1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 /// A note on VPR.P0 (the lane mask): 39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a 40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks). 41 /// They will simply "and" the result of their calculation with the current 42 /// value of VPR.P0. You can think of it like this: 43 /// \verbatim 44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs 45 /// VPR.P0 &= Value 46 /// else 47 /// VPR.P0 = Value 48 /// \endverbatim 49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always 50 /// fall in the "VPT active" case, so we can consider that all VPR writes by 51 /// one of those instruction is actually a "and". 52 //===----------------------------------------------------------------------===// 53 54 #include "ARM.h" 55 #include "ARMBaseInstrInfo.h" 56 #include "ARMBaseRegisterInfo.h" 57 #include "ARMBasicBlockInfo.h" 58 #include "ARMSubtarget.h" 59 #include "Thumb2InstrInfo.h" 60 #include "llvm/ADT/SetOperations.h" 61 #include "llvm/ADT/SmallSet.h" 62 #include "llvm/CodeGen/LivePhysRegs.h" 63 #include "llvm/CodeGen/MachineFunctionPass.h" 64 #include "llvm/CodeGen/MachineLoopInfo.h" 65 #include "llvm/CodeGen/MachineLoopUtils.h" 66 #include "llvm/CodeGen/MachineRegisterInfo.h" 67 #include "llvm/CodeGen/Passes.h" 68 #include "llvm/CodeGen/ReachingDefAnalysis.h" 69 #include "llvm/MC/MCInstrDesc.h" 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "arm-low-overhead-loops" 74 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 75 76 static cl::opt<bool> 77 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden, 78 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"), 79 cl::init(false)); 80 81 static bool isVectorPredicated(MachineInstr *MI) { 82 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 83 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 84 } 85 86 static bool isVectorPredicate(MachineInstr *MI) { 87 return MI->findRegisterDefOperandIdx(ARM::VPR) != -1; 88 } 89 90 static bool hasVPRUse(MachineInstr *MI) { 91 return MI->findRegisterUseOperandIdx(ARM::VPR) != -1; 92 } 93 94 static bool isDomainMVE(MachineInstr *MI) { 95 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask; 96 return Domain == ARMII::DomainMVE; 97 } 98 99 static bool shouldInspect(MachineInstr &MI) { 100 return isDomainMVE(&MI) || isVectorPredicate(&MI) || 101 hasVPRUse(&MI); 102 } 103 104 namespace { 105 106 using InstSet = SmallPtrSetImpl<MachineInstr *>; 107 108 class PostOrderLoopTraversal { 109 MachineLoop &ML; 110 MachineLoopInfo &MLI; 111 SmallPtrSet<MachineBasicBlock*, 4> Visited; 112 SmallVector<MachineBasicBlock*, 4> Order; 113 114 public: 115 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 116 : ML(ML), MLI(MLI) { } 117 118 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 119 return Order; 120 } 121 122 // Visit all the blocks within the loop, as well as exit blocks and any 123 // blocks properly dominating the header. 124 void ProcessLoop() { 125 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 126 (MachineBasicBlock *MBB) -> void { 127 if (Visited.count(MBB)) 128 return; 129 130 Visited.insert(MBB); 131 for (auto *Succ : MBB->successors()) { 132 if (!ML.contains(Succ)) 133 continue; 134 Search(Succ); 135 } 136 Order.push_back(MBB); 137 }; 138 139 // Insert exit blocks. 140 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 141 ML.getExitBlocks(ExitBlocks); 142 for (auto *MBB : ExitBlocks) 143 Order.push_back(MBB); 144 145 // Then add the loop body. 146 Search(ML.getHeader()); 147 148 // Then try the preheader and its predecessors. 149 std::function<void(MachineBasicBlock*)> GetPredecessor = 150 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 151 Order.push_back(MBB); 152 if (MBB->pred_size() == 1) 153 GetPredecessor(*MBB->pred_begin()); 154 }; 155 156 if (auto *Preheader = ML.getLoopPreheader()) 157 GetPredecessor(Preheader); 158 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true)) 159 GetPredecessor(Preheader); 160 } 161 }; 162 163 struct PredicatedMI { 164 MachineInstr *MI = nullptr; 165 SetVector<MachineInstr*> Predicates; 166 167 public: 168 PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) { 169 assert(I && "Instruction must not be null!"); 170 Predicates.insert(Preds.begin(), Preds.end()); 171 } 172 }; 173 174 // Represent the current state of the VPR and hold all instances which 175 // represent a VPT block, which is a list of instructions that begins with a 176 // VPT/VPST and has a maximum of four proceeding instructions. All 177 // instructions within the block are predicated upon the vpr and we allow 178 // instructions to define the vpr within in the block too. 179 class VPTState { 180 friend struct LowOverheadLoop; 181 182 SmallVector<MachineInstr *, 4> Insts; 183 184 static SmallVector<VPTState, 4> Blocks; 185 static SetVector<MachineInstr *> CurrentPredicates; 186 static std::map<MachineInstr *, 187 std::unique_ptr<PredicatedMI>> PredicatedInsts; 188 189 static void CreateVPTBlock(MachineInstr *MI) { 190 assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR)) 191 && "Can't begin VPT without predicate"); 192 Blocks.emplace_back(MI); 193 // The execution of MI is predicated upon the current set of instructions 194 // that are AND'ed together to form the VPR predicate value. In the case 195 // that MI is a VPT, CurrentPredicates will also just be MI. 196 PredicatedInsts.emplace( 197 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 198 } 199 200 static void reset() { 201 Blocks.clear(); 202 PredicatedInsts.clear(); 203 CurrentPredicates.clear(); 204 } 205 206 static void addInst(MachineInstr *MI) { 207 Blocks.back().insert(MI); 208 PredicatedInsts.emplace( 209 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 210 } 211 212 static void addPredicate(MachineInstr *MI) { 213 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI); 214 CurrentPredicates.insert(MI); 215 } 216 217 static void resetPredicate(MachineInstr *MI) { 218 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI); 219 CurrentPredicates.clear(); 220 CurrentPredicates.insert(MI); 221 } 222 223 public: 224 // Have we found an instruction within the block which defines the vpr? If 225 // so, not all the instructions in the block will have the same predicate. 226 static bool hasUniformPredicate(VPTState &Block) { 227 return getDivergent(Block) == nullptr; 228 } 229 230 // If it exists, return the first internal instruction which modifies the 231 // VPR. 232 static MachineInstr *getDivergent(VPTState &Block) { 233 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 234 for (unsigned i = 1; i < Insts.size(); ++i) { 235 MachineInstr *Next = Insts[i]; 236 if (isVectorPredicate(Next)) 237 return Next; // Found an instruction altering the vpr. 238 } 239 return nullptr; 240 } 241 242 // Return whether the given instruction is predicated upon a VCTP. 243 static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) { 244 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates; 245 if (Exclusive && Predicates.size() != 1) 246 return false; 247 for (auto *PredMI : Predicates) 248 if (isVCTP(PredMI)) 249 return true; 250 return false; 251 } 252 253 // Is the VPST, controlling the block entry, predicated upon a VCTP. 254 static bool isEntryPredicatedOnVCTP(VPTState &Block, 255 bool Exclusive = false) { 256 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 257 return isPredicatedOnVCTP(Insts.front(), Exclusive); 258 } 259 260 // If this block begins with a VPT, we can check whether it's using 261 // at least one predicated input(s), as well as possible loop invariant 262 // which would result in it being implicitly predicated. 263 static bool hasImplicitlyValidVPT(VPTState &Block, 264 ReachingDefAnalysis &RDA) { 265 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 266 MachineInstr *VPT = Insts.front(); 267 assert(isVPTOpcode(VPT->getOpcode()) && 268 "Expected VPT block to begin with VPT/VPST"); 269 270 if (VPT->getOpcode() == ARM::MVE_VPST) 271 return false; 272 273 auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) { 274 MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx)); 275 return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op); 276 }; 277 278 auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) { 279 MachineOperand &MO = MI->getOperand(Idx); 280 if (!MO.isReg() || !MO.getReg()) 281 return true; 282 283 SmallPtrSet<MachineInstr *, 2> Defs; 284 RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs); 285 if (Defs.empty()) 286 return true; 287 288 for (auto *Def : Defs) 289 if (Def->getParent() == VPT->getParent()) 290 return false; 291 return true; 292 }; 293 294 // Check that at least one of the operands is directly predicated on a 295 // vctp and allow an invariant value too. 296 return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) && 297 (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) && 298 (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2)); 299 } 300 301 static bool isValid(ReachingDefAnalysis &RDA) { 302 // All predication within the loop should be based on vctp. If the block 303 // isn't predicated on entry, check whether the vctp is within the block 304 // and that all other instructions are then predicated on it. 305 for (auto &Block : Blocks) { 306 if (isEntryPredicatedOnVCTP(Block, false) || 307 hasImplicitlyValidVPT(Block, RDA)) 308 continue; 309 310 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 311 for (auto *MI : Insts) { 312 // Check that any internal VCTPs are 'Then' predicated. 313 if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then) 314 return false; 315 // Skip other instructions that build up the predicate. 316 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI)) 317 continue; 318 // Check that any other instructions are predicated upon a vctp. 319 // TODO: We could infer when VPTs are implicitly predicated on the 320 // vctp (when the operands are predicated). 321 if (!isPredicatedOnVCTP(MI)) { 322 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI); 323 return false; 324 } 325 } 326 } 327 return true; 328 } 329 330 VPTState(MachineInstr *MI) { Insts.push_back(MI); } 331 332 void insert(MachineInstr *MI) { 333 Insts.push_back(MI); 334 // VPT/VPST + 4 predicated instructions. 335 assert(Insts.size() <= 5 && "Too many instructions in VPT block!"); 336 } 337 338 bool containsVCTP() const { 339 for (auto *MI : Insts) 340 if (isVCTP(MI)) 341 return true; 342 return false; 343 } 344 345 unsigned size() const { return Insts.size(); } 346 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; } 347 }; 348 349 struct LowOverheadLoop { 350 351 MachineLoop &ML; 352 MachineBasicBlock *Preheader = nullptr; 353 MachineLoopInfo &MLI; 354 ReachingDefAnalysis &RDA; 355 const TargetRegisterInfo &TRI; 356 const ARMBaseInstrInfo &TII; 357 MachineFunction *MF = nullptr; 358 MachineBasicBlock::iterator StartInsertPt; 359 MachineBasicBlock *StartInsertBB = nullptr; 360 MachineInstr *Start = nullptr; 361 MachineInstr *Dec = nullptr; 362 MachineInstr *End = nullptr; 363 MachineOperand TPNumElements; 364 SmallVector<MachineInstr*, 4> VCTPs; 365 SmallPtrSet<MachineInstr*, 4> ToRemove; 366 SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute; 367 bool Revert = false; 368 bool CannotTailPredicate = false; 369 370 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 371 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI, 372 const ARMBaseInstrInfo &TII) 373 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII), 374 TPNumElements(MachineOperand::CreateImm(0)) { 375 MF = ML.getHeader()->getParent(); 376 if (auto *MBB = ML.getLoopPreheader()) 377 Preheader = MBB; 378 else if (auto *MBB = MLI.findLoopPreheader(&ML, true)) 379 Preheader = MBB; 380 VPTState::reset(); 381 } 382 383 // If this is an MVE instruction, check that we know how to use tail 384 // predication with it. Record VPT blocks and return whether the 385 // instruction is valid for tail predication. 386 bool ValidateMVEInst(MachineInstr *MI); 387 388 void AnalyseMVEInst(MachineInstr *MI) { 389 CannotTailPredicate = !ValidateMVEInst(MI); 390 } 391 392 bool IsTailPredicationLegal() const { 393 // For now, let's keep things really simple and only support a single 394 // block for tail predication. 395 return !Revert && FoundAllComponents() && !VCTPs.empty() && 396 !CannotTailPredicate && ML.getNumBlocks() == 1; 397 } 398 399 // Given that MI is a VCTP, check that is equivalent to any other VCTPs 400 // found. 401 bool AddVCTP(MachineInstr *MI); 402 403 // Check that the predication in the loop will be equivalent once we 404 // perform the conversion. Also ensure that we can provide the number 405 // of elements to the loop start instruction. 406 bool ValidateTailPredicate(); 407 408 // Check that any values available outside of the loop will be the same 409 // after tail predication conversion. 410 bool ValidateLiveOuts(); 411 412 // Is it safe to define LR with DLS/WLS? 413 // LR can be defined if it is the operand to start, because it's the same 414 // value, or if it's going to be equivalent to the operand to Start. 415 MachineInstr *isSafeToDefineLR(); 416 417 // Check the branch targets are within range and we satisfy our 418 // restrictions. 419 void Validate(ARMBasicBlockUtils *BBUtils); 420 421 bool FoundAllComponents() const { 422 return Start && Dec && End; 423 } 424 425 SmallVectorImpl<VPTState> &getVPTBlocks() { 426 return VPTState::Blocks; 427 } 428 429 // Return the operand for the loop start instruction. This will be the loop 430 // iteration count, or the number of elements if we're tail predicating. 431 MachineOperand &getLoopStartOperand() { 432 return IsTailPredicationLegal() ? TPNumElements : Start->getOperand(0); 433 } 434 435 unsigned getStartOpcode() const { 436 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 437 if (!IsTailPredicationLegal()) 438 return IsDo ? ARM::t2DLS : ARM::t2WLS; 439 440 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo); 441 } 442 443 void dump() const { 444 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 445 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 446 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 447 if (!VCTPs.empty()) { 448 dbgs() << "ARM Loops: Found VCTP(s):\n"; 449 for (auto *MI : VCTPs) 450 dbgs() << " - " << *MI; 451 } 452 if (!FoundAllComponents()) 453 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 454 else if (!(Start && Dec && End)) 455 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 456 } 457 }; 458 459 class ARMLowOverheadLoops : public MachineFunctionPass { 460 MachineFunction *MF = nullptr; 461 MachineLoopInfo *MLI = nullptr; 462 ReachingDefAnalysis *RDA = nullptr; 463 const ARMBaseInstrInfo *TII = nullptr; 464 MachineRegisterInfo *MRI = nullptr; 465 const TargetRegisterInfo *TRI = nullptr; 466 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 467 468 public: 469 static char ID; 470 471 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 472 473 void getAnalysisUsage(AnalysisUsage &AU) const override { 474 AU.setPreservesCFG(); 475 AU.addRequired<MachineLoopInfo>(); 476 AU.addRequired<ReachingDefAnalysis>(); 477 MachineFunctionPass::getAnalysisUsage(AU); 478 } 479 480 bool runOnMachineFunction(MachineFunction &MF) override; 481 482 MachineFunctionProperties getRequiredProperties() const override { 483 return MachineFunctionProperties().set( 484 MachineFunctionProperties::Property::NoVRegs).set( 485 MachineFunctionProperties::Property::TracksLiveness); 486 } 487 488 StringRef getPassName() const override { 489 return ARM_LOW_OVERHEAD_LOOPS_NAME; 490 } 491 492 private: 493 bool ProcessLoop(MachineLoop *ML); 494 495 bool RevertNonLoops(); 496 497 void RevertWhile(MachineInstr *MI) const; 498 499 bool RevertLoopDec(MachineInstr *MI) const; 500 501 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 502 503 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 504 505 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 506 507 void Expand(LowOverheadLoop &LoLoop); 508 509 void IterationCountDCE(LowOverheadLoop &LoLoop); 510 }; 511 } 512 513 char ARMLowOverheadLoops::ID = 0; 514 515 SmallVector<VPTState, 4> VPTState::Blocks; 516 SetVector<MachineInstr *> VPTState::CurrentPredicates; 517 std::map<MachineInstr *, 518 std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts; 519 520 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 521 false, false) 522 523 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA, 524 InstSet &ToRemove, InstSet &Ignore) { 525 526 // Check that we can remove all of Killed without having to modify any IT 527 // blocks. 528 auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) { 529 // Collect the dead code and the MBBs in which they reside. 530 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 531 for (auto *Dead : Killed) 532 BasicBlocks.insert(Dead->getParent()); 533 534 // Collect IT blocks in all affected basic blocks. 535 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 536 for (auto *MBB : BasicBlocks) { 537 for (auto &IT : *MBB) { 538 if (IT.getOpcode() != ARM::t2IT) 539 continue; 540 RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE), 541 ITBlocks[&IT]); 542 } 543 } 544 545 // If we're removing all of the instructions within an IT block, then 546 // also remove the IT instruction. 547 SmallPtrSet<MachineInstr *, 2> ModifiedITs; 548 SmallPtrSet<MachineInstr *, 2> RemoveITs; 549 for (auto *Dead : Killed) { 550 if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) { 551 MachineInstr *IT = RDA.getMIOperand(Dead, *MO); 552 RemoveITs.insert(IT); 553 auto &CurrentBlock = ITBlocks[IT]; 554 CurrentBlock.erase(Dead); 555 if (CurrentBlock.empty()) 556 ModifiedITs.erase(IT); 557 else 558 ModifiedITs.insert(IT); 559 } 560 } 561 if (!ModifiedITs.empty()) 562 return false; 563 Killed.insert(RemoveITs.begin(), RemoveITs.end()); 564 return true; 565 }; 566 567 SmallPtrSet<MachineInstr *, 2> Uses; 568 if (!RDA.isSafeToRemove(MI, Uses, Ignore)) 569 return false; 570 571 if (WontCorruptITs(Uses, RDA)) { 572 ToRemove.insert(Uses.begin(), Uses.end()); 573 LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI 574 << " - can also remove:\n"; 575 for (auto *Use : Uses) 576 dbgs() << " - " << *Use); 577 578 SmallPtrSet<MachineInstr*, 4> Killed; 579 RDA.collectKilledOperands(MI, Killed); 580 if (WontCorruptITs(Killed, RDA)) { 581 ToRemove.insert(Killed.begin(), Killed.end()); 582 LLVM_DEBUG(for (auto *Dead : Killed) 583 dbgs() << " - " << *Dead); 584 } 585 return true; 586 } 587 return false; 588 } 589 590 bool LowOverheadLoop::ValidateTailPredicate() { 591 if (!IsTailPredicationLegal()) { 592 LLVM_DEBUG(if (VCTPs.empty()) 593 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 594 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 595 return false; 596 } 597 598 assert(!VCTPs.empty() && "VCTP instruction expected but is not set"); 599 assert(ML.getBlocks().size() == 1 && 600 "Shouldn't be processing a loop with more than one block"); 601 602 if (DisableTailPredication) { 603 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n"); 604 return false; 605 } 606 607 if (!VPTState::isValid(RDA)) { 608 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n"); 609 return false; 610 } 611 612 if (!ValidateLiveOuts()) { 613 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n"); 614 return false; 615 } 616 617 // Check that creating a [W|D]LSTP, which will define LR with an element 618 // count instead of iteration count, won't affect any other instructions 619 // than the LoopStart and LoopDec. 620 // TODO: We should try to insert the [W|D]LSTP after any of the other uses. 621 if (StartInsertPt == Start && Start->getOperand(0).getReg() == ARM::LR) { 622 if (auto *IterCount = RDA.getMIOperand(Start, 0)) { 623 SmallPtrSet<MachineInstr *, 2> Uses; 624 RDA.getGlobalUses(IterCount, MCRegister::from(ARM::LR), Uses); 625 for (auto *Use : Uses) { 626 if (Use != Start && Use != Dec) { 627 LLVM_DEBUG(dbgs() << " ARM Loops: Found LR use: " << *Use); 628 return false; 629 } 630 } 631 } 632 } 633 634 // For tail predication, we need to provide the number of elements, instead 635 // of the iteration count, to the loop start instruction. The number of 636 // elements is provided to the vctp instruction, so we need to check that 637 // we can use this register at InsertPt. 638 MachineInstr *VCTP = VCTPs.back(); 639 TPNumElements = VCTP->getOperand(1); 640 MCRegister NumElements = TPNumElements.getReg().asMCReg(); 641 642 // If the register is defined within loop, then we can't perform TP. 643 // TODO: Check whether this is just a mov of a register that would be 644 // available. 645 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 646 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 647 return false; 648 } 649 650 // The element count register maybe defined after InsertPt, in which case we 651 // need to try to move either InsertPt or the def so that the [w|d]lstp can 652 // use the value. 653 654 if (StartInsertPt != StartInsertBB->end() && 655 !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) { 656 if (auto *ElemDef = RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) { 657 if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) { 658 ElemDef->removeFromParent(); 659 StartInsertBB->insert(StartInsertPt, ElemDef); 660 LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: " 661 << *ElemDef); 662 } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) { 663 StartInsertPt->removeFromParent(); 664 StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 665 &*StartInsertPt); 666 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 667 } else { 668 // If we fail to move an instruction and the element count is provided 669 // by a mov, use the mov operand if it will have the same value at the 670 // insertion point 671 MachineOperand Operand = ElemDef->getOperand(1); 672 if (isMovRegOpcode(ElemDef->getOpcode()) && 673 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) == 674 RDA.getUniqueReachingMIDef(&*StartInsertPt, 675 Operand.getReg().asMCReg())) { 676 TPNumElements = Operand; 677 NumElements = TPNumElements.getReg(); 678 } else { 679 LLVM_DEBUG(dbgs() 680 << "ARM Loops: Unable to move element count to loop " 681 << "start instruction.\n"); 682 return false; 683 } 684 } 685 } 686 } 687 688 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect 689 // world the [w|d]lstp instruction would be last instruction in the preheader 690 // and so it would only affect instructions within the loop body. But due to 691 // scheduling, and/or the logic in this pass (above), the insertion point can 692 // be moved earlier. So if the Loop Start isn't the last instruction in the 693 // preheader, and if the initial element count is smaller than the vector 694 // width, the Loop Start instruction will immediately generate one or more 695 // false lane mask which can, incorrectly, affect the proceeding MVE 696 // instructions in the preheader. 697 auto CannotInsertWDLSTPBetween = [](MachineBasicBlock::iterator I, 698 MachineBasicBlock::iterator E) { 699 for (; I != E; ++I) { 700 if (shouldInspect(*I)) { 701 LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP" 702 << " insertion: " << *I); 703 return true; 704 } 705 } 706 return false; 707 }; 708 709 if (CannotInsertWDLSTPBetween(StartInsertPt, StartInsertBB->end())) 710 return false; 711 712 // Especially in the case of while loops, InsertBB may not be the 713 // preheader, so we need to check that the register isn't redefined 714 // before entering the loop. 715 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 716 MCRegister NumElements) { 717 if (MBB->empty()) 718 return false; 719 // NumElements is redefined in this block. 720 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 721 return true; 722 723 // Don't continue searching up through multiple predecessors. 724 if (MBB->pred_size() > 1) 725 return true; 726 727 return false; 728 }; 729 730 // Search backwards for a def, until we get to InsertBB. 731 MachineBasicBlock *MBB = Preheader; 732 while (MBB && MBB != StartInsertBB) { 733 if (CannotProvideElements(MBB, NumElements)) { 734 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 735 return false; 736 } 737 MBB = *MBB->pred_begin(); 738 } 739 740 // Check that the value change of the element count is what we expect and 741 // that the predication will be equivalent. For this we need: 742 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 743 // and we can also allow register copies within the chain too. 744 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 745 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 746 }; 747 748 MBB = VCTP->getParent(); 749 // Remove modifications to the element count since they have no purpose in a 750 // tail predicated loop. Explicitly refer to the vctp operand no matter which 751 // register NumElements has been assigned to, since that is what the 752 // modifications will be using 753 if (auto *Def = RDA.getUniqueReachingMIDef( 754 &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) { 755 SmallPtrSet<MachineInstr*, 2> ElementChain; 756 SmallPtrSet<MachineInstr*, 2> Ignore; 757 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 758 759 Ignore.insert(VCTPs.begin(), VCTPs.end()); 760 761 if (TryRemove(Def, RDA, ElementChain, Ignore)) { 762 bool FoundSub = false; 763 764 for (auto *MI : ElementChain) { 765 if (isMovRegOpcode(MI->getOpcode())) 766 continue; 767 768 if (isSubImmOpcode(MI->getOpcode())) { 769 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) { 770 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 771 " count: " << *MI); 772 return false; 773 } 774 FoundSub = true; 775 } else { 776 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 777 " count: " << *MI); 778 return false; 779 } 780 } 781 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 782 } 783 } 784 return true; 785 } 786 787 static bool isRegInClass(const MachineOperand &MO, 788 const TargetRegisterClass *Class) { 789 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 790 } 791 792 // MVE 'narrowing' operate on half a lane, reading from half and writing 793 // to half, which are referred to has the top and bottom half. The other 794 // half retains its previous value. 795 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 796 const MCInstrDesc &MCID = MI.getDesc(); 797 uint64_t Flags = MCID.TSFlags; 798 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 799 } 800 801 // Some MVE instructions read from the top/bottom halves of their operand(s) 802 // and generate a vector result with result elements that are double the 803 // width of the input. 804 static bool producesDoubleWidthResult(const MachineInstr &MI) { 805 const MCInstrDesc &MCID = MI.getDesc(); 806 uint64_t Flags = MCID.TSFlags; 807 return (Flags & ARMII::DoubleWidthResult) != 0; 808 } 809 810 static bool isHorizontalReduction(const MachineInstr &MI) { 811 const MCInstrDesc &MCID = MI.getDesc(); 812 uint64_t Flags = MCID.TSFlags; 813 return (Flags & ARMII::HorizontalReduction) != 0; 814 } 815 816 // Can this instruction generate a non-zero result when given only zeroed 817 // operands? This allows us to know that, given operands with false bytes 818 // zeroed by masked loads, that the result will also contain zeros in those 819 // bytes. 820 static bool canGenerateNonZeros(const MachineInstr &MI) { 821 822 // Check for instructions which can write into a larger element size, 823 // possibly writing into a previous zero'd lane. 824 if (producesDoubleWidthResult(MI)) 825 return true; 826 827 switch (MI.getOpcode()) { 828 default: 829 break; 830 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 831 // fp16 -> fp32 vector conversions. 832 // Instructions that perform a NOT will generate 1s from 0s. 833 case ARM::MVE_VMVN: 834 case ARM::MVE_VORN: 835 // Count leading zeros will do just that! 836 case ARM::MVE_VCLZs8: 837 case ARM::MVE_VCLZs16: 838 case ARM::MVE_VCLZs32: 839 return true; 840 } 841 return false; 842 } 843 844 // Look at its register uses to see if it only can only receive zeros 845 // into its false lanes which would then produce zeros. Also check that 846 // the output register is also defined by an FalseLanesZero instruction 847 // so that if tail-predication happens, the lanes that aren't updated will 848 // still be zeros. 849 static bool producesFalseLanesZero(MachineInstr &MI, 850 const TargetRegisterClass *QPRs, 851 const ReachingDefAnalysis &RDA, 852 InstSet &FalseLanesZero) { 853 if (canGenerateNonZeros(MI)) 854 return false; 855 856 bool isPredicated = isVectorPredicated(&MI); 857 // Predicated loads will write zeros to the falsely predicated bytes of the 858 // destination register. 859 if (MI.mayLoad()) 860 return isPredicated; 861 862 auto IsZeroInit = [](MachineInstr *Def) { 863 return !isVectorPredicated(Def) && 864 Def->getOpcode() == ARM::MVE_VMOVimmi32 && 865 Def->getOperand(1).getImm() == 0; 866 }; 867 868 bool AllowScalars = isHorizontalReduction(MI); 869 for (auto &MO : MI.operands()) { 870 if (!MO.isReg() || !MO.getReg()) 871 continue; 872 if (!isRegInClass(MO, QPRs) && AllowScalars) 873 continue; 874 875 // Check that this instruction will produce zeros in its false lanes: 876 // - If it only consumes false lanes zero or constant 0 (vmov #0) 877 // - If it's predicated, it only matters that it's def register already has 878 // false lane zeros, so we can ignore the uses. 879 SmallPtrSet<MachineInstr *, 2> Defs; 880 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs); 881 for (auto *Def : Defs) { 882 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def)) 883 continue; 884 if (MO.isUse() && isPredicated) 885 continue; 886 return false; 887 } 888 } 889 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 890 return true; 891 } 892 893 bool LowOverheadLoop::ValidateLiveOuts() { 894 // We want to find out if the tail-predicated version of this loop will 895 // produce the same values as the loop in its original form. For this to 896 // be true, the newly inserted implicit predication must not change the 897 // the (observable) results. 898 // We're doing this because many instructions in the loop will not be 899 // predicated and so the conversion from VPT predication to tail-predication 900 // can result in different values being produced; due to the tail-predication 901 // preventing many instructions from updating their falsely predicated 902 // lanes. This analysis assumes that all the instructions perform lane-wise 903 // operations and don't perform any exchanges. 904 // A masked load, whether through VPT or tail predication, will write zeros 905 // to any of the falsely predicated bytes. So, from the loads, we know that 906 // the false lanes are zeroed and here we're trying to track that those false 907 // lanes remain zero, or where they change, the differences are masked away 908 // by their user(s). 909 // All MVE stores have to be predicated, so we know that any predicate load 910 // operands, or stored results are equivalent already. Other explicitly 911 // predicated instructions will perform the same operation in the original 912 // loop and the tail-predicated form too. Because of this, we can insert 913 // loads, stores and other predicated instructions into our Predicated 914 // set and build from there. 915 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 916 SetVector<MachineInstr *> FalseLanesUnknown; 917 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 918 SmallPtrSet<MachineInstr *, 4> Predicated; 919 MachineBasicBlock *Header = ML.getHeader(); 920 921 for (auto &MI : *Header) { 922 if (!shouldInspect(MI)) 923 continue; 924 925 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) 926 continue; 927 928 bool isPredicated = isVectorPredicated(&MI); 929 bool retainsOrReduces = 930 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI); 931 932 if (isPredicated) 933 Predicated.insert(&MI); 934 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) 935 FalseLanesZero.insert(&MI); 936 else if (MI.getNumDefs() == 0) 937 continue; 938 else if (!isPredicated && retainsOrReduces) 939 return false; 940 else if (!isPredicated) 941 FalseLanesUnknown.insert(&MI); 942 } 943 944 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 945 SmallPtrSetImpl<MachineInstr *> &Predicated) { 946 SmallPtrSet<MachineInstr *, 2> Uses; 947 RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses); 948 for (auto *Use : Uses) { 949 if (Use != MI && !Predicated.count(Use)) 950 return false; 951 } 952 return true; 953 }; 954 955 // Visit the unknowns in reverse so that we can start at the values being 956 // stored and then we can work towards the leaves, hopefully adding more 957 // instructions to Predicated. Successfully terminating the loop means that 958 // all the unknown values have to found to be masked by predicated user(s). 959 // For any unpredicated values, we store them in NonPredicated so that we 960 // can later check whether these form a reduction. 961 SmallPtrSet<MachineInstr*, 2> NonPredicated; 962 for (auto *MI : reverse(FalseLanesUnknown)) { 963 for (auto &MO : MI->operands()) { 964 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 965 continue; 966 if (!HasPredicatedUsers(MI, MO, Predicated)) { 967 LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : " 968 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 969 NonPredicated.insert(MI); 970 break; 971 } 972 } 973 // Any unknown false lanes have been masked away by the user(s). 974 if (!NonPredicated.contains(MI)) 975 Predicated.insert(MI); 976 } 977 978 SmallPtrSet<MachineInstr *, 2> LiveOutMIs; 979 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 980 ML.getExitBlocks(ExitBlocks); 981 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 982 assert(ExitBlocks.size() == 1 && "Expected a single exit block"); 983 MachineBasicBlock *ExitBB = ExitBlocks.front(); 984 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) { 985 // TODO: Instead of blocking predication, we could move the vctp to the exit 986 // block and calculate it's operand there in or the preheader. 987 if (RegMask.PhysReg == ARM::VPR) 988 return false; 989 // Check Q-regs that are live in the exit blocks. We don't collect scalars 990 // because they won't be affected by lane predication. 991 if (QPRs->contains(RegMask.PhysReg)) 992 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg)) 993 LiveOutMIs.insert(MI); 994 } 995 996 // We've already validated that any VPT predication within the loop will be 997 // equivalent when we perform the predication transformation; so we know that 998 // any VPT predicated instruction is predicated upon VCTP. Any live-out 999 // instruction needs to be predicated, so check this here. The instructions 1000 // in NonPredicated have been found to be a reduction that we can ensure its 1001 // legality. 1002 for (auto *MI : LiveOutMIs) { 1003 if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) { 1004 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to handle live out: " << *MI); 1005 return false; 1006 } 1007 } 1008 1009 return true; 1010 } 1011 1012 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) { 1013 if (Revert) 1014 return; 1015 1016 // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP] 1017 // can only jump back. 1018 auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End, 1019 ARMBasicBlockUtils *BBUtils, MachineLoop &ML) { 1020 if (!End->getOperand(1).isMBB()) 1021 report_fatal_error("Expected LoopEnd to target basic block"); 1022 1023 // TODO Maybe there's cases where the target doesn't have to be the header, 1024 // but for now be safe and revert. 1025 if (End->getOperand(1).getMBB() != ML.getHeader()) { 1026 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n"); 1027 return false; 1028 } 1029 1030 // The WLS and LE instructions have 12-bits for the label offset. WLS 1031 // requires a positive offset, while LE uses negative. 1032 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 1033 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 1034 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 1035 return false; 1036 } 1037 1038 if (Start->getOpcode() == ARM::t2WhileLoopStart && 1039 (BBUtils->getOffsetOf(Start) > 1040 BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || 1041 !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { 1042 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 1043 return false; 1044 } 1045 return true; 1046 }; 1047 1048 // Find a suitable position to insert the loop start instruction. It needs to 1049 // be able to safely define LR. 1050 auto FindStartInsertionPoint = [](MachineInstr *Start, 1051 MachineInstr *Dec, 1052 MachineBasicBlock::iterator &InsertPt, 1053 MachineBasicBlock *&InsertBB, 1054 ReachingDefAnalysis &RDA, 1055 InstSet &ToRemove) { 1056 // We can define LR because LR already contains the same value. 1057 if (Start->getOperand(0).getReg() == ARM::LR) { 1058 InsertPt = MachineBasicBlock::iterator(Start); 1059 InsertBB = Start->getParent(); 1060 return true; 1061 } 1062 1063 Register CountReg = Start->getOperand(0).getReg(); 1064 auto IsMoveLR = [&CountReg](MachineInstr *MI) { 1065 return MI->getOpcode() == ARM::tMOVr && 1066 MI->getOperand(0).getReg() == ARM::LR && 1067 MI->getOperand(1).getReg() == CountReg && 1068 MI->getOperand(2).getImm() == ARMCC::AL; 1069 }; 1070 1071 // Find an insertion point: 1072 // - Is there a (mov lr, Count) before Start? If so, and nothing else 1073 // writes to Count before Start, we can insert at start. 1074 if (auto *LRDef = 1075 RDA.getUniqueReachingMIDef(Start, MCRegister::from(ARM::LR))) { 1076 if (IsMoveLR(LRDef) && 1077 RDA.hasSameReachingDef(Start, LRDef, CountReg.asMCReg())) { 1078 SmallPtrSet<MachineInstr *, 2> Ignore = { Dec }; 1079 if (!TryRemove(LRDef, RDA, ToRemove, Ignore)) 1080 return false; 1081 InsertPt = MachineBasicBlock::iterator(Start); 1082 InsertBB = Start->getParent(); 1083 return true; 1084 } 1085 } 1086 1087 // - Is there a (mov lr, Count) after Start? If so, and nothing else writes 1088 // to Count after Start, we can insert at that mov (which will now be 1089 // dead). 1090 MachineBasicBlock *MBB = Start->getParent(); 1091 if (auto *LRDef = 1092 RDA.getLocalLiveOutMIDef(MBB, MCRegister::from(ARM::LR))) { 1093 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) { 1094 SmallPtrSet<MachineInstr *, 2> Ignore = { Start, Dec }; 1095 if (!TryRemove(LRDef, RDA, ToRemove, Ignore)) 1096 return false; 1097 InsertPt = MachineBasicBlock::iterator(LRDef); 1098 InsertBB = LRDef->getParent(); 1099 return true; 1100 } 1101 } 1102 1103 // We've found no suitable LR def and Start doesn't use LR directly. Can we 1104 // just define LR anyway? 1105 if (!RDA.isSafeToDefRegAt(Start, MCRegister::from(ARM::LR))) 1106 return false; 1107 1108 InsertPt = MachineBasicBlock::iterator(Start); 1109 InsertBB = Start->getParent(); 1110 return true; 1111 }; 1112 1113 if (!FindStartInsertionPoint(Start, Dec, StartInsertPt, StartInsertBB, RDA, 1114 ToRemove)) { 1115 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n"); 1116 Revert = true; 1117 return; 1118 } 1119 LLVM_DEBUG(if (StartInsertPt == StartInsertBB->end()) 1120 dbgs() << "ARM Loops: Will insert LoopStart at end of block\n"; 1121 else 1122 dbgs() << "ARM Loops: Will insert LoopStart at " 1123 << *StartInsertPt 1124 ); 1125 1126 Revert = !ValidateRanges(Start, End, BBUtils, ML); 1127 CannotTailPredicate = !ValidateTailPredicate(); 1128 } 1129 1130 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) { 1131 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI); 1132 if (VCTPs.empty()) { 1133 VCTPs.push_back(MI); 1134 return true; 1135 } 1136 1137 // If we find another VCTP, check whether it uses the same value as the main VCTP. 1138 // If it does, store it in the VCTPs set, else refuse it. 1139 MachineInstr *Prev = VCTPs.back(); 1140 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) || 1141 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) { 1142 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " 1143 "definition from the main VCTP"); 1144 return false; 1145 } 1146 VCTPs.push_back(MI); 1147 return true; 1148 } 1149 1150 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) { 1151 if (CannotTailPredicate) 1152 return false; 1153 1154 if (!shouldInspect(*MI)) 1155 return true; 1156 1157 if (MI->getOpcode() == ARM::MVE_VPSEL || 1158 MI->getOpcode() == ARM::MVE_VPNOT) { 1159 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 1160 // 1) It will use the VPR as a predicate operand, but doesn't have to be 1161 // instead a VPT block, which means we can assert while building up 1162 // the VPT block because we don't find another VPT or VPST to being a new 1163 // one. 1164 // 2) VPSEL still requires a VPR operand even after tail predicating, 1165 // which means we can't remove it unless there is another 1166 // instruction, such as vcmp, that can provide the VPR def. 1167 return false; 1168 } 1169 1170 // Record all VCTPs and check that they're equivalent to one another. 1171 if (isVCTP(MI) && !AddVCTP(MI)) 1172 return false; 1173 1174 // Inspect uses first so that any instructions that alter the VPR don't 1175 // alter the predicate upon themselves. 1176 const MCInstrDesc &MCID = MI->getDesc(); 1177 bool IsUse = false; 1178 unsigned LastOpIdx = MI->getNumOperands() - 1; 1179 for (auto &Op : enumerate(reverse(MCID.operands()))) { 1180 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index()); 1181 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR) 1182 continue; 1183 1184 if (ARM::isVpred(Op.value().OperandType)) { 1185 VPTState::addInst(MI); 1186 IsUse = true; 1187 } else if (MI->getOpcode() != ARM::MVE_VPST) { 1188 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 1189 return false; 1190 } 1191 } 1192 1193 // If we find an instruction that has been marked as not valid for tail 1194 // predication, only allow the instruction if it's contained within a valid 1195 // VPT block. 1196 bool RequiresExplicitPredication = 1197 (MCID.TSFlags & ARMII::ValidForTailPredication) == 0; 1198 if (isDomainMVE(MI) && RequiresExplicitPredication) { 1199 LLVM_DEBUG(if (!IsUse) 1200 dbgs() << "ARM Loops: Can't tail predicate: " << *MI); 1201 return IsUse; 1202 } 1203 1204 // If the instruction is already explicitly predicated, then the conversion 1205 // will be fine, but ensure that all store operations are predicated. 1206 if (MI->mayStore()) 1207 return IsUse; 1208 1209 // If this instruction defines the VPR, update the predicate for the 1210 // proceeding instructions. 1211 if (isVectorPredicate(MI)) { 1212 // Clear the existing predicate when we're not in VPT Active state, 1213 // otherwise we add to it. 1214 if (!isVectorPredicated(MI)) 1215 VPTState::resetPredicate(MI); 1216 else 1217 VPTState::addPredicate(MI); 1218 } 1219 1220 // Finally once the predicate has been modified, we can start a new VPT 1221 // block if necessary. 1222 if (isVPTOpcode(MI->getOpcode())) 1223 VPTState::CreateVPTBlock(MI); 1224 1225 return true; 1226 } 1227 1228 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 1229 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 1230 if (!ST.hasLOB()) 1231 return false; 1232 1233 MF = &mf; 1234 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 1235 1236 MLI = &getAnalysis<MachineLoopInfo>(); 1237 RDA = &getAnalysis<ReachingDefAnalysis>(); 1238 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 1239 MRI = &MF->getRegInfo(); 1240 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 1241 TRI = ST.getRegisterInfo(); 1242 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 1243 BBUtils->computeAllBlockSizes(); 1244 BBUtils->adjustBBOffsetsAfter(&MF->front()); 1245 1246 bool Changed = false; 1247 for (auto ML : *MLI) { 1248 if (ML->isOutermost()) 1249 Changed |= ProcessLoop(ML); 1250 } 1251 Changed |= RevertNonLoops(); 1252 return Changed; 1253 } 1254 1255 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 1256 1257 bool Changed = false; 1258 1259 // Process inner loops first. 1260 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 1261 Changed |= ProcessLoop(*I); 1262 1263 LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; 1264 if (auto *Preheader = ML->getLoopPreheader()) 1265 dbgs() << " - " << Preheader->getName() << "\n"; 1266 else if (auto *Preheader = MLI->findLoopPreheader(ML)) 1267 dbgs() << " - " << Preheader->getName() << "\n"; 1268 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 1269 dbgs() << " - " << Preheader->getName() << "\n"; 1270 for (auto *MBB : ML->getBlocks()) 1271 dbgs() << " - " << MBB->getName() << "\n"; 1272 ); 1273 1274 // Search the given block for a loop start instruction. If one isn't found, 1275 // and there's only one predecessor block, search that one too. 1276 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 1277 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 1278 for (auto &MI : *MBB) { 1279 if (isLoopStart(MI)) 1280 return &MI; 1281 } 1282 if (MBB->pred_size() == 1) 1283 return SearchForStart(*MBB->pred_begin()); 1284 return nullptr; 1285 }; 1286 1287 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII); 1288 // Search the preheader for the start intrinsic. 1289 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 1290 // with potentially multiple set.loop.iterations, so we need to enable this. 1291 if (LoLoop.Preheader) 1292 LoLoop.Start = SearchForStart(LoLoop.Preheader); 1293 else 1294 return false; 1295 1296 // Find the low-overhead loop components and decide whether or not to fall 1297 // back to a normal loop. Also look for a vctp instructions and decide 1298 // whether we can convert that predicate using tail predication. 1299 for (auto *MBB : reverse(ML->getBlocks())) { 1300 for (auto &MI : *MBB) { 1301 if (MI.isDebugValue()) 1302 continue; 1303 else if (MI.getOpcode() == ARM::t2LoopDec) 1304 LoLoop.Dec = &MI; 1305 else if (MI.getOpcode() == ARM::t2LoopEnd) 1306 LoLoop.End = &MI; 1307 else if (isLoopStart(MI)) 1308 LoLoop.Start = &MI; 1309 else if (MI.getDesc().isCall()) { 1310 // TODO: Though the call will require LE to execute again, does this 1311 // mean we should revert? Always executing LE hopefully should be 1312 // faster than performing a sub,cmp,br or even subs,br. 1313 LoLoop.Revert = true; 1314 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 1315 } else { 1316 // Record VPR defs and build up their corresponding vpt blocks. 1317 // Check we know how to tail predicate any mve instructions. 1318 LoLoop.AnalyseMVEInst(&MI); 1319 } 1320 } 1321 } 1322 1323 LLVM_DEBUG(LoLoop.dump()); 1324 if (!LoLoop.FoundAllComponents()) { 1325 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 1326 return false; 1327 } 1328 1329 // Check that the only instruction using LoopDec is LoopEnd. 1330 // TODO: Check for copy chains that really have no effect. 1331 SmallPtrSet<MachineInstr*, 2> Uses; 1332 RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses); 1333 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 1334 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 1335 LoLoop.Revert = true; 1336 } 1337 LoLoop.Validate(BBUtils.get()); 1338 Expand(LoLoop); 1339 return true; 1340 } 1341 1342 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 1343 // beq that branches to the exit branch. 1344 // TODO: We could also try to generate a cbz if the value in LR is also in 1345 // another low register. 1346 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 1347 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 1348 MachineBasicBlock *MBB = MI->getParent(); 1349 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1350 TII->get(ARM::t2CMPri)); 1351 MIB.add(MI->getOperand(0)); 1352 MIB.addImm(0); 1353 MIB.addImm(ARMCC::AL); 1354 MIB.addReg(ARM::NoRegister); 1355 1356 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1357 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1358 ARM::tBcc : ARM::t2Bcc; 1359 1360 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1361 MIB.add(MI->getOperand(1)); // branch target 1362 MIB.addImm(ARMCC::EQ); // condition code 1363 MIB.addReg(ARM::CPSR); 1364 MI->eraseFromParent(); 1365 } 1366 1367 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 1368 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 1369 MachineBasicBlock *MBB = MI->getParent(); 1370 SmallPtrSet<MachineInstr*, 1> Ignore; 1371 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 1372 if (I->getOpcode() == ARM::t2LoopEnd) { 1373 Ignore.insert(&*I); 1374 break; 1375 } 1376 } 1377 1378 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1379 bool SetFlags = 1380 RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore); 1381 1382 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1383 TII->get(ARM::t2SUBri)); 1384 MIB.addDef(ARM::LR); 1385 MIB.add(MI->getOperand(1)); 1386 MIB.add(MI->getOperand(2)); 1387 MIB.addImm(ARMCC::AL); 1388 MIB.addReg(0); 1389 1390 if (SetFlags) { 1391 MIB.addReg(ARM::CPSR); 1392 MIB->getOperand(5).setIsDef(true); 1393 } else 1394 MIB.addReg(0); 1395 1396 MI->eraseFromParent(); 1397 return SetFlags; 1398 } 1399 1400 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1401 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1402 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1403 1404 MachineBasicBlock *MBB = MI->getParent(); 1405 // Create cmp 1406 if (!SkipCmp) { 1407 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1408 TII->get(ARM::t2CMPri)); 1409 MIB.addReg(ARM::LR); 1410 MIB.addImm(0); 1411 MIB.addImm(ARMCC::AL); 1412 MIB.addReg(ARM::NoRegister); 1413 } 1414 1415 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1416 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1417 ARM::tBcc : ARM::t2Bcc; 1418 1419 // Create bne 1420 MachineInstrBuilder MIB = 1421 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1422 MIB.add(MI->getOperand(1)); // branch target 1423 MIB.addImm(ARMCC::NE); // condition code 1424 MIB.addReg(ARM::CPSR); 1425 MI->eraseFromParent(); 1426 } 1427 1428 // Perform dead code elimation on the loop iteration count setup expression. 1429 // If we are tail-predicating, the number of elements to be processed is the 1430 // operand of the VCTP instruction in the vector body, see getCount(), which is 1431 // register $r3 in this example: 1432 // 1433 // $lr = big-itercount-expression 1434 // .. 1435 // t2DoLoopStart renamable $lr 1436 // vector.body: 1437 // .. 1438 // $vpr = MVE_VCTP32 renamable $r3 1439 // renamable $lr = t2LoopDec killed renamable $lr, 1 1440 // t2LoopEnd renamable $lr, %vector.body 1441 // tB %end 1442 // 1443 // What we would like achieve here is to replace the do-loop start pseudo 1444 // instruction t2DoLoopStart with: 1445 // 1446 // $lr = MVE_DLSTP_32 killed renamable $r3 1447 // 1448 // Thus, $r3 which defines the number of elements, is written to $lr, 1449 // and then we want to delete the whole chain that used to define $lr, 1450 // see the comment below how this chain could look like. 1451 // 1452 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1453 if (!LoLoop.IsTailPredicationLegal()) 1454 return; 1455 1456 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1457 1458 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0); 1459 if (!Def) { 1460 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1461 return; 1462 } 1463 1464 // Collect and remove the users of iteration count. 1465 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1466 LoLoop.End }; 1467 if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed)) 1468 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1469 } 1470 1471 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1472 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1473 // When using tail-predication, try to delete the dead code that was used to 1474 // calculate the number of loop iterations. 1475 IterationCountDCE(LoLoop); 1476 1477 MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt; 1478 MachineInstr *Start = LoLoop.Start; 1479 MachineBasicBlock *MBB = LoLoop.StartInsertBB; 1480 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 1481 unsigned Opc = LoLoop.getStartOpcode(); 1482 MachineOperand &Count = LoLoop.getLoopStartOperand(); 1483 1484 MachineInstrBuilder MIB = 1485 BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc)); 1486 1487 MIB.addDef(ARM::LR); 1488 MIB.add(Count); 1489 if (!IsDo) 1490 MIB.add(Start->getOperand(1)); 1491 1492 LoLoop.ToRemove.insert(Start); 1493 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1494 return &*MIB; 1495 } 1496 1497 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1498 auto RemovePredicate = [](MachineInstr *MI) { 1499 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1500 if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) { 1501 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1502 "Expected Then predicate!"); 1503 MI->getOperand(PIdx).setImm(ARMVCC::None); 1504 MI->getOperand(PIdx+1).setReg(0); 1505 } else 1506 llvm_unreachable("trying to unpredicate a non-predicated instruction"); 1507 }; 1508 1509 for (auto &Block : LoLoop.getVPTBlocks()) { 1510 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 1511 1512 if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/true)) { 1513 if (VPTState::hasUniformPredicate(Block)) { 1514 // A vpt block starting with VPST, is only predicated upon vctp and has no 1515 // internal vpr defs: 1516 // - Remove vpst. 1517 // - Unpredicate the remaining instructions. 1518 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front()); 1519 LoLoop.ToRemove.insert(Insts.front()); 1520 for (unsigned i = 1; i < Insts.size(); ++i) 1521 RemovePredicate(Insts[i]); 1522 } else { 1523 // The VPT block has a non-uniform predicate but it uses a vpst and its 1524 // entry is guarded only by a vctp, which means we: 1525 // - Need to remove the original vpst. 1526 // - Then need to unpredicate any following instructions, until 1527 // we come across the divergent vpr def. 1528 // - Insert a new vpst to predicate the instruction(s) that following 1529 // the divergent vpr def. 1530 // TODO: We could be producing more VPT blocks than necessary and could 1531 // fold the newly created one into a proceeding one. 1532 MachineInstr *Divergent = VPTState::getDivergent(Block); 1533 MachineInstr *VPST = Insts.front(); 1534 auto DivergentNext = ++MachineBasicBlock::iterator(Divergent); 1535 bool DivergentNextIsPredicated = 1536 getVPTInstrPredicate(*DivergentNext) != ARMVCC::None; 1537 1538 for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext; 1539 I != E; ++I) 1540 RemovePredicate(&*I); 1541 1542 // Check if the instruction defining vpr is a vcmp so it can be combined 1543 // with the VPST This should be the divergent instruction 1544 MachineInstr *VCMP = 1545 VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr; 1546 1547 auto ReplaceVCMPWithVPT = [&]() { 1548 // Replace the VCMP with a VPT 1549 MachineInstrBuilder MIB = BuildMI( 1550 *Divergent->getParent(), Divergent, Divergent->getDebugLoc(), 1551 TII->get(VCMPOpcodeToVPT(VCMP->getOpcode()))); 1552 MIB.addImm(ARMVCC::Then); 1553 // Register one 1554 MIB.add(VCMP->getOperand(1)); 1555 // Register two 1556 MIB.add(VCMP->getOperand(2)); 1557 // The comparison code, e.g. ge, eq, lt 1558 MIB.add(VCMP->getOperand(3)); 1559 LLVM_DEBUG(dbgs() 1560 << "ARM Loops: Combining with VCMP to VPT: " << *MIB); 1561 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1562 LoLoop.ToRemove.insert(VCMP); 1563 }; 1564 1565 if (DivergentNextIsPredicated) { 1566 // Insert a VPST at the divergent only if the next instruction 1567 // would actually use it. A VCMP following a VPST can be 1568 // merged into a VPT so do that instead if the VCMP exists. 1569 if (!VCMP) { 1570 // Create a VPST (with a null mask for now, we'll recompute it 1571 // later) 1572 MachineInstrBuilder MIB = 1573 BuildMI(*Divergent->getParent(), Divergent, 1574 Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST)); 1575 MIB.addImm(0); 1576 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1577 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1578 } else { 1579 // No RDA checks are necessary here since the VPST would have been 1580 // directly before the VCMP 1581 ReplaceVCMPWithVPT(); 1582 } 1583 } 1584 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1585 LoLoop.ToRemove.insert(VPST); 1586 } 1587 } else if (Block.containsVCTP()) { 1588 // The vctp will be removed, so the block mask of the vp(s)t will need 1589 // to be recomputed. 1590 LoLoop.BlockMasksToRecompute.insert(Insts.front()); 1591 } 1592 } 1593 1594 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end()); 1595 } 1596 1597 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1598 1599 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1600 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1601 MachineInstr *End = LoLoop.End; 1602 MachineBasicBlock *MBB = End->getParent(); 1603 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1604 ARM::MVE_LETP : ARM::t2LEUpdate; 1605 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1606 TII->get(Opc)); 1607 MIB.addDef(ARM::LR); 1608 MIB.add(End->getOperand(0)); 1609 MIB.add(End->getOperand(1)); 1610 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1611 LoLoop.ToRemove.insert(LoLoop.Dec); 1612 LoLoop.ToRemove.insert(End); 1613 return &*MIB; 1614 }; 1615 1616 // TODO: We should be able to automatically remove these branches before we 1617 // get here - probably by teaching analyzeBranch about the pseudo 1618 // instructions. 1619 // If there is an unconditional branch, after I, that just branches to the 1620 // next block, remove it. 1621 auto RemoveDeadBranch = [](MachineInstr *I) { 1622 MachineBasicBlock *BB = I->getParent(); 1623 MachineInstr *Terminator = &BB->instr_back(); 1624 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1625 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1626 if (BB->isLayoutSuccessor(Succ)) { 1627 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1628 Terminator->eraseFromParent(); 1629 } 1630 } 1631 }; 1632 1633 if (LoLoop.Revert) { 1634 if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) 1635 RevertWhile(LoLoop.Start); 1636 else 1637 LoLoop.Start->eraseFromParent(); 1638 bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec); 1639 RevertLoopEnd(LoLoop.End, FlagsAlreadySet); 1640 } else { 1641 LoLoop.Start = ExpandLoopStart(LoLoop); 1642 RemoveDeadBranch(LoLoop.Start); 1643 LoLoop.End = ExpandLoopEnd(LoLoop); 1644 RemoveDeadBranch(LoLoop.End); 1645 if (LoLoop.IsTailPredicationLegal()) 1646 ConvertVPTBlocks(LoLoop); 1647 for (auto *I : LoLoop.ToRemove) { 1648 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1649 I->eraseFromParent(); 1650 } 1651 for (auto *I : LoLoop.BlockMasksToRecompute) { 1652 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1653 recomputeVPTBlockMask(*I); 1654 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1655 } 1656 } 1657 1658 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1659 DFS.ProcessLoop(); 1660 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1661 for (auto *MBB : PostOrder) { 1662 recomputeLiveIns(*MBB); 1663 // FIXME: For some reason, the live-in print order is non-deterministic for 1664 // our tests and I can't out why... So just sort them. 1665 MBB->sortUniqueLiveIns(); 1666 } 1667 1668 for (auto *MBB : reverse(PostOrder)) 1669 recomputeLivenessFlags(*MBB); 1670 1671 // We've moved, removed and inserted new instructions, so update RDA. 1672 RDA->reset(); 1673 } 1674 1675 bool ARMLowOverheadLoops::RevertNonLoops() { 1676 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1677 bool Changed = false; 1678 1679 for (auto &MBB : *MF) { 1680 SmallVector<MachineInstr*, 4> Starts; 1681 SmallVector<MachineInstr*, 4> Decs; 1682 SmallVector<MachineInstr*, 4> Ends; 1683 1684 for (auto &I : MBB) { 1685 if (isLoopStart(I)) 1686 Starts.push_back(&I); 1687 else if (I.getOpcode() == ARM::t2LoopDec) 1688 Decs.push_back(&I); 1689 else if (I.getOpcode() == ARM::t2LoopEnd) 1690 Ends.push_back(&I); 1691 } 1692 1693 if (Starts.empty() && Decs.empty() && Ends.empty()) 1694 continue; 1695 1696 Changed = true; 1697 1698 for (auto *Start : Starts) { 1699 if (Start->getOpcode() == ARM::t2WhileLoopStart) 1700 RevertWhile(Start); 1701 else 1702 Start->eraseFromParent(); 1703 } 1704 for (auto *Dec : Decs) 1705 RevertLoopDec(Dec); 1706 1707 for (auto *End : Ends) 1708 RevertLoopEnd(End); 1709 } 1710 return Changed; 1711 } 1712 1713 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1714 return new ARMLowOverheadLoops(); 1715 } 1716