1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 //===----------------------------------------------------------------------===// 39 40 #include "ARM.h" 41 #include "ARMBaseInstrInfo.h" 42 #include "ARMBaseRegisterInfo.h" 43 #include "ARMBasicBlockInfo.h" 44 #include "ARMSubtarget.h" 45 #include "llvm/ADT/SetOperations.h" 46 #include "llvm/ADT/SmallSet.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineLoopUtils.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/CodeGen/Passes.h" 52 #include "llvm/CodeGen/ReachingDefAnalysis.h" 53 #include "llvm/MC/MCInstrDesc.h" 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "arm-low-overhead-loops" 58 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 59 60 namespace { 61 62 struct PredicatedMI { 63 MachineInstr *MI = nullptr; 64 SetVector<MachineInstr*> Predicates; 65 66 public: 67 PredicatedMI(MachineInstr *I, SetVector<MachineInstr*> &Preds) : 68 MI(I) { 69 Predicates.insert(Preds.begin(), Preds.end()); 70 } 71 }; 72 73 // Represent a VPT block, a list of instructions that begins with a VPST and 74 // has a maximum of four proceeding instructions. All instructions within the 75 // block are predicated upon the vpr and we allow instructions to define the 76 // vpr within in the block too. 77 class VPTBlock { 78 std::unique_ptr<PredicatedMI> VPST; 79 PredicatedMI *Divergent = nullptr; 80 SmallVector<PredicatedMI, 4> Insts; 81 82 public: 83 VPTBlock(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { 84 VPST = std::make_unique<PredicatedMI>(MI, Preds); 85 } 86 87 void addInst(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { 88 LLVM_DEBUG(dbgs() << "ARM Loops: Adding predicated MI: " << *MI); 89 if (!Divergent && !set_difference(Preds, VPST->Predicates).empty()) { 90 Divergent = &Insts.back(); 91 LLVM_DEBUG(dbgs() << " - has divergent predicate: " << *Divergent->MI); 92 } 93 Insts.emplace_back(MI, Preds); 94 assert(Insts.size() <= 4 && "Too many instructions in VPT block!"); 95 } 96 97 // Have we found an instruction within the block which defines the vpr? If 98 // so, not all the instructions in the block will have the same predicate. 99 bool HasNonUniformPredicate() const { 100 return Divergent != nullptr; 101 } 102 103 // Is the given instruction part of the predicate set controlling the entry 104 // to the block. 105 bool IsPredicatedOn(MachineInstr *MI) const { 106 return VPST->Predicates.count(MI); 107 } 108 109 // Is the given instruction the only predicate which controls the entry to 110 // the block. 111 bool IsOnlyPredicatedOn(MachineInstr *MI) const { 112 return IsPredicatedOn(MI) && VPST->Predicates.size() == 1; 113 } 114 115 unsigned size() const { return Insts.size(); } 116 SmallVectorImpl<PredicatedMI> &getInsts() { return Insts; } 117 MachineInstr *getVPST() const { return VPST->MI; } 118 PredicatedMI *getDivergent() const { return Divergent; } 119 }; 120 121 struct LowOverheadLoop { 122 123 MachineLoop *ML = nullptr; 124 MachineFunction *MF = nullptr; 125 MachineInstr *InsertPt = nullptr; 126 MachineInstr *Start = nullptr; 127 MachineInstr *Dec = nullptr; 128 MachineInstr *End = nullptr; 129 MachineInstr *VCTP = nullptr; 130 VPTBlock *CurrentBlock = nullptr; 131 SetVector<MachineInstr*> CurrentPredicate; 132 SmallVector<VPTBlock, 4> VPTBlocks; 133 bool Revert = false; 134 bool CannotTailPredicate = false; 135 136 LowOverheadLoop(MachineLoop *ML) : ML(ML) { 137 MF = ML->getHeader()->getParent(); 138 } 139 140 bool RecordVPTBlocks(MachineInstr *MI); 141 142 // If this is an MVE instruction, check that we know how to use tail 143 // predication with it. 144 void AnalyseMVEInst(MachineInstr *MI) { 145 if (CannotTailPredicate) 146 return; 147 148 if (!RecordVPTBlocks(MI)) { 149 CannotTailPredicate = true; 150 return; 151 } 152 153 const MCInstrDesc &MCID = MI->getDesc(); 154 uint64_t Flags = MCID.TSFlags; 155 if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE) 156 return; 157 158 if ((Flags & ARMII::ValidForTailPredication) == 0) { 159 LLVM_DEBUG(dbgs() << "ARM Loops: Can't tail predicate: " << *MI); 160 CannotTailPredicate = true; 161 } 162 } 163 164 bool IsTailPredicationLegal() const { 165 // For now, let's keep things really simple and only support a single 166 // block for tail predication. 167 return !Revert && FoundAllComponents() && VCTP && 168 !CannotTailPredicate && ML->getNumBlocks() == 1; 169 } 170 171 bool ValidateTailPredicate(MachineInstr *StartInsertPt, 172 ReachingDefAnalysis *RDA, 173 MachineLoopInfo *MLI); 174 175 // Is it safe to define LR with DLS/WLS? 176 // LR can be defined if it is the operand to start, because it's the same 177 // value, or if it's going to be equivalent to the operand to Start. 178 MachineInstr *IsSafeToDefineLR(ReachingDefAnalysis *RDA); 179 180 // Check the branch targets are within range and we satisfy our 181 // restrictions. 182 void CheckLegality(ARMBasicBlockUtils *BBUtils, ReachingDefAnalysis *RDA, 183 MachineLoopInfo *MLI); 184 185 bool FoundAllComponents() const { 186 return Start && Dec && End; 187 } 188 189 SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTBlocks; } 190 191 // Return the loop iteration count, or the number of elements if we're tail 192 // predicating. 193 MachineOperand &getCount() { 194 return IsTailPredicationLegal() ? 195 VCTP->getOperand(1) : Start->getOperand(0); 196 } 197 198 unsigned getStartOpcode() const { 199 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 200 if (!IsTailPredicationLegal()) 201 return IsDo ? ARM::t2DLS : ARM::t2WLS; 202 203 return VCTPOpcodeToLSTP(VCTP->getOpcode(), IsDo); 204 } 205 206 void dump() const { 207 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 208 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 209 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 210 if (VCTP) dbgs() << "ARM Loops: Found VCTP: " << *VCTP; 211 if (!FoundAllComponents()) 212 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 213 else if (!(Start && Dec && End)) 214 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 215 } 216 }; 217 218 class ARMLowOverheadLoops : public MachineFunctionPass { 219 MachineFunction *MF = nullptr; 220 MachineLoopInfo *MLI = nullptr; 221 ReachingDefAnalysis *RDA = nullptr; 222 const ARMBaseInstrInfo *TII = nullptr; 223 MachineRegisterInfo *MRI = nullptr; 224 const TargetRegisterInfo *TRI = nullptr; 225 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 226 227 public: 228 static char ID; 229 230 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 231 232 void getAnalysisUsage(AnalysisUsage &AU) const override { 233 AU.setPreservesCFG(); 234 AU.addRequired<MachineLoopInfo>(); 235 AU.addRequired<ReachingDefAnalysis>(); 236 MachineFunctionPass::getAnalysisUsage(AU); 237 } 238 239 bool runOnMachineFunction(MachineFunction &MF) override; 240 241 MachineFunctionProperties getRequiredProperties() const override { 242 return MachineFunctionProperties().set( 243 MachineFunctionProperties::Property::NoVRegs).set( 244 MachineFunctionProperties::Property::TracksLiveness); 245 } 246 247 StringRef getPassName() const override { 248 return ARM_LOW_OVERHEAD_LOOPS_NAME; 249 } 250 251 private: 252 bool ProcessLoop(MachineLoop *ML); 253 254 bool RevertNonLoops(); 255 256 void RevertWhile(MachineInstr *MI) const; 257 258 bool RevertLoopDec(MachineInstr *MI, bool AllowFlags = false) const; 259 260 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 261 262 void RemoveLoopUpdate(LowOverheadLoop &LoLoop); 263 264 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 265 266 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 267 268 void Expand(LowOverheadLoop &LoLoop); 269 270 }; 271 } 272 273 char ARMLowOverheadLoops::ID = 0; 274 275 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 276 false, false) 277 278 MachineInstr *LowOverheadLoop::IsSafeToDefineLR(ReachingDefAnalysis *RDA) { 279 // We can define LR because LR already contains the same value. 280 if (Start->getOperand(0).getReg() == ARM::LR) 281 return Start; 282 283 unsigned CountReg = Start->getOperand(0).getReg(); 284 auto IsMoveLR = [&CountReg](MachineInstr *MI) { 285 return MI->getOpcode() == ARM::tMOVr && 286 MI->getOperand(0).getReg() == ARM::LR && 287 MI->getOperand(1).getReg() == CountReg && 288 MI->getOperand(2).getImm() == ARMCC::AL; 289 }; 290 291 MachineBasicBlock *MBB = Start->getParent(); 292 293 // Find an insertion point: 294 // - Is there a (mov lr, Count) before Start? If so, and nothing else writes 295 // to Count before Start, we can insert at that mov. 296 if (auto *LRDef = RDA->getReachingMIDef(Start, ARM::LR)) 297 if (IsMoveLR(LRDef) && RDA->hasSameReachingDef(Start, LRDef, CountReg)) 298 return LRDef; 299 300 // - Is there a (mov lr, Count) after Start? If so, and nothing else writes 301 // to Count after Start, we can insert at that mov. 302 if (auto *LRDef = RDA->getLocalLiveOutMIDef(MBB, ARM::LR)) 303 if (IsMoveLR(LRDef) && RDA->hasSameReachingDef(Start, LRDef, CountReg)) 304 return LRDef; 305 306 // We've found no suitable LR def and Start doesn't use LR directly. Can we 307 // just define LR anyway? 308 if (!RDA->isRegUsedAfter(Start, ARM::LR)) 309 return Start; 310 311 return nullptr; 312 } 313 314 // Can we safely move 'From' to just before 'To'? To satisfy this, 'From' must 315 // not define a register that is used by any instructions, after and including, 316 // 'To'. These instructions also must not redefine any of Froms operands. 317 template<typename Iterator> 318 static bool IsSafeToMove(MachineInstr *From, MachineInstr *To, ReachingDefAnalysis *RDA) { 319 SmallSet<int, 2> Defs; 320 // First check that From would compute the same value if moved. 321 for (auto &MO : From->operands()) { 322 if (!MO.isReg() || MO.isUndef() || !MO.getReg()) 323 continue; 324 if (MO.isDef()) 325 Defs.insert(MO.getReg()); 326 else if (!RDA->hasSameReachingDef(From, To, MO.getReg())) 327 return false; 328 } 329 330 // Now walk checking that the rest of the instructions will compute the same 331 // value. 332 for (auto I = ++Iterator(From), E = Iterator(To); I != E; ++I) { 333 for (auto &MO : I->operands()) 334 if (MO.isReg() && MO.getReg() && MO.isUse() && Defs.count(MO.getReg())) 335 return false; 336 } 337 return true; 338 } 339 340 bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt, 341 ReachingDefAnalysis *RDA, MachineLoopInfo *MLI) { 342 assert(VCTP && "VCTP instruction expected but is not set"); 343 // All predication within the loop should be based on vctp. If the block 344 // isn't predicated on entry, check whether the vctp is within the block 345 // and that all other instructions are then predicated on it. 346 for (auto &Block : VPTBlocks) { 347 if (Block.IsPredicatedOn(VCTP)) 348 continue; 349 if (!Block.HasNonUniformPredicate() || !isVCTP(Block.getDivergent()->MI)) 350 return false; 351 SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); 352 for (auto &PredMI : Insts) { 353 if (PredMI.Predicates.count(VCTP) || isVCTP(PredMI.MI)) 354 continue; 355 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *PredMI.MI 356 << " - which is predicated on:\n"; 357 for (auto *MI : PredMI.Predicates) 358 dbgs() << " - " << *MI; 359 ); 360 return false; 361 } 362 } 363 364 // For tail predication, we need to provide the number of elements, instead 365 // of the iteration count, to the loop start instruction. The number of 366 // elements is provided to the vctp instruction, so we need to check that 367 // we can use this register at InsertPt. 368 Register NumElements = VCTP->getOperand(1).getReg(); 369 370 // If the register is defined within loop, then we can't perform TP. 371 // TODO: Check whether this is just a mov of a register that would be 372 // available. 373 if (RDA->getReachingDef(VCTP, NumElements) >= 0) { 374 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 375 return false; 376 } 377 378 // The element count register maybe defined after InsertPt, in which case we 379 // need to try to move either InsertPt or the def so that the [w|d]lstp can 380 // use the value. 381 MachineBasicBlock *InsertBB = InsertPt->getParent(); 382 if (!RDA->isReachingDefLiveOut(InsertPt, NumElements)) { 383 if (auto *ElemDef = RDA->getLocalLiveOutMIDef(InsertBB, NumElements)) { 384 if (IsSafeToMove<MachineBasicBlock::reverse_iterator>(ElemDef, InsertPt, RDA)) { 385 ElemDef->removeFromParent(); 386 InsertBB->insert(MachineBasicBlock::iterator(InsertPt), ElemDef); 387 LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: " 388 << *ElemDef); 389 } else if (IsSafeToMove<MachineBasicBlock::iterator>(InsertPt, ElemDef, RDA)) { 390 InsertPt->removeFromParent(); 391 InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), InsertPt); 392 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 393 } else 394 return false; 395 } 396 } 397 398 // Especially in the case of while loops, InsertBB may not be the 399 // preheader, so we need to check that the register isn't redefined 400 // before entering the loop. 401 auto CannotProvideElements = [&RDA](MachineBasicBlock *MBB, 402 Register NumElements) { 403 // NumElements is redefined in this block. 404 if (RDA->getReachingDef(&MBB->back(), NumElements) >= 0) 405 return true; 406 407 // Don't continue searching up through multiple predecessors. 408 if (MBB->pred_size() > 1) 409 return true; 410 411 return false; 412 }; 413 414 // First, find the block that looks like the preheader. 415 MachineBasicBlock *MBB = MLI->findLoopPreheader(ML, true); 416 if (!MBB) 417 return false; 418 419 // Then search backwards for a def, until we get to InsertBB. 420 while (MBB != InsertBB) { 421 if (CannotProvideElements(MBB, NumElements)) 422 return false; 423 MBB = *MBB->pred_begin(); 424 } 425 426 LLVM_DEBUG(dbgs() << "ARM Loops: Will use tail predication.\n"); 427 return true; 428 } 429 430 void LowOverheadLoop::CheckLegality(ARMBasicBlockUtils *BBUtils, 431 ReachingDefAnalysis *RDA, 432 MachineLoopInfo *MLI) { 433 if (Revert) 434 return; 435 436 if (!End->getOperand(1).isMBB()) 437 report_fatal_error("Expected LoopEnd to target basic block"); 438 439 // TODO Maybe there's cases where the target doesn't have to be the header, 440 // but for now be safe and revert. 441 if (End->getOperand(1).getMBB() != ML->getHeader()) { 442 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targetting header.\n"); 443 Revert = true; 444 return; 445 } 446 447 // The WLS and LE instructions have 12-bits for the label offset. WLS 448 // requires a positive offset, while LE uses negative. 449 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML->getHeader()) || 450 !BBUtils->isBBInRange(End, ML->getHeader(), 4094)) { 451 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 452 Revert = true; 453 return; 454 } 455 456 if (Start->getOpcode() == ARM::t2WhileLoopStart && 457 (BBUtils->getOffsetOf(Start) > 458 BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || 459 !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { 460 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 461 Revert = true; 462 return; 463 } 464 465 InsertPt = Revert ? nullptr : IsSafeToDefineLR(RDA); 466 if (!InsertPt) { 467 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n"); 468 Revert = true; 469 return; 470 } else 471 LLVM_DEBUG(dbgs() << "ARM Loops: Start insertion point: " << *InsertPt); 472 473 if (!IsTailPredicationLegal()) { 474 LLVM_DEBUG(if (!VCTP) 475 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 476 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 477 return; 478 } 479 480 assert(ML->getBlocks().size() == 1 && 481 "Shouldn't be processing a loop with more than one block"); 482 CannotTailPredicate = !ValidateTailPredicate(InsertPt, RDA, MLI); 483 LLVM_DEBUG(if (CannotTailPredicate) 484 dbgs() << "ARM Loops: Couldn't validate tail predicate.\n"); 485 } 486 487 bool LowOverheadLoop::RecordVPTBlocks(MachineInstr* MI) { 488 // Only support a single vctp. 489 if (isVCTP(MI) && VCTP) 490 return false; 491 492 // Start a new vpt block when we discover a vpt. 493 if (MI->getOpcode() == ARM::MVE_VPST) { 494 VPTBlocks.emplace_back(MI, CurrentPredicate); 495 CurrentBlock = &VPTBlocks.back(); 496 return true; 497 } 498 499 if (isVCTP(MI)) 500 VCTP = MI; 501 502 unsigned VPROpNum = MI->getNumOperands() - 1; 503 bool IsUse = false; 504 if (MI->getOperand(VPROpNum).isReg() && 505 MI->getOperand(VPROpNum).getReg() == ARM::VPR && 506 MI->getOperand(VPROpNum).isUse()) { 507 // If this instruction is predicated by VPR, it will be its last 508 // operand. Also check that it's only 'Then' predicated. 509 if (!MI->getOperand(VPROpNum-1).isImm() || 510 MI->getOperand(VPROpNum-1).getImm() != ARMVCC::Then) { 511 LLVM_DEBUG(dbgs() << "ARM Loops: Found unhandled predicate on: " 512 << *MI); 513 return false; 514 } 515 CurrentBlock->addInst(MI, CurrentPredicate); 516 IsUse = true; 517 } 518 519 bool IsDef = false; 520 for (unsigned i = 0; i < MI->getNumOperands() - 1; ++i) { 521 const MachineOperand &MO = MI->getOperand(i); 522 if (!MO.isReg() || MO.getReg() != ARM::VPR) 523 continue; 524 525 if (MO.isDef()) { 526 CurrentPredicate.insert(MI); 527 IsDef = true; 528 } else { 529 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 530 return false; 531 } 532 } 533 534 // If we find a vpr def that is not already predicated on the vctp, we've 535 // got disjoint predicates that may not be equivalent when we do the 536 // conversion. 537 if (IsDef && !IsUse && VCTP && !isVCTP(MI)) { 538 LLVM_DEBUG(dbgs() << "ARM Loops: Found disjoint vpr def: " << *MI); 539 return false; 540 } 541 542 return true; 543 } 544 545 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 546 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 547 if (!ST.hasLOB()) 548 return false; 549 550 MF = &mf; 551 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 552 553 MLI = &getAnalysis<MachineLoopInfo>(); 554 RDA = &getAnalysis<ReachingDefAnalysis>(); 555 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 556 MRI = &MF->getRegInfo(); 557 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 558 TRI = ST.getRegisterInfo(); 559 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 560 BBUtils->computeAllBlockSizes(); 561 BBUtils->adjustBBOffsetsAfter(&MF->front()); 562 563 bool Changed = false; 564 for (auto ML : *MLI) { 565 if (!ML->getParentLoop()) 566 Changed |= ProcessLoop(ML); 567 } 568 Changed |= RevertNonLoops(); 569 return Changed; 570 } 571 572 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 573 574 bool Changed = false; 575 576 // Process inner loops first. 577 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 578 Changed |= ProcessLoop(*I); 579 580 LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; 581 if (auto *Preheader = ML->getLoopPreheader()) 582 dbgs() << " - " << Preheader->getName() << "\n"; 583 else if (auto *Preheader = MLI->findLoopPreheader(ML)) 584 dbgs() << " - " << Preheader->getName() << "\n"; 585 for (auto *MBB : ML->getBlocks()) 586 dbgs() << " - " << MBB->getName() << "\n"; 587 ); 588 589 // Search the given block for a loop start instruction. If one isn't found, 590 // and there's only one predecessor block, search that one too. 591 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 592 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 593 for (auto &MI : *MBB) { 594 if (isLoopStart(MI)) 595 return &MI; 596 } 597 if (MBB->pred_size() == 1) 598 return SearchForStart(*MBB->pred_begin()); 599 return nullptr; 600 }; 601 602 LowOverheadLoop LoLoop(ML); 603 // Search the preheader for the start intrinsic. 604 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 605 // with potentially multiple set.loop.iterations, so we need to enable this. 606 if (auto *Preheader = ML->getLoopPreheader()) 607 LoLoop.Start = SearchForStart(Preheader); 608 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 609 LoLoop.Start = SearchForStart(Preheader); 610 else 611 return false; 612 613 // Find the low-overhead loop components and decide whether or not to fall 614 // back to a normal loop. Also look for a vctp instructions and decide 615 // whether we can convert that predicate using tail predication. 616 for (auto *MBB : reverse(ML->getBlocks())) { 617 for (auto &MI : *MBB) { 618 if (MI.getOpcode() == ARM::t2LoopDec) 619 LoLoop.Dec = &MI; 620 else if (MI.getOpcode() == ARM::t2LoopEnd) 621 LoLoop.End = &MI; 622 else if (isLoopStart(MI)) 623 LoLoop.Start = &MI; 624 else if (MI.getDesc().isCall()) { 625 // TODO: Though the call will require LE to execute again, does this 626 // mean we should revert? Always executing LE hopefully should be 627 // faster than performing a sub,cmp,br or even subs,br. 628 LoLoop.Revert = true; 629 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 630 } else { 631 // Record VPR defs and build up their corresponding vpt blocks. 632 // Check we know how to tail predicate any mve instructions. 633 LoLoop.AnalyseMVEInst(&MI); 634 } 635 636 // We need to ensure that LR is not used or defined inbetween LoopDec and 637 // LoopEnd. 638 if (!LoLoop.Dec || LoLoop.End || LoLoop.Revert) 639 continue; 640 641 // If we find that LR has been written or read between LoopDec and 642 // LoopEnd, expect that the decremented value is being used else where. 643 // Because this value isn't actually going to be produced until the 644 // latch, by LE, we would need to generate a real sub. The value is also 645 // likely to be copied/reloaded for use of LoopEnd - in which in case 646 // we'd need to perform an add because it gets subtracted again by LE! 647 // The other option is to then generate the other form of LE which doesn't 648 // perform the sub. 649 for (auto &MO : MI.operands()) { 650 if (MI.getOpcode() != ARM::t2LoopDec && MO.isReg() && 651 MO.getReg() == ARM::LR) { 652 LLVM_DEBUG(dbgs() << "ARM Loops: Found LR Use/Def: " << MI); 653 LoLoop.Revert = true; 654 break; 655 } 656 } 657 } 658 } 659 660 LLVM_DEBUG(LoLoop.dump()); 661 if (!LoLoop.FoundAllComponents()) { 662 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 663 return false; 664 } 665 666 LoLoop.CheckLegality(BBUtils.get(), RDA, MLI); 667 Expand(LoLoop); 668 return true; 669 } 670 671 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 672 // beq that branches to the exit branch. 673 // TODO: We could also try to generate a cbz if the value in LR is also in 674 // another low register. 675 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 676 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 677 MachineBasicBlock *MBB = MI->getParent(); 678 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 679 TII->get(ARM::t2CMPri)); 680 MIB.add(MI->getOperand(0)); 681 MIB.addImm(0); 682 MIB.addImm(ARMCC::AL); 683 MIB.addReg(ARM::NoRegister); 684 685 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 686 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 687 ARM::tBcc : ARM::t2Bcc; 688 689 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 690 MIB.add(MI->getOperand(1)); // branch target 691 MIB.addImm(ARMCC::EQ); // condition code 692 MIB.addReg(ARM::CPSR); 693 MI->eraseFromParent(); 694 } 695 696 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI, 697 bool SetFlags) const { 698 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 699 MachineBasicBlock *MBB = MI->getParent(); 700 701 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 702 if (SetFlags && 703 (RDA->isRegUsedAfter(MI, ARM::CPSR) || 704 !RDA->hasSameReachingDef(MI, &MBB->back(), ARM::CPSR))) 705 SetFlags = false; 706 707 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 708 TII->get(ARM::t2SUBri)); 709 MIB.addDef(ARM::LR); 710 MIB.add(MI->getOperand(1)); 711 MIB.add(MI->getOperand(2)); 712 MIB.addImm(ARMCC::AL); 713 MIB.addReg(0); 714 715 if (SetFlags) { 716 MIB.addReg(ARM::CPSR); 717 MIB->getOperand(5).setIsDef(true); 718 } else 719 MIB.addReg(0); 720 721 MI->eraseFromParent(); 722 return SetFlags; 723 } 724 725 // Generate a subs, or sub and cmp, and a branch instead of an LE. 726 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 727 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 728 729 MachineBasicBlock *MBB = MI->getParent(); 730 // Create cmp 731 if (!SkipCmp) { 732 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 733 TII->get(ARM::t2CMPri)); 734 MIB.addReg(ARM::LR); 735 MIB.addImm(0); 736 MIB.addImm(ARMCC::AL); 737 MIB.addReg(ARM::NoRegister); 738 } 739 740 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 741 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 742 ARM::tBcc : ARM::t2Bcc; 743 744 // Create bne 745 MachineInstrBuilder MIB = 746 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 747 MIB.add(MI->getOperand(1)); // branch target 748 MIB.addImm(ARMCC::NE); // condition code 749 MIB.addReg(ARM::CPSR); 750 MI->eraseFromParent(); 751 } 752 753 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 754 MachineInstr *InsertPt = LoLoop.InsertPt; 755 MachineInstr *Start = LoLoop.Start; 756 MachineBasicBlock *MBB = InsertPt->getParent(); 757 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 758 unsigned Opc = LoLoop.getStartOpcode(); 759 MachineOperand &Count = LoLoop.getCount(); 760 761 MachineInstrBuilder MIB = 762 BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc)); 763 764 MIB.addDef(ARM::LR); 765 MIB.add(Count); 766 if (!IsDo) 767 MIB.add(Start->getOperand(1)); 768 769 // When using tail-predication, try to delete the dead code that was used to 770 // calculate the number of loop iterations. 771 if (LoLoop.IsTailPredicationLegal()) { 772 SmallVector<MachineInstr*, 4> Killed; 773 SmallVector<MachineInstr*, 4> Dead; 774 if (auto *Def = RDA->getReachingMIDef(Start, 775 Start->getOperand(0).getReg())) { 776 Killed.push_back(Def); 777 778 while (!Killed.empty()) { 779 MachineInstr *Def = Killed.back(); 780 Killed.pop_back(); 781 Dead.push_back(Def); 782 for (auto &MO : Def->operands()) { 783 if (!MO.isReg() || !MO.isKill()) 784 continue; 785 786 MachineInstr *Kill = RDA->getReachingMIDef(Def, MO.getReg()); 787 if (Kill && RDA->getNumUses(Kill, MO.getReg()) == 1) 788 Killed.push_back(Kill); 789 } 790 } 791 for (auto *MI : Dead) 792 MI->eraseFromParent(); 793 } 794 } 795 796 // If we're inserting at a mov lr, then remove it as it's redundant. 797 if (InsertPt != Start) 798 InsertPt->eraseFromParent(); 799 Start->eraseFromParent(); 800 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 801 return &*MIB; 802 } 803 804 // Goal is to optimise and clean-up these loops: 805 // 806 // vector.body: 807 // renamable $vpr = MVE_VCTP32 renamable $r3, 0, $noreg 808 // renamable $r3, dead $cpsr = tSUBi8 killed renamable $r3(tied-def 0), 4 809 // .. 810 // $lr = MVE_DLSTP_32 renamable $r3 811 // 812 // The SUB is the old update of the loop iteration count expression, which 813 // is no longer needed. This sub is removed when the element count, which is in 814 // r3 in this example, is defined by an instruction in the loop, and it has 815 // no uses. 816 // 817 void ARMLowOverheadLoops::RemoveLoopUpdate(LowOverheadLoop &LoLoop) { 818 Register ElemCount = LoLoop.VCTP->getOperand(1).getReg(); 819 MachineInstr *LastInstrInBlock = &LoLoop.VCTP->getParent()->back(); 820 821 LLVM_DEBUG(dbgs() << "ARM Loops: Trying to remove loop update stmt\n"); 822 823 if (LoLoop.ML->getNumBlocks() != 1) { 824 LLVM_DEBUG(dbgs() << "ARM Loops: Single block loop expected\n"); 825 return; 826 } 827 828 LLVM_DEBUG(dbgs() << "ARM Loops: Analyzing elemcount in operand: "; 829 LoLoop.VCTP->getOperand(1).dump()); 830 831 // Find the definition we are interested in removing, if there is one. 832 MachineInstr *Def = RDA->getReachingMIDef(LastInstrInBlock, ElemCount); 833 if (!Def) { 834 LLVM_DEBUG(dbgs() << "ARM Loops: Can't find a def, nothing to do.\n"); 835 return; 836 } 837 838 // Bail if we define CPSR and it is not dead 839 if (!Def->registerDefIsDead(ARM::CPSR, TRI)) { 840 LLVM_DEBUG(dbgs() << "ARM Loops: CPSR is not dead\n"); 841 return; 842 } 843 844 // Bail if elemcount is used in exit blocks, i.e. if it is live-in. 845 if (isRegLiveInExitBlocks(LoLoop.ML, ElemCount)) { 846 LLVM_DEBUG(dbgs() << "ARM Loops: Elemcount is live-out, can't remove stmt\n"); 847 return; 848 } 849 850 // Bail if there are uses after this Def in the block. 851 SmallVector<MachineInstr*, 4> Uses; 852 RDA->getReachingLocalUses(Def, ElemCount, Uses); 853 if (Uses.size()) { 854 LLVM_DEBUG(dbgs() << "ARM Loops: Local uses in block, can't remove stmt\n"); 855 return; 856 } 857 858 Uses.clear(); 859 RDA->getAllInstWithUseBefore(Def, ElemCount, Uses); 860 861 // Remove Def if there are no uses, or if the only use is the VCTP 862 // instruction. 863 if (!Uses.size() || (Uses.size() == 1 && Uses[0] == LoLoop.VCTP)) { 864 LLVM_DEBUG(dbgs() << "ARM Loops: Removing loop update instruction: "; 865 Def->dump()); 866 Def->eraseFromParent(); 867 } 868 869 LLVM_DEBUG(dbgs() << "ARM Loops: Can't remove loop update, it's used by:\n"; 870 for (auto U : Uses) U->dump()); 871 } 872 873 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 874 auto RemovePredicate = [](MachineInstr *MI) { 875 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 876 unsigned OpNum = MI->getNumOperands() - 1; 877 assert(MI->getOperand(OpNum-1).getImm() == ARMVCC::Then && 878 "Expected Then predicate!"); 879 MI->getOperand(OpNum-1).setImm(ARMVCC::None); 880 MI->getOperand(OpNum).setReg(0); 881 }; 882 883 // There are a few scenarios which we have to fix up: 884 // 1) A VPT block with is only predicated by the vctp and has no internal vpr 885 // defs. 886 // 2) A VPT block which is only predicated by the vctp but has an internal 887 // vpr def. 888 // 3) A VPT block which is predicated upon the vctp as well as another vpr 889 // def. 890 // 4) A VPT block which is not predicated upon a vctp, but contains it and 891 // all instructions within the block are predicated upon in. 892 893 for (auto &Block : LoLoop.getVPTBlocks()) { 894 SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); 895 if (Block.HasNonUniformPredicate()) { 896 PredicatedMI *Divergent = Block.getDivergent(); 897 if (isVCTP(Divergent->MI)) { 898 // The vctp will be removed, so the size of the vpt block needs to be 899 // modified. 900 uint64_t Size = getARMVPTBlockMask(Block.size() - 1); 901 Block.getVPST()->getOperand(0).setImm(Size); 902 LLVM_DEBUG(dbgs() << "ARM Loops: Modified VPT block mask.\n"); 903 } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { 904 // The VPT block has a non-uniform predicate but it's entry is guarded 905 // only by a vctp, which means we: 906 // - Need to remove the original vpst. 907 // - Then need to unpredicate any following instructions, until 908 // we come across the divergent vpr def. 909 // - Insert a new vpst to predicate the instruction(s) that following 910 // the divergent vpr def. 911 // TODO: We could be producing more VPT blocks than necessary and could 912 // fold the newly created one into a proceeding one. 913 for (auto I = ++MachineBasicBlock::iterator(Block.getVPST()), 914 E = ++MachineBasicBlock::iterator(Divergent->MI); I != E; ++I) 915 RemovePredicate(&*I); 916 917 unsigned Size = 0; 918 auto E = MachineBasicBlock::reverse_iterator(Divergent->MI); 919 auto I = MachineBasicBlock::reverse_iterator(Insts.back().MI); 920 MachineInstr *InsertAt = nullptr; 921 while (I != E) { 922 InsertAt = &*I; 923 ++Size; 924 ++I; 925 } 926 MachineInstrBuilder MIB = BuildMI(*InsertAt->getParent(), InsertAt, 927 InsertAt->getDebugLoc(), 928 TII->get(ARM::MVE_VPST)); 929 MIB.addImm(getARMVPTBlockMask(Size)); 930 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST()); 931 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 932 Block.getVPST()->eraseFromParent(); 933 } 934 } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { 935 // A vpt block which is only predicated upon vctp and has no internal vpr 936 // defs: 937 // - Remove vpst. 938 // - Unpredicate the remaining instructions. 939 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST()); 940 Block.getVPST()->eraseFromParent(); 941 for (auto &PredMI : Insts) 942 RemovePredicate(PredMI.MI); 943 } 944 } 945 946 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VCTP: " << *LoLoop.VCTP); 947 LoLoop.VCTP->eraseFromParent(); 948 } 949 950 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 951 952 // Combine the LoopDec and LoopEnd instructions into LE(TP). 953 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 954 MachineInstr *End = LoLoop.End; 955 MachineBasicBlock *MBB = End->getParent(); 956 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 957 ARM::MVE_LETP : ARM::t2LEUpdate; 958 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 959 TII->get(Opc)); 960 MIB.addDef(ARM::LR); 961 MIB.add(End->getOperand(0)); 962 MIB.add(End->getOperand(1)); 963 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 964 965 LoLoop.End->eraseFromParent(); 966 LoLoop.Dec->eraseFromParent(); 967 return &*MIB; 968 }; 969 970 // TODO: We should be able to automatically remove these branches before we 971 // get here - probably by teaching analyzeBranch about the pseudo 972 // instructions. 973 // If there is an unconditional branch, after I, that just branches to the 974 // next block, remove it. 975 auto RemoveDeadBranch = [](MachineInstr *I) { 976 MachineBasicBlock *BB = I->getParent(); 977 MachineInstr *Terminator = &BB->instr_back(); 978 if (Terminator->isUnconditionalBranch() && I != Terminator) { 979 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 980 if (BB->isLayoutSuccessor(Succ)) { 981 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 982 Terminator->eraseFromParent(); 983 } 984 } 985 }; 986 987 if (LoLoop.Revert) { 988 if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) 989 RevertWhile(LoLoop.Start); 990 else 991 LoLoop.Start->eraseFromParent(); 992 bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec, true); 993 RevertLoopEnd(LoLoop.End, FlagsAlreadySet); 994 } else { 995 LoLoop.Start = ExpandLoopStart(LoLoop); 996 RemoveDeadBranch(LoLoop.Start); 997 LoLoop.End = ExpandLoopEnd(LoLoop); 998 RemoveDeadBranch(LoLoop.End); 999 if (LoLoop.IsTailPredicationLegal()) { 1000 RemoveLoopUpdate(LoLoop); 1001 ConvertVPTBlocks(LoLoop); 1002 } 1003 } 1004 } 1005 1006 bool ARMLowOverheadLoops::RevertNonLoops() { 1007 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1008 bool Changed = false; 1009 1010 for (auto &MBB : *MF) { 1011 SmallVector<MachineInstr*, 4> Starts; 1012 SmallVector<MachineInstr*, 4> Decs; 1013 SmallVector<MachineInstr*, 4> Ends; 1014 1015 for (auto &I : MBB) { 1016 if (isLoopStart(I)) 1017 Starts.push_back(&I); 1018 else if (I.getOpcode() == ARM::t2LoopDec) 1019 Decs.push_back(&I); 1020 else if (I.getOpcode() == ARM::t2LoopEnd) 1021 Ends.push_back(&I); 1022 } 1023 1024 if (Starts.empty() && Decs.empty() && Ends.empty()) 1025 continue; 1026 1027 Changed = true; 1028 1029 for (auto *Start : Starts) { 1030 if (Start->getOpcode() == ARM::t2WhileLoopStart) 1031 RevertWhile(Start); 1032 else 1033 Start->eraseFromParent(); 1034 } 1035 for (auto *Dec : Decs) 1036 RevertLoopDec(Dec); 1037 1038 for (auto *End : Ends) 1039 RevertLoopEnd(End); 1040 } 1041 return Changed; 1042 } 1043 1044 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1045 return new ARMLowOverheadLoops(); 1046 } 1047