xref: /llvm-project/llvm/lib/Target/ARM/ARMLowOverheadLoops.cpp (revision 40a3f7e48d6bac6702357636a5f5c351415ed050)
1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo
10 /// instructions into machine operations.
11 /// The expectation is that the loop contains three pseudo instructions:
12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
13 ///   form should be in the preheader, whereas the while form should be in the
14 ///   preheaders only predecessor.
15 /// - t2LoopDec - placed within in the loop body.
16 /// - t2LoopEnd - the loop latch terminator.
17 ///
18 /// In addition to this, we also look for the presence of the VCTP instruction,
19 /// which determines whether we can generated the tail-predicated low-overhead
20 /// loop form.
21 ///
22 /// Assumptions and Dependencies:
23 /// Low-overhead loops are constructed and executed using a setup instruction:
24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
26 /// but fixed polarity: WLS can only branch forwards and LE can only branch
27 /// backwards. These restrictions mean that this pass is dependent upon block
28 /// layout and block sizes, which is why it's the last pass to run. The same is
29 /// true for ConstantIslands, but this pass does not increase the size of the
30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed
31 /// during the transform and pseudo instructions are replaced by real ones. In
32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce
33 /// multiple instructions for a single pseudo (see RevertWhile and
34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd
35 /// are defined to be as large as this maximum sequence of replacement
36 /// instructions.
37 ///
38 /// A note on VPR.P0 (the lane mask):
39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a
40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks).
41 /// They will simply "and" the result of their calculation with the current
42 /// value of VPR.P0. You can think of it like this:
43 /// \verbatim
44 /// if VPT active:    ; Between a DLSTP/LETP, or for predicated instrs
45 ///   VPR.P0 &= Value
46 /// else
47 ///   VPR.P0 = Value
48 /// \endverbatim
49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always
50 /// fall in the "VPT active" case, so we can consider that all VPR writes by
51 /// one of those instruction is actually a "and".
52 //===----------------------------------------------------------------------===//
53 
54 #include "ARM.h"
55 #include "ARMBaseInstrInfo.h"
56 #include "ARMBaseRegisterInfo.h"
57 #include "ARMBasicBlockInfo.h"
58 #include "ARMSubtarget.h"
59 #include "Thumb2InstrInfo.h"
60 #include "llvm/ADT/SetOperations.h"
61 #include "llvm/ADT/SmallSet.h"
62 #include "llvm/CodeGen/LivePhysRegs.h"
63 #include "llvm/CodeGen/MachineFunctionPass.h"
64 #include "llvm/CodeGen/MachineLoopInfo.h"
65 #include "llvm/CodeGen/MachineLoopUtils.h"
66 #include "llvm/CodeGen/MachineRegisterInfo.h"
67 #include "llvm/CodeGen/Passes.h"
68 #include "llvm/CodeGen/ReachingDefAnalysis.h"
69 #include "llvm/MC/MCInstrDesc.h"
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "arm-low-overhead-loops"
74 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"
75 
76 static cl::opt<bool>
77 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden,
78     cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"),
79     cl::init(false));
80 
81 static bool isVectorPredicated(MachineInstr *MI) {
82   int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
83   return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR;
84 }
85 
86 static bool isVectorPredicate(MachineInstr *MI) {
87   return MI->findRegisterDefOperandIdx(ARM::VPR) != -1;
88 }
89 
90 static bool hasVPRUse(MachineInstr *MI) {
91   return MI->findRegisterUseOperandIdx(ARM::VPR) != -1;
92 }
93 
94 static bool isDomainMVE(MachineInstr *MI) {
95   uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
96   return Domain == ARMII::DomainMVE;
97 }
98 
99 static bool shouldInspect(MachineInstr &MI) {
100   return isDomainMVE(&MI) || isVectorPredicate(&MI) ||
101     hasVPRUse(&MI);
102 }
103 
104 namespace {
105 
106   using InstSet = SmallPtrSetImpl<MachineInstr *>;
107 
108   class PostOrderLoopTraversal {
109     MachineLoop &ML;
110     MachineLoopInfo &MLI;
111     SmallPtrSet<MachineBasicBlock*, 4> Visited;
112     SmallVector<MachineBasicBlock*, 4> Order;
113 
114   public:
115     PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI)
116       : ML(ML), MLI(MLI) { }
117 
118     const SmallVectorImpl<MachineBasicBlock*> &getOrder() const {
119       return Order;
120     }
121 
122     // Visit all the blocks within the loop, as well as exit blocks and any
123     // blocks properly dominating the header.
124     void ProcessLoop() {
125       std::function<void(MachineBasicBlock*)> Search = [this, &Search]
126         (MachineBasicBlock *MBB) -> void {
127         if (Visited.count(MBB))
128           return;
129 
130         Visited.insert(MBB);
131         for (auto *Succ : MBB->successors()) {
132           if (!ML.contains(Succ))
133             continue;
134           Search(Succ);
135         }
136         Order.push_back(MBB);
137       };
138 
139       // Insert exit blocks.
140       SmallVector<MachineBasicBlock*, 2> ExitBlocks;
141       ML.getExitBlocks(ExitBlocks);
142       for (auto *MBB : ExitBlocks)
143         Order.push_back(MBB);
144 
145       // Then add the loop body.
146       Search(ML.getHeader());
147 
148       // Then try the preheader and its predecessors.
149       std::function<void(MachineBasicBlock*)> GetPredecessor =
150         [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void {
151         Order.push_back(MBB);
152         if (MBB->pred_size() == 1)
153           GetPredecessor(*MBB->pred_begin());
154       };
155 
156       if (auto *Preheader = ML.getLoopPreheader())
157         GetPredecessor(Preheader);
158       else if (auto *Preheader = MLI.findLoopPreheader(&ML, true))
159         GetPredecessor(Preheader);
160     }
161   };
162 
163   struct PredicatedMI {
164     MachineInstr *MI = nullptr;
165     SetVector<MachineInstr*> Predicates;
166 
167   public:
168     PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) {
169       assert(I && "Instruction must not be null!");
170       Predicates.insert(Preds.begin(), Preds.end());
171     }
172   };
173 
174   // Represent the current state of the VPR and hold all instances which
175   // represent a VPT block, which is a list of instructions that begins with a
176   // VPT/VPST and has a maximum of four proceeding instructions. All
177   // instructions within the block are predicated upon the vpr and we allow
178   // instructions to define the vpr within in the block too.
179   class VPTState {
180     friend struct LowOverheadLoop;
181 
182     SmallVector<MachineInstr *, 4> Insts;
183 
184     static SmallVector<VPTState, 4> Blocks;
185     static SetVector<MachineInstr *> CurrentPredicates;
186     static std::map<MachineInstr *,
187       std::unique_ptr<PredicatedMI>> PredicatedInsts;
188 
189     static void CreateVPTBlock(MachineInstr *MI) {
190       assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR))
191              && "Can't begin VPT without predicate");
192       Blocks.emplace_back(MI);
193       // The execution of MI is predicated upon the current set of instructions
194       // that are AND'ed together to form the VPR predicate value. In the case
195       // that MI is a VPT, CurrentPredicates will also just be MI.
196       PredicatedInsts.emplace(
197         MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
198     }
199 
200     static void reset() {
201       Blocks.clear();
202       PredicatedInsts.clear();
203       CurrentPredicates.clear();
204     }
205 
206     static void addInst(MachineInstr *MI) {
207       Blocks.back().insert(MI);
208       PredicatedInsts.emplace(
209         MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
210     }
211 
212     static void addPredicate(MachineInstr *MI) {
213       LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI);
214       CurrentPredicates.insert(MI);
215     }
216 
217     static void resetPredicate(MachineInstr *MI) {
218       LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI);
219       CurrentPredicates.clear();
220       CurrentPredicates.insert(MI);
221     }
222 
223   public:
224     // Have we found an instruction within the block which defines the vpr? If
225     // so, not all the instructions in the block will have the same predicate.
226     static bool hasUniformPredicate(VPTState &Block) {
227       return getDivergent(Block) == nullptr;
228     }
229 
230     // If it exists, return the first internal instruction which modifies the
231     // VPR.
232     static MachineInstr *getDivergent(VPTState &Block) {
233       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
234       for (unsigned i = 1; i < Insts.size(); ++i) {
235         MachineInstr *Next = Insts[i];
236         if (isVectorPredicate(Next))
237           return Next; // Found an instruction altering the vpr.
238       }
239       return nullptr;
240     }
241 
242     // Return whether the given instruction is predicated upon a VCTP.
243     static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) {
244       SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates;
245       if (Exclusive && Predicates.size() != 1)
246         return false;
247       for (auto *PredMI : Predicates)
248         if (isVCTP(PredMI))
249           return true;
250       return false;
251     }
252 
253     // Is the VPST, controlling the block entry, predicated upon a VCTP.
254     static bool isEntryPredicatedOnVCTP(VPTState &Block,
255                                         bool Exclusive = false) {
256       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
257       return isPredicatedOnVCTP(Insts.front(), Exclusive);
258     }
259 
260     // If this block begins with a VPT, we can check whether it's using
261     // at least one predicated input(s), as well as possible loop invariant
262     // which would result in it being implicitly predicated.
263     static bool hasImplicitlyValidVPT(VPTState &Block,
264                                       ReachingDefAnalysis &RDA) {
265       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
266       MachineInstr *VPT = Insts.front();
267       assert(isVPTOpcode(VPT->getOpcode()) &&
268              "Expected VPT block to begin with VPT/VPST");
269 
270       if (VPT->getOpcode() == ARM::MVE_VPST)
271         return false;
272 
273       auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) {
274         MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx));
275         return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op);
276       };
277 
278       auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) {
279         MachineOperand &MO = MI->getOperand(Idx);
280         if (!MO.isReg() || !MO.getReg())
281           return true;
282 
283         SmallPtrSet<MachineInstr *, 2> Defs;
284         RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs);
285         if (Defs.empty())
286           return true;
287 
288         for (auto *Def : Defs)
289           if (Def->getParent() == VPT->getParent())
290             return false;
291         return true;
292       };
293 
294       // Check that at least one of the operands is directly predicated on a
295       // vctp and allow an invariant value too.
296       return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) &&
297              (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) &&
298              (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2));
299     }
300 
301     static bool isValid(ReachingDefAnalysis &RDA) {
302       // All predication within the loop should be based on vctp. If the block
303       // isn't predicated on entry, check whether the vctp is within the block
304       // and that all other instructions are then predicated on it.
305       for (auto &Block : Blocks) {
306         if (isEntryPredicatedOnVCTP(Block, false) ||
307             hasImplicitlyValidVPT(Block, RDA))
308           continue;
309 
310         SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
311         for (auto *MI : Insts) {
312           // Check that any internal VCTPs are 'Then' predicated.
313           if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then)
314             return false;
315           // Skip other instructions that build up the predicate.
316           if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI))
317             continue;
318           // Check that any other instructions are predicated upon a vctp.
319           // TODO: We could infer when VPTs are implicitly predicated on the
320           // vctp (when the operands are predicated).
321           if (!isPredicatedOnVCTP(MI)) {
322             LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI);
323             return false;
324           }
325         }
326       }
327       return true;
328     }
329 
330     VPTState(MachineInstr *MI) { Insts.push_back(MI); }
331 
332     void insert(MachineInstr *MI) {
333       Insts.push_back(MI);
334       // VPT/VPST + 4 predicated instructions.
335       assert(Insts.size() <= 5 && "Too many instructions in VPT block!");
336     }
337 
338     bool containsVCTP() const {
339       for (auto *MI : Insts)
340         if (isVCTP(MI))
341           return true;
342       return false;
343     }
344 
345     unsigned size() const { return Insts.size(); }
346     SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; }
347   };
348 
349   struct LowOverheadLoop {
350 
351     MachineLoop &ML;
352     MachineBasicBlock *Preheader = nullptr;
353     MachineLoopInfo &MLI;
354     ReachingDefAnalysis &RDA;
355     const TargetRegisterInfo &TRI;
356     const ARMBaseInstrInfo &TII;
357     MachineFunction *MF = nullptr;
358     MachineBasicBlock::iterator StartInsertPt;
359     MachineBasicBlock *StartInsertBB = nullptr;
360     MachineInstr *Start = nullptr;
361     MachineInstr *Dec = nullptr;
362     MachineInstr *End = nullptr;
363     MachineOperand TPNumElements;
364     SmallVector<MachineInstr*, 4> VCTPs;
365     SmallPtrSet<MachineInstr*, 4> ToRemove;
366     SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute;
367     bool Revert = false;
368     bool CannotTailPredicate = false;
369 
370     LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI,
371                     ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI,
372                     const ARMBaseInstrInfo &TII)
373         : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII),
374           TPNumElements(MachineOperand::CreateImm(0)) {
375       MF = ML.getHeader()->getParent();
376       if (auto *MBB = ML.getLoopPreheader())
377         Preheader = MBB;
378       else if (auto *MBB = MLI.findLoopPreheader(&ML, true))
379         Preheader = MBB;
380       VPTState::reset();
381     }
382 
383     // If this is an MVE instruction, check that we know how to use tail
384     // predication with it. Record VPT blocks and return whether the
385     // instruction is valid for tail predication.
386     bool ValidateMVEInst(MachineInstr *MI);
387 
388     void AnalyseMVEInst(MachineInstr *MI) {
389       CannotTailPredicate = !ValidateMVEInst(MI);
390     }
391 
392     bool IsTailPredicationLegal() const {
393       // For now, let's keep things really simple and only support a single
394       // block for tail predication.
395       return !Revert && FoundAllComponents() && !VCTPs.empty() &&
396              !CannotTailPredicate && ML.getNumBlocks() == 1;
397     }
398 
399     // Given that MI is a VCTP, check that is equivalent to any other VCTPs
400     // found.
401     bool AddVCTP(MachineInstr *MI);
402 
403     // Check that the predication in the loop will be equivalent once we
404     // perform the conversion. Also ensure that we can provide the number
405     // of elements to the loop start instruction.
406     bool ValidateTailPredicate();
407 
408     // Check that any values available outside of the loop will be the same
409     // after tail predication conversion.
410     bool ValidateLiveOuts();
411 
412     // Is it safe to define LR with DLS/WLS?
413     // LR can be defined if it is the operand to start, because it's the same
414     // value, or if it's going to be equivalent to the operand to Start.
415     MachineInstr *isSafeToDefineLR();
416 
417     // Check the branch targets are within range and we satisfy our
418     // restrictions.
419     void Validate(ARMBasicBlockUtils *BBUtils);
420 
421     bool FoundAllComponents() const {
422       return Start && Dec && End;
423     }
424 
425     SmallVectorImpl<VPTState> &getVPTBlocks() {
426       return VPTState::Blocks;
427     }
428 
429     // Return the operand for the loop start instruction. This will be the loop
430     // iteration count, or the number of elements if we're tail predicating.
431     MachineOperand &getLoopStartOperand() {
432       return IsTailPredicationLegal() ? TPNumElements : Start->getOperand(0);
433     }
434 
435     unsigned getStartOpcode() const {
436       bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
437       if (!IsTailPredicationLegal())
438         return IsDo ? ARM::t2DLS : ARM::t2WLS;
439 
440       return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo);
441     }
442 
443     void dump() const {
444       if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start;
445       if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec;
446       if (End) dbgs() << "ARM Loops: Found Loop End: " << *End;
447       if (!VCTPs.empty()) {
448         dbgs() << "ARM Loops: Found VCTP(s):\n";
449         for (auto *MI : VCTPs)
450           dbgs() << " - " << *MI;
451       }
452       if (!FoundAllComponents())
453         dbgs() << "ARM Loops: Not a low-overhead loop.\n";
454       else if (!(Start && Dec && End))
455         dbgs() << "ARM Loops: Failed to find all loop components.\n";
456     }
457   };
458 
459   class ARMLowOverheadLoops : public MachineFunctionPass {
460     MachineFunction           *MF = nullptr;
461     MachineLoopInfo           *MLI = nullptr;
462     ReachingDefAnalysis       *RDA = nullptr;
463     const ARMBaseInstrInfo    *TII = nullptr;
464     MachineRegisterInfo       *MRI = nullptr;
465     const TargetRegisterInfo  *TRI = nullptr;
466     std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
467 
468   public:
469     static char ID;
470 
471     ARMLowOverheadLoops() : MachineFunctionPass(ID) { }
472 
473     void getAnalysisUsage(AnalysisUsage &AU) const override {
474       AU.setPreservesCFG();
475       AU.addRequired<MachineLoopInfo>();
476       AU.addRequired<ReachingDefAnalysis>();
477       MachineFunctionPass::getAnalysisUsage(AU);
478     }
479 
480     bool runOnMachineFunction(MachineFunction &MF) override;
481 
482     MachineFunctionProperties getRequiredProperties() const override {
483       return MachineFunctionProperties().set(
484           MachineFunctionProperties::Property::NoVRegs).set(
485           MachineFunctionProperties::Property::TracksLiveness);
486     }
487 
488     StringRef getPassName() const override {
489       return ARM_LOW_OVERHEAD_LOOPS_NAME;
490     }
491 
492   private:
493     bool ProcessLoop(MachineLoop *ML);
494 
495     bool RevertNonLoops();
496 
497     void RevertWhile(MachineInstr *MI) const;
498 
499     bool RevertLoopDec(MachineInstr *MI) const;
500 
501     void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const;
502 
503     void ConvertVPTBlocks(LowOverheadLoop &LoLoop);
504 
505     MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop);
506 
507     void Expand(LowOverheadLoop &LoLoop);
508 
509     void IterationCountDCE(LowOverheadLoop &LoLoop);
510   };
511 }
512 
513 char ARMLowOverheadLoops::ID = 0;
514 
515 SmallVector<VPTState, 4> VPTState::Blocks;
516 SetVector<MachineInstr *> VPTState::CurrentPredicates;
517 std::map<MachineInstr *,
518          std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts;
519 
520 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME,
521                 false, false)
522 
523 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA,
524                       InstSet &ToRemove, InstSet &Ignore) {
525 
526   // Check that we can remove all of Killed without having to modify any IT
527   // blocks.
528   auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) {
529     // Collect the dead code and the MBBs in which they reside.
530     SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks;
531     for (auto *Dead : Killed)
532       BasicBlocks.insert(Dead->getParent());
533 
534     // Collect IT blocks in all affected basic blocks.
535     std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks;
536     for (auto *MBB : BasicBlocks) {
537       for (auto &IT : *MBB) {
538         if (IT.getOpcode() != ARM::t2IT)
539           continue;
540         RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE),
541                                  ITBlocks[&IT]);
542       }
543     }
544 
545     // If we're removing all of the instructions within an IT block, then
546     // also remove the IT instruction.
547     SmallPtrSet<MachineInstr *, 2> ModifiedITs;
548     SmallPtrSet<MachineInstr *, 2> RemoveITs;
549     for (auto *Dead : Killed) {
550       if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) {
551         MachineInstr *IT = RDA.getMIOperand(Dead, *MO);
552         RemoveITs.insert(IT);
553         auto &CurrentBlock = ITBlocks[IT];
554         CurrentBlock.erase(Dead);
555         if (CurrentBlock.empty())
556           ModifiedITs.erase(IT);
557         else
558           ModifiedITs.insert(IT);
559       }
560     }
561     if (!ModifiedITs.empty())
562       return false;
563     Killed.insert(RemoveITs.begin(), RemoveITs.end());
564     return true;
565   };
566 
567   SmallPtrSet<MachineInstr *, 2> Uses;
568   if (!RDA.isSafeToRemove(MI, Uses, Ignore))
569     return false;
570 
571   if (WontCorruptITs(Uses, RDA)) {
572     ToRemove.insert(Uses.begin(), Uses.end());
573     LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI
574                << " - can also remove:\n";
575                for (auto *Use : Uses)
576                  dbgs() << "   - " << *Use);
577 
578     SmallPtrSet<MachineInstr*, 4> Killed;
579     RDA.collectKilledOperands(MI, Killed);
580     if (WontCorruptITs(Killed, RDA)) {
581       ToRemove.insert(Killed.begin(), Killed.end());
582       LLVM_DEBUG(for (auto *Dead : Killed)
583                    dbgs() << "   - " << *Dead);
584     }
585     return true;
586   }
587   return false;
588 }
589 
590 bool LowOverheadLoop::ValidateTailPredicate() {
591   if (!IsTailPredicationLegal()) {
592     LLVM_DEBUG(if (VCTPs.empty())
593                  dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
594                dbgs() << "ARM Loops: Tail-predication is not valid.\n");
595     return false;
596   }
597 
598   assert(!VCTPs.empty() && "VCTP instruction expected but is not set");
599   assert(ML.getBlocks().size() == 1 &&
600          "Shouldn't be processing a loop with more than one block");
601 
602   if (DisableTailPredication) {
603     LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n");
604     return false;
605   }
606 
607   if (!VPTState::isValid(RDA)) {
608     LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n");
609     return false;
610   }
611 
612   if (!ValidateLiveOuts()) {
613     LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n");
614     return false;
615   }
616 
617   // Check that creating a [W|D]LSTP, which will define LR with an element
618   // count instead of iteration count, won't affect any other instructions
619   // than the LoopStart and LoopDec.
620   // TODO: We should try to insert the [W|D]LSTP after any of the other uses.
621   if (StartInsertPt == Start && Start->getOperand(0).getReg() == ARM::LR) {
622     if (auto *IterCount = RDA.getMIOperand(Start, 0)) {
623       SmallPtrSet<MachineInstr *, 2> Uses;
624       RDA.getGlobalUses(IterCount, MCRegister::from(ARM::LR), Uses);
625       for (auto *Use : Uses) {
626         if (Use != Start && Use != Dec) {
627           LLVM_DEBUG(dbgs() << " ARM Loops: Found LR use: " << *Use);
628           return false;
629         }
630       }
631     }
632   }
633 
634   // For tail predication, we need to provide the number of elements, instead
635   // of the iteration count, to the loop start instruction. The number of
636   // elements is provided to the vctp instruction, so we need to check that
637   // we can use this register at InsertPt.
638   MachineInstr *VCTP = VCTPs.back();
639   TPNumElements = VCTP->getOperand(1);
640   MCRegister NumElements = TPNumElements.getReg().asMCReg();
641 
642   // If the register is defined within loop, then we can't perform TP.
643   // TODO: Check whether this is just a mov of a register that would be
644   // available.
645   if (RDA.hasLocalDefBefore(VCTP, NumElements)) {
646     LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
647     return false;
648   }
649 
650   // The element count register maybe defined after InsertPt, in which case we
651   // need to try to move either InsertPt or the def so that the [w|d]lstp can
652   // use the value.
653 
654   if (StartInsertPt != StartInsertBB->end() &&
655       !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) {
656     if (auto *ElemDef = RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) {
657       if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) {
658         ElemDef->removeFromParent();
659         StartInsertBB->insert(StartInsertPt, ElemDef);
660         LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: "
661                    << *ElemDef);
662       } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) {
663         StartInsertPt->removeFromParent();
664         StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef),
665                                    &*StartInsertPt);
666         LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef);
667       } else {
668         // If we fail to move an instruction and the element count is provided
669         // by a mov, use the mov operand if it will have the same value at the
670         // insertion point
671         MachineOperand Operand = ElemDef->getOperand(1);
672         if (isMovRegOpcode(ElemDef->getOpcode()) &&
673             RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) ==
674                 RDA.getUniqueReachingMIDef(&*StartInsertPt,
675                                            Operand.getReg().asMCReg())) {
676           TPNumElements = Operand;
677           NumElements = TPNumElements.getReg();
678         } else {
679           LLVM_DEBUG(dbgs()
680                      << "ARM Loops: Unable to move element count to loop "
681                      << "start instruction.\n");
682           return false;
683         }
684       }
685     }
686   }
687 
688   // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect
689   // world the [w|d]lstp instruction would be last instruction in the preheader
690   // and so it would only affect instructions within the loop body. But due to
691   // scheduling, and/or the logic in this pass (above), the insertion point can
692   // be moved earlier. So if the Loop Start isn't the last instruction in the
693   // preheader, and if the initial element count is smaller than the vector
694   // width, the Loop Start instruction will immediately generate one or more
695   // false lane mask which can, incorrectly, affect the proceeding MVE
696   // instructions in the preheader.
697   auto CannotInsertWDLSTPBetween = [](MachineBasicBlock::iterator I,
698                                       MachineBasicBlock::iterator E) {
699     for (; I != E; ++I) {
700       if (shouldInspect(*I)) {
701         LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP"
702                    << " insertion: " << *I);
703         return true;
704       }
705     }
706     return false;
707   };
708 
709   if (CannotInsertWDLSTPBetween(StartInsertPt, StartInsertBB->end()))
710     return false;
711 
712   // Especially in the case of while loops, InsertBB may not be the
713   // preheader, so we need to check that the register isn't redefined
714   // before entering the loop.
715   auto CannotProvideElements = [this](MachineBasicBlock *MBB,
716                                       MCRegister NumElements) {
717     if (MBB->empty())
718       return false;
719     // NumElements is redefined in this block.
720     if (RDA.hasLocalDefBefore(&MBB->back(), NumElements))
721       return true;
722 
723     // Don't continue searching up through multiple predecessors.
724     if (MBB->pred_size() > 1)
725       return true;
726 
727     return false;
728   };
729 
730   // Search backwards for a def, until we get to InsertBB.
731   MachineBasicBlock *MBB = Preheader;
732   while (MBB && MBB != StartInsertBB) {
733     if (CannotProvideElements(MBB, NumElements)) {
734       LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
735       return false;
736     }
737     MBB = *MBB->pred_begin();
738   }
739 
740   // Check that the value change of the element count is what we expect and
741   // that the predication will be equivalent. For this we need:
742   // NumElements = NumElements - VectorWidth. The sub will be a sub immediate
743   // and we can also allow register copies within the chain too.
744   auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) {
745     return -getAddSubImmediate(*MI) == ExpectedVecWidth;
746   };
747 
748   MBB = VCTP->getParent();
749   // Remove modifications to the element count since they have no purpose in a
750   // tail predicated loop. Explicitly refer to the vctp operand no matter which
751   // register NumElements has been assigned to, since that is what the
752   // modifications will be using
753   if (auto *Def = RDA.getUniqueReachingMIDef(
754           &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) {
755     SmallPtrSet<MachineInstr*, 2> ElementChain;
756     SmallPtrSet<MachineInstr*, 2> Ignore;
757     unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode());
758 
759     Ignore.insert(VCTPs.begin(), VCTPs.end());
760 
761     if (TryRemove(Def, RDA, ElementChain, Ignore)) {
762       bool FoundSub = false;
763 
764       for (auto *MI : ElementChain) {
765         if (isMovRegOpcode(MI->getOpcode()))
766           continue;
767 
768         if (isSubImmOpcode(MI->getOpcode())) {
769           if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) {
770             LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
771                        " count: " << *MI);
772             return false;
773           }
774           FoundSub = true;
775         } else {
776           LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
777                      " count: " << *MI);
778           return false;
779         }
780       }
781       ToRemove.insert(ElementChain.begin(), ElementChain.end());
782     }
783   }
784   return true;
785 }
786 
787 static bool isRegInClass(const MachineOperand &MO,
788                          const TargetRegisterClass *Class) {
789   return MO.isReg() && MO.getReg() && Class->contains(MO.getReg());
790 }
791 
792 // MVE 'narrowing' operate on half a lane, reading from half and writing
793 // to half, which are referred to has the top and bottom half. The other
794 // half retains its previous value.
795 static bool retainsPreviousHalfElement(const MachineInstr &MI) {
796   const MCInstrDesc &MCID = MI.getDesc();
797   uint64_t Flags = MCID.TSFlags;
798   return (Flags & ARMII::RetainsPreviousHalfElement) != 0;
799 }
800 
801 // Some MVE instructions read from the top/bottom halves of their operand(s)
802 // and generate a vector result with result elements that are double the
803 // width of the input.
804 static bool producesDoubleWidthResult(const MachineInstr &MI) {
805   const MCInstrDesc &MCID = MI.getDesc();
806   uint64_t Flags = MCID.TSFlags;
807   return (Flags & ARMII::DoubleWidthResult) != 0;
808 }
809 
810 static bool isHorizontalReduction(const MachineInstr &MI) {
811   const MCInstrDesc &MCID = MI.getDesc();
812   uint64_t Flags = MCID.TSFlags;
813   return (Flags & ARMII::HorizontalReduction) != 0;
814 }
815 
816 // Can this instruction generate a non-zero result when given only zeroed
817 // operands? This allows us to know that, given operands with false bytes
818 // zeroed by masked loads, that the result will also contain zeros in those
819 // bytes.
820 static bool canGenerateNonZeros(const MachineInstr &MI) {
821 
822   // Check for instructions which can write into a larger element size,
823   // possibly writing into a previous zero'd lane.
824   if (producesDoubleWidthResult(MI))
825     return true;
826 
827   switch (MI.getOpcode()) {
828   default:
829     break;
830   // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow
831   // fp16 -> fp32 vector conversions.
832   // Instructions that perform a NOT will generate 1s from 0s.
833   case ARM::MVE_VMVN:
834   case ARM::MVE_VORN:
835   // Count leading zeros will do just that!
836   case ARM::MVE_VCLZs8:
837   case ARM::MVE_VCLZs16:
838   case ARM::MVE_VCLZs32:
839     return true;
840   }
841   return false;
842 }
843 
844 // Look at its register uses to see if it only can only receive zeros
845 // into its false lanes which would then produce zeros. Also check that
846 // the output register is also defined by an FalseLanesZero instruction
847 // so that if tail-predication happens, the lanes that aren't updated will
848 // still be zeros.
849 static bool producesFalseLanesZero(MachineInstr &MI,
850                                    const TargetRegisterClass *QPRs,
851                                    const ReachingDefAnalysis &RDA,
852                                    InstSet &FalseLanesZero) {
853   if (canGenerateNonZeros(MI))
854     return false;
855 
856   bool isPredicated = isVectorPredicated(&MI);
857   // Predicated loads will write zeros to the falsely predicated bytes of the
858   // destination register.
859   if (MI.mayLoad())
860     return isPredicated;
861 
862   auto IsZeroInit = [](MachineInstr *Def) {
863     return !isVectorPredicated(Def) &&
864            Def->getOpcode() == ARM::MVE_VMOVimmi32 &&
865            Def->getOperand(1).getImm() == 0;
866   };
867 
868   bool AllowScalars = isHorizontalReduction(MI);
869   for (auto &MO : MI.operands()) {
870     if (!MO.isReg() || !MO.getReg())
871       continue;
872     if (!isRegInClass(MO, QPRs) && AllowScalars)
873       continue;
874 
875     // Check that this instruction will produce zeros in its false lanes:
876     // - If it only consumes false lanes zero or constant 0 (vmov #0)
877     // - If it's predicated, it only matters that it's def register already has
878     //   false lane zeros, so we can ignore the uses.
879     SmallPtrSet<MachineInstr *, 2> Defs;
880     RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs);
881     for (auto *Def : Defs) {
882       if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def))
883         continue;
884       if (MO.isUse() && isPredicated)
885         continue;
886       return false;
887     }
888   }
889   LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI);
890   return true;
891 }
892 
893 bool LowOverheadLoop::ValidateLiveOuts() {
894   // We want to find out if the tail-predicated version of this loop will
895   // produce the same values as the loop in its original form. For this to
896   // be true, the newly inserted implicit predication must not change the
897   // the (observable) results.
898   // We're doing this because many instructions in the loop will not be
899   // predicated and so the conversion from VPT predication to tail-predication
900   // can result in different values being produced; due to the tail-predication
901   // preventing many instructions from updating their falsely predicated
902   // lanes. This analysis assumes that all the instructions perform lane-wise
903   // operations and don't perform any exchanges.
904   // A masked load, whether through VPT or tail predication, will write zeros
905   // to any of the falsely predicated bytes. So, from the loads, we know that
906   // the false lanes are zeroed and here we're trying to track that those false
907   // lanes remain zero, or where they change, the differences are masked away
908   // by their user(s).
909   // All MVE stores have to be predicated, so we know that any predicate load
910   // operands, or stored results are equivalent already. Other explicitly
911   // predicated instructions will perform the same operation in the original
912   // loop and the tail-predicated form too. Because of this, we can insert
913   // loads, stores and other predicated instructions into our Predicated
914   // set and build from there.
915   const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID);
916   SetVector<MachineInstr *> FalseLanesUnknown;
917   SmallPtrSet<MachineInstr *, 4> FalseLanesZero;
918   SmallPtrSet<MachineInstr *, 4> Predicated;
919   MachineBasicBlock *Header = ML.getHeader();
920 
921   for (auto &MI : *Header) {
922     if (!shouldInspect(MI))
923       continue;
924 
925     if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode()))
926       continue;
927 
928     bool isPredicated = isVectorPredicated(&MI);
929     bool retainsOrReduces =
930       retainsPreviousHalfElement(MI) || isHorizontalReduction(MI);
931 
932     if (isPredicated)
933       Predicated.insert(&MI);
934     if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero))
935       FalseLanesZero.insert(&MI);
936     else if (MI.getNumDefs() == 0)
937       continue;
938     else if (!isPredicated && retainsOrReduces)
939       return false;
940     else if (!isPredicated)
941       FalseLanesUnknown.insert(&MI);
942   }
943 
944   auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO,
945                               SmallPtrSetImpl<MachineInstr *> &Predicated) {
946     SmallPtrSet<MachineInstr *, 2> Uses;
947     RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses);
948     for (auto *Use : Uses) {
949       if (Use != MI && !Predicated.count(Use))
950         return false;
951     }
952     return true;
953   };
954 
955   // Visit the unknowns in reverse so that we can start at the values being
956   // stored and then we can work towards the leaves, hopefully adding more
957   // instructions to Predicated. Successfully terminating the loop means that
958   // all the unknown values have to found to be masked by predicated user(s).
959   // For any unpredicated values, we store them in NonPredicated so that we
960   // can later check whether these form a reduction.
961   SmallPtrSet<MachineInstr*, 2> NonPredicated;
962   for (auto *MI : reverse(FalseLanesUnknown)) {
963     for (auto &MO : MI->operands()) {
964       if (!isRegInClass(MO, QPRs) || !MO.isDef())
965         continue;
966       if (!HasPredicatedUsers(MI, MO, Predicated)) {
967         LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : "
968                           << TRI.getRegAsmName(MO.getReg()) << " at " << *MI);
969         NonPredicated.insert(MI);
970         break;
971       }
972     }
973     // Any unknown false lanes have been masked away by the user(s).
974     if (!NonPredicated.contains(MI))
975       Predicated.insert(MI);
976   }
977 
978   SmallPtrSet<MachineInstr *, 2> LiveOutMIs;
979   SmallVector<MachineBasicBlock *, 2> ExitBlocks;
980   ML.getExitBlocks(ExitBlocks);
981   assert(ML.getNumBlocks() == 1 && "Expected single block loop!");
982   assert(ExitBlocks.size() == 1 && "Expected a single exit block");
983   MachineBasicBlock *ExitBB = ExitBlocks.front();
984   for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) {
985     // TODO: Instead of blocking predication, we could move the vctp to the exit
986     // block and calculate it's operand there in or the preheader.
987     if (RegMask.PhysReg == ARM::VPR)
988       return false;
989     // Check Q-regs that are live in the exit blocks. We don't collect scalars
990     // because they won't be affected by lane predication.
991     if (QPRs->contains(RegMask.PhysReg))
992       if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg))
993         LiveOutMIs.insert(MI);
994   }
995 
996   // We've already validated that any VPT predication within the loop will be
997   // equivalent when we perform the predication transformation; so we know that
998   // any VPT predicated instruction is predicated upon VCTP. Any live-out
999   // instruction needs to be predicated, so check this here. The instructions
1000   // in NonPredicated have been found to be a reduction that we can ensure its
1001   // legality.
1002   for (auto *MI : LiveOutMIs) {
1003     if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) {
1004       LLVM_DEBUG(dbgs() << "ARM Loops: Unable to handle live out: " << *MI);
1005       return false;
1006     }
1007   }
1008 
1009   return true;
1010 }
1011 
1012 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) {
1013   if (Revert)
1014     return;
1015 
1016   // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP]
1017   // can only jump back.
1018   auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End,
1019                            ARMBasicBlockUtils *BBUtils, MachineLoop &ML) {
1020     if (!End->getOperand(1).isMBB())
1021       report_fatal_error("Expected LoopEnd to target basic block");
1022 
1023     // TODO Maybe there's cases where the target doesn't have to be the header,
1024     // but for now be safe and revert.
1025     if (End->getOperand(1).getMBB() != ML.getHeader()) {
1026       LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n");
1027       return false;
1028     }
1029 
1030     // The WLS and LE instructions have 12-bits for the label offset. WLS
1031     // requires a positive offset, while LE uses negative.
1032     if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) ||
1033         !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) {
1034       LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
1035       return false;
1036     }
1037 
1038     if (Start->getOpcode() == ARM::t2WhileLoopStart &&
1039         (BBUtils->getOffsetOf(Start) >
1040          BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) ||
1041          !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) {
1042       LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
1043       return false;
1044     }
1045     return true;
1046   };
1047 
1048   // Find a suitable position to insert the loop start instruction. It needs to
1049   // be able to safely define LR.
1050   auto FindStartInsertionPoint = [](MachineInstr *Start,
1051                                     MachineInstr *Dec,
1052                                     MachineBasicBlock::iterator &InsertPt,
1053                                     MachineBasicBlock *&InsertBB,
1054                                     ReachingDefAnalysis &RDA,
1055                                     InstSet &ToRemove) {
1056     // We can define LR because LR already contains the same value.
1057     if (Start->getOperand(0).getReg() == ARM::LR) {
1058       InsertPt = MachineBasicBlock::iterator(Start);
1059       InsertBB = Start->getParent();
1060       return true;
1061     }
1062 
1063     Register CountReg = Start->getOperand(0).getReg();
1064     auto IsMoveLR = [&CountReg](MachineInstr *MI) {
1065       return MI->getOpcode() == ARM::tMOVr &&
1066              MI->getOperand(0).getReg() == ARM::LR &&
1067              MI->getOperand(1).getReg() == CountReg &&
1068              MI->getOperand(2).getImm() == ARMCC::AL;
1069     };
1070 
1071     // Find an insertion point:
1072     // - Is there a (mov lr, Count) before Start? If so, and nothing else
1073     //   writes to Count before Start, we can insert at start.
1074     if (auto *LRDef =
1075             RDA.getUniqueReachingMIDef(Start, MCRegister::from(ARM::LR))) {
1076       if (IsMoveLR(LRDef) &&
1077           RDA.hasSameReachingDef(Start, LRDef, CountReg.asMCReg())) {
1078         SmallPtrSet<MachineInstr *, 2> Ignore = { Dec };
1079         if (!TryRemove(LRDef, RDA, ToRemove, Ignore))
1080           return false;
1081         InsertPt = MachineBasicBlock::iterator(Start);
1082         InsertBB = Start->getParent();
1083         return true;
1084       }
1085     }
1086 
1087     // - Is there a (mov lr, Count) after Start? If so, and nothing else writes
1088     //   to Count after Start, we can insert at that mov (which will now be
1089     //   dead).
1090     MachineBasicBlock *MBB = Start->getParent();
1091     if (auto *LRDef =
1092             RDA.getLocalLiveOutMIDef(MBB, MCRegister::from(ARM::LR))) {
1093       if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) {
1094         SmallPtrSet<MachineInstr *, 2> Ignore = { Start, Dec };
1095         if (!TryRemove(LRDef, RDA, ToRemove, Ignore))
1096           return false;
1097         InsertPt = MachineBasicBlock::iterator(LRDef);
1098         InsertBB = LRDef->getParent();
1099         return true;
1100       }
1101     }
1102 
1103     // We've found no suitable LR def and Start doesn't use LR directly. Can we
1104     // just define LR anyway?
1105     if (!RDA.isSafeToDefRegAt(Start, MCRegister::from(ARM::LR)))
1106       return false;
1107 
1108     InsertPt = MachineBasicBlock::iterator(Start);
1109     InsertBB = Start->getParent();
1110     return true;
1111   };
1112 
1113   if (!FindStartInsertionPoint(Start, Dec, StartInsertPt, StartInsertBB, RDA,
1114                                ToRemove)) {
1115     LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n");
1116     Revert = true;
1117     return;
1118   }
1119   LLVM_DEBUG(if (StartInsertPt == StartInsertBB->end())
1120                dbgs() << "ARM Loops: Will insert LoopStart at end of block\n";
1121              else
1122                dbgs() << "ARM Loops: Will insert LoopStart at "
1123                << *StartInsertPt
1124             );
1125 
1126   Revert = !ValidateRanges(Start, End, BBUtils, ML);
1127   CannotTailPredicate = !ValidateTailPredicate();
1128 }
1129 
1130 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) {
1131   LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI);
1132   if (VCTPs.empty()) {
1133     VCTPs.push_back(MI);
1134     return true;
1135   }
1136 
1137   // If we find another VCTP, check whether it uses the same value as the main VCTP.
1138   // If it does, store it in the VCTPs set, else refuse it.
1139   MachineInstr *Prev = VCTPs.back();
1140   if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) ||
1141       !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) {
1142     LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching "
1143                          "definition from the main VCTP");
1144     return false;
1145   }
1146   VCTPs.push_back(MI);
1147   return true;
1148 }
1149 
1150 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) {
1151   if (CannotTailPredicate)
1152     return false;
1153 
1154   if (!shouldInspect(*MI))
1155     return true;
1156 
1157   if (MI->getOpcode() == ARM::MVE_VPSEL ||
1158       MI->getOpcode() == ARM::MVE_VPNOT) {
1159     // TODO: Allow VPSEL and VPNOT, we currently cannot because:
1160     // 1) It will use the VPR as a predicate operand, but doesn't have to be
1161     //    instead a VPT block, which means we can assert while building up
1162     //    the VPT block because we don't find another VPT or VPST to being a new
1163     //    one.
1164     // 2) VPSEL still requires a VPR operand even after tail predicating,
1165     //    which means we can't remove it unless there is another
1166     //    instruction, such as vcmp, that can provide the VPR def.
1167     return false;
1168   }
1169 
1170   // Record all VCTPs and check that they're equivalent to one another.
1171   if (isVCTP(MI) && !AddVCTP(MI))
1172     return false;
1173 
1174   // Inspect uses first so that any instructions that alter the VPR don't
1175   // alter the predicate upon themselves.
1176   const MCInstrDesc &MCID = MI->getDesc();
1177   bool IsUse = false;
1178   unsigned LastOpIdx = MI->getNumOperands() - 1;
1179   for (auto &Op : enumerate(reverse(MCID.operands()))) {
1180     const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index());
1181     if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR)
1182       continue;
1183 
1184     if (ARM::isVpred(Op.value().OperandType)) {
1185       VPTState::addInst(MI);
1186       IsUse = true;
1187     } else if (MI->getOpcode() != ARM::MVE_VPST) {
1188       LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI);
1189       return false;
1190     }
1191   }
1192 
1193   // If we find an instruction that has been marked as not valid for tail
1194   // predication, only allow the instruction if it's contained within a valid
1195   // VPT block.
1196   bool RequiresExplicitPredication =
1197     (MCID.TSFlags & ARMII::ValidForTailPredication) == 0;
1198   if (isDomainMVE(MI) && RequiresExplicitPredication) {
1199     LLVM_DEBUG(if (!IsUse)
1200                dbgs() << "ARM Loops: Can't tail predicate: " << *MI);
1201     return IsUse;
1202   }
1203 
1204   // If the instruction is already explicitly predicated, then the conversion
1205   // will be fine, but ensure that all store operations are predicated.
1206   if (MI->mayStore())
1207     return IsUse;
1208 
1209   // If this instruction defines the VPR, update the predicate for the
1210   // proceeding instructions.
1211   if (isVectorPredicate(MI)) {
1212     // Clear the existing predicate when we're not in VPT Active state,
1213     // otherwise we add to it.
1214     if (!isVectorPredicated(MI))
1215       VPTState::resetPredicate(MI);
1216     else
1217       VPTState::addPredicate(MI);
1218   }
1219 
1220   // Finally once the predicate has been modified, we can start a new VPT
1221   // block if necessary.
1222   if (isVPTOpcode(MI->getOpcode()))
1223     VPTState::CreateVPTBlock(MI);
1224 
1225   return true;
1226 }
1227 
1228 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) {
1229   const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget());
1230   if (!ST.hasLOB())
1231     return false;
1232 
1233   MF = &mf;
1234   LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n");
1235 
1236   MLI = &getAnalysis<MachineLoopInfo>();
1237   RDA = &getAnalysis<ReachingDefAnalysis>();
1238   MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
1239   MRI = &MF->getRegInfo();
1240   TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo());
1241   TRI = ST.getRegisterInfo();
1242   BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF));
1243   BBUtils->computeAllBlockSizes();
1244   BBUtils->adjustBBOffsetsAfter(&MF->front());
1245 
1246   bool Changed = false;
1247   for (auto ML : *MLI) {
1248     if (ML->isOutermost())
1249       Changed |= ProcessLoop(ML);
1250   }
1251   Changed |= RevertNonLoops();
1252   return Changed;
1253 }
1254 
1255 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) {
1256 
1257   bool Changed = false;
1258 
1259   // Process inner loops first.
1260   for (auto I = ML->begin(), E = ML->end(); I != E; ++I)
1261     Changed |= ProcessLoop(*I);
1262 
1263   LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n";
1264              if (auto *Preheader = ML->getLoopPreheader())
1265                dbgs() << " - " << Preheader->getName() << "\n";
1266              else if (auto *Preheader = MLI->findLoopPreheader(ML))
1267                dbgs() << " - " << Preheader->getName() << "\n";
1268              else if (auto *Preheader = MLI->findLoopPreheader(ML, true))
1269                dbgs() << " - " << Preheader->getName() << "\n";
1270              for (auto *MBB : ML->getBlocks())
1271                dbgs() << " - " << MBB->getName() << "\n";
1272             );
1273 
1274   // Search the given block for a loop start instruction. If one isn't found,
1275   // and there's only one predecessor block, search that one too.
1276   std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart =
1277     [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* {
1278     for (auto &MI : *MBB) {
1279       if (isLoopStart(MI))
1280         return &MI;
1281     }
1282     if (MBB->pred_size() == 1)
1283       return SearchForStart(*MBB->pred_begin());
1284     return nullptr;
1285   };
1286 
1287   LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII);
1288   // Search the preheader for the start intrinsic.
1289   // FIXME: I don't see why we shouldn't be supporting multiple predecessors
1290   // with potentially multiple set.loop.iterations, so we need to enable this.
1291   if (LoLoop.Preheader)
1292     LoLoop.Start = SearchForStart(LoLoop.Preheader);
1293   else
1294     return false;
1295 
1296   // Find the low-overhead loop components and decide whether or not to fall
1297   // back to a normal loop. Also look for a vctp instructions and decide
1298   // whether we can convert that predicate using tail predication.
1299   for (auto *MBB : reverse(ML->getBlocks())) {
1300     for (auto &MI : *MBB) {
1301       if (MI.isDebugValue())
1302         continue;
1303       else if (MI.getOpcode() == ARM::t2LoopDec)
1304         LoLoop.Dec = &MI;
1305       else if (MI.getOpcode() == ARM::t2LoopEnd)
1306         LoLoop.End = &MI;
1307       else if (isLoopStart(MI))
1308         LoLoop.Start = &MI;
1309       else if (MI.getDesc().isCall()) {
1310         // TODO: Though the call will require LE to execute again, does this
1311         // mean we should revert? Always executing LE hopefully should be
1312         // faster than performing a sub,cmp,br or even subs,br.
1313         LoLoop.Revert = true;
1314         LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
1315       } else {
1316         // Record VPR defs and build up their corresponding vpt blocks.
1317         // Check we know how to tail predicate any mve instructions.
1318         LoLoop.AnalyseMVEInst(&MI);
1319       }
1320     }
1321   }
1322 
1323   LLVM_DEBUG(LoLoop.dump());
1324   if (!LoLoop.FoundAllComponents()) {
1325     LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
1326     return false;
1327   }
1328 
1329   // Check that the only instruction using LoopDec is LoopEnd.
1330   // TODO: Check for copy chains that really have no effect.
1331   SmallPtrSet<MachineInstr*, 2> Uses;
1332   RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses);
1333   if (Uses.size() > 1 || !Uses.count(LoLoop.End)) {
1334     LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n");
1335     LoLoop.Revert = true;
1336   }
1337   LoLoop.Validate(BBUtils.get());
1338   Expand(LoLoop);
1339   return true;
1340 }
1341 
1342 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
1343 // beq that branches to the exit branch.
1344 // TODO: We could also try to generate a cbz if the value in LR is also in
1345 // another low register.
1346 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const {
1347   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI);
1348   MachineBasicBlock *MBB = MI->getParent();
1349   MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
1350                                     TII->get(ARM::t2CMPri));
1351   MIB.add(MI->getOperand(0));
1352   MIB.addImm(0);
1353   MIB.addImm(ARMCC::AL);
1354   MIB.addReg(ARM::NoRegister);
1355 
1356   MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1357   unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1358     ARM::tBcc : ARM::t2Bcc;
1359 
1360   MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
1361   MIB.add(MI->getOperand(1));   // branch target
1362   MIB.addImm(ARMCC::EQ);        // condition code
1363   MIB.addReg(ARM::CPSR);
1364   MI->eraseFromParent();
1365 }
1366 
1367 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const {
1368   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI);
1369   MachineBasicBlock *MBB = MI->getParent();
1370   SmallPtrSet<MachineInstr*, 1> Ignore;
1371   for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) {
1372     if (I->getOpcode() == ARM::t2LoopEnd) {
1373       Ignore.insert(&*I);
1374       break;
1375     }
1376   }
1377 
1378   // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
1379   bool SetFlags =
1380       RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore);
1381 
1382   MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
1383                                     TII->get(ARM::t2SUBri));
1384   MIB.addDef(ARM::LR);
1385   MIB.add(MI->getOperand(1));
1386   MIB.add(MI->getOperand(2));
1387   MIB.addImm(ARMCC::AL);
1388   MIB.addReg(0);
1389 
1390   if (SetFlags) {
1391     MIB.addReg(ARM::CPSR);
1392     MIB->getOperand(5).setIsDef(true);
1393   } else
1394     MIB.addReg(0);
1395 
1396   MI->eraseFromParent();
1397   return SetFlags;
1398 }
1399 
1400 // Generate a subs, or sub and cmp, and a branch instead of an LE.
1401 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const {
1402   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI);
1403 
1404   MachineBasicBlock *MBB = MI->getParent();
1405   // Create cmp
1406   if (!SkipCmp) {
1407     MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
1408                                       TII->get(ARM::t2CMPri));
1409     MIB.addReg(ARM::LR);
1410     MIB.addImm(0);
1411     MIB.addImm(ARMCC::AL);
1412     MIB.addReg(ARM::NoRegister);
1413   }
1414 
1415   MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1416   unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1417     ARM::tBcc : ARM::t2Bcc;
1418 
1419   // Create bne
1420   MachineInstrBuilder MIB =
1421     BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
1422   MIB.add(MI->getOperand(1));   // branch target
1423   MIB.addImm(ARMCC::NE);        // condition code
1424   MIB.addReg(ARM::CPSR);
1425   MI->eraseFromParent();
1426 }
1427 
1428 // Perform dead code elimation on the loop iteration count setup expression.
1429 // If we are tail-predicating, the number of elements to be processed is the
1430 // operand of the VCTP instruction in the vector body, see getCount(), which is
1431 // register $r3 in this example:
1432 //
1433 //   $lr = big-itercount-expression
1434 //   ..
1435 //   t2DoLoopStart renamable $lr
1436 //   vector.body:
1437 //     ..
1438 //     $vpr = MVE_VCTP32 renamable $r3
1439 //     renamable $lr = t2LoopDec killed renamable $lr, 1
1440 //     t2LoopEnd renamable $lr, %vector.body
1441 //     tB %end
1442 //
1443 // What we would like achieve here is to replace the do-loop start pseudo
1444 // instruction t2DoLoopStart with:
1445 //
1446 //    $lr = MVE_DLSTP_32 killed renamable $r3
1447 //
1448 // Thus, $r3 which defines the number of elements, is written to $lr,
1449 // and then we want to delete the whole chain that used to define $lr,
1450 // see the comment below how this chain could look like.
1451 //
1452 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) {
1453   if (!LoLoop.IsTailPredicationLegal())
1454     return;
1455 
1456   LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n");
1457 
1458   MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0);
1459   if (!Def) {
1460     LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n");
1461     return;
1462   }
1463 
1464   // Collect and remove the users of iteration count.
1465   SmallPtrSet<MachineInstr*, 4> Killed  = { LoLoop.Start, LoLoop.Dec,
1466                                             LoLoop.End };
1467   if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed))
1468     LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n");
1469 }
1470 
1471 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) {
1472   LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n");
1473   // When using tail-predication, try to delete the dead code that was used to
1474   // calculate the number of loop iterations.
1475   IterationCountDCE(LoLoop);
1476 
1477   MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt;
1478   MachineInstr *Start = LoLoop.Start;
1479   MachineBasicBlock *MBB = LoLoop.StartInsertBB;
1480   bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
1481   unsigned Opc = LoLoop.getStartOpcode();
1482   MachineOperand &Count = LoLoop.getLoopStartOperand();
1483 
1484   MachineInstrBuilder MIB =
1485     BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc));
1486 
1487   MIB.addDef(ARM::LR);
1488   MIB.add(Count);
1489   if (!IsDo)
1490     MIB.add(Start->getOperand(1));
1491 
1492   LoLoop.ToRemove.insert(Start);
1493   LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB);
1494   return &*MIB;
1495 }
1496 
1497 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) {
1498   auto RemovePredicate = [](MachineInstr *MI) {
1499     LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI);
1500     if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) {
1501       assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then &&
1502              "Expected Then predicate!");
1503       MI->getOperand(PIdx).setImm(ARMVCC::None);
1504       MI->getOperand(PIdx+1).setReg(0);
1505     } else
1506       llvm_unreachable("trying to unpredicate a non-predicated instruction");
1507   };
1508 
1509   for (auto &Block : LoLoop.getVPTBlocks()) {
1510     SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
1511 
1512     if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/true)) {
1513       if (VPTState::hasUniformPredicate(Block)) {
1514         // A vpt block starting with VPST, is only predicated upon vctp and has no
1515         // internal vpr defs:
1516         // - Remove vpst.
1517         // - Unpredicate the remaining instructions.
1518         LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front());
1519         LoLoop.ToRemove.insert(Insts.front());
1520         for (unsigned i = 1; i < Insts.size(); ++i)
1521           RemovePredicate(Insts[i]);
1522       } else {
1523         // The VPT block has a non-uniform predicate but it uses a vpst and its
1524         // entry is guarded only by a vctp, which means we:
1525         // - Need to remove the original vpst.
1526         // - Then need to unpredicate any following instructions, until
1527         //   we come across the divergent vpr def.
1528         // - Insert a new vpst to predicate the instruction(s) that following
1529         //   the divergent vpr def.
1530         // TODO: We could be producing more VPT blocks than necessary and could
1531         // fold the newly created one into a proceeding one.
1532         MachineInstr *Divergent = VPTState::getDivergent(Block);
1533         MachineInstr *VPST = Insts.front();
1534         auto DivergentNext = ++MachineBasicBlock::iterator(Divergent);
1535         bool DivergentNextIsPredicated =
1536             getVPTInstrPredicate(*DivergentNext) != ARMVCC::None;
1537 
1538         for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext;
1539              I != E; ++I)
1540           RemovePredicate(&*I);
1541 
1542         // Check if the instruction defining vpr is a vcmp so it can be combined
1543         // with the VPST This should be the divergent instruction
1544         MachineInstr *VCMP =
1545             VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr;
1546 
1547         auto ReplaceVCMPWithVPT = [&]() {
1548           // Replace the VCMP with a VPT
1549           MachineInstrBuilder MIB = BuildMI(
1550               *Divergent->getParent(), Divergent, Divergent->getDebugLoc(),
1551               TII->get(VCMPOpcodeToVPT(VCMP->getOpcode())));
1552           MIB.addImm(ARMVCC::Then);
1553           // Register one
1554           MIB.add(VCMP->getOperand(1));
1555           // Register two
1556           MIB.add(VCMP->getOperand(2));
1557           // The comparison code, e.g. ge, eq, lt
1558           MIB.add(VCMP->getOperand(3));
1559           LLVM_DEBUG(dbgs()
1560                      << "ARM Loops: Combining with VCMP to VPT: " << *MIB);
1561           LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1562           LoLoop.ToRemove.insert(VCMP);
1563         };
1564 
1565         if (DivergentNextIsPredicated) {
1566           // Insert a VPST at the divergent only if the next instruction
1567           // would actually use it. A VCMP following a VPST can be
1568           // merged into a VPT so do that instead if the VCMP exists.
1569           if (!VCMP) {
1570             // Create a VPST (with a null mask for now, we'll recompute it
1571             // later)
1572             MachineInstrBuilder MIB =
1573                 BuildMI(*Divergent->getParent(), Divergent,
1574                         Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST));
1575             MIB.addImm(0);
1576             LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB);
1577             LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1578           } else {
1579             // No RDA checks are necessary here since the VPST would have been
1580             // directly before the VCMP
1581             ReplaceVCMPWithVPT();
1582           }
1583         }
1584         LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1585         LoLoop.ToRemove.insert(VPST);
1586       }
1587     } else if (Block.containsVCTP()) {
1588       // The vctp will be removed, so the block mask of the vp(s)t will need
1589       // to be recomputed.
1590       LoLoop.BlockMasksToRecompute.insert(Insts.front());
1591     }
1592   }
1593 
1594   LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end());
1595 }
1596 
1597 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) {
1598 
1599   // Combine the LoopDec and LoopEnd instructions into LE(TP).
1600   auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) {
1601     MachineInstr *End = LoLoop.End;
1602     MachineBasicBlock *MBB = End->getParent();
1603     unsigned Opc = LoLoop.IsTailPredicationLegal() ?
1604       ARM::MVE_LETP : ARM::t2LEUpdate;
1605     MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(),
1606                                       TII->get(Opc));
1607     MIB.addDef(ARM::LR);
1608     MIB.add(End->getOperand(0));
1609     MIB.add(End->getOperand(1));
1610     LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB);
1611     LoLoop.ToRemove.insert(LoLoop.Dec);
1612     LoLoop.ToRemove.insert(End);
1613     return &*MIB;
1614   };
1615 
1616   // TODO: We should be able to automatically remove these branches before we
1617   // get here - probably by teaching analyzeBranch about the pseudo
1618   // instructions.
1619   // If there is an unconditional branch, after I, that just branches to the
1620   // next block, remove it.
1621   auto RemoveDeadBranch = [](MachineInstr *I) {
1622     MachineBasicBlock *BB = I->getParent();
1623     MachineInstr *Terminator = &BB->instr_back();
1624     if (Terminator->isUnconditionalBranch() && I != Terminator) {
1625       MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB();
1626       if (BB->isLayoutSuccessor(Succ)) {
1627         LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator);
1628         Terminator->eraseFromParent();
1629       }
1630     }
1631   };
1632 
1633   if (LoLoop.Revert) {
1634     if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart)
1635       RevertWhile(LoLoop.Start);
1636     else
1637       LoLoop.Start->eraseFromParent();
1638     bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec);
1639     RevertLoopEnd(LoLoop.End, FlagsAlreadySet);
1640   } else {
1641     LoLoop.Start = ExpandLoopStart(LoLoop);
1642     RemoveDeadBranch(LoLoop.Start);
1643     LoLoop.End = ExpandLoopEnd(LoLoop);
1644     RemoveDeadBranch(LoLoop.End);
1645     if (LoLoop.IsTailPredicationLegal())
1646       ConvertVPTBlocks(LoLoop);
1647     for (auto *I : LoLoop.ToRemove) {
1648       LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I);
1649       I->eraseFromParent();
1650     }
1651     for (auto *I : LoLoop.BlockMasksToRecompute) {
1652       LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I);
1653       recomputeVPTBlockMask(*I);
1654       LLVM_DEBUG(dbgs() << "           ... done: " << *I);
1655     }
1656   }
1657 
1658   PostOrderLoopTraversal DFS(LoLoop.ML, *MLI);
1659   DFS.ProcessLoop();
1660   const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder();
1661   for (auto *MBB : PostOrder) {
1662     recomputeLiveIns(*MBB);
1663     // FIXME: For some reason, the live-in print order is non-deterministic for
1664     // our tests and I can't out why... So just sort them.
1665     MBB->sortUniqueLiveIns();
1666   }
1667 
1668   for (auto *MBB : reverse(PostOrder))
1669     recomputeLivenessFlags(*MBB);
1670 
1671   // We've moved, removed and inserted new instructions, so update RDA.
1672   RDA->reset();
1673 }
1674 
1675 bool ARMLowOverheadLoops::RevertNonLoops() {
1676   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
1677   bool Changed = false;
1678 
1679   for (auto &MBB : *MF) {
1680     SmallVector<MachineInstr*, 4> Starts;
1681     SmallVector<MachineInstr*, 4> Decs;
1682     SmallVector<MachineInstr*, 4> Ends;
1683 
1684     for (auto &I : MBB) {
1685       if (isLoopStart(I))
1686         Starts.push_back(&I);
1687       else if (I.getOpcode() == ARM::t2LoopDec)
1688         Decs.push_back(&I);
1689       else if (I.getOpcode() == ARM::t2LoopEnd)
1690         Ends.push_back(&I);
1691     }
1692 
1693     if (Starts.empty() && Decs.empty() && Ends.empty())
1694       continue;
1695 
1696     Changed = true;
1697 
1698     for (auto *Start : Starts) {
1699       if (Start->getOpcode() == ARM::t2WhileLoopStart)
1700         RevertWhile(Start);
1701       else
1702         Start->eraseFromParent();
1703     }
1704     for (auto *Dec : Decs)
1705       RevertLoopDec(Dec);
1706 
1707     for (auto *End : Ends)
1708       RevertLoopEnd(End);
1709   }
1710   return Changed;
1711 }
1712 
1713 FunctionPass *llvm::createARMLowOverheadLoopsPass() {
1714   return new ARMLowOverheadLoops();
1715 }
1716