1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 /// A note on VPR.P0 (the lane mask): 39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a 40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks). 41 /// They will simply "and" the result of their calculation with the current 42 /// value of VPR.P0. You can think of it like this: 43 /// \verbatim 44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs 45 /// VPR.P0 &= Value 46 /// else 47 /// VPR.P0 = Value 48 /// \endverbatim 49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always 50 /// fall in the "VPT active" case, so we can consider that all VPR writes by 51 /// one of those instruction is actually a "and". 52 //===----------------------------------------------------------------------===// 53 54 #include "ARM.h" 55 #include "ARMBaseInstrInfo.h" 56 #include "ARMBaseRegisterInfo.h" 57 #include "ARMBasicBlockInfo.h" 58 #include "ARMSubtarget.h" 59 #include "Thumb2InstrInfo.h" 60 #include "llvm/ADT/SetOperations.h" 61 #include "llvm/ADT/SmallSet.h" 62 #include "llvm/CodeGen/LivePhysRegs.h" 63 #include "llvm/CodeGen/MachineFunctionPass.h" 64 #include "llvm/CodeGen/MachineLoopInfo.h" 65 #include "llvm/CodeGen/MachineLoopUtils.h" 66 #include "llvm/CodeGen/MachineRegisterInfo.h" 67 #include "llvm/CodeGen/Passes.h" 68 #include "llvm/CodeGen/ReachingDefAnalysis.h" 69 #include "llvm/MC/MCInstrDesc.h" 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "arm-low-overhead-loops" 74 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 75 76 static cl::opt<bool> 77 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden, 78 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"), 79 cl::init(false)); 80 81 static bool isVectorPredicated(MachineInstr *MI) { 82 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 83 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 84 } 85 86 static bool isVectorPredicate(MachineInstr *MI) { 87 return MI->findRegisterDefOperandIdx(ARM::VPR) != -1; 88 } 89 90 static bool hasVPRUse(MachineInstr *MI) { 91 return MI->findRegisterUseOperandIdx(ARM::VPR) != -1; 92 } 93 94 static bool isDomainMVE(MachineInstr *MI) { 95 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask; 96 return Domain == ARMII::DomainMVE; 97 } 98 99 static bool shouldInspect(MachineInstr &MI) { 100 return isDomainMVE(&MI) || isVectorPredicate(&MI) || 101 hasVPRUse(&MI); 102 } 103 104 namespace { 105 106 using InstSet = SmallPtrSetImpl<MachineInstr *>; 107 108 class PostOrderLoopTraversal { 109 MachineLoop &ML; 110 MachineLoopInfo &MLI; 111 SmallPtrSet<MachineBasicBlock*, 4> Visited; 112 SmallVector<MachineBasicBlock*, 4> Order; 113 114 public: 115 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 116 : ML(ML), MLI(MLI) { } 117 118 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 119 return Order; 120 } 121 122 // Visit all the blocks within the loop, as well as exit blocks and any 123 // blocks properly dominating the header. 124 void ProcessLoop() { 125 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 126 (MachineBasicBlock *MBB) -> void { 127 if (Visited.count(MBB)) 128 return; 129 130 Visited.insert(MBB); 131 for (auto *Succ : MBB->successors()) { 132 if (!ML.contains(Succ)) 133 continue; 134 Search(Succ); 135 } 136 Order.push_back(MBB); 137 }; 138 139 // Insert exit blocks. 140 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 141 ML.getExitBlocks(ExitBlocks); 142 for (auto *MBB : ExitBlocks) 143 Order.push_back(MBB); 144 145 // Then add the loop body. 146 Search(ML.getHeader()); 147 148 // Then try the preheader and its predecessors. 149 std::function<void(MachineBasicBlock*)> GetPredecessor = 150 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 151 Order.push_back(MBB); 152 if (MBB->pred_size() == 1) 153 GetPredecessor(*MBB->pred_begin()); 154 }; 155 156 if (auto *Preheader = ML.getLoopPreheader()) 157 GetPredecessor(Preheader); 158 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true)) 159 GetPredecessor(Preheader); 160 } 161 }; 162 163 struct PredicatedMI { 164 MachineInstr *MI = nullptr; 165 SetVector<MachineInstr*> Predicates; 166 167 public: 168 PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) { 169 assert(I && "Instruction must not be null!"); 170 Predicates.insert(Preds.begin(), Preds.end()); 171 } 172 }; 173 174 // Represent the current state of the VPR and hold all instances which 175 // represent a VPT block, which is a list of instructions that begins with a 176 // VPT/VPST and has a maximum of four proceeding instructions. All 177 // instructions within the block are predicated upon the vpr and we allow 178 // instructions to define the vpr within in the block too. 179 class VPTState { 180 friend struct LowOverheadLoop; 181 182 SmallVector<MachineInstr *, 4> Insts; 183 184 static SmallVector<VPTState, 4> Blocks; 185 static SetVector<MachineInstr *> CurrentPredicates; 186 static std::map<MachineInstr *, 187 std::unique_ptr<PredicatedMI>> PredicatedInsts; 188 189 static void CreateVPTBlock(MachineInstr *MI) { 190 assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR)) 191 && "Can't begin VPT without predicate"); 192 Blocks.emplace_back(MI); 193 // The execution of MI is predicated upon the current set of instructions 194 // that are AND'ed together to form the VPR predicate value. In the case 195 // that MI is a VPT, CurrentPredicates will also just be MI. 196 PredicatedInsts.emplace( 197 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 198 } 199 200 static void reset() { 201 Blocks.clear(); 202 PredicatedInsts.clear(); 203 CurrentPredicates.clear(); 204 } 205 206 static void addInst(MachineInstr *MI) { 207 Blocks.back().insert(MI); 208 PredicatedInsts.emplace( 209 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 210 } 211 212 static void addPredicate(MachineInstr *MI) { 213 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI); 214 CurrentPredicates.insert(MI); 215 } 216 217 static void resetPredicate(MachineInstr *MI) { 218 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI); 219 CurrentPredicates.clear(); 220 CurrentPredicates.insert(MI); 221 } 222 223 public: 224 // Have we found an instruction within the block which defines the vpr? If 225 // so, not all the instructions in the block will have the same predicate. 226 static bool hasUniformPredicate(VPTState &Block) { 227 return getDivergent(Block) == nullptr; 228 } 229 230 // If it exists, return the first internal instruction which modifies the 231 // VPR. 232 static MachineInstr *getDivergent(VPTState &Block) { 233 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 234 for (unsigned i = 1; i < Insts.size(); ++i) { 235 MachineInstr *Next = Insts[i]; 236 if (isVectorPredicate(Next)) 237 return Next; // Found an instruction altering the vpr. 238 } 239 return nullptr; 240 } 241 242 // Return whether the given instruction is predicated upon a VCTP. 243 static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) { 244 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates; 245 if (Exclusive && Predicates.size() != 1) 246 return false; 247 for (auto *PredMI : Predicates) 248 if (isVCTP(PredMI)) 249 return true; 250 return false; 251 } 252 253 // Is the VPST, controlling the block entry, predicated upon a VCTP. 254 static bool isEntryPredicatedOnVCTP(VPTState &Block, 255 bool Exclusive = false) { 256 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 257 return isPredicatedOnVCTP(Insts.front(), Exclusive); 258 } 259 260 // If this block begins with a VPT, we can check whether it's using 261 // at least one predicated input(s), as well as possible loop invariant 262 // which would result in it being implicitly predicated. 263 static bool hasImplicitlyValidVPT(VPTState &Block, 264 ReachingDefAnalysis &RDA) { 265 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 266 MachineInstr *VPT = Insts.front(); 267 assert(isVPTOpcode(VPT->getOpcode()) && 268 "Expected VPT block to begin with VPT/VPST"); 269 270 if (VPT->getOpcode() == ARM::MVE_VPST) 271 return false; 272 273 auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) { 274 MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx)); 275 return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op); 276 }; 277 278 auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) { 279 MachineOperand &MO = MI->getOperand(Idx); 280 if (!MO.isReg() || !MO.getReg()) 281 return true; 282 283 SmallPtrSet<MachineInstr *, 2> Defs; 284 RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs); 285 if (Defs.empty()) 286 return true; 287 288 for (auto *Def : Defs) 289 if (Def->getParent() == VPT->getParent()) 290 return false; 291 return true; 292 }; 293 294 // Check that at least one of the operands is directly predicated on a 295 // vctp and allow an invariant value too. 296 return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) && 297 (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) && 298 (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2)); 299 } 300 301 static bool isValid(ReachingDefAnalysis &RDA) { 302 // All predication within the loop should be based on vctp. If the block 303 // isn't predicated on entry, check whether the vctp is within the block 304 // and that all other instructions are then predicated on it. 305 for (auto &Block : Blocks) { 306 if (isEntryPredicatedOnVCTP(Block, false) || 307 hasImplicitlyValidVPT(Block, RDA)) 308 continue; 309 310 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 311 for (auto *MI : Insts) { 312 // Check that any internal VCTPs are 'Then' predicated. 313 if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then) 314 return false; 315 // Skip other instructions that build up the predicate. 316 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI)) 317 continue; 318 // Check that any other instructions are predicated upon a vctp. 319 // TODO: We could infer when VPTs are implicitly predicated on the 320 // vctp (when the operands are predicated). 321 if (!isPredicatedOnVCTP(MI)) { 322 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI); 323 return false; 324 } 325 } 326 } 327 return true; 328 } 329 330 VPTState(MachineInstr *MI) { Insts.push_back(MI); } 331 332 void insert(MachineInstr *MI) { 333 Insts.push_back(MI); 334 // VPT/VPST + 4 predicated instructions. 335 assert(Insts.size() <= 5 && "Too many instructions in VPT block!"); 336 } 337 338 bool containsVCTP() const { 339 for (auto *MI : Insts) 340 if (isVCTP(MI)) 341 return true; 342 return false; 343 } 344 345 unsigned size() const { return Insts.size(); } 346 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; } 347 }; 348 349 struct LowOverheadLoop { 350 351 MachineLoop &ML; 352 MachineBasicBlock *Preheader = nullptr; 353 MachineLoopInfo &MLI; 354 ReachingDefAnalysis &RDA; 355 const TargetRegisterInfo &TRI; 356 const ARMBaseInstrInfo &TII; 357 MachineFunction *MF = nullptr; 358 MachineInstr *InsertPt = nullptr; 359 MachineInstr *Start = nullptr; 360 MachineInstr *Dec = nullptr; 361 MachineInstr *End = nullptr; 362 MachineOperand TPNumElements; 363 SmallVector<MachineInstr*, 4> VCTPs; 364 SmallPtrSet<MachineInstr*, 4> ToRemove; 365 SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute; 366 bool Revert = false; 367 bool CannotTailPredicate = false; 368 369 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 370 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI, 371 const ARMBaseInstrInfo &TII) 372 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII), 373 TPNumElements(MachineOperand::CreateImm(0)) { 374 MF = ML.getHeader()->getParent(); 375 if (auto *MBB = ML.getLoopPreheader()) 376 Preheader = MBB; 377 else if (auto *MBB = MLI.findLoopPreheader(&ML, true)) 378 Preheader = MBB; 379 VPTState::reset(); 380 } 381 382 // If this is an MVE instruction, check that we know how to use tail 383 // predication with it. Record VPT blocks and return whether the 384 // instruction is valid for tail predication. 385 bool ValidateMVEInst(MachineInstr *MI); 386 387 void AnalyseMVEInst(MachineInstr *MI) { 388 CannotTailPredicate = !ValidateMVEInst(MI); 389 } 390 391 bool IsTailPredicationLegal() const { 392 // For now, let's keep things really simple and only support a single 393 // block for tail predication. 394 return !Revert && FoundAllComponents() && !VCTPs.empty() && 395 !CannotTailPredicate && ML.getNumBlocks() == 1; 396 } 397 398 // Given that MI is a VCTP, check that is equivalent to any other VCTPs 399 // found. 400 bool AddVCTP(MachineInstr *MI); 401 402 // Check that the predication in the loop will be equivalent once we 403 // perform the conversion. Also ensure that we can provide the number 404 // of elements to the loop start instruction. 405 bool ValidateTailPredicate(MachineInstr *StartInsertPt); 406 407 // Check that any values available outside of the loop will be the same 408 // after tail predication conversion. 409 bool ValidateLiveOuts(); 410 411 // Is it safe to define LR with DLS/WLS? 412 // LR can be defined if it is the operand to start, because it's the same 413 // value, or if it's going to be equivalent to the operand to Start. 414 MachineInstr *isSafeToDefineLR(); 415 416 // Check the branch targets are within range and we satisfy our 417 // restrictions. 418 void Validate(ARMBasicBlockUtils *BBUtils); 419 420 bool FoundAllComponents() const { 421 return Start && Dec && End; 422 } 423 424 SmallVectorImpl<VPTState> &getVPTBlocks() { 425 return VPTState::Blocks; 426 } 427 428 // Return the operand for the loop start instruction. This will be the loop 429 // iteration count, or the number of elements if we're tail predicating. 430 MachineOperand &getLoopStartOperand() { 431 return IsTailPredicationLegal() ? TPNumElements : Start->getOperand(0); 432 } 433 434 unsigned getStartOpcode() const { 435 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 436 if (!IsTailPredicationLegal()) 437 return IsDo ? ARM::t2DLS : ARM::t2WLS; 438 439 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo); 440 } 441 442 void dump() const { 443 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 444 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 445 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 446 if (!VCTPs.empty()) { 447 dbgs() << "ARM Loops: Found VCTP(s):\n"; 448 for (auto *MI : VCTPs) 449 dbgs() << " - " << *MI; 450 } 451 if (!FoundAllComponents()) 452 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 453 else if (!(Start && Dec && End)) 454 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 455 } 456 }; 457 458 class ARMLowOverheadLoops : public MachineFunctionPass { 459 MachineFunction *MF = nullptr; 460 MachineLoopInfo *MLI = nullptr; 461 ReachingDefAnalysis *RDA = nullptr; 462 const ARMBaseInstrInfo *TII = nullptr; 463 MachineRegisterInfo *MRI = nullptr; 464 const TargetRegisterInfo *TRI = nullptr; 465 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 466 467 public: 468 static char ID; 469 470 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 471 472 void getAnalysisUsage(AnalysisUsage &AU) const override { 473 AU.setPreservesCFG(); 474 AU.addRequired<MachineLoopInfo>(); 475 AU.addRequired<ReachingDefAnalysis>(); 476 MachineFunctionPass::getAnalysisUsage(AU); 477 } 478 479 bool runOnMachineFunction(MachineFunction &MF) override; 480 481 MachineFunctionProperties getRequiredProperties() const override { 482 return MachineFunctionProperties().set( 483 MachineFunctionProperties::Property::NoVRegs).set( 484 MachineFunctionProperties::Property::TracksLiveness); 485 } 486 487 StringRef getPassName() const override { 488 return ARM_LOW_OVERHEAD_LOOPS_NAME; 489 } 490 491 private: 492 bool ProcessLoop(MachineLoop *ML); 493 494 bool RevertNonLoops(); 495 496 void RevertWhile(MachineInstr *MI) const; 497 498 bool RevertLoopDec(MachineInstr *MI) const; 499 500 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 501 502 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 503 504 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 505 506 void Expand(LowOverheadLoop &LoLoop); 507 508 void IterationCountDCE(LowOverheadLoop &LoLoop); 509 }; 510 } 511 512 char ARMLowOverheadLoops::ID = 0; 513 514 SmallVector<VPTState, 4> VPTState::Blocks; 515 SetVector<MachineInstr *> VPTState::CurrentPredicates; 516 std::map<MachineInstr *, 517 std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts; 518 519 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 520 false, false) 521 522 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA, 523 InstSet &ToRemove, InstSet &Ignore) { 524 525 // Check that we can remove all of Killed without having to modify any IT 526 // blocks. 527 auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) { 528 // Collect the dead code and the MBBs in which they reside. 529 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 530 for (auto *Dead : Killed) 531 BasicBlocks.insert(Dead->getParent()); 532 533 // Collect IT blocks in all affected basic blocks. 534 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 535 for (auto *MBB : BasicBlocks) { 536 for (auto &IT : *MBB) { 537 if (IT.getOpcode() != ARM::t2IT) 538 continue; 539 RDA.getReachingLocalUses(&IT, ARM::ITSTATE, ITBlocks[&IT]); 540 } 541 } 542 543 // If we're removing all of the instructions within an IT block, then 544 // also remove the IT instruction. 545 SmallPtrSet<MachineInstr *, 2> ModifiedITs; 546 SmallPtrSet<MachineInstr *, 2> RemoveITs; 547 for (auto *Dead : Killed) { 548 if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) { 549 MachineInstr *IT = RDA.getMIOperand(Dead, *MO); 550 RemoveITs.insert(IT); 551 auto &CurrentBlock = ITBlocks[IT]; 552 CurrentBlock.erase(Dead); 553 if (CurrentBlock.empty()) 554 ModifiedITs.erase(IT); 555 else 556 ModifiedITs.insert(IT); 557 } 558 } 559 if (!ModifiedITs.empty()) 560 return false; 561 Killed.insert(RemoveITs.begin(), RemoveITs.end()); 562 return true; 563 }; 564 565 SmallPtrSet<MachineInstr *, 2> Uses; 566 if (!RDA.isSafeToRemove(MI, Uses, Ignore)) 567 return false; 568 569 if (WontCorruptITs(Uses, RDA)) { 570 ToRemove.insert(Uses.begin(), Uses.end()); 571 LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI 572 << " - can also remove:\n"; 573 for (auto *Use : Uses) 574 dbgs() << " - " << *Use); 575 576 SmallPtrSet<MachineInstr*, 4> Killed; 577 RDA.collectKilledOperands(MI, Killed); 578 if (WontCorruptITs(Killed, RDA)) { 579 ToRemove.insert(Killed.begin(), Killed.end()); 580 LLVM_DEBUG(for (auto *Dead : Killed) 581 dbgs() << " - " << *Dead); 582 } 583 return true; 584 } 585 return false; 586 } 587 588 bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt) { 589 if (!StartInsertPt) 590 return false; 591 592 if (!IsTailPredicationLegal()) { 593 LLVM_DEBUG(if (VCTPs.empty()) 594 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 595 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 596 return false; 597 } 598 599 assert(!VCTPs.empty() && "VCTP instruction expected but is not set"); 600 assert(ML.getBlocks().size() == 1 && 601 "Shouldn't be processing a loop with more than one block"); 602 603 if (DisableTailPredication) { 604 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n"); 605 return false; 606 } 607 608 if (!VPTState::isValid(RDA)) 609 return false; 610 611 if (!ValidateLiveOuts()) { 612 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n"); 613 return false; 614 } 615 616 // For tail predication, we need to provide the number of elements, instead 617 // of the iteration count, to the loop start instruction. The number of 618 // elements is provided to the vctp instruction, so we need to check that 619 // we can use this register at InsertPt. 620 MachineInstr *VCTP = VCTPs.back(); 621 TPNumElements = VCTP->getOperand(1); 622 Register NumElements = TPNumElements.getReg(); 623 624 // If the register is defined within loop, then we can't perform TP. 625 // TODO: Check whether this is just a mov of a register that would be 626 // available. 627 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 628 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 629 return false; 630 } 631 632 // The element count register maybe defined after InsertPt, in which case we 633 // need to try to move either InsertPt or the def so that the [w|d]lstp can 634 // use the value. 635 MachineBasicBlock *InsertBB = StartInsertPt->getParent(); 636 637 if (!RDA.isReachingDefLiveOut(StartInsertPt, NumElements)) { 638 if (auto *ElemDef = RDA.getLocalLiveOutMIDef(InsertBB, NumElements)) { 639 if (RDA.isSafeToMoveForwards(ElemDef, StartInsertPt)) { 640 ElemDef->removeFromParent(); 641 InsertBB->insert(MachineBasicBlock::iterator(StartInsertPt), ElemDef); 642 LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: " 643 << *ElemDef); 644 } else if (RDA.isSafeToMoveBackwards(StartInsertPt, ElemDef)) { 645 StartInsertPt->removeFromParent(); 646 InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 647 StartInsertPt); 648 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 649 } else { 650 // If we fail to move an instruction and the element count is provided 651 // by a mov, use the mov operand if it will have the same value at the 652 // insertion point 653 MachineOperand Operand = ElemDef->getOperand(1); 654 if (isMovRegOpcode(ElemDef->getOpcode()) && 655 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg()) == 656 RDA.getUniqueReachingMIDef(StartInsertPt, Operand.getReg())) { 657 TPNumElements = Operand; 658 NumElements = TPNumElements.getReg(); 659 } else { 660 LLVM_DEBUG(dbgs() 661 << "ARM Loops: Unable to move element count to loop " 662 << "start instruction.\n"); 663 return false; 664 } 665 } 666 } 667 } 668 669 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect 670 // world the [w|d]lstp instruction would be last instruction in the preheader 671 // and so it would only affect instructions within the loop body. But due to 672 // scheduling, and/or the logic in this pass (above), the insertion point can 673 // be moved earlier. So if the Loop Start isn't the last instruction in the 674 // preheader, and if the initial element count is smaller than the vector 675 // width, the Loop Start instruction will immediately generate one or more 676 // false lane mask which can, incorrectly, affect the proceeding MVE 677 // instructions in the preheader. 678 auto CannotInsertWDLSTPBetween = [](MachineBasicBlock::iterator I, 679 MachineBasicBlock::iterator E) { 680 for (; I != E; ++I) 681 if (shouldInspect(*I)) 682 return true; 683 return false; 684 }; 685 686 if (CannotInsertWDLSTPBetween(StartInsertPt, InsertBB->end())) 687 return false; 688 689 // Especially in the case of while loops, InsertBB may not be the 690 // preheader, so we need to check that the register isn't redefined 691 // before entering the loop. 692 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 693 Register NumElements) { 694 // NumElements is redefined in this block. 695 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 696 return true; 697 698 // Don't continue searching up through multiple predecessors. 699 if (MBB->pred_size() > 1) 700 return true; 701 702 return false; 703 }; 704 705 // Search backwards for a def, until we get to InsertBB. 706 MachineBasicBlock *MBB = Preheader; 707 while (MBB && MBB != InsertBB) { 708 if (CannotProvideElements(MBB, NumElements)) { 709 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 710 return false; 711 } 712 MBB = *MBB->pred_begin(); 713 } 714 715 // Check that the value change of the element count is what we expect and 716 // that the predication will be equivalent. For this we need: 717 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 718 // and we can also allow register copies within the chain too. 719 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 720 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 721 }; 722 723 MBB = VCTP->getParent(); 724 // Remove modifications to the element count since they have no purpose in a 725 // tail predicated loop. Explicitly refer to the vctp operand no matter which 726 // register NumElements has been assigned to, since that is what the 727 // modifications will be using 728 if (auto *Def = RDA.getUniqueReachingMIDef(&MBB->back(), 729 VCTP->getOperand(1).getReg())) { 730 SmallPtrSet<MachineInstr*, 2> ElementChain; 731 SmallPtrSet<MachineInstr*, 2> Ignore; 732 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 733 734 Ignore.insert(VCTPs.begin(), VCTPs.end()); 735 736 if (TryRemove(Def, RDA, ElementChain, Ignore)) { 737 bool FoundSub = false; 738 739 for (auto *MI : ElementChain) { 740 if (isMovRegOpcode(MI->getOpcode())) 741 continue; 742 743 if (isSubImmOpcode(MI->getOpcode())) { 744 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) 745 return false; 746 FoundSub = true; 747 } else 748 return false; 749 } 750 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 751 } 752 } 753 return true; 754 } 755 756 static bool isRegInClass(const MachineOperand &MO, 757 const TargetRegisterClass *Class) { 758 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 759 } 760 761 // MVE 'narrowing' operate on half a lane, reading from half and writing 762 // to half, which are referred to has the top and bottom half. The other 763 // half retains its previous value. 764 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 765 const MCInstrDesc &MCID = MI.getDesc(); 766 uint64_t Flags = MCID.TSFlags; 767 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 768 } 769 770 // Some MVE instructions read from the top/bottom halves of their operand(s) 771 // and generate a vector result with result elements that are double the 772 // width of the input. 773 static bool producesDoubleWidthResult(const MachineInstr &MI) { 774 const MCInstrDesc &MCID = MI.getDesc(); 775 uint64_t Flags = MCID.TSFlags; 776 return (Flags & ARMII::DoubleWidthResult) != 0; 777 } 778 779 static bool isHorizontalReduction(const MachineInstr &MI) { 780 const MCInstrDesc &MCID = MI.getDesc(); 781 uint64_t Flags = MCID.TSFlags; 782 return (Flags & ARMII::HorizontalReduction) != 0; 783 } 784 785 // Can this instruction generate a non-zero result when given only zeroed 786 // operands? This allows us to know that, given operands with false bytes 787 // zeroed by masked loads, that the result will also contain zeros in those 788 // bytes. 789 static bool canGenerateNonZeros(const MachineInstr &MI) { 790 791 // Check for instructions which can write into a larger element size, 792 // possibly writing into a previous zero'd lane. 793 if (producesDoubleWidthResult(MI)) 794 return true; 795 796 switch (MI.getOpcode()) { 797 default: 798 break; 799 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 800 // fp16 -> fp32 vector conversions. 801 // Instructions that perform a NOT will generate 1s from 0s. 802 case ARM::MVE_VMVN: 803 case ARM::MVE_VORN: 804 // Count leading zeros will do just that! 805 case ARM::MVE_VCLZs8: 806 case ARM::MVE_VCLZs16: 807 case ARM::MVE_VCLZs32: 808 return true; 809 } 810 return false; 811 } 812 813 // Look at its register uses to see if it only can only receive zeros 814 // into its false lanes which would then produce zeros. Also check that 815 // the output register is also defined by an FalseLanesZero instruction 816 // so that if tail-predication happens, the lanes that aren't updated will 817 // still be zeros. 818 static bool producesFalseLanesZero(MachineInstr &MI, 819 const TargetRegisterClass *QPRs, 820 const ReachingDefAnalysis &RDA, 821 InstSet &FalseLanesZero) { 822 if (canGenerateNonZeros(MI)) 823 return false; 824 825 bool isPredicated = isVectorPredicated(&MI); 826 // Predicated loads will write zeros to the falsely predicated bytes of the 827 // destination register. 828 if (MI.mayLoad()) 829 return isPredicated; 830 831 auto IsZeroInit = [](MachineInstr *Def) { 832 return !isVectorPredicated(Def) && 833 Def->getOpcode() == ARM::MVE_VMOVimmi32 && 834 Def->getOperand(1).getImm() == 0; 835 }; 836 837 bool AllowScalars = isHorizontalReduction(MI); 838 for (auto &MO : MI.operands()) { 839 if (!MO.isReg() || !MO.getReg()) 840 continue; 841 if (!isRegInClass(MO, QPRs) && AllowScalars) 842 continue; 843 844 // Check that this instruction will produce zeros in its false lanes: 845 // - If it only consumes false lanes zero or constant 0 (vmov #0) 846 // - If it's predicated, it only matters that it's def register already has 847 // false lane zeros, so we can ignore the uses. 848 SmallPtrSet<MachineInstr *, 2> Defs; 849 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs); 850 for (auto *Def : Defs) { 851 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def)) 852 continue; 853 if (MO.isUse() && isPredicated) 854 continue; 855 return false; 856 } 857 } 858 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 859 return true; 860 } 861 862 bool LowOverheadLoop::ValidateLiveOuts() { 863 // We want to find out if the tail-predicated version of this loop will 864 // produce the same values as the loop in its original form. For this to 865 // be true, the newly inserted implicit predication must not change the 866 // the (observable) results. 867 // We're doing this because many instructions in the loop will not be 868 // predicated and so the conversion from VPT predication to tail-predication 869 // can result in different values being produced; due to the tail-predication 870 // preventing many instructions from updating their falsely predicated 871 // lanes. This analysis assumes that all the instructions perform lane-wise 872 // operations and don't perform any exchanges. 873 // A masked load, whether through VPT or tail predication, will write zeros 874 // to any of the falsely predicated bytes. So, from the loads, we know that 875 // the false lanes are zeroed and here we're trying to track that those false 876 // lanes remain zero, or where they change, the differences are masked away 877 // by their user(s). 878 // All MVE stores have to be predicated, so we know that any predicate load 879 // operands, or stored results are equivalent already. Other explicitly 880 // predicated instructions will perform the same operation in the original 881 // loop and the tail-predicated form too. Because of this, we can insert 882 // loads, stores and other predicated instructions into our Predicated 883 // set and build from there. 884 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 885 SetVector<MachineInstr *> FalseLanesUnknown; 886 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 887 SmallPtrSet<MachineInstr *, 4> Predicated; 888 MachineBasicBlock *Header = ML.getHeader(); 889 890 for (auto &MI : *Header) { 891 if (!shouldInspect(MI)) 892 continue; 893 894 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) 895 continue; 896 897 bool isPredicated = isVectorPredicated(&MI); 898 bool retainsOrReduces = 899 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI); 900 901 if (isPredicated) 902 Predicated.insert(&MI); 903 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) 904 FalseLanesZero.insert(&MI); 905 else if (MI.getNumDefs() == 0) 906 continue; 907 else if (!isPredicated && retainsOrReduces) 908 return false; 909 else if (!isPredicated) 910 FalseLanesUnknown.insert(&MI); 911 } 912 913 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 914 SmallPtrSetImpl<MachineInstr *> &Predicated) { 915 SmallPtrSet<MachineInstr *, 2> Uses; 916 RDA.getGlobalUses(MI, MO.getReg(), Uses); 917 for (auto *Use : Uses) { 918 if (Use != MI && !Predicated.count(Use)) 919 return false; 920 } 921 return true; 922 }; 923 924 // Visit the unknowns in reverse so that we can start at the values being 925 // stored and then we can work towards the leaves, hopefully adding more 926 // instructions to Predicated. Successfully terminating the loop means that 927 // all the unknown values have to found to be masked by predicated user(s). 928 // For any unpredicated values, we store them in NonPredicated so that we 929 // can later check whether these form a reduction. 930 SmallPtrSet<MachineInstr*, 2> NonPredicated; 931 for (auto *MI : reverse(FalseLanesUnknown)) { 932 for (auto &MO : MI->operands()) { 933 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 934 continue; 935 if (!HasPredicatedUsers(MI, MO, Predicated)) { 936 LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : " 937 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 938 NonPredicated.insert(MI); 939 break; 940 } 941 } 942 // Any unknown false lanes have been masked away by the user(s). 943 if (!NonPredicated.contains(MI)) 944 Predicated.insert(MI); 945 } 946 947 SmallPtrSet<MachineInstr *, 2> LiveOutMIs; 948 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 949 ML.getExitBlocks(ExitBlocks); 950 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 951 assert(ExitBlocks.size() == 1 && "Expected a single exit block"); 952 MachineBasicBlock *ExitBB = ExitBlocks.front(); 953 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) { 954 // TODO: Instead of blocking predication, we could move the vctp to the exit 955 // block and calculate it's operand there in or the preheader. 956 if (RegMask.PhysReg == ARM::VPR) 957 return false; 958 // Check Q-regs that are live in the exit blocks. We don't collect scalars 959 // because they won't be affected by lane predication. 960 if (QPRs->contains(RegMask.PhysReg)) 961 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg)) 962 LiveOutMIs.insert(MI); 963 } 964 965 // We've already validated that any VPT predication within the loop will be 966 // equivalent when we perform the predication transformation; so we know that 967 // any VPT predicated instruction is predicated upon VCTP. Any live-out 968 // instruction needs to be predicated, so check this here. The instructions 969 // in NonPredicated have been found to be a reduction that we can ensure its 970 // legality. 971 for (auto *MI : LiveOutMIs) { 972 if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) { 973 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to handle live out: " << *MI); 974 return false; 975 } 976 } 977 978 return true; 979 } 980 981 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) { 982 if (Revert) 983 return; 984 985 // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP] 986 // can only jump back. 987 auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End, 988 ARMBasicBlockUtils *BBUtils, MachineLoop &ML) { 989 if (!End->getOperand(1).isMBB()) 990 report_fatal_error("Expected LoopEnd to target basic block"); 991 992 // TODO Maybe there's cases where the target doesn't have to be the header, 993 // but for now be safe and revert. 994 if (End->getOperand(1).getMBB() != ML.getHeader()) { 995 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n"); 996 return false; 997 } 998 999 // The WLS and LE instructions have 12-bits for the label offset. WLS 1000 // requires a positive offset, while LE uses negative. 1001 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 1002 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 1003 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 1004 return false; 1005 } 1006 1007 if (Start->getOpcode() == ARM::t2WhileLoopStart && 1008 (BBUtils->getOffsetOf(Start) > 1009 BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || 1010 !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { 1011 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 1012 return false; 1013 } 1014 return true; 1015 }; 1016 1017 // Find a suitable position to insert the loop start instruction. It needs to 1018 // be able to safely define LR. 1019 auto FindStartInsertionPoint = [](MachineInstr *Start, 1020 ReachingDefAnalysis &RDA) -> MachineInstr* { 1021 // We can define LR because LR already contains the same value. 1022 if (Start->getOperand(0).getReg() == ARM::LR) 1023 return Start; 1024 1025 unsigned CountReg = Start->getOperand(0).getReg(); 1026 auto IsMoveLR = [&CountReg](MachineInstr *MI) { 1027 return MI->getOpcode() == ARM::tMOVr && 1028 MI->getOperand(0).getReg() == ARM::LR && 1029 MI->getOperand(1).getReg() == CountReg && 1030 MI->getOperand(2).getImm() == ARMCC::AL; 1031 }; 1032 1033 MachineBasicBlock *MBB = Start->getParent(); 1034 1035 // Find an insertion point: 1036 // - Is there a (mov lr, Count) before Start? If so, and nothing else 1037 // writes to Count before Start, we can insert at that mov. 1038 if (auto *LRDef = RDA.getUniqueReachingMIDef(Start, ARM::LR)) 1039 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 1040 return LRDef; 1041 1042 // - Is there a (mov lr, Count) after Start? If so, and nothing else writes 1043 // to Count after Start, we can insert at that mov. 1044 if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR)) 1045 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 1046 return LRDef; 1047 1048 // We've found no suitable LR def and Start doesn't use LR directly. Can we 1049 // just define LR anyway? 1050 return RDA.isSafeToDefRegAt(Start, ARM::LR) ? Start : nullptr; 1051 }; 1052 1053 InsertPt = FindStartInsertionPoint(Start, RDA); 1054 Revert = !ValidateRanges(Start, End, BBUtils, ML) || !InsertPt; 1055 CannotTailPredicate = !ValidateTailPredicate(InsertPt); 1056 1057 LLVM_DEBUG(if (!InsertPt) 1058 dbgs() << "ARM Loops: Unable to find safe insertion point.\n"; 1059 else 1060 dbgs() << "ARM Loops: Start insertion point: " << *InsertPt; 1061 if (CannotTailPredicate) 1062 dbgs() << "ARM Loops: Couldn't validate tail predicate.\n" 1063 ); 1064 } 1065 1066 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) { 1067 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI); 1068 if (VCTPs.empty()) { 1069 VCTPs.push_back(MI); 1070 return true; 1071 } 1072 1073 // If we find another VCTP, check whether it uses the same value as the main VCTP. 1074 // If it does, store it in the VCTPs set, else refuse it. 1075 MachineInstr *Prev = VCTPs.back(); 1076 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) || 1077 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg())) { 1078 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " 1079 "definition from the main VCTP"); 1080 return false; 1081 } 1082 VCTPs.push_back(MI); 1083 return true; 1084 } 1085 1086 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) { 1087 if (CannotTailPredicate) 1088 return false; 1089 1090 if (!shouldInspect(*MI)) 1091 return true; 1092 1093 if (MI->getOpcode() == ARM::MVE_VPSEL || 1094 MI->getOpcode() == ARM::MVE_VPNOT) { 1095 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 1096 // 1) It will use the VPR as a predicate operand, but doesn't have to be 1097 // instead a VPT block, which means we can assert while building up 1098 // the VPT block because we don't find another VPT or VPST to being a new 1099 // one. 1100 // 2) VPSEL still requires a VPR operand even after tail predicating, 1101 // which means we can't remove it unless there is another 1102 // instruction, such as vcmp, that can provide the VPR def. 1103 return false; 1104 } 1105 1106 // Record all VCTPs and check that they're equivalent to one another. 1107 if (isVCTP(MI) && !AddVCTP(MI)) 1108 return false; 1109 1110 // Inspect uses first so that any instructions that alter the VPR don't 1111 // alter the predicate upon themselves. 1112 const MCInstrDesc &MCID = MI->getDesc(); 1113 bool IsUse = false; 1114 unsigned LastOpIdx = MI->getNumOperands() - 1; 1115 for (auto &Op : enumerate(reverse(MCID.operands()))) { 1116 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index()); 1117 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR) 1118 continue; 1119 1120 if (ARM::isVpred(Op.value().OperandType)) { 1121 VPTState::addInst(MI); 1122 IsUse = true; 1123 } else if (MI->getOpcode() != ARM::MVE_VPST) { 1124 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 1125 return false; 1126 } 1127 } 1128 1129 // If we find an instruction that has been marked as not valid for tail 1130 // predication, only allow the instruction if it's contained within a valid 1131 // VPT block. 1132 bool RequiresExplicitPredication = 1133 (MCID.TSFlags & ARMII::ValidForTailPredication) == 0; 1134 if (isDomainMVE(MI) && RequiresExplicitPredication) { 1135 LLVM_DEBUG(if (!IsUse) 1136 dbgs() << "ARM Loops: Can't tail predicate: " << *MI); 1137 return IsUse; 1138 } 1139 1140 // If the instruction is already explicitly predicated, then the conversion 1141 // will be fine, but ensure that all store operations are predicated. 1142 if (MI->mayStore()) 1143 return IsUse; 1144 1145 // If this instruction defines the VPR, update the predicate for the 1146 // proceeding instructions. 1147 if (isVectorPredicate(MI)) { 1148 // Clear the existing predicate when we're not in VPT Active state, 1149 // otherwise we add to it. 1150 if (!isVectorPredicated(MI)) 1151 VPTState::resetPredicate(MI); 1152 else 1153 VPTState::addPredicate(MI); 1154 } 1155 1156 // Finally once the predicate has been modified, we can start a new VPT 1157 // block if necessary. 1158 if (isVPTOpcode(MI->getOpcode())) 1159 VPTState::CreateVPTBlock(MI); 1160 1161 return true; 1162 } 1163 1164 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 1165 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 1166 if (!ST.hasLOB()) 1167 return false; 1168 1169 MF = &mf; 1170 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 1171 1172 MLI = &getAnalysis<MachineLoopInfo>(); 1173 RDA = &getAnalysis<ReachingDefAnalysis>(); 1174 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 1175 MRI = &MF->getRegInfo(); 1176 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 1177 TRI = ST.getRegisterInfo(); 1178 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 1179 BBUtils->computeAllBlockSizes(); 1180 BBUtils->adjustBBOffsetsAfter(&MF->front()); 1181 1182 bool Changed = false; 1183 for (auto ML : *MLI) { 1184 if (ML->isOutermost()) 1185 Changed |= ProcessLoop(ML); 1186 } 1187 Changed |= RevertNonLoops(); 1188 return Changed; 1189 } 1190 1191 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 1192 1193 bool Changed = false; 1194 1195 // Process inner loops first. 1196 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 1197 Changed |= ProcessLoop(*I); 1198 1199 LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; 1200 if (auto *Preheader = ML->getLoopPreheader()) 1201 dbgs() << " - " << Preheader->getName() << "\n"; 1202 else if (auto *Preheader = MLI->findLoopPreheader(ML)) 1203 dbgs() << " - " << Preheader->getName() << "\n"; 1204 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 1205 dbgs() << " - " << Preheader->getName() << "\n"; 1206 for (auto *MBB : ML->getBlocks()) 1207 dbgs() << " - " << MBB->getName() << "\n"; 1208 ); 1209 1210 // Search the given block for a loop start instruction. If one isn't found, 1211 // and there's only one predecessor block, search that one too. 1212 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 1213 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 1214 for (auto &MI : *MBB) { 1215 if (isLoopStart(MI)) 1216 return &MI; 1217 } 1218 if (MBB->pred_size() == 1) 1219 return SearchForStart(*MBB->pred_begin()); 1220 return nullptr; 1221 }; 1222 1223 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII); 1224 // Search the preheader for the start intrinsic. 1225 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 1226 // with potentially multiple set.loop.iterations, so we need to enable this. 1227 if (LoLoop.Preheader) 1228 LoLoop.Start = SearchForStart(LoLoop.Preheader); 1229 else 1230 return false; 1231 1232 // Find the low-overhead loop components and decide whether or not to fall 1233 // back to a normal loop. Also look for a vctp instructions and decide 1234 // whether we can convert that predicate using tail predication. 1235 for (auto *MBB : reverse(ML->getBlocks())) { 1236 for (auto &MI : *MBB) { 1237 if (MI.isDebugValue()) 1238 continue; 1239 else if (MI.getOpcode() == ARM::t2LoopDec) 1240 LoLoop.Dec = &MI; 1241 else if (MI.getOpcode() == ARM::t2LoopEnd) 1242 LoLoop.End = &MI; 1243 else if (isLoopStart(MI)) 1244 LoLoop.Start = &MI; 1245 else if (MI.getDesc().isCall()) { 1246 // TODO: Though the call will require LE to execute again, does this 1247 // mean we should revert? Always executing LE hopefully should be 1248 // faster than performing a sub,cmp,br or even subs,br. 1249 LoLoop.Revert = true; 1250 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 1251 } else { 1252 // Record VPR defs and build up their corresponding vpt blocks. 1253 // Check we know how to tail predicate any mve instructions. 1254 LoLoop.AnalyseMVEInst(&MI); 1255 } 1256 } 1257 } 1258 1259 LLVM_DEBUG(LoLoop.dump()); 1260 if (!LoLoop.FoundAllComponents()) { 1261 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 1262 return false; 1263 } 1264 1265 // Check that the only instruction using LoopDec is LoopEnd. 1266 // TODO: Check for copy chains that really have no effect. 1267 SmallPtrSet<MachineInstr*, 2> Uses; 1268 RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses); 1269 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 1270 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 1271 LoLoop.Revert = true; 1272 } 1273 LoLoop.Validate(BBUtils.get()); 1274 Expand(LoLoop); 1275 return true; 1276 } 1277 1278 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 1279 // beq that branches to the exit branch. 1280 // TODO: We could also try to generate a cbz if the value in LR is also in 1281 // another low register. 1282 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 1283 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 1284 MachineBasicBlock *MBB = MI->getParent(); 1285 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1286 TII->get(ARM::t2CMPri)); 1287 MIB.add(MI->getOperand(0)); 1288 MIB.addImm(0); 1289 MIB.addImm(ARMCC::AL); 1290 MIB.addReg(ARM::NoRegister); 1291 1292 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1293 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1294 ARM::tBcc : ARM::t2Bcc; 1295 1296 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1297 MIB.add(MI->getOperand(1)); // branch target 1298 MIB.addImm(ARMCC::EQ); // condition code 1299 MIB.addReg(ARM::CPSR); 1300 MI->eraseFromParent(); 1301 } 1302 1303 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 1304 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 1305 MachineBasicBlock *MBB = MI->getParent(); 1306 SmallPtrSet<MachineInstr*, 1> Ignore; 1307 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 1308 if (I->getOpcode() == ARM::t2LoopEnd) { 1309 Ignore.insert(&*I); 1310 break; 1311 } 1312 } 1313 1314 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1315 bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore); 1316 1317 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1318 TII->get(ARM::t2SUBri)); 1319 MIB.addDef(ARM::LR); 1320 MIB.add(MI->getOperand(1)); 1321 MIB.add(MI->getOperand(2)); 1322 MIB.addImm(ARMCC::AL); 1323 MIB.addReg(0); 1324 1325 if (SetFlags) { 1326 MIB.addReg(ARM::CPSR); 1327 MIB->getOperand(5).setIsDef(true); 1328 } else 1329 MIB.addReg(0); 1330 1331 MI->eraseFromParent(); 1332 return SetFlags; 1333 } 1334 1335 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1336 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1337 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1338 1339 MachineBasicBlock *MBB = MI->getParent(); 1340 // Create cmp 1341 if (!SkipCmp) { 1342 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1343 TII->get(ARM::t2CMPri)); 1344 MIB.addReg(ARM::LR); 1345 MIB.addImm(0); 1346 MIB.addImm(ARMCC::AL); 1347 MIB.addReg(ARM::NoRegister); 1348 } 1349 1350 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1351 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1352 ARM::tBcc : ARM::t2Bcc; 1353 1354 // Create bne 1355 MachineInstrBuilder MIB = 1356 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1357 MIB.add(MI->getOperand(1)); // branch target 1358 MIB.addImm(ARMCC::NE); // condition code 1359 MIB.addReg(ARM::CPSR); 1360 MI->eraseFromParent(); 1361 } 1362 1363 // Perform dead code elimation on the loop iteration count setup expression. 1364 // If we are tail-predicating, the number of elements to be processed is the 1365 // operand of the VCTP instruction in the vector body, see getCount(), which is 1366 // register $r3 in this example: 1367 // 1368 // $lr = big-itercount-expression 1369 // .. 1370 // t2DoLoopStart renamable $lr 1371 // vector.body: 1372 // .. 1373 // $vpr = MVE_VCTP32 renamable $r3 1374 // renamable $lr = t2LoopDec killed renamable $lr, 1 1375 // t2LoopEnd renamable $lr, %vector.body 1376 // tB %end 1377 // 1378 // What we would like achieve here is to replace the do-loop start pseudo 1379 // instruction t2DoLoopStart with: 1380 // 1381 // $lr = MVE_DLSTP_32 killed renamable $r3 1382 // 1383 // Thus, $r3 which defines the number of elements, is written to $lr, 1384 // and then we want to delete the whole chain that used to define $lr, 1385 // see the comment below how this chain could look like. 1386 // 1387 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1388 if (!LoLoop.IsTailPredicationLegal()) 1389 return; 1390 1391 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1392 1393 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0); 1394 if (!Def) { 1395 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1396 return; 1397 } 1398 1399 // Collect and remove the users of iteration count. 1400 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1401 LoLoop.End, LoLoop.InsertPt }; 1402 if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed)) 1403 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1404 } 1405 1406 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1407 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1408 // When using tail-predication, try to delete the dead code that was used to 1409 // calculate the number of loop iterations. 1410 IterationCountDCE(LoLoop); 1411 1412 MachineInstr *InsertPt = LoLoop.InsertPt; 1413 MachineInstr *Start = LoLoop.Start; 1414 MachineBasicBlock *MBB = InsertPt->getParent(); 1415 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 1416 unsigned Opc = LoLoop.getStartOpcode(); 1417 MachineOperand &Count = LoLoop.getLoopStartOperand(); 1418 1419 MachineInstrBuilder MIB = 1420 BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc)); 1421 1422 MIB.addDef(ARM::LR); 1423 MIB.add(Count); 1424 if (!IsDo) 1425 MIB.add(Start->getOperand(1)); 1426 1427 // If we're inserting at a mov lr, then remove it as it's redundant. 1428 if (InsertPt != Start) 1429 LoLoop.ToRemove.insert(InsertPt); 1430 LoLoop.ToRemove.insert(Start); 1431 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1432 return &*MIB; 1433 } 1434 1435 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1436 auto RemovePredicate = [](MachineInstr *MI) { 1437 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1438 if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) { 1439 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1440 "Expected Then predicate!"); 1441 MI->getOperand(PIdx).setImm(ARMVCC::None); 1442 MI->getOperand(PIdx+1).setReg(0); 1443 } else 1444 llvm_unreachable("trying to unpredicate a non-predicated instruction"); 1445 }; 1446 1447 for (auto &Block : LoLoop.getVPTBlocks()) { 1448 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 1449 1450 if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/true)) { 1451 if (VPTState::hasUniformPredicate(Block)) { 1452 // A vpt block starting with VPST, is only predicated upon vctp and has no 1453 // internal vpr defs: 1454 // - Remove vpst. 1455 // - Unpredicate the remaining instructions. 1456 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front()); 1457 LoLoop.ToRemove.insert(Insts.front()); 1458 for (unsigned i = 1; i < Insts.size(); ++i) 1459 RemovePredicate(Insts[i]); 1460 } else { 1461 // The VPT block has a non-uniform predicate but it uses a vpst and its 1462 // entry is guarded only by a vctp, which means we: 1463 // - Need to remove the original vpst. 1464 // - Then need to unpredicate any following instructions, until 1465 // we come across the divergent vpr def. 1466 // - Insert a new vpst to predicate the instruction(s) that following 1467 // the divergent vpr def. 1468 // TODO: We could be producing more VPT blocks than necessary and could 1469 // fold the newly created one into a proceeding one. 1470 MachineInstr *Divergent = VPTState::getDivergent(Block); 1471 for (auto I = ++MachineBasicBlock::iterator(Insts.front()), 1472 E = ++MachineBasicBlock::iterator(Divergent); I != E; ++I) 1473 RemovePredicate(&*I); 1474 1475 // Check if the instruction defining vpr is a vcmp so it can be combined 1476 // with the VPST This should be the divergent instruction 1477 MachineInstr *VCMP = VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 1478 ? Divergent 1479 : nullptr; 1480 1481 MachineInstrBuilder MIB; 1482 if (VCMP) { 1483 // Combine the VPST and VCMP into a VPT 1484 MIB = BuildMI(*Divergent->getParent(), Divergent, 1485 Divergent->getDebugLoc(), 1486 TII->get(VCMPOpcodeToVPT(VCMP->getOpcode()))); 1487 MIB.addImm(ARMVCC::Then); 1488 // Register one 1489 MIB.add(VCMP->getOperand(1)); 1490 // Register two 1491 MIB.add(VCMP->getOperand(2)); 1492 // The comparison code, e.g. ge, eq, lt 1493 MIB.add(VCMP->getOperand(3)); 1494 LLVM_DEBUG(dbgs() 1495 << "ARM Loops: Combining with VCMP to VPT: " << *MIB); 1496 LoLoop.ToRemove.insert(VCMP); 1497 } else { 1498 // Create a VPST (with a null mask for now, we'll recompute it later) 1499 // or a VPT in case there was a VCMP right before it 1500 MIB = BuildMI(*Divergent->getParent(), Divergent, 1501 Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST)); 1502 MIB.addImm(0); 1503 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1504 } 1505 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front()); 1506 LoLoop.ToRemove.insert(Insts.front()); 1507 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1508 } 1509 } else if (Block.containsVCTP()) { 1510 // The vctp will be removed, so the block mask of the vp(s)t will need 1511 // to be recomputed. 1512 LoLoop.BlockMasksToRecompute.insert(Insts.front()); 1513 } 1514 } 1515 1516 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end()); 1517 } 1518 1519 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1520 1521 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1522 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1523 MachineInstr *End = LoLoop.End; 1524 MachineBasicBlock *MBB = End->getParent(); 1525 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1526 ARM::MVE_LETP : ARM::t2LEUpdate; 1527 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1528 TII->get(Opc)); 1529 MIB.addDef(ARM::LR); 1530 MIB.add(End->getOperand(0)); 1531 MIB.add(End->getOperand(1)); 1532 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1533 LoLoop.ToRemove.insert(LoLoop.Dec); 1534 LoLoop.ToRemove.insert(End); 1535 return &*MIB; 1536 }; 1537 1538 // TODO: We should be able to automatically remove these branches before we 1539 // get here - probably by teaching analyzeBranch about the pseudo 1540 // instructions. 1541 // If there is an unconditional branch, after I, that just branches to the 1542 // next block, remove it. 1543 auto RemoveDeadBranch = [](MachineInstr *I) { 1544 MachineBasicBlock *BB = I->getParent(); 1545 MachineInstr *Terminator = &BB->instr_back(); 1546 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1547 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1548 if (BB->isLayoutSuccessor(Succ)) { 1549 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1550 Terminator->eraseFromParent(); 1551 } 1552 } 1553 }; 1554 1555 if (LoLoop.Revert) { 1556 if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) 1557 RevertWhile(LoLoop.Start); 1558 else 1559 LoLoop.Start->eraseFromParent(); 1560 bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec); 1561 RevertLoopEnd(LoLoop.End, FlagsAlreadySet); 1562 } else { 1563 LoLoop.Start = ExpandLoopStart(LoLoop); 1564 RemoveDeadBranch(LoLoop.Start); 1565 LoLoop.End = ExpandLoopEnd(LoLoop); 1566 RemoveDeadBranch(LoLoop.End); 1567 if (LoLoop.IsTailPredicationLegal()) 1568 ConvertVPTBlocks(LoLoop); 1569 for (auto *I : LoLoop.ToRemove) { 1570 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1571 I->eraseFromParent(); 1572 } 1573 for (auto *I : LoLoop.BlockMasksToRecompute) { 1574 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1575 recomputeVPTBlockMask(*I); 1576 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1577 } 1578 } 1579 1580 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1581 DFS.ProcessLoop(); 1582 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1583 for (auto *MBB : PostOrder) { 1584 recomputeLiveIns(*MBB); 1585 // FIXME: For some reason, the live-in print order is non-deterministic for 1586 // our tests and I can't out why... So just sort them. 1587 MBB->sortUniqueLiveIns(); 1588 } 1589 1590 for (auto *MBB : reverse(PostOrder)) 1591 recomputeLivenessFlags(*MBB); 1592 1593 // We've moved, removed and inserted new instructions, so update RDA. 1594 RDA->reset(); 1595 } 1596 1597 bool ARMLowOverheadLoops::RevertNonLoops() { 1598 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1599 bool Changed = false; 1600 1601 for (auto &MBB : *MF) { 1602 SmallVector<MachineInstr*, 4> Starts; 1603 SmallVector<MachineInstr*, 4> Decs; 1604 SmallVector<MachineInstr*, 4> Ends; 1605 1606 for (auto &I : MBB) { 1607 if (isLoopStart(I)) 1608 Starts.push_back(&I); 1609 else if (I.getOpcode() == ARM::t2LoopDec) 1610 Decs.push_back(&I); 1611 else if (I.getOpcode() == ARM::t2LoopEnd) 1612 Ends.push_back(&I); 1613 } 1614 1615 if (Starts.empty() && Decs.empty() && Ends.empty()) 1616 continue; 1617 1618 Changed = true; 1619 1620 for (auto *Start : Starts) { 1621 if (Start->getOpcode() == ARM::t2WhileLoopStart) 1622 RevertWhile(Start); 1623 else 1624 Start->eraseFromParent(); 1625 } 1626 for (auto *Dec : Decs) 1627 RevertLoopDec(Dec); 1628 1629 for (auto *End : Ends) 1630 RevertLoopEnd(End); 1631 } 1632 return Changed; 1633 } 1634 1635 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1636 return new ARMLowOverheadLoops(); 1637 } 1638