xref: /llvm-project/llvm/lib/Target/ARM/ARMLowOverheadLoops.cpp (revision 38f625d0d1360b035271422bab922d22ed04d79a)
1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo
10 /// instructions into machine operations.
11 /// The expectation is that the loop contains three pseudo instructions:
12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
13 ///   form should be in the preheader, whereas the while form should be in the
14 ///   preheaders only predecessor.
15 /// - t2LoopDec - placed within in the loop body.
16 /// - t2LoopEnd - the loop latch terminator.
17 ///
18 /// In addition to this, we also look for the presence of the VCTP instruction,
19 /// which determines whether we can generated the tail-predicated low-overhead
20 /// loop form.
21 ///
22 /// Assumptions and Dependencies:
23 /// Low-overhead loops are constructed and executed using a setup instruction:
24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
26 /// but fixed polarity: WLS can only branch forwards and LE can only branch
27 /// backwards. These restrictions mean that this pass is dependent upon block
28 /// layout and block sizes, which is why it's the last pass to run. The same is
29 /// true for ConstantIslands, but this pass does not increase the size of the
30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed
31 /// during the transform and pseudo instructions are replaced by real ones. In
32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce
33 /// multiple instructions for a single pseudo (see RevertWhile and
34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd
35 /// are defined to be as large as this maximum sequence of replacement
36 /// instructions.
37 ///
38 /// A note on VPR.P0 (the lane mask):
39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a
40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks).
41 /// They will simply "and" the result of their calculation with the current
42 /// value of VPR.P0. You can think of it like this:
43 /// \verbatim
44 /// if VPT active:    ; Between a DLSTP/LETP, or for predicated instrs
45 ///   VPR.P0 &= Value
46 /// else
47 ///   VPR.P0 = Value
48 /// \endverbatim
49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always
50 /// fall in the "VPT active" case, so we can consider that all VPR writes by
51 /// one of those instruction is actually a "and".
52 //===----------------------------------------------------------------------===//
53 
54 #include "ARM.h"
55 #include "ARMBaseInstrInfo.h"
56 #include "ARMBaseRegisterInfo.h"
57 #include "ARMBasicBlockInfo.h"
58 #include "ARMSubtarget.h"
59 #include "Thumb2InstrInfo.h"
60 #include "llvm/ADT/SetOperations.h"
61 #include "llvm/ADT/SmallSet.h"
62 #include "llvm/CodeGen/LivePhysRegs.h"
63 #include "llvm/CodeGen/MachineFunctionPass.h"
64 #include "llvm/CodeGen/MachineLoopInfo.h"
65 #include "llvm/CodeGen/MachineLoopUtils.h"
66 #include "llvm/CodeGen/MachineRegisterInfo.h"
67 #include "llvm/CodeGen/Passes.h"
68 #include "llvm/CodeGen/ReachingDefAnalysis.h"
69 #include "llvm/MC/MCInstrDesc.h"
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "arm-low-overhead-loops"
74 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"
75 
76 static cl::opt<bool>
77 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden,
78     cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"),
79     cl::init(false));
80 
81 static bool isVectorPredicated(MachineInstr *MI) {
82   int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
83   return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR;
84 }
85 
86 static bool isVectorPredicate(MachineInstr *MI) {
87   return MI->findRegisterDefOperandIdx(ARM::VPR) != -1;
88 }
89 
90 static bool hasVPRUse(MachineInstr *MI) {
91   return MI->findRegisterUseOperandIdx(ARM::VPR) != -1;
92 }
93 
94 static bool isDomainMVE(MachineInstr *MI) {
95   uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
96   return Domain == ARMII::DomainMVE;
97 }
98 
99 static bool shouldInspect(MachineInstr &MI) {
100   return isDomainMVE(&MI) || isVectorPredicate(&MI) ||
101     hasVPRUse(&MI);
102 }
103 
104 namespace {
105 
106   using InstSet = SmallPtrSetImpl<MachineInstr *>;
107 
108   class PostOrderLoopTraversal {
109     MachineLoop &ML;
110     MachineLoopInfo &MLI;
111     SmallPtrSet<MachineBasicBlock*, 4> Visited;
112     SmallVector<MachineBasicBlock*, 4> Order;
113 
114   public:
115     PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI)
116       : ML(ML), MLI(MLI) { }
117 
118     const SmallVectorImpl<MachineBasicBlock*> &getOrder() const {
119       return Order;
120     }
121 
122     // Visit all the blocks within the loop, as well as exit blocks and any
123     // blocks properly dominating the header.
124     void ProcessLoop() {
125       std::function<void(MachineBasicBlock*)> Search = [this, &Search]
126         (MachineBasicBlock *MBB) -> void {
127         if (Visited.count(MBB))
128           return;
129 
130         Visited.insert(MBB);
131         for (auto *Succ : MBB->successors()) {
132           if (!ML.contains(Succ))
133             continue;
134           Search(Succ);
135         }
136         Order.push_back(MBB);
137       };
138 
139       // Insert exit blocks.
140       SmallVector<MachineBasicBlock*, 2> ExitBlocks;
141       ML.getExitBlocks(ExitBlocks);
142       for (auto *MBB : ExitBlocks)
143         Order.push_back(MBB);
144 
145       // Then add the loop body.
146       Search(ML.getHeader());
147 
148       // Then try the preheader and its predecessors.
149       std::function<void(MachineBasicBlock*)> GetPredecessor =
150         [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void {
151         Order.push_back(MBB);
152         if (MBB->pred_size() == 1)
153           GetPredecessor(*MBB->pred_begin());
154       };
155 
156       if (auto *Preheader = ML.getLoopPreheader())
157         GetPredecessor(Preheader);
158       else if (auto *Preheader = MLI.findLoopPreheader(&ML, true))
159         GetPredecessor(Preheader);
160     }
161   };
162 
163   struct PredicatedMI {
164     MachineInstr *MI = nullptr;
165     SetVector<MachineInstr*> Predicates;
166 
167   public:
168     PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) {
169       assert(I && "Instruction must not be null!");
170       Predicates.insert(Preds.begin(), Preds.end());
171     }
172   };
173 
174   // Represent the current state of the VPR and hold all instances which
175   // represent a VPT block, which is a list of instructions that begins with a
176   // VPT/VPST and has a maximum of four proceeding instructions. All
177   // instructions within the block are predicated upon the vpr and we allow
178   // instructions to define the vpr within in the block too.
179   class VPTState {
180     friend struct LowOverheadLoop;
181 
182     SmallVector<MachineInstr *, 4> Insts;
183 
184     static SmallVector<VPTState, 4> Blocks;
185     static SetVector<MachineInstr *> CurrentPredicates;
186     static std::map<MachineInstr *,
187       std::unique_ptr<PredicatedMI>> PredicatedInsts;
188 
189     static void CreateVPTBlock(MachineInstr *MI) {
190       assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR))
191              && "Can't begin VPT without predicate");
192       Blocks.emplace_back(MI);
193       // The execution of MI is predicated upon the current set of instructions
194       // that are AND'ed together to form the VPR predicate value. In the case
195       // that MI is a VPT, CurrentPredicates will also just be MI.
196       PredicatedInsts.emplace(
197         MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
198     }
199 
200     static void reset() {
201       Blocks.clear();
202       PredicatedInsts.clear();
203       CurrentPredicates.clear();
204     }
205 
206     static void addInst(MachineInstr *MI) {
207       Blocks.back().insert(MI);
208       PredicatedInsts.emplace(
209         MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
210     }
211 
212     static void addPredicate(MachineInstr *MI) {
213       LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI);
214       CurrentPredicates.insert(MI);
215     }
216 
217     static void resetPredicate(MachineInstr *MI) {
218       LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI);
219       CurrentPredicates.clear();
220       CurrentPredicates.insert(MI);
221     }
222 
223   public:
224     // Have we found an instruction within the block which defines the vpr? If
225     // so, not all the instructions in the block will have the same predicate.
226     static bool hasUniformPredicate(VPTState &Block) {
227       return getDivergent(Block) == nullptr;
228     }
229 
230     // If it exists, return the first internal instruction which modifies the
231     // VPR.
232     static MachineInstr *getDivergent(VPTState &Block) {
233       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
234       for (unsigned i = 1; i < Insts.size(); ++i) {
235         MachineInstr *Next = Insts[i];
236         if (isVectorPredicate(Next))
237           return Next; // Found an instruction altering the vpr.
238       }
239       return nullptr;
240     }
241 
242     // Return whether the given instruction is predicated upon a VCTP.
243     static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) {
244       SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates;
245       if (Exclusive && Predicates.size() != 1)
246         return false;
247       for (auto *PredMI : Predicates)
248         if (isVCTP(PredMI))
249           return true;
250       return false;
251     }
252 
253     // Is the VPST, controlling the block entry, predicated upon a VCTP.
254     static bool isEntryPredicatedOnVCTP(VPTState &Block,
255                                         bool Exclusive = false) {
256       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
257       return isPredicatedOnVCTP(Insts.front(), Exclusive);
258     }
259 
260     // If this block begins with a VPT, we can check whether it's using
261     // at least one predicated input(s), as well as possible loop invariant
262     // which would result in it being implicitly predicated.
263     static bool hasImplicitlyValidVPT(VPTState &Block,
264                                       ReachingDefAnalysis &RDA) {
265       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
266       MachineInstr *VPT = Insts.front();
267       assert(isVPTOpcode(VPT->getOpcode()) &&
268              "Expected VPT block to begin with VPT/VPST");
269 
270       if (VPT->getOpcode() == ARM::MVE_VPST)
271         return false;
272 
273       auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) {
274         MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx));
275         return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op);
276       };
277 
278       auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) {
279         MachineOperand &MO = MI->getOperand(Idx);
280         if (!MO.isReg() || !MO.getReg())
281           return true;
282 
283         SmallPtrSet<MachineInstr *, 2> Defs;
284         RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs);
285         if (Defs.empty())
286           return true;
287 
288         for (auto *Def : Defs)
289           if (Def->getParent() == VPT->getParent())
290             return false;
291         return true;
292       };
293 
294       // Check that at least one of the operands is directly predicated on a
295       // vctp and allow an invariant value too.
296       return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) &&
297              (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) &&
298              (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2));
299     }
300 
301     static bool isValid(ReachingDefAnalysis &RDA) {
302       // All predication within the loop should be based on vctp. If the block
303       // isn't predicated on entry, check whether the vctp is within the block
304       // and that all other instructions are then predicated on it.
305       for (auto &Block : Blocks) {
306         if (isEntryPredicatedOnVCTP(Block, false) ||
307             hasImplicitlyValidVPT(Block, RDA))
308           continue;
309 
310         SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
311         for (auto *MI : Insts) {
312           // Check that any internal VCTPs are 'Then' predicated.
313           if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then)
314             return false;
315           // Skip other instructions that build up the predicate.
316           if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI))
317             continue;
318           // Check that any other instructions are predicated upon a vctp.
319           // TODO: We could infer when VPTs are implicitly predicated on the
320           // vctp (when the operands are predicated).
321           if (!isPredicatedOnVCTP(MI)) {
322             LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI);
323             return false;
324           }
325         }
326       }
327       return true;
328     }
329 
330     VPTState(MachineInstr *MI) { Insts.push_back(MI); }
331 
332     void insert(MachineInstr *MI) {
333       Insts.push_back(MI);
334       // VPT/VPST + 4 predicated instructions.
335       assert(Insts.size() <= 5 && "Too many instructions in VPT block!");
336     }
337 
338     bool containsVCTP() const {
339       for (auto *MI : Insts)
340         if (isVCTP(MI))
341           return true;
342       return false;
343     }
344 
345     unsigned size() const { return Insts.size(); }
346     SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; }
347   };
348 
349   struct LowOverheadLoop {
350 
351     MachineLoop &ML;
352     MachineBasicBlock *Preheader = nullptr;
353     MachineLoopInfo &MLI;
354     ReachingDefAnalysis &RDA;
355     const TargetRegisterInfo &TRI;
356     const ARMBaseInstrInfo &TII;
357     MachineFunction *MF = nullptr;
358     MachineBasicBlock::iterator StartInsertPt;
359     MachineBasicBlock *StartInsertBB = nullptr;
360     MachineInstr *Start = nullptr;
361     MachineInstr *Dec = nullptr;
362     MachineInstr *End = nullptr;
363     MachineOperand TPNumElements;
364     SmallVector<MachineInstr*, 4> VCTPs;
365     SmallPtrSet<MachineInstr*, 4> ToRemove;
366     SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute;
367     bool Revert = false;
368     bool CannotTailPredicate = false;
369 
370     LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI,
371                     ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI,
372                     const ARMBaseInstrInfo &TII)
373         : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII),
374           TPNumElements(MachineOperand::CreateImm(0)) {
375       MF = ML.getHeader()->getParent();
376       if (auto *MBB = ML.getLoopPreheader())
377         Preheader = MBB;
378       else if (auto *MBB = MLI.findLoopPreheader(&ML, true))
379         Preheader = MBB;
380       VPTState::reset();
381     }
382 
383     // If this is an MVE instruction, check that we know how to use tail
384     // predication with it. Record VPT blocks and return whether the
385     // instruction is valid for tail predication.
386     bool ValidateMVEInst(MachineInstr *MI);
387 
388     void AnalyseMVEInst(MachineInstr *MI) {
389       CannotTailPredicate = !ValidateMVEInst(MI);
390     }
391 
392     bool IsTailPredicationLegal() const {
393       // For now, let's keep things really simple and only support a single
394       // block for tail predication.
395       return !Revert && FoundAllComponents() && !VCTPs.empty() &&
396              !CannotTailPredicate && ML.getNumBlocks() == 1;
397     }
398 
399     // Given that MI is a VCTP, check that is equivalent to any other VCTPs
400     // found.
401     bool AddVCTP(MachineInstr *MI);
402 
403     // Check that the predication in the loop will be equivalent once we
404     // perform the conversion. Also ensure that we can provide the number
405     // of elements to the loop start instruction.
406     bool ValidateTailPredicate();
407 
408     // Check that any values available outside of the loop will be the same
409     // after tail predication conversion.
410     bool ValidateLiveOuts();
411 
412     // Is it safe to define LR with DLS/WLS?
413     // LR can be defined if it is the operand to start, because it's the same
414     // value, or if it's going to be equivalent to the operand to Start.
415     MachineInstr *isSafeToDefineLR();
416 
417     // Check the branch targets are within range and we satisfy our
418     // restrictions.
419     void Validate(ARMBasicBlockUtils *BBUtils);
420 
421     bool FoundAllComponents() const {
422       return Start && Dec && End;
423     }
424 
425     SmallVectorImpl<VPTState> &getVPTBlocks() {
426       return VPTState::Blocks;
427     }
428 
429     // Return the operand for the loop start instruction. This will be the loop
430     // iteration count, or the number of elements if we're tail predicating.
431     MachineOperand &getLoopStartOperand() {
432       return IsTailPredicationLegal() ? TPNumElements : Start->getOperand(0);
433     }
434 
435     unsigned getStartOpcode() const {
436       bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
437       if (!IsTailPredicationLegal())
438         return IsDo ? ARM::t2DLS : ARM::t2WLS;
439 
440       return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo);
441     }
442 
443     void dump() const {
444       if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start;
445       if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec;
446       if (End) dbgs() << "ARM Loops: Found Loop End: " << *End;
447       if (!VCTPs.empty()) {
448         dbgs() << "ARM Loops: Found VCTP(s):\n";
449         for (auto *MI : VCTPs)
450           dbgs() << " - " << *MI;
451       }
452       if (!FoundAllComponents())
453         dbgs() << "ARM Loops: Not a low-overhead loop.\n";
454       else if (!(Start && Dec && End))
455         dbgs() << "ARM Loops: Failed to find all loop components.\n";
456     }
457   };
458 
459   class ARMLowOverheadLoops : public MachineFunctionPass {
460     MachineFunction           *MF = nullptr;
461     MachineLoopInfo           *MLI = nullptr;
462     ReachingDefAnalysis       *RDA = nullptr;
463     const ARMBaseInstrInfo    *TII = nullptr;
464     MachineRegisterInfo       *MRI = nullptr;
465     const TargetRegisterInfo  *TRI = nullptr;
466     std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
467 
468   public:
469     static char ID;
470 
471     ARMLowOverheadLoops() : MachineFunctionPass(ID) { }
472 
473     void getAnalysisUsage(AnalysisUsage &AU) const override {
474       AU.setPreservesCFG();
475       AU.addRequired<MachineLoopInfo>();
476       AU.addRequired<ReachingDefAnalysis>();
477       MachineFunctionPass::getAnalysisUsage(AU);
478     }
479 
480     bool runOnMachineFunction(MachineFunction &MF) override;
481 
482     MachineFunctionProperties getRequiredProperties() const override {
483       return MachineFunctionProperties().set(
484           MachineFunctionProperties::Property::NoVRegs).set(
485           MachineFunctionProperties::Property::TracksLiveness);
486     }
487 
488     StringRef getPassName() const override {
489       return ARM_LOW_OVERHEAD_LOOPS_NAME;
490     }
491 
492   private:
493     bool ProcessLoop(MachineLoop *ML);
494 
495     bool RevertNonLoops();
496 
497     void RevertWhile(MachineInstr *MI) const;
498 
499     bool RevertLoopDec(MachineInstr *MI) const;
500 
501     void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const;
502 
503     void ConvertVPTBlocks(LowOverheadLoop &LoLoop);
504 
505     MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop);
506 
507     void Expand(LowOverheadLoop &LoLoop);
508 
509     void IterationCountDCE(LowOverheadLoop &LoLoop);
510   };
511 }
512 
513 char ARMLowOverheadLoops::ID = 0;
514 
515 SmallVector<VPTState, 4> VPTState::Blocks;
516 SetVector<MachineInstr *> VPTState::CurrentPredicates;
517 std::map<MachineInstr *,
518          std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts;
519 
520 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME,
521                 false, false)
522 
523 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA,
524                       InstSet &ToRemove, InstSet &Ignore) {
525 
526   // Check that we can remove all of Killed without having to modify any IT
527   // blocks.
528   auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) {
529     // Collect the dead code and the MBBs in which they reside.
530     SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks;
531     for (auto *Dead : Killed)
532       BasicBlocks.insert(Dead->getParent());
533 
534     // Collect IT blocks in all affected basic blocks.
535     std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks;
536     for (auto *MBB : BasicBlocks) {
537       for (auto &IT : *MBB) {
538         if (IT.getOpcode() != ARM::t2IT)
539           continue;
540         RDA.getReachingLocalUses(&IT, ARM::ITSTATE, ITBlocks[&IT]);
541       }
542     }
543 
544     // If we're removing all of the instructions within an IT block, then
545     // also remove the IT instruction.
546     SmallPtrSet<MachineInstr *, 2> ModifiedITs;
547     SmallPtrSet<MachineInstr *, 2> RemoveITs;
548     for (auto *Dead : Killed) {
549       if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) {
550         MachineInstr *IT = RDA.getMIOperand(Dead, *MO);
551         RemoveITs.insert(IT);
552         auto &CurrentBlock = ITBlocks[IT];
553         CurrentBlock.erase(Dead);
554         if (CurrentBlock.empty())
555           ModifiedITs.erase(IT);
556         else
557           ModifiedITs.insert(IT);
558       }
559     }
560     if (!ModifiedITs.empty())
561       return false;
562     Killed.insert(RemoveITs.begin(), RemoveITs.end());
563     return true;
564   };
565 
566   SmallPtrSet<MachineInstr *, 2> Uses;
567   if (!RDA.isSafeToRemove(MI, Uses, Ignore))
568     return false;
569 
570   if (WontCorruptITs(Uses, RDA)) {
571     ToRemove.insert(Uses.begin(), Uses.end());
572     LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI
573                << " - can also remove:\n";
574                for (auto *Use : Uses)
575                  dbgs() << "   - " << *Use);
576 
577     SmallPtrSet<MachineInstr*, 4> Killed;
578     RDA.collectKilledOperands(MI, Killed);
579     if (WontCorruptITs(Killed, RDA)) {
580       ToRemove.insert(Killed.begin(), Killed.end());
581       LLVM_DEBUG(for (auto *Dead : Killed)
582                    dbgs() << "   - " << *Dead);
583     }
584     return true;
585   }
586   return false;
587 }
588 
589 bool LowOverheadLoop::ValidateTailPredicate() {
590   if (!IsTailPredicationLegal()) {
591     LLVM_DEBUG(if (VCTPs.empty())
592                  dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
593                dbgs() << "ARM Loops: Tail-predication is not valid.\n");
594     return false;
595   }
596 
597   assert(!VCTPs.empty() && "VCTP instruction expected but is not set");
598   assert(ML.getBlocks().size() == 1 &&
599          "Shouldn't be processing a loop with more than one block");
600 
601   if (DisableTailPredication) {
602     LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n");
603     return false;
604   }
605 
606   if (!VPTState::isValid(RDA))
607     return false;
608 
609   if (!ValidateLiveOuts()) {
610     LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n");
611     return false;
612   }
613 
614   // Check that creating a [W|D]LSTP, which will define LR with an element
615   // count instead of iteration count, won't affect any other instructions
616   // than the LoopStart and LoopDec.
617   // TODO: We should try to insert the [W|D]LSTP after any of the other uses.
618   if (StartInsertPt == Start && Start->getOperand(0).getReg() == ARM::LR) {
619     if (auto *IterCount = RDA.getMIOperand(Start, 0)) {
620       SmallPtrSet<MachineInstr *, 2> Uses;
621       RDA.getGlobalUses(IterCount, ARM::LR, Uses);
622       for (auto *Use : Uses) {
623         if (Use != Start && Use != Dec) {
624           LLVM_DEBUG(dbgs() << " ARM Loops: Found LR use: " << *Use);
625           return false;
626         }
627       }
628     }
629   }
630 
631   // For tail predication, we need to provide the number of elements, instead
632   // of the iteration count, to the loop start instruction. The number of
633   // elements is provided to the vctp instruction, so we need to check that
634   // we can use this register at InsertPt.
635   MachineInstr *VCTP = VCTPs.back();
636   TPNumElements = VCTP->getOperand(1);
637   Register NumElements = TPNumElements.getReg();
638 
639   // If the register is defined within loop, then we can't perform TP.
640   // TODO: Check whether this is just a mov of a register that would be
641   // available.
642   if (RDA.hasLocalDefBefore(VCTP, NumElements)) {
643     LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
644     return false;
645   }
646 
647   // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect
648   // world the [w|d]lstp instruction would be last instruction in the preheader
649   // and so it would only affect instructions within the loop body. But due to
650   // scheduling, and/or the logic in this pass, the insertion point can
651   // be moved earlier. So if the Loop Start isn't the last instruction in the
652   // preheader, and if the initial element count is smaller than the vector
653   // width, the Loop Start instruction will immediately generate one or more
654   // false lane mask which can, incorrectly, affect the proceeding MVE
655   // instructions in the preheader.
656   auto CannotInsertWDLSTPBetween = [](MachineBasicBlock::iterator I,
657                                       MachineBasicBlock::iterator E) {
658     for (; I != E; ++I)
659       if (shouldInspect(*I))
660         return true;
661     return false;
662   };
663 
664   if (CannotInsertWDLSTPBetween(StartInsertPt, StartInsertBB->end()))
665     return false;
666 
667   // Especially in the case of while loops, InsertBB may not be the
668   // preheader, so we need to check that the register isn't redefined
669   // before entering the loop.
670   auto CannotProvideElements = [this](MachineBasicBlock *MBB,
671                                       Register NumElements) {
672     // NumElements is redefined in this block.
673     if (RDA.hasLocalDefBefore(&MBB->back(), NumElements))
674       return true;
675 
676     // Don't continue searching up through multiple predecessors.
677     if (MBB->pred_size() > 1)
678       return true;
679 
680     return false;
681   };
682 
683   // Search backwards for a def, until we get to InsertBB.
684   MachineBasicBlock *MBB = Preheader;
685   while (MBB && MBB != StartInsertBB) {
686     if (CannotProvideElements(MBB, NumElements)) {
687       LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
688       return false;
689     }
690     MBB = *MBB->pred_begin();
691   }
692 
693   // Check that the value change of the element count is what we expect and
694   // that the predication will be equivalent. For this we need:
695   // NumElements = NumElements - VectorWidth. The sub will be a sub immediate
696   // and we can also allow register copies within the chain too.
697   auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) {
698     return -getAddSubImmediate(*MI) == ExpectedVecWidth;
699   };
700 
701   MBB = VCTP->getParent();
702   // Remove modifications to the element count since they have no purpose in a
703   // tail predicated loop. Explicitly refer to the vctp operand no matter which
704   // register NumElements has been assigned to, since that is what the
705   // modifications will be using
706   if (auto *Def = RDA.getUniqueReachingMIDef(&MBB->back(),
707                                              VCTP->getOperand(1).getReg())) {
708     SmallPtrSet<MachineInstr*, 2> ElementChain;
709     SmallPtrSet<MachineInstr*, 2> Ignore;
710     unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode());
711 
712     Ignore.insert(VCTPs.begin(), VCTPs.end());
713 
714     if (TryRemove(Def, RDA, ElementChain, Ignore)) {
715       bool FoundSub = false;
716 
717       for (auto *MI : ElementChain) {
718         if (isMovRegOpcode(MI->getOpcode()))
719           continue;
720 
721         if (isSubImmOpcode(MI->getOpcode())) {
722           if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth))
723             return false;
724           FoundSub = true;
725         } else
726           return false;
727       }
728       ToRemove.insert(ElementChain.begin(), ElementChain.end());
729     }
730   }
731   return true;
732 }
733 
734 static bool isRegInClass(const MachineOperand &MO,
735                          const TargetRegisterClass *Class) {
736   return MO.isReg() && MO.getReg() && Class->contains(MO.getReg());
737 }
738 
739 // MVE 'narrowing' operate on half a lane, reading from half and writing
740 // to half, which are referred to has the top and bottom half. The other
741 // half retains its previous value.
742 static bool retainsPreviousHalfElement(const MachineInstr &MI) {
743   const MCInstrDesc &MCID = MI.getDesc();
744   uint64_t Flags = MCID.TSFlags;
745   return (Flags & ARMII::RetainsPreviousHalfElement) != 0;
746 }
747 
748 // Some MVE instructions read from the top/bottom halves of their operand(s)
749 // and generate a vector result with result elements that are double the
750 // width of the input.
751 static bool producesDoubleWidthResult(const MachineInstr &MI) {
752   const MCInstrDesc &MCID = MI.getDesc();
753   uint64_t Flags = MCID.TSFlags;
754   return (Flags & ARMII::DoubleWidthResult) != 0;
755 }
756 
757 static bool isHorizontalReduction(const MachineInstr &MI) {
758   const MCInstrDesc &MCID = MI.getDesc();
759   uint64_t Flags = MCID.TSFlags;
760   return (Flags & ARMII::HorizontalReduction) != 0;
761 }
762 
763 // Can this instruction generate a non-zero result when given only zeroed
764 // operands? This allows us to know that, given operands with false bytes
765 // zeroed by masked loads, that the result will also contain zeros in those
766 // bytes.
767 static bool canGenerateNonZeros(const MachineInstr &MI) {
768 
769   // Check for instructions which can write into a larger element size,
770   // possibly writing into a previous zero'd lane.
771   if (producesDoubleWidthResult(MI))
772     return true;
773 
774   switch (MI.getOpcode()) {
775   default:
776     break;
777   // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow
778   // fp16 -> fp32 vector conversions.
779   // Instructions that perform a NOT will generate 1s from 0s.
780   case ARM::MVE_VMVN:
781   case ARM::MVE_VORN:
782   // Count leading zeros will do just that!
783   case ARM::MVE_VCLZs8:
784   case ARM::MVE_VCLZs16:
785   case ARM::MVE_VCLZs32:
786     return true;
787   }
788   return false;
789 }
790 
791 // Look at its register uses to see if it only can only receive zeros
792 // into its false lanes which would then produce zeros. Also check that
793 // the output register is also defined by an FalseLanesZero instruction
794 // so that if tail-predication happens, the lanes that aren't updated will
795 // still be zeros.
796 static bool producesFalseLanesZero(MachineInstr &MI,
797                                    const TargetRegisterClass *QPRs,
798                                    const ReachingDefAnalysis &RDA,
799                                    InstSet &FalseLanesZero) {
800   if (canGenerateNonZeros(MI))
801     return false;
802 
803   bool isPredicated = isVectorPredicated(&MI);
804   // Predicated loads will write zeros to the falsely predicated bytes of the
805   // destination register.
806   if (MI.mayLoad())
807     return isPredicated;
808 
809   auto IsZeroInit = [](MachineInstr *Def) {
810     return !isVectorPredicated(Def) &&
811            Def->getOpcode() == ARM::MVE_VMOVimmi32 &&
812            Def->getOperand(1).getImm() == 0;
813   };
814 
815   bool AllowScalars = isHorizontalReduction(MI);
816   for (auto &MO : MI.operands()) {
817     if (!MO.isReg() || !MO.getReg())
818       continue;
819     if (!isRegInClass(MO, QPRs) && AllowScalars)
820       continue;
821 
822     // Check that this instruction will produce zeros in its false lanes:
823     // - If it only consumes false lanes zero or constant 0 (vmov #0)
824     // - If it's predicated, it only matters that it's def register already has
825     //   false lane zeros, so we can ignore the uses.
826     SmallPtrSet<MachineInstr *, 2> Defs;
827     RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs);
828     for (auto *Def : Defs) {
829       if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def))
830         continue;
831       if (MO.isUse() && isPredicated)
832         continue;
833       return false;
834     }
835   }
836   LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI);
837   return true;
838 }
839 
840 bool LowOverheadLoop::ValidateLiveOuts() {
841   // We want to find out if the tail-predicated version of this loop will
842   // produce the same values as the loop in its original form. For this to
843   // be true, the newly inserted implicit predication must not change the
844   // the (observable) results.
845   // We're doing this because many instructions in the loop will not be
846   // predicated and so the conversion from VPT predication to tail-predication
847   // can result in different values being produced; due to the tail-predication
848   // preventing many instructions from updating their falsely predicated
849   // lanes. This analysis assumes that all the instructions perform lane-wise
850   // operations and don't perform any exchanges.
851   // A masked load, whether through VPT or tail predication, will write zeros
852   // to any of the falsely predicated bytes. So, from the loads, we know that
853   // the false lanes are zeroed and here we're trying to track that those false
854   // lanes remain zero, or where they change, the differences are masked away
855   // by their user(s).
856   // All MVE stores have to be predicated, so we know that any predicate load
857   // operands, or stored results are equivalent already. Other explicitly
858   // predicated instructions will perform the same operation in the original
859   // loop and the tail-predicated form too. Because of this, we can insert
860   // loads, stores and other predicated instructions into our Predicated
861   // set and build from there.
862   const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID);
863   SetVector<MachineInstr *> FalseLanesUnknown;
864   SmallPtrSet<MachineInstr *, 4> FalseLanesZero;
865   SmallPtrSet<MachineInstr *, 4> Predicated;
866   MachineBasicBlock *Header = ML.getHeader();
867 
868   for (auto &MI : *Header) {
869     if (!shouldInspect(MI))
870       continue;
871 
872     if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode()))
873       continue;
874 
875     bool isPredicated = isVectorPredicated(&MI);
876     bool retainsOrReduces =
877       retainsPreviousHalfElement(MI) || isHorizontalReduction(MI);
878 
879     if (isPredicated)
880       Predicated.insert(&MI);
881     if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero))
882       FalseLanesZero.insert(&MI);
883     else if (MI.getNumDefs() == 0)
884       continue;
885     else if (!isPredicated && retainsOrReduces)
886       return false;
887     else if (!isPredicated)
888       FalseLanesUnknown.insert(&MI);
889   }
890 
891   auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO,
892                               SmallPtrSetImpl<MachineInstr *> &Predicated) {
893     SmallPtrSet<MachineInstr *, 2> Uses;
894     RDA.getGlobalUses(MI, MO.getReg(), Uses);
895     for (auto *Use : Uses) {
896       if (Use != MI && !Predicated.count(Use))
897         return false;
898     }
899     return true;
900   };
901 
902   // Visit the unknowns in reverse so that we can start at the values being
903   // stored and then we can work towards the leaves, hopefully adding more
904   // instructions to Predicated. Successfully terminating the loop means that
905   // all the unknown values have to found to be masked by predicated user(s).
906   // For any unpredicated values, we store them in NonPredicated so that we
907   // can later check whether these form a reduction.
908   SmallPtrSet<MachineInstr*, 2> NonPredicated;
909   for (auto *MI : reverse(FalseLanesUnknown)) {
910     for (auto &MO : MI->operands()) {
911       if (!isRegInClass(MO, QPRs) || !MO.isDef())
912         continue;
913       if (!HasPredicatedUsers(MI, MO, Predicated)) {
914         LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : "
915                           << TRI.getRegAsmName(MO.getReg()) << " at " << *MI);
916         NonPredicated.insert(MI);
917         break;
918       }
919     }
920     // Any unknown false lanes have been masked away by the user(s).
921     if (!NonPredicated.contains(MI))
922       Predicated.insert(MI);
923   }
924 
925   SmallPtrSet<MachineInstr *, 2> LiveOutMIs;
926   SmallVector<MachineBasicBlock *, 2> ExitBlocks;
927   ML.getExitBlocks(ExitBlocks);
928   assert(ML.getNumBlocks() == 1 && "Expected single block loop!");
929   assert(ExitBlocks.size() == 1 && "Expected a single exit block");
930   MachineBasicBlock *ExitBB = ExitBlocks.front();
931   for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) {
932     // TODO: Instead of blocking predication, we could move the vctp to the exit
933     // block and calculate it's operand there in or the preheader.
934     if (RegMask.PhysReg == ARM::VPR)
935       return false;
936     // Check Q-regs that are live in the exit blocks. We don't collect scalars
937     // because they won't be affected by lane predication.
938     if (QPRs->contains(RegMask.PhysReg))
939       if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg))
940         LiveOutMIs.insert(MI);
941   }
942 
943   // We've already validated that any VPT predication within the loop will be
944   // equivalent when we perform the predication transformation; so we know that
945   // any VPT predicated instruction is predicated upon VCTP. Any live-out
946   // instruction needs to be predicated, so check this here. The instructions
947   // in NonPredicated have been found to be a reduction that we can ensure its
948   // legality.
949   for (auto *MI : LiveOutMIs) {
950     if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) {
951       LLVM_DEBUG(dbgs() << "ARM Loops: Unable to handle live out: " << *MI);
952       return false;
953     }
954   }
955 
956   return true;
957 }
958 
959 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) {
960   if (Revert)
961     return;
962 
963   // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP]
964   // can only jump back.
965   auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End,
966                            ARMBasicBlockUtils *BBUtils, MachineLoop &ML) {
967     if (!End->getOperand(1).isMBB())
968       report_fatal_error("Expected LoopEnd to target basic block");
969 
970     // TODO Maybe there's cases where the target doesn't have to be the header,
971     // but for now be safe and revert.
972     if (End->getOperand(1).getMBB() != ML.getHeader()) {
973       LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n");
974       return false;
975     }
976 
977     // The WLS and LE instructions have 12-bits for the label offset. WLS
978     // requires a positive offset, while LE uses negative.
979     if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) ||
980         !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) {
981       LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
982       return false;
983     }
984 
985     if (Start->getOpcode() == ARM::t2WhileLoopStart &&
986         (BBUtils->getOffsetOf(Start) >
987          BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) ||
988          !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) {
989       LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
990       return false;
991     }
992     return true;
993   };
994 
995   // Find a suitable position to insert the loop start instruction. It needs to
996   // be able to safely define LR.
997   auto FindStartInsertionPoint = [](MachineInstr *Start,
998                                     MachineInstr *Dec,
999                                     MachineBasicBlock::iterator &InsertPt,
1000                                     MachineBasicBlock *&InsertBB,
1001                                     ReachingDefAnalysis &RDA,
1002                                     InstSet &ToRemove) {
1003     // We can define LR because LR already contains the same value.
1004     if (Start->getOperand(0).getReg() == ARM::LR) {
1005       InsertPt = MachineBasicBlock::iterator(Start);
1006       InsertBB = Start->getParent();
1007       return true;
1008     }
1009 
1010     unsigned CountReg = Start->getOperand(0).getReg();
1011     auto IsMoveLR = [&CountReg](MachineInstr *MI) {
1012       return MI->getOpcode() == ARM::tMOVr &&
1013              MI->getOperand(0).getReg() == ARM::LR &&
1014              MI->getOperand(1).getReg() == CountReg &&
1015              MI->getOperand(2).getImm() == ARMCC::AL;
1016     };
1017 
1018     // Find an insertion point:
1019     // - Is there a (mov lr, Count) before Start? If so, and nothing else
1020     //   writes to Count before Start, we can insert at start.
1021     if (auto *LRDef = RDA.getUniqueReachingMIDef(Start, ARM::LR)) {
1022       if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) {
1023         SmallPtrSet<MachineInstr *, 2> Ignore = { Dec };
1024         if (!TryRemove(LRDef, RDA, ToRemove, Ignore))
1025           return false;
1026         InsertPt = MachineBasicBlock::iterator(Start);
1027         InsertBB = Start->getParent();
1028         return true;
1029       }
1030     }
1031 
1032     // - Is there a (mov lr, Count) after Start? If so, and nothing else writes
1033     //   to Count after Start, we can insert at that mov (which will now be
1034     //   dead).
1035     MachineBasicBlock *MBB = Start->getParent();
1036     if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR)) {
1037       if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) {
1038         SmallPtrSet<MachineInstr *, 2> Ignore = { Start, Dec };
1039         if (!TryRemove(LRDef, RDA, ToRemove, Ignore))
1040           return false;
1041         InsertPt = MachineBasicBlock::iterator(LRDef);
1042         InsertBB = LRDef->getParent();
1043         return true;
1044       }
1045     }
1046 
1047     // We've found no suitable LR def and Start doesn't use LR directly. Can we
1048     // just define LR anyway?
1049     if (!RDA.isSafeToDefRegAt(Start, ARM::LR))
1050       return false;
1051 
1052     InsertPt = MachineBasicBlock::iterator(Start);
1053     InsertBB = Start->getParent();
1054     return true;
1055   };
1056 
1057   // We know that we can define safely LR at InsertPt, but maybe we could
1058   // push the insertion point to later on in the basic block.
1059   auto TryAdjustInsertionPoint = [](MachineBasicBlock::iterator &InsertPt,
1060                                     MachineInstr *Start,
1061                                     ReachingDefAnalysis &RDA) {
1062 
1063     MachineBasicBlock *MBB = InsertPt->getParent();
1064     MachineBasicBlock::iterator FirstNonTerminator =
1065       MBB->getFirstTerminator();
1066     unsigned CountReg = Start->getOperand(0).getReg();
1067 
1068     // Get the latest possible insertion point and check whether the semantics
1069     // will be maintained if Start was inserted there.
1070     if (FirstNonTerminator == MBB->end()) {
1071       if (RDA.isReachingDefLiveOut(Start, CountReg) &&
1072           RDA.isReachingDefLiveOut(Start, ARM::LR))
1073         InsertPt = FirstNonTerminator;
1074     } else if (RDA.hasSameReachingDef(Start, &*FirstNonTerminator, CountReg) &&
1075                RDA.hasSameReachingDef(Start, &*FirstNonTerminator, ARM::LR))
1076       InsertPt = FirstNonTerminator;
1077   };
1078 
1079   if (!FindStartInsertionPoint(Start, Dec, StartInsertPt, StartInsertBB, RDA,
1080                                ToRemove)) {
1081     LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n");
1082     Revert = true;
1083     return;
1084   }
1085 
1086   TryAdjustInsertionPoint(StartInsertPt, Start, RDA);
1087   Revert = !ValidateRanges(Start, End, BBUtils, ML);
1088   CannotTailPredicate = !ValidateTailPredicate();
1089 }
1090 
1091 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) {
1092   LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI);
1093   if (VCTPs.empty()) {
1094     VCTPs.push_back(MI);
1095     return true;
1096   }
1097 
1098   // If we find another VCTP, check whether it uses the same value as the main VCTP.
1099   // If it does, store it in the VCTPs set, else refuse it.
1100   MachineInstr *Prev = VCTPs.back();
1101   if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) ||
1102       !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg())) {
1103     LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching "
1104                          "definition from the main VCTP");
1105     return false;
1106   }
1107   VCTPs.push_back(MI);
1108   return true;
1109 }
1110 
1111 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) {
1112   if (CannotTailPredicate)
1113     return false;
1114 
1115   if (!shouldInspect(*MI))
1116     return true;
1117 
1118   if (MI->getOpcode() == ARM::MVE_VPSEL ||
1119       MI->getOpcode() == ARM::MVE_VPNOT) {
1120     // TODO: Allow VPSEL and VPNOT, we currently cannot because:
1121     // 1) It will use the VPR as a predicate operand, but doesn't have to be
1122     //    instead a VPT block, which means we can assert while building up
1123     //    the VPT block because we don't find another VPT or VPST to being a new
1124     //    one.
1125     // 2) VPSEL still requires a VPR operand even after tail predicating,
1126     //    which means we can't remove it unless there is another
1127     //    instruction, such as vcmp, that can provide the VPR def.
1128     return false;
1129   }
1130 
1131   // Record all VCTPs and check that they're equivalent to one another.
1132   if (isVCTP(MI) && !AddVCTP(MI))
1133     return false;
1134 
1135   // Inspect uses first so that any instructions that alter the VPR don't
1136   // alter the predicate upon themselves.
1137   const MCInstrDesc &MCID = MI->getDesc();
1138   bool IsUse = false;
1139   unsigned LastOpIdx = MI->getNumOperands() - 1;
1140   for (auto &Op : enumerate(reverse(MCID.operands()))) {
1141     const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index());
1142     if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR)
1143       continue;
1144 
1145     if (ARM::isVpred(Op.value().OperandType)) {
1146       VPTState::addInst(MI);
1147       IsUse = true;
1148     } else if (MI->getOpcode() != ARM::MVE_VPST) {
1149       LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI);
1150       return false;
1151     }
1152   }
1153 
1154   // If we find an instruction that has been marked as not valid for tail
1155   // predication, only allow the instruction if it's contained within a valid
1156   // VPT block.
1157   bool RequiresExplicitPredication =
1158     (MCID.TSFlags & ARMII::ValidForTailPredication) == 0;
1159   if (isDomainMVE(MI) && RequiresExplicitPredication) {
1160     LLVM_DEBUG(if (!IsUse)
1161                dbgs() << "ARM Loops: Can't tail predicate: " << *MI);
1162     return IsUse;
1163   }
1164 
1165   // If the instruction is already explicitly predicated, then the conversion
1166   // will be fine, but ensure that all store operations are predicated.
1167   if (MI->mayStore())
1168     return IsUse;
1169 
1170   // If this instruction defines the VPR, update the predicate for the
1171   // proceeding instructions.
1172   if (isVectorPredicate(MI)) {
1173     // Clear the existing predicate when we're not in VPT Active state,
1174     // otherwise we add to it.
1175     if (!isVectorPredicated(MI))
1176       VPTState::resetPredicate(MI);
1177     else
1178       VPTState::addPredicate(MI);
1179   }
1180 
1181   // Finally once the predicate has been modified, we can start a new VPT
1182   // block if necessary.
1183   if (isVPTOpcode(MI->getOpcode()))
1184     VPTState::CreateVPTBlock(MI);
1185 
1186   return true;
1187 }
1188 
1189 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) {
1190   const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget());
1191   if (!ST.hasLOB())
1192     return false;
1193 
1194   MF = &mf;
1195   LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n");
1196 
1197   MLI = &getAnalysis<MachineLoopInfo>();
1198   RDA = &getAnalysis<ReachingDefAnalysis>();
1199   MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
1200   MRI = &MF->getRegInfo();
1201   TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo());
1202   TRI = ST.getRegisterInfo();
1203   BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF));
1204   BBUtils->computeAllBlockSizes();
1205   BBUtils->adjustBBOffsetsAfter(&MF->front());
1206 
1207   bool Changed = false;
1208   for (auto ML : *MLI) {
1209     if (ML->isOutermost())
1210       Changed |= ProcessLoop(ML);
1211   }
1212   Changed |= RevertNonLoops();
1213   return Changed;
1214 }
1215 
1216 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) {
1217 
1218   bool Changed = false;
1219 
1220   // Process inner loops first.
1221   for (auto I = ML->begin(), E = ML->end(); I != E; ++I)
1222     Changed |= ProcessLoop(*I);
1223 
1224   LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n";
1225              if (auto *Preheader = ML->getLoopPreheader())
1226                dbgs() << " - " << Preheader->getName() << "\n";
1227              else if (auto *Preheader = MLI->findLoopPreheader(ML))
1228                dbgs() << " - " << Preheader->getName() << "\n";
1229              else if (auto *Preheader = MLI->findLoopPreheader(ML, true))
1230                dbgs() << " - " << Preheader->getName() << "\n";
1231              for (auto *MBB : ML->getBlocks())
1232                dbgs() << " - " << MBB->getName() << "\n";
1233             );
1234 
1235   // Search the given block for a loop start instruction. If one isn't found,
1236   // and there's only one predecessor block, search that one too.
1237   std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart =
1238     [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* {
1239     for (auto &MI : *MBB) {
1240       if (isLoopStart(MI))
1241         return &MI;
1242     }
1243     if (MBB->pred_size() == 1)
1244       return SearchForStart(*MBB->pred_begin());
1245     return nullptr;
1246   };
1247 
1248   LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII);
1249   // Search the preheader for the start intrinsic.
1250   // FIXME: I don't see why we shouldn't be supporting multiple predecessors
1251   // with potentially multiple set.loop.iterations, so we need to enable this.
1252   if (LoLoop.Preheader)
1253     LoLoop.Start = SearchForStart(LoLoop.Preheader);
1254   else
1255     return false;
1256 
1257   // Find the low-overhead loop components and decide whether or not to fall
1258   // back to a normal loop. Also look for a vctp instructions and decide
1259   // whether we can convert that predicate using tail predication.
1260   for (auto *MBB : reverse(ML->getBlocks())) {
1261     for (auto &MI : *MBB) {
1262       if (MI.isDebugValue())
1263         continue;
1264       else if (MI.getOpcode() == ARM::t2LoopDec)
1265         LoLoop.Dec = &MI;
1266       else if (MI.getOpcode() == ARM::t2LoopEnd)
1267         LoLoop.End = &MI;
1268       else if (isLoopStart(MI))
1269         LoLoop.Start = &MI;
1270       else if (MI.getDesc().isCall()) {
1271         // TODO: Though the call will require LE to execute again, does this
1272         // mean we should revert? Always executing LE hopefully should be
1273         // faster than performing a sub,cmp,br or even subs,br.
1274         LoLoop.Revert = true;
1275         LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
1276       } else {
1277         // Record VPR defs and build up their corresponding vpt blocks.
1278         // Check we know how to tail predicate any mve instructions.
1279         LoLoop.AnalyseMVEInst(&MI);
1280       }
1281     }
1282   }
1283 
1284   LLVM_DEBUG(LoLoop.dump());
1285   if (!LoLoop.FoundAllComponents()) {
1286     LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
1287     return false;
1288   }
1289 
1290   // Check that the only instruction using LoopDec is LoopEnd.
1291   // TODO: Check for copy chains that really have no effect.
1292   SmallPtrSet<MachineInstr*, 2> Uses;
1293   RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses);
1294   if (Uses.size() > 1 || !Uses.count(LoLoop.End)) {
1295     LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n");
1296     LoLoop.Revert = true;
1297   }
1298   LoLoop.Validate(BBUtils.get());
1299   Expand(LoLoop);
1300   return true;
1301 }
1302 
1303 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
1304 // beq that branches to the exit branch.
1305 // TODO: We could also try to generate a cbz if the value in LR is also in
1306 // another low register.
1307 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const {
1308   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI);
1309   MachineBasicBlock *MBB = MI->getParent();
1310   MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
1311                                     TII->get(ARM::t2CMPri));
1312   MIB.add(MI->getOperand(0));
1313   MIB.addImm(0);
1314   MIB.addImm(ARMCC::AL);
1315   MIB.addReg(ARM::NoRegister);
1316 
1317   MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1318   unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1319     ARM::tBcc : ARM::t2Bcc;
1320 
1321   MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
1322   MIB.add(MI->getOperand(1));   // branch target
1323   MIB.addImm(ARMCC::EQ);        // condition code
1324   MIB.addReg(ARM::CPSR);
1325   MI->eraseFromParent();
1326 }
1327 
1328 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const {
1329   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI);
1330   MachineBasicBlock *MBB = MI->getParent();
1331   SmallPtrSet<MachineInstr*, 1> Ignore;
1332   for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) {
1333     if (I->getOpcode() == ARM::t2LoopEnd) {
1334       Ignore.insert(&*I);
1335       break;
1336     }
1337   }
1338 
1339   // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
1340   bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore);
1341 
1342   MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
1343                                     TII->get(ARM::t2SUBri));
1344   MIB.addDef(ARM::LR);
1345   MIB.add(MI->getOperand(1));
1346   MIB.add(MI->getOperand(2));
1347   MIB.addImm(ARMCC::AL);
1348   MIB.addReg(0);
1349 
1350   if (SetFlags) {
1351     MIB.addReg(ARM::CPSR);
1352     MIB->getOperand(5).setIsDef(true);
1353   } else
1354     MIB.addReg(0);
1355 
1356   MI->eraseFromParent();
1357   return SetFlags;
1358 }
1359 
1360 // Generate a subs, or sub and cmp, and a branch instead of an LE.
1361 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const {
1362   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI);
1363 
1364   MachineBasicBlock *MBB = MI->getParent();
1365   // Create cmp
1366   if (!SkipCmp) {
1367     MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
1368                                       TII->get(ARM::t2CMPri));
1369     MIB.addReg(ARM::LR);
1370     MIB.addImm(0);
1371     MIB.addImm(ARMCC::AL);
1372     MIB.addReg(ARM::NoRegister);
1373   }
1374 
1375   MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1376   unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1377     ARM::tBcc : ARM::t2Bcc;
1378 
1379   // Create bne
1380   MachineInstrBuilder MIB =
1381     BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
1382   MIB.add(MI->getOperand(1));   // branch target
1383   MIB.addImm(ARMCC::NE);        // condition code
1384   MIB.addReg(ARM::CPSR);
1385   MI->eraseFromParent();
1386 }
1387 
1388 // Perform dead code elimation on the loop iteration count setup expression.
1389 // If we are tail-predicating, the number of elements to be processed is the
1390 // operand of the VCTP instruction in the vector body, see getCount(), which is
1391 // register $r3 in this example:
1392 //
1393 //   $lr = big-itercount-expression
1394 //   ..
1395 //   t2DoLoopStart renamable $lr
1396 //   vector.body:
1397 //     ..
1398 //     $vpr = MVE_VCTP32 renamable $r3
1399 //     renamable $lr = t2LoopDec killed renamable $lr, 1
1400 //     t2LoopEnd renamable $lr, %vector.body
1401 //     tB %end
1402 //
1403 // What we would like achieve here is to replace the do-loop start pseudo
1404 // instruction t2DoLoopStart with:
1405 //
1406 //    $lr = MVE_DLSTP_32 killed renamable $r3
1407 //
1408 // Thus, $r3 which defines the number of elements, is written to $lr,
1409 // and then we want to delete the whole chain that used to define $lr,
1410 // see the comment below how this chain could look like.
1411 //
1412 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) {
1413   if (!LoLoop.IsTailPredicationLegal())
1414     return;
1415 
1416   LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n");
1417 
1418   MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0);
1419   if (!Def) {
1420     LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n");
1421     return;
1422   }
1423 
1424   // Collect and remove the users of iteration count.
1425   SmallPtrSet<MachineInstr*, 4> Killed  = { LoLoop.Start, LoLoop.Dec,
1426                                             LoLoop.End };
1427   if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed))
1428     LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n");
1429 }
1430 
1431 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) {
1432   LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n");
1433   // When using tail-predication, try to delete the dead code that was used to
1434   // calculate the number of loop iterations.
1435   IterationCountDCE(LoLoop);
1436 
1437   MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt;
1438   MachineInstr *Start = LoLoop.Start;
1439   MachineBasicBlock *MBB = LoLoop.StartInsertBB;
1440   bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
1441   unsigned Opc = LoLoop.getStartOpcode();
1442   MachineOperand &Count = LoLoop.getLoopStartOperand();
1443 
1444   MachineInstrBuilder MIB =
1445     BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc));
1446 
1447   MIB.addDef(ARM::LR);
1448   MIB.add(Count);
1449   if (!IsDo)
1450     MIB.add(Start->getOperand(1));
1451 
1452   LoLoop.ToRemove.insert(Start);
1453   LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB);
1454   return &*MIB;
1455 }
1456 
1457 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) {
1458   auto RemovePredicate = [](MachineInstr *MI) {
1459     LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI);
1460     if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) {
1461       assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then &&
1462              "Expected Then predicate!");
1463       MI->getOperand(PIdx).setImm(ARMVCC::None);
1464       MI->getOperand(PIdx+1).setReg(0);
1465     } else
1466       llvm_unreachable("trying to unpredicate a non-predicated instruction");
1467   };
1468 
1469   for (auto &Block : LoLoop.getVPTBlocks()) {
1470     SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
1471 
1472     if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/true)) {
1473       if (VPTState::hasUniformPredicate(Block)) {
1474         // A vpt block starting with VPST, is only predicated upon vctp and has no
1475         // internal vpr defs:
1476         // - Remove vpst.
1477         // - Unpredicate the remaining instructions.
1478         LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front());
1479         LoLoop.ToRemove.insert(Insts.front());
1480         for (unsigned i = 1; i < Insts.size(); ++i)
1481           RemovePredicate(Insts[i]);
1482       } else {
1483         // The VPT block has a non-uniform predicate but it uses a vpst and its
1484         // entry is guarded only by a vctp, which means we:
1485         // - Need to remove the original vpst.
1486         // - Then need to unpredicate any following instructions, until
1487         //   we come across the divergent vpr def.
1488         // - Insert a new vpst to predicate the instruction(s) that following
1489         //   the divergent vpr def.
1490         // TODO: We could be producing more VPT blocks than necessary and could
1491         // fold the newly created one into a proceeding one.
1492         MachineInstr *Divergent = VPTState::getDivergent(Block);
1493         for (auto I = ++MachineBasicBlock::iterator(Insts.front()),
1494              E = ++MachineBasicBlock::iterator(Divergent); I != E; ++I)
1495           RemovePredicate(&*I);
1496 
1497         // Check if the instruction defining vpr is a vcmp so it can be combined
1498         // with the VPST This should be the divergent instruction
1499         MachineInstr *VCMP = VCMPOpcodeToVPT(Divergent->getOpcode()) != 0
1500           ? Divergent
1501           : nullptr;
1502 
1503         MachineInstrBuilder MIB;
1504         if (VCMP) {
1505           // Combine the VPST and VCMP into a VPT
1506           MIB = BuildMI(*Divergent->getParent(), Divergent,
1507                         Divergent->getDebugLoc(),
1508                         TII->get(VCMPOpcodeToVPT(VCMP->getOpcode())));
1509           MIB.addImm(ARMVCC::Then);
1510           // Register one
1511           MIB.add(VCMP->getOperand(1));
1512           // Register two
1513           MIB.add(VCMP->getOperand(2));
1514           // The comparison code, e.g. ge, eq, lt
1515           MIB.add(VCMP->getOperand(3));
1516           LLVM_DEBUG(dbgs()
1517                      << "ARM Loops: Combining with VCMP to VPT: " << *MIB);
1518           LoLoop.ToRemove.insert(VCMP);
1519         } else {
1520           // Create a VPST (with a null mask for now, we'll recompute it later)
1521           // or a VPT in case there was a VCMP right before it
1522           MIB = BuildMI(*Divergent->getParent(), Divergent,
1523                         Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST));
1524           MIB.addImm(0);
1525           LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB);
1526         }
1527         LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front());
1528         LoLoop.ToRemove.insert(Insts.front());
1529         LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1530       }
1531     } else if (Block.containsVCTP()) {
1532       // The vctp will be removed, so the block mask of the vp(s)t will need
1533       // to be recomputed.
1534       LoLoop.BlockMasksToRecompute.insert(Insts.front());
1535     }
1536   }
1537 
1538   LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end());
1539 }
1540 
1541 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) {
1542 
1543   // Combine the LoopDec and LoopEnd instructions into LE(TP).
1544   auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) {
1545     MachineInstr *End = LoLoop.End;
1546     MachineBasicBlock *MBB = End->getParent();
1547     unsigned Opc = LoLoop.IsTailPredicationLegal() ?
1548       ARM::MVE_LETP : ARM::t2LEUpdate;
1549     MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(),
1550                                       TII->get(Opc));
1551     MIB.addDef(ARM::LR);
1552     MIB.add(End->getOperand(0));
1553     MIB.add(End->getOperand(1));
1554     LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB);
1555     LoLoop.ToRemove.insert(LoLoop.Dec);
1556     LoLoop.ToRemove.insert(End);
1557     return &*MIB;
1558   };
1559 
1560   // TODO: We should be able to automatically remove these branches before we
1561   // get here - probably by teaching analyzeBranch about the pseudo
1562   // instructions.
1563   // If there is an unconditional branch, after I, that just branches to the
1564   // next block, remove it.
1565   auto RemoveDeadBranch = [](MachineInstr *I) {
1566     MachineBasicBlock *BB = I->getParent();
1567     MachineInstr *Terminator = &BB->instr_back();
1568     if (Terminator->isUnconditionalBranch() && I != Terminator) {
1569       MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB();
1570       if (BB->isLayoutSuccessor(Succ)) {
1571         LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator);
1572         Terminator->eraseFromParent();
1573       }
1574     }
1575   };
1576 
1577   if (LoLoop.Revert) {
1578     if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart)
1579       RevertWhile(LoLoop.Start);
1580     else
1581       LoLoop.Start->eraseFromParent();
1582     bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec);
1583     RevertLoopEnd(LoLoop.End, FlagsAlreadySet);
1584   } else {
1585     LoLoop.Start = ExpandLoopStart(LoLoop);
1586     RemoveDeadBranch(LoLoop.Start);
1587     LoLoop.End = ExpandLoopEnd(LoLoop);
1588     RemoveDeadBranch(LoLoop.End);
1589     if (LoLoop.IsTailPredicationLegal())
1590       ConvertVPTBlocks(LoLoop);
1591     for (auto *I : LoLoop.ToRemove) {
1592       LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I);
1593       I->eraseFromParent();
1594     }
1595     for (auto *I : LoLoop.BlockMasksToRecompute) {
1596       LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I);
1597       recomputeVPTBlockMask(*I);
1598       LLVM_DEBUG(dbgs() << "           ... done: " << *I);
1599     }
1600   }
1601 
1602   PostOrderLoopTraversal DFS(LoLoop.ML, *MLI);
1603   DFS.ProcessLoop();
1604   const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder();
1605   for (auto *MBB : PostOrder) {
1606     recomputeLiveIns(*MBB);
1607     // FIXME: For some reason, the live-in print order is non-deterministic for
1608     // our tests and I can't out why... So just sort them.
1609     MBB->sortUniqueLiveIns();
1610   }
1611 
1612   for (auto *MBB : reverse(PostOrder))
1613     recomputeLivenessFlags(*MBB);
1614 
1615   // We've moved, removed and inserted new instructions, so update RDA.
1616   RDA->reset();
1617 }
1618 
1619 bool ARMLowOverheadLoops::RevertNonLoops() {
1620   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
1621   bool Changed = false;
1622 
1623   for (auto &MBB : *MF) {
1624     SmallVector<MachineInstr*, 4> Starts;
1625     SmallVector<MachineInstr*, 4> Decs;
1626     SmallVector<MachineInstr*, 4> Ends;
1627 
1628     for (auto &I : MBB) {
1629       if (isLoopStart(I))
1630         Starts.push_back(&I);
1631       else if (I.getOpcode() == ARM::t2LoopDec)
1632         Decs.push_back(&I);
1633       else if (I.getOpcode() == ARM::t2LoopEnd)
1634         Ends.push_back(&I);
1635     }
1636 
1637     if (Starts.empty() && Decs.empty() && Ends.empty())
1638       continue;
1639 
1640     Changed = true;
1641 
1642     for (auto *Start : Starts) {
1643       if (Start->getOpcode() == ARM::t2WhileLoopStart)
1644         RevertWhile(Start);
1645       else
1646         Start->eraseFromParent();
1647     }
1648     for (auto *Dec : Decs)
1649       RevertLoopDec(Dec);
1650 
1651     for (auto *End : Ends)
1652       RevertLoopEnd(End);
1653   }
1654   return Changed;
1655 }
1656 
1657 FunctionPass *llvm::createARMLowOverheadLoopsPass() {
1658   return new ARMLowOverheadLoops();
1659 }
1660