPtrSet<MachineInstr *, 4> &VMOVCopies) { 1752 for (auto *MI : VMOVCopies) { 1753 LLVM_DEBUG(dbgs() << "Converting copy to VMOVD: " << *MI); 1754 assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!"); 1755 MachineBasicBlock *MBB = MI->getParent(); 1756 Register Dst = MI->getOperand(0).getReg(); 1757 Register Src = MI->getOperand(1).getReg(); 1758 auto MIB1 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD), 1759 ARM::D0 + (Dst - ARM::Q0) * 2) 1760 .addReg(ARM::D0 + (Src - ARM::Q0) * 2) 1761 .add(predOps(ARMCC::AL)); 1762 (void)MIB1; 1763 LLVM_DEBUG(dbgs() << " into " << *MIB1); 1764 auto MIB2 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD), 1765 ARM::D0 + (Dst - ARM::Q0) * 2 + 1) 1766 .addReg(ARM::D0 + (Src - ARM::Q0) * 2 + 1) 1767 .add(predOps(ARMCC::AL)); 1768 LLVM_DEBUG(dbgs() << " and " << *MIB2); 1769 (void)MIB2; 1770 MI->eraseFromParent(); 1771 } 1772 }; 1773 1774 if (LoLoop.Revert) { 1775 if (isWhileLoopStart(*LoLoop.Start)) 1776 RevertWhile(LoLoop.Start); 1777 else 1778 RevertDo(LoLoop.Start); 1779 if (LoLoop.Dec == LoLoop.End) 1780 RevertLoopEndDec(LoLoop.End); 1781 else 1782 RevertLoopEnd(LoLoop.End, RevertLoopDec(LoLoop.Dec)); 1783 } else { 1784 ExpandVMOVCopies(LoLoop.VMOVCopies); 1785 LoLoop.Start = ExpandLoopStart(LoLoop); 1786 if (LoLoop.Start) 1787 RemoveDeadBranch(LoLoop.Start); 1788 LoLoop.End = ExpandLoopEnd(LoLoop); 1789 RemoveDeadBranch(LoLoop.End); 1790 if (LoLoop.IsTailPredicationLegal()) 1791 ConvertVPTBlocks(LoLoop); 1792 for (auto *I : LoLoop.ToRemove) { 1793 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1794 I->eraseFromParent(); 1795 } 1796 for (auto *I : LoLoop.BlockMasksToRecompute) { 1797 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1798 recomputeVPTBlockMask(*I); 1799 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1800 } 1801 } 1802 1803 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1804 DFS.ProcessLoop(); 1805 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1806 for (auto *MBB : PostOrder) { 1807 recomputeLiveIns(*MBB); 1808 // FIXME: For some reason, the live-in print order is non-deterministic for 1809 // our tests and I can't out why... So just sort them. 1810 MBB->sortUniqueLiveIns(); 1811 } 1812 1813 for (auto *MBB : reverse(PostOrder)) 1814 recomputeLivenessFlags(*MBB); 1815 1816 // We've moved, removed and inserted new instructions, so update RDA. 1817 RDA->reset(); 1818 } 1819 1820 bool ARMLowOverheadLoops::RevertNonLoops() { 1821 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1822 bool Changed = false; 1823 1824 for (auto &MBB : *MF) { 1825 SmallVector<MachineInstr*, 4> Starts; 1826 SmallVector<MachineInstr*, 4> Decs; 1827 SmallVector<MachineInstr*, 4> Ends; 1828 SmallVector<MachineInstr *, 4> EndDecs; 1829 SmallVector<MachineInstr *, 4> MQPRCopies; 1830 1831 for (auto &I : MBB) { 1832 if (isLoopStart(I)) 1833 Starts.push_back(&I); 1834 else if (I.getOpcode() == ARM::t2LoopDec) 1835 Decs.push_back(&I); 1836 else if (I.getOpcode() == ARM::t2LoopEnd) 1837 Ends.push_back(&I); 1838 else if (I.getOpcode() == ARM::t2LoopEndDec) 1839 EndDecs.push_back(&I); 1840 else if (I.getOpcode() == ARM::MQPRCopy) 1841 MQPRCopies.push_back(&I); 1842 } 1843 1844 if (Starts.empty() && Decs.empty() && Ends.empty() && EndDecs.empty() && 1845 MQPRCopies.empty()) 1846 continue; 1847 1848 Changed = true; 1849 1850 for (auto *Start : Starts) { 1851 if (isWhileLoopStart(*Start)) 1852 RevertWhile(Start); 1853 else 1854 RevertDo(Start); 1855 } 1856 for (auto *Dec : Decs) 1857 RevertLoopDec(Dec); 1858 1859 for (auto *End : Ends) 1860 RevertLoopEnd(End); 1861 for (auto *End : EndDecs) 1862 RevertLoopEndDec(End); 1863 for (auto *MI : MQPRCopies) { 1864 LLVM_DEBUG(dbgs() << "Converting copy to VORR: " << *MI); 1865 assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!"); 1866 MachineBasicBlock *MBB = MI->getParent(); 1867 auto MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::MVE_VORR), 1868 MI->getOperand(0).getReg()) 1869 .add(MI->getOperand(1)) 1870 .add(MI->getOperand(1)); 1871 addUnpredicatedMveVpredROp(MIB, MI->getOperand(0).getReg()); 1872 MI->eraseFromParent(); 1873 } 1874 } 1875 return Changed; 1876 } 1877 1878 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1879 return new ARMLowOverheadLoops(); 1880 } 1881