1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 /// A note on VPR.P0 (the lane mask): 39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a 40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks). 41 /// They will simply "and" the result of their calculation with the current 42 /// value of VPR.P0. You can think of it like this: 43 /// \verbatim 44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs 45 /// VPR.P0 &= Value 46 /// else 47 /// VPR.P0 = Value 48 /// \endverbatim 49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always 50 /// fall in the "VPT active" case, so we can consider that all VPR writes by 51 /// one of those instruction is actually a "and". 52 //===----------------------------------------------------------------------===// 53 54 #include "ARM.h" 55 #include "ARMBaseInstrInfo.h" 56 #include "ARMBaseRegisterInfo.h" 57 #include "ARMBasicBlockInfo.h" 58 #include "ARMSubtarget.h" 59 #include "Thumb2InstrInfo.h" 60 #include "llvm/ADT/SetOperations.h" 61 #include "llvm/ADT/SmallSet.h" 62 #include "llvm/CodeGen/LivePhysRegs.h" 63 #include "llvm/CodeGen/MachineFunctionPass.h" 64 #include "llvm/CodeGen/MachineLoopInfo.h" 65 #include "llvm/CodeGen/MachineLoopUtils.h" 66 #include "llvm/CodeGen/MachineRegisterInfo.h" 67 #include "llvm/CodeGen/Passes.h" 68 #include "llvm/CodeGen/ReachingDefAnalysis.h" 69 #include "llvm/MC/MCInstrDesc.h" 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "arm-low-overhead-loops" 74 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 75 76 static cl::opt<bool> 77 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden, 78 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"), 79 cl::init(false)); 80 81 static bool isVectorPredicated(MachineInstr *MI) { 82 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 83 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 84 } 85 86 static bool isVectorPredicate(MachineInstr *MI) { 87 return MI->findRegisterDefOperandIdx(ARM::VPR) != -1; 88 } 89 90 static bool hasVPRUse(MachineInstr *MI) { 91 return MI->findRegisterUseOperandIdx(ARM::VPR) != -1; 92 } 93 94 static bool isDomainMVE(MachineInstr *MI) { 95 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask; 96 return Domain == ARMII::DomainMVE; 97 } 98 99 static bool shouldInspect(MachineInstr &MI) { 100 return isDomainMVE(&MI) || isVectorPredicate(&MI) || 101 hasVPRUse(&MI); 102 } 103 104 namespace { 105 106 using InstSet = SmallPtrSetImpl<MachineInstr *>; 107 108 class PostOrderLoopTraversal { 109 MachineLoop &ML; 110 MachineLoopInfo &MLI; 111 SmallPtrSet<MachineBasicBlock*, 4> Visited; 112 SmallVector<MachineBasicBlock*, 4> Order; 113 114 public: 115 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 116 : ML(ML), MLI(MLI) { } 117 118 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 119 return Order; 120 } 121 122 // Visit all the blocks within the loop, as well as exit blocks and any 123 // blocks properly dominating the header. 124 void ProcessLoop() { 125 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 126 (MachineBasicBlock *MBB) -> void { 127 if (Visited.count(MBB)) 128 return; 129 130 Visited.insert(MBB); 131 for (auto *Succ : MBB->successors()) { 132 if (!ML.contains(Succ)) 133 continue; 134 Search(Succ); 135 } 136 Order.push_back(MBB); 137 }; 138 139 // Insert exit blocks. 140 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 141 ML.getExitBlocks(ExitBlocks); 142 for (auto *MBB : ExitBlocks) 143 Order.push_back(MBB); 144 145 // Then add the loop body. 146 Search(ML.getHeader()); 147 148 // Then try the preheader and its predecessors. 149 std::function<void(MachineBasicBlock*)> GetPredecessor = 150 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 151 Order.push_back(MBB); 152 if (MBB->pred_size() == 1) 153 GetPredecessor(*MBB->pred_begin()); 154 }; 155 156 if (auto *Preheader = ML.getLoopPreheader()) 157 GetPredecessor(Preheader); 158 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true)) 159 GetPredecessor(Preheader); 160 } 161 }; 162 163 struct PredicatedMI { 164 MachineInstr *MI = nullptr; 165 SetVector<MachineInstr*> Predicates; 166 167 public: 168 PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) { 169 assert(I && "Instruction must not be null!"); 170 Predicates.insert(Preds.begin(), Preds.end()); 171 } 172 }; 173 174 // Represent the current state of the VPR and hold all instances which 175 // represent a VPT block, which is a list of instructions that begins with a 176 // VPT/VPST and has a maximum of four proceeding instructions. All 177 // instructions within the block are predicated upon the vpr and we allow 178 // instructions to define the vpr within in the block too. 179 class VPTState { 180 friend struct LowOverheadLoop; 181 182 SmallVector<MachineInstr *, 4> Insts; 183 184 static SmallVector<VPTState, 4> Blocks; 185 static SetVector<MachineInstr *> CurrentPredicates; 186 static std::map<MachineInstr *, 187 std::unique_ptr<PredicatedMI>> PredicatedInsts; 188 189 static void CreateVPTBlock(MachineInstr *MI) { 190 assert(CurrentPredicates.size() && "Can't begin VPT without predicate"); 191 Blocks.emplace_back(MI); 192 // The execution of MI is predicated upon the current set of instructions 193 // that are AND'ed together to form the VPR predicate value. In the case 194 // that MI is a VPT, CurrentPredicates will also just be MI. 195 PredicatedInsts.emplace( 196 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 197 } 198 199 static void reset() { 200 Blocks.clear(); 201 PredicatedInsts.clear(); 202 CurrentPredicates.clear(); 203 } 204 205 static void addInst(MachineInstr *MI) { 206 Blocks.back().insert(MI); 207 PredicatedInsts.emplace( 208 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 209 } 210 211 static void addPredicate(MachineInstr *MI) { 212 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI); 213 CurrentPredicates.insert(MI); 214 } 215 216 static void resetPredicate(MachineInstr *MI) { 217 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI); 218 CurrentPredicates.clear(); 219 CurrentPredicates.insert(MI); 220 } 221 222 public: 223 // Have we found an instruction within the block which defines the vpr? If 224 // so, not all the instructions in the block will have the same predicate. 225 static bool hasUniformPredicate(VPTState &Block) { 226 return getDivergent(Block) == nullptr; 227 } 228 229 // If it exists, return the first internal instruction which modifies the 230 // VPR. 231 static MachineInstr *getDivergent(VPTState &Block) { 232 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 233 for (unsigned i = 1; i < Insts.size(); ++i) { 234 MachineInstr *Next = Insts[i]; 235 if (isVectorPredicate(Next)) 236 return Next; // Found an instruction altering the vpr. 237 } 238 return nullptr; 239 } 240 241 // Return whether the given instruction is predicated upon a VCTP. 242 static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) { 243 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates; 244 if (Exclusive && Predicates.size() != 1) 245 return false; 246 for (auto *PredMI : Predicates) 247 if (isVCTP(PredMI)) 248 return true; 249 return false; 250 } 251 252 // Is the VPST, controlling the block entry, predicated upon a VCTP. 253 static bool isEntryPredicatedOnVCTP(VPTState &Block, 254 bool Exclusive = false) { 255 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 256 return isPredicatedOnVCTP(Insts.front(), Exclusive); 257 } 258 259 static bool isValid() { 260 // All predication within the loop should be based on vctp. If the block 261 // isn't predicated on entry, check whether the vctp is within the block 262 // and that all other instructions are then predicated on it. 263 for (auto &Block : Blocks) { 264 if (isEntryPredicatedOnVCTP(Block)) 265 continue; 266 267 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 268 for (auto *MI : Insts) { 269 // Check that any internal VCTPs are 'Then' predicated. 270 if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then) 271 return false; 272 // Skip other instructions that build up the predicate. 273 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI)) 274 continue; 275 // Check that any other instructions are predicated upon a vctp. 276 // TODO: We could infer when VPTs are implicitly predicated on the 277 // vctp (when the operands are predicated). 278 if (!isPredicatedOnVCTP(MI)) { 279 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI); 280 return false; 281 } 282 } 283 } 284 return true; 285 } 286 287 VPTState(MachineInstr *MI) { Insts.push_back(MI); } 288 289 void insert(MachineInstr *MI) { 290 Insts.push_back(MI); 291 // VPT/VPST + 4 predicated instructions. 292 assert(Insts.size() <= 5 && "Too many instructions in VPT block!"); 293 } 294 295 bool containsVCTP() const { 296 for (auto *MI : Insts) 297 if (isVCTP(MI)) 298 return true; 299 return false; 300 } 301 302 unsigned size() const { return Insts.size(); } 303 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; } 304 }; 305 306 struct LowOverheadLoop { 307 308 MachineLoop &ML; 309 MachineBasicBlock *Preheader = nullptr; 310 MachineLoopInfo &MLI; 311 ReachingDefAnalysis &RDA; 312 const TargetRegisterInfo &TRI; 313 const ARMBaseInstrInfo &TII; 314 MachineFunction *MF = nullptr; 315 MachineInstr *InsertPt = nullptr; 316 MachineInstr *Start = nullptr; 317 MachineInstr *Dec = nullptr; 318 MachineInstr *End = nullptr; 319 MachineOperand TPNumElements; 320 SmallVector<MachineInstr*, 4> VCTPs; 321 SmallPtrSet<MachineInstr*, 4> ToRemove; 322 SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute; 323 bool Revert = false; 324 bool CannotTailPredicate = false; 325 326 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 327 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI, 328 const ARMBaseInstrInfo &TII) 329 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII), 330 TPNumElements(MachineOperand::CreateImm(0)) { 331 MF = ML.getHeader()->getParent(); 332 if (auto *MBB = ML.getLoopPreheader()) 333 Preheader = MBB; 334 else if (auto *MBB = MLI.findLoopPreheader(&ML, true)) 335 Preheader = MBB; 336 VPTState::reset(); 337 } 338 339 // If this is an MVE instruction, check that we know how to use tail 340 // predication with it. Record VPT blocks and return whether the 341 // instruction is valid for tail predication. 342 bool ValidateMVEInst(MachineInstr *MI); 343 344 void AnalyseMVEInst(MachineInstr *MI) { 345 CannotTailPredicate = !ValidateMVEInst(MI); 346 } 347 348 bool IsTailPredicationLegal() const { 349 // For now, let's keep things really simple and only support a single 350 // block for tail predication. 351 return !Revert && FoundAllComponents() && !VCTPs.empty() && 352 !CannotTailPredicate && ML.getNumBlocks() == 1; 353 } 354 355 // Given that MI is a VCTP, check that is equivalent to any other VCTPs 356 // found. 357 bool AddVCTP(MachineInstr *MI); 358 359 // Check that the predication in the loop will be equivalent once we 360 // perform the conversion. Also ensure that we can provide the number 361 // of elements to the loop start instruction. 362 bool ValidateTailPredicate(MachineInstr *StartInsertPt); 363 364 // Check that any values available outside of the loop will be the same 365 // after tail predication conversion. 366 bool ValidateLiveOuts(); 367 368 // Is it safe to define LR with DLS/WLS? 369 // LR can be defined if it is the operand to start, because it's the same 370 // value, or if it's going to be equivalent to the operand to Start. 371 MachineInstr *isSafeToDefineLR(); 372 373 // Check the branch targets are within range and we satisfy our 374 // restrictions. 375 void CheckLegality(ARMBasicBlockUtils *BBUtils); 376 377 bool FoundAllComponents() const { 378 return Start && Dec && End; 379 } 380 381 SmallVectorImpl<VPTState> &getVPTBlocks() { 382 return VPTState::Blocks; 383 } 384 385 // Return the operand for the loop start instruction. This will be the loop 386 // iteration count, or the number of elements if we're tail predicating. 387 MachineOperand &getLoopStartOperand() { 388 return IsTailPredicationLegal() ? TPNumElements : Start->getOperand(0); 389 } 390 391 unsigned getStartOpcode() const { 392 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 393 if (!IsTailPredicationLegal()) 394 return IsDo ? ARM::t2DLS : ARM::t2WLS; 395 396 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo); 397 } 398 399 void dump() const { 400 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 401 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 402 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 403 if (!VCTPs.empty()) { 404 dbgs() << "ARM Loops: Found VCTP(s):\n"; 405 for (auto *MI : VCTPs) 406 dbgs() << " - " << *MI; 407 } 408 if (!FoundAllComponents()) 409 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 410 else if (!(Start && Dec && End)) 411 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 412 } 413 }; 414 415 class ARMLowOverheadLoops : public MachineFunctionPass { 416 MachineFunction *MF = nullptr; 417 MachineLoopInfo *MLI = nullptr; 418 ReachingDefAnalysis *RDA = nullptr; 419 const ARMBaseInstrInfo *TII = nullptr; 420 MachineRegisterInfo *MRI = nullptr; 421 const TargetRegisterInfo *TRI = nullptr; 422 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 423 424 public: 425 static char ID; 426 427 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 428 429 void getAnalysisUsage(AnalysisUsage &AU) const override { 430 AU.setPreservesCFG(); 431 AU.addRequired<MachineLoopInfo>(); 432 AU.addRequired<ReachingDefAnalysis>(); 433 MachineFunctionPass::getAnalysisUsage(AU); 434 } 435 436 bool runOnMachineFunction(MachineFunction &MF) override; 437 438 MachineFunctionProperties getRequiredProperties() const override { 439 return MachineFunctionProperties().set( 440 MachineFunctionProperties::Property::NoVRegs).set( 441 MachineFunctionProperties::Property::TracksLiveness); 442 } 443 444 StringRef getPassName() const override { 445 return ARM_LOW_OVERHEAD_LOOPS_NAME; 446 } 447 448 private: 449 bool ProcessLoop(MachineLoop *ML); 450 451 bool RevertNonLoops(); 452 453 void RevertWhile(MachineInstr *MI) const; 454 455 bool RevertLoopDec(MachineInstr *MI) const; 456 457 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 458 459 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 460 461 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 462 463 void Expand(LowOverheadLoop &LoLoop); 464 465 void IterationCountDCE(LowOverheadLoop &LoLoop); 466 }; 467 } 468 469 char ARMLowOverheadLoops::ID = 0; 470 471 SmallVector<VPTState, 4> VPTState::Blocks; 472 SetVector<MachineInstr *> VPTState::CurrentPredicates; 473 std::map<MachineInstr *, 474 std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts; 475 476 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 477 false, false) 478 479 MachineInstr *LowOverheadLoop::isSafeToDefineLR() { 480 // We can define LR because LR already contains the same value. 481 if (Start->getOperand(0).getReg() == ARM::LR) 482 return Start; 483 484 unsigned CountReg = Start->getOperand(0).getReg(); 485 auto IsMoveLR = [&CountReg](MachineInstr *MI) { 486 return MI->getOpcode() == ARM::tMOVr && 487 MI->getOperand(0).getReg() == ARM::LR && 488 MI->getOperand(1).getReg() == CountReg && 489 MI->getOperand(2).getImm() == ARMCC::AL; 490 }; 491 492 MachineBasicBlock *MBB = Start->getParent(); 493 494 // Find an insertion point: 495 // - Is there a (mov lr, Count) before Start? If so, and nothing else writes 496 // to Count before Start, we can insert at that mov. 497 if (auto *LRDef = RDA.getUniqueReachingMIDef(Start, ARM::LR)) 498 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 499 return LRDef; 500 501 // - Is there a (mov lr, Count) after Start? If so, and nothing else writes 502 // to Count after Start, we can insert at that mov. 503 if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR)) 504 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 505 return LRDef; 506 507 // We've found no suitable LR def and Start doesn't use LR directly. Can we 508 // just define LR anyway? 509 return RDA.isSafeToDefRegAt(Start, ARM::LR) ? Start : nullptr; 510 } 511 512 bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt) { 513 assert(!VCTPs.empty() && "VCTP instruction expected but is not set"); 514 515 if (DisableTailPredication) { 516 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n"); 517 return false; 518 } 519 520 if (!VPTState::isValid()) 521 return false; 522 523 if (!ValidateLiveOuts()) { 524 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n"); 525 return false; 526 } 527 528 // For tail predication, we need to provide the number of elements, instead 529 // of the iteration count, to the loop start instruction. The number of 530 // elements is provided to the vctp instruction, so we need to check that 531 // we can use this register at InsertPt. 532 MachineInstr *VCTP = VCTPs.back(); 533 TPNumElements = VCTP->getOperand(1); 534 Register NumElements = TPNumElements.getReg(); 535 536 // If the register is defined within loop, then we can't perform TP. 537 // TODO: Check whether this is just a mov of a register that would be 538 // available. 539 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 540 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 541 return false; 542 } 543 544 // The element count register maybe defined after InsertPt, in which case we 545 // need to try to move either InsertPt or the def so that the [w|d]lstp can 546 // use the value. 547 MachineBasicBlock *InsertBB = StartInsertPt->getParent(); 548 549 if (!RDA.isReachingDefLiveOut(StartInsertPt, NumElements)) { 550 if (auto *ElemDef = RDA.getLocalLiveOutMIDef(InsertBB, NumElements)) { 551 if (RDA.isSafeToMoveForwards(ElemDef, StartInsertPt)) { 552 ElemDef->removeFromParent(); 553 InsertBB->insert(MachineBasicBlock::iterator(StartInsertPt), ElemDef); 554 LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: " 555 << *ElemDef); 556 } else if (RDA.isSafeToMoveBackwards(StartInsertPt, ElemDef)) { 557 StartInsertPt->removeFromParent(); 558 InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 559 StartInsertPt); 560 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 561 } else { 562 // If we fail to move an instruction and the element count is provided 563 // by a mov, use the mov operand if it will have the same value at the 564 // insertion point 565 MachineOperand Operand = ElemDef->getOperand(1); 566 if (isMovRegOpcode(ElemDef->getOpcode()) && 567 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg()) == 568 RDA.getUniqueReachingMIDef(StartInsertPt, Operand.getReg())) { 569 TPNumElements = Operand; 570 NumElements = TPNumElements.getReg(); 571 } else { 572 LLVM_DEBUG(dbgs() 573 << "ARM Loops: Unable to move element count to loop " 574 << "start instruction.\n"); 575 return false; 576 } 577 } 578 } 579 } 580 581 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect 582 // world the [w|d]lstp instruction would be last instruction in the preheader 583 // and so it would only affect instructions within the loop body. But due to 584 // scheduling, and/or the logic in this pass (above), the insertion point can 585 // be moved earlier. So if the Loop Start isn't the last instruction in the 586 // preheader, and if the initial element count is smaller than the vector 587 // width, the Loop Start instruction will immediately generate one or more 588 // false lane mask which can, incorrectly, affect the proceeding MVE 589 // instructions in the preheader. 590 auto cannotInsertWDLSTPBetween = [](MachineInstr *Begin, 591 MachineInstr *End) { 592 auto I = MachineBasicBlock::iterator(Begin); 593 auto E = MachineBasicBlock::iterator(End); 594 for (; I != E; ++I) 595 if (shouldInspect(*I)) 596 return true; 597 return false; 598 }; 599 600 if (cannotInsertWDLSTPBetween(StartInsertPt, &InsertBB->back())) 601 return false; 602 603 // Especially in the case of while loops, InsertBB may not be the 604 // preheader, so we need to check that the register isn't redefined 605 // before entering the loop. 606 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 607 Register NumElements) { 608 // NumElements is redefined in this block. 609 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 610 return true; 611 612 // Don't continue searching up through multiple predecessors. 613 if (MBB->pred_size() > 1) 614 return true; 615 616 return false; 617 }; 618 619 // First, find the block that looks like the preheader. 620 MachineBasicBlock *MBB = Preheader; 621 if (!MBB) { 622 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find preheader.\n"); 623 return false; 624 } 625 626 // Then search backwards for a def, until we get to InsertBB. 627 while (MBB != InsertBB) { 628 if (CannotProvideElements(MBB, NumElements)) { 629 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 630 return false; 631 } 632 MBB = *MBB->pred_begin(); 633 } 634 635 // Check that the value change of the element count is what we expect and 636 // that the predication will be equivalent. For this we need: 637 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 638 // and we can also allow register copies within the chain too. 639 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 640 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 641 }; 642 643 MBB = VCTP->getParent(); 644 // Remove modifications to the element count since they have no purpose in a 645 // tail predicated loop. Explicitly refer to the vctp operand no matter which 646 // register NumElements has been assigned to, since that is what the 647 // modifications will be using 648 if (auto *Def = RDA.getUniqueReachingMIDef(&MBB->back(), 649 VCTP->getOperand(1).getReg())) { 650 SmallPtrSet<MachineInstr*, 2> ElementChain; 651 SmallPtrSet<MachineInstr*, 2> Ignore; 652 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 653 654 Ignore.insert(VCTPs.begin(), VCTPs.end()); 655 656 if (RDA.isSafeToRemove(Def, ElementChain, Ignore)) { 657 bool FoundSub = false; 658 659 for (auto *MI : ElementChain) { 660 if (isMovRegOpcode(MI->getOpcode())) 661 continue; 662 663 if (isSubImmOpcode(MI->getOpcode())) { 664 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) 665 return false; 666 FoundSub = true; 667 } else 668 return false; 669 } 670 671 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove element count chain:\n"; 672 for (auto *MI : ElementChain) 673 dbgs() << " - " << *MI); 674 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 675 } 676 } 677 return true; 678 } 679 680 static bool isRegInClass(const MachineOperand &MO, 681 const TargetRegisterClass *Class) { 682 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 683 } 684 685 // MVE 'narrowing' operate on half a lane, reading from half and writing 686 // to half, which are referred to has the top and bottom half. The other 687 // half retains its previous value. 688 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 689 const MCInstrDesc &MCID = MI.getDesc(); 690 uint64_t Flags = MCID.TSFlags; 691 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 692 } 693 694 // Some MVE instructions read from the top/bottom halves of their operand(s) 695 // and generate a vector result with result elements that are double the 696 // width of the input. 697 static bool producesDoubleWidthResult(const MachineInstr &MI) { 698 const MCInstrDesc &MCID = MI.getDesc(); 699 uint64_t Flags = MCID.TSFlags; 700 return (Flags & ARMII::DoubleWidthResult) != 0; 701 } 702 703 static bool isHorizontalReduction(const MachineInstr &MI) { 704 const MCInstrDesc &MCID = MI.getDesc(); 705 uint64_t Flags = MCID.TSFlags; 706 return (Flags & ARMII::HorizontalReduction) != 0; 707 } 708 709 // Can this instruction generate a non-zero result when given only zeroed 710 // operands? This allows us to know that, given operands with false bytes 711 // zeroed by masked loads, that the result will also contain zeros in those 712 // bytes. 713 static bool canGenerateNonZeros(const MachineInstr &MI) { 714 715 // Check for instructions which can write into a larger element size, 716 // possibly writing into a previous zero'd lane. 717 if (producesDoubleWidthResult(MI)) 718 return true; 719 720 switch (MI.getOpcode()) { 721 default: 722 break; 723 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 724 // fp16 -> fp32 vector conversions. 725 // Instructions that perform a NOT will generate 1s from 0s. 726 case ARM::MVE_VMVN: 727 case ARM::MVE_VORN: 728 // Count leading zeros will do just that! 729 case ARM::MVE_VCLZs8: 730 case ARM::MVE_VCLZs16: 731 case ARM::MVE_VCLZs32: 732 return true; 733 } 734 return false; 735 } 736 737 // Look at its register uses to see if it only can only receive zeros 738 // into its false lanes which would then produce zeros. Also check that 739 // the output register is also defined by an FalseLanesZero instruction 740 // so that if tail-predication happens, the lanes that aren't updated will 741 // still be zeros. 742 static bool producesFalseLanesZero(MachineInstr &MI, 743 const TargetRegisterClass *QPRs, 744 const ReachingDefAnalysis &RDA, 745 InstSet &FalseLanesZero) { 746 if (canGenerateNonZeros(MI)) 747 return false; 748 749 bool isPredicated = isVectorPredicated(&MI); 750 // Predicated loads will write zeros to the falsely predicated bytes of the 751 // destination register. 752 if (MI.mayLoad()) 753 return isPredicated; 754 755 auto IsZeroInit = [](MachineInstr *Def) { 756 return !isVectorPredicated(Def) && 757 Def->getOpcode() == ARM::MVE_VMOVimmi32 && 758 Def->getOperand(1).getImm() == 0; 759 }; 760 761 bool AllowScalars = isHorizontalReduction(MI); 762 for (auto &MO : MI.operands()) { 763 if (!MO.isReg() || !MO.getReg()) 764 continue; 765 if (!isRegInClass(MO, QPRs) && AllowScalars) 766 continue; 767 768 // Check that this instruction will produce zeros in its false lanes: 769 // - If it only consumes false lanes zero or constant 0 (vmov #0) 770 // - If it's predicated, it only matters that it's def register already has 771 // false lane zeros, so we can ignore the uses. 772 SmallPtrSet<MachineInstr *, 2> Defs; 773 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs); 774 for (auto *Def : Defs) { 775 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def)) 776 continue; 777 if (MO.isUse() && isPredicated) 778 continue; 779 return false; 780 } 781 } 782 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 783 return true; 784 } 785 786 bool LowOverheadLoop::ValidateLiveOuts() { 787 // We want to find out if the tail-predicated version of this loop will 788 // produce the same values as the loop in its original form. For this to 789 // be true, the newly inserted implicit predication must not change the 790 // the (observable) results. 791 // We're doing this because many instructions in the loop will not be 792 // predicated and so the conversion from VPT predication to tail-predication 793 // can result in different values being produced; due to the tail-predication 794 // preventing many instructions from updating their falsely predicated 795 // lanes. This analysis assumes that all the instructions perform lane-wise 796 // operations and don't perform any exchanges. 797 // A masked load, whether through VPT or tail predication, will write zeros 798 // to any of the falsely predicated bytes. So, from the loads, we know that 799 // the false lanes are zeroed and here we're trying to track that those false 800 // lanes remain zero, or where they change, the differences are masked away 801 // by their user(s). 802 // All MVE stores have to be predicated, so we know that any predicate load 803 // operands, or stored results are equivalent already. Other explicitly 804 // predicated instructions will perform the same operation in the original 805 // loop and the tail-predicated form too. Because of this, we can insert 806 // loads, stores and other predicated instructions into our Predicated 807 // set and build from there. 808 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 809 SetVector<MachineInstr *> FalseLanesUnknown; 810 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 811 SmallPtrSet<MachineInstr *, 4> Predicated; 812 MachineBasicBlock *Header = ML.getHeader(); 813 814 for (auto &MI : *Header) { 815 if (!shouldInspect(MI)) 816 continue; 817 818 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) 819 continue; 820 821 bool isPredicated = isVectorPredicated(&MI); 822 bool retainsOrReduces = 823 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI); 824 825 if (isPredicated) 826 Predicated.insert(&MI); 827 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) 828 FalseLanesZero.insert(&MI); 829 else if (MI.getNumDefs() == 0) 830 continue; 831 else if (!isPredicated && retainsOrReduces) 832 return false; 833 else if (!isPredicated) 834 FalseLanesUnknown.insert(&MI); 835 } 836 837 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 838 SmallPtrSetImpl<MachineInstr *> &Predicated) { 839 SmallPtrSet<MachineInstr *, 2> Uses; 840 RDA.getGlobalUses(MI, MO.getReg(), Uses); 841 for (auto *Use : Uses) { 842 if (Use != MI && !Predicated.count(Use)) 843 return false; 844 } 845 return true; 846 }; 847 848 // Visit the unknowns in reverse so that we can start at the values being 849 // stored and then we can work towards the leaves, hopefully adding more 850 // instructions to Predicated. Successfully terminating the loop means that 851 // all the unknown values have to found to be masked by predicated user(s). 852 // For any unpredicated values, we store them in NonPredicated so that we 853 // can later check whether these form a reduction. 854 SmallPtrSet<MachineInstr*, 2> NonPredicated; 855 for (auto *MI : reverse(FalseLanesUnknown)) { 856 for (auto &MO : MI->operands()) { 857 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 858 continue; 859 if (!HasPredicatedUsers(MI, MO, Predicated)) { 860 LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : " 861 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 862 NonPredicated.insert(MI); 863 break; 864 } 865 } 866 // Any unknown false lanes have been masked away by the user(s). 867 if (!NonPredicated.contains(MI)) 868 Predicated.insert(MI); 869 } 870 871 SmallPtrSet<MachineInstr *, 2> LiveOutMIs; 872 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 873 ML.getExitBlocks(ExitBlocks); 874 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 875 assert(ExitBlocks.size() == 1 && "Expected a single exit block"); 876 MachineBasicBlock *ExitBB = ExitBlocks.front(); 877 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) { 878 // TODO: Instead of blocking predication, we could move the vctp to the exit 879 // block and calculate it's operand there in or the preheader. 880 if (RegMask.PhysReg == ARM::VPR) 881 return false; 882 // Check Q-regs that are live in the exit blocks. We don't collect scalars 883 // because they won't be affected by lane predication. 884 if (QPRs->contains(RegMask.PhysReg)) 885 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg)) 886 LiveOutMIs.insert(MI); 887 } 888 889 // We've already validated that any VPT predication within the loop will be 890 // equivalent when we perform the predication transformation; so we know that 891 // any VPT predicated instruction is predicated upon VCTP. Any live-out 892 // instruction needs to be predicated, so check this here. The instructions 893 // in NonPredicated have been found to be a reduction that we can ensure its 894 // legality. 895 for (auto *MI : LiveOutMIs) { 896 if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) { 897 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to handle live out: " << *MI); 898 return false; 899 } 900 } 901 902 return true; 903 } 904 905 void LowOverheadLoop::CheckLegality(ARMBasicBlockUtils *BBUtils) { 906 if (Revert) 907 return; 908 909 if (!End->getOperand(1).isMBB()) 910 report_fatal_error("Expected LoopEnd to target basic block"); 911 912 // TODO Maybe there's cases where the target doesn't have to be the header, 913 // but for now be safe and revert. 914 if (End->getOperand(1).getMBB() != ML.getHeader()) { 915 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targetting header.\n"); 916 Revert = true; 917 return; 918 } 919 920 // The WLS and LE instructions have 12-bits for the label offset. WLS 921 // requires a positive offset, while LE uses negative. 922 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 923 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 924 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 925 Revert = true; 926 return; 927 } 928 929 if (Start->getOpcode() == ARM::t2WhileLoopStart && 930 (BBUtils->getOffsetOf(Start) > 931 BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || 932 !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { 933 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 934 Revert = true; 935 return; 936 } 937 938 InsertPt = Revert ? nullptr : isSafeToDefineLR(); 939 if (!InsertPt) { 940 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n"); 941 Revert = true; 942 return; 943 } else 944 LLVM_DEBUG(dbgs() << "ARM Loops: Start insertion point: " << *InsertPt); 945 946 if (!IsTailPredicationLegal()) { 947 LLVM_DEBUG(if (VCTPs.empty()) 948 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 949 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 950 return; 951 } 952 953 assert(ML.getBlocks().size() == 1 && 954 "Shouldn't be processing a loop with more than one block"); 955 CannotTailPredicate = !ValidateTailPredicate(InsertPt); 956 LLVM_DEBUG(if (CannotTailPredicate) 957 dbgs() << "ARM Loops: Couldn't validate tail predicate.\n"); 958 } 959 960 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) { 961 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI); 962 if (VCTPs.empty()) { 963 VCTPs.push_back(MI); 964 return true; 965 } 966 967 // If we find another VCTP, check whether it uses the same value as the main VCTP. 968 // If it does, store it in the VCTPs set, else refuse it. 969 MachineInstr *Prev = VCTPs.back(); 970 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) || 971 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg())) { 972 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " 973 "definition from the main VCTP"); 974 return false; 975 } 976 VCTPs.push_back(MI); 977 return true; 978 } 979 980 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) { 981 if (CannotTailPredicate) 982 return false; 983 984 if (!shouldInspect(*MI)) 985 return true; 986 987 if (MI->getOpcode() == ARM::MVE_VPSEL || 988 MI->getOpcode() == ARM::MVE_VPNOT) { 989 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 990 // 1) It will use the VPR as a predicate operand, but doesn't have to be 991 // instead a VPT block, which means we can assert while building up 992 // the VPT block because we don't find another VPT or VPST to being a new 993 // one. 994 // 2) VPSEL still requires a VPR operand even after tail predicating, 995 // which means we can't remove it unless there is another 996 // instruction, such as vcmp, that can provide the VPR def. 997 return false; 998 } 999 1000 // Record all VCTPs and check that they're equivalent to one another. 1001 if (isVCTP(MI) && !AddVCTP(MI)) 1002 return false; 1003 1004 // Inspect uses first so that any instructions that alter the VPR don't 1005 // alter the predicate upon themselves. 1006 const MCInstrDesc &MCID = MI->getDesc(); 1007 bool IsUse = false; 1008 unsigned LastOpIdx = MI->getNumOperands() - 1; 1009 for (auto &Op : enumerate(reverse(MCID.operands()))) { 1010 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index()); 1011 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR) 1012 continue; 1013 1014 if (ARM::isVpred(Op.value().OperandType)) { 1015 VPTState::addInst(MI); 1016 IsUse = true; 1017 } else if (MI->getOpcode() != ARM::MVE_VPST) { 1018 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 1019 return false; 1020 } 1021 } 1022 1023 // If we find an instruction that has been marked as not valid for tail 1024 // predication, only allow the instruction if it's contained within a valid 1025 // VPT block. 1026 bool RequiresExplicitPredication = 1027 (MCID.TSFlags & ARMII::ValidForTailPredication) == 0; 1028 if (isDomainMVE(MI) && RequiresExplicitPredication) { 1029 LLVM_DEBUG(if (!IsUse) 1030 dbgs() << "ARM Loops: Can't tail predicate: " << *MI); 1031 return IsUse; 1032 } 1033 1034 // If the instruction is already explicitly predicated, then the conversion 1035 // will be fine, but ensure that all store operations are predicated. 1036 if (MI->mayStore()) 1037 return IsUse; 1038 1039 // If this instruction defines the VPR, update the predicate for the 1040 // proceeding instructions. 1041 if (isVectorPredicate(MI)) { 1042 // Clear the existing predicate when we're not in VPT Active state, 1043 // otherwise we add to it. 1044 if (!isVectorPredicated(MI)) 1045 VPTState::resetPredicate(MI); 1046 else 1047 VPTState::addPredicate(MI); 1048 } 1049 1050 // Finally once the predicate has been modified, we can start a new VPT 1051 // block if necessary. 1052 if (isVPTOpcode(MI->getOpcode())) 1053 VPTState::CreateVPTBlock(MI); 1054 1055 return true; 1056 } 1057 1058 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 1059 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 1060 if (!ST.hasLOB()) 1061 return false; 1062 1063 MF = &mf; 1064 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 1065 1066 MLI = &getAnalysis<MachineLoopInfo>(); 1067 RDA = &getAnalysis<ReachingDefAnalysis>(); 1068 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 1069 MRI = &MF->getRegInfo(); 1070 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 1071 TRI = ST.getRegisterInfo(); 1072 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 1073 BBUtils->computeAllBlockSizes(); 1074 BBUtils->adjustBBOffsetsAfter(&MF->front()); 1075 1076 bool Changed = false; 1077 for (auto ML : *MLI) { 1078 if (ML->isOutermost()) 1079 Changed |= ProcessLoop(ML); 1080 } 1081 Changed |= RevertNonLoops(); 1082 return Changed; 1083 } 1084 1085 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 1086 1087 bool Changed = false; 1088 1089 // Process inner loops first. 1090 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 1091 Changed |= ProcessLoop(*I); 1092 1093 LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; 1094 if (auto *Preheader = ML->getLoopPreheader()) 1095 dbgs() << " - " << Preheader->getName() << "\n"; 1096 else if (auto *Preheader = MLI->findLoopPreheader(ML)) 1097 dbgs() << " - " << Preheader->getName() << "\n"; 1098 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 1099 dbgs() << " - " << Preheader->getName() << "\n"; 1100 for (auto *MBB : ML->getBlocks()) 1101 dbgs() << " - " << MBB->getName() << "\n"; 1102 ); 1103 1104 // Search the given block for a loop start instruction. If one isn't found, 1105 // and there's only one predecessor block, search that one too. 1106 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 1107 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 1108 for (auto &MI : *MBB) { 1109 if (isLoopStart(MI)) 1110 return &MI; 1111 } 1112 if (MBB->pred_size() == 1) 1113 return SearchForStart(*MBB->pred_begin()); 1114 return nullptr; 1115 }; 1116 1117 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII); 1118 // Search the preheader for the start intrinsic. 1119 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 1120 // with potentially multiple set.loop.iterations, so we need to enable this. 1121 if (LoLoop.Preheader) 1122 LoLoop.Start = SearchForStart(LoLoop.Preheader); 1123 else 1124 return false; 1125 1126 // Find the low-overhead loop components and decide whether or not to fall 1127 // back to a normal loop. Also look for a vctp instructions and decide 1128 // whether we can convert that predicate using tail predication. 1129 for (auto *MBB : reverse(ML->getBlocks())) { 1130 for (auto &MI : *MBB) { 1131 if (MI.isDebugValue()) 1132 continue; 1133 else if (MI.getOpcode() == ARM::t2LoopDec) 1134 LoLoop.Dec = &MI; 1135 else if (MI.getOpcode() == ARM::t2LoopEnd) 1136 LoLoop.End = &MI; 1137 else if (isLoopStart(MI)) 1138 LoLoop.Start = &MI; 1139 else if (MI.getDesc().isCall()) { 1140 // TODO: Though the call will require LE to execute again, does this 1141 // mean we should revert? Always executing LE hopefully should be 1142 // faster than performing a sub,cmp,br or even subs,br. 1143 LoLoop.Revert = true; 1144 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 1145 } else { 1146 // Record VPR defs and build up their corresponding vpt blocks. 1147 // Check we know how to tail predicate any mve instructions. 1148 LoLoop.AnalyseMVEInst(&MI); 1149 } 1150 } 1151 } 1152 1153 LLVM_DEBUG(LoLoop.dump()); 1154 if (!LoLoop.FoundAllComponents()) { 1155 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 1156 return false; 1157 } 1158 1159 // Check that the only instruction using LoopDec is LoopEnd. 1160 // TODO: Check for copy chains that really have no effect. 1161 SmallPtrSet<MachineInstr*, 2> Uses; 1162 RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses); 1163 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 1164 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 1165 LoLoop.Revert = true; 1166 } 1167 LoLoop.CheckLegality(BBUtils.get()); 1168 Expand(LoLoop); 1169 return true; 1170 } 1171 1172 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 1173 // beq that branches to the exit branch. 1174 // TODO: We could also try to generate a cbz if the value in LR is also in 1175 // another low register. 1176 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 1177 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 1178 MachineBasicBlock *MBB = MI->getParent(); 1179 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1180 TII->get(ARM::t2CMPri)); 1181 MIB.add(MI->getOperand(0)); 1182 MIB.addImm(0); 1183 MIB.addImm(ARMCC::AL); 1184 MIB.addReg(ARM::NoRegister); 1185 1186 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1187 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1188 ARM::tBcc : ARM::t2Bcc; 1189 1190 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1191 MIB.add(MI->getOperand(1)); // branch target 1192 MIB.addImm(ARMCC::EQ); // condition code 1193 MIB.addReg(ARM::CPSR); 1194 MI->eraseFromParent(); 1195 } 1196 1197 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 1198 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 1199 MachineBasicBlock *MBB = MI->getParent(); 1200 SmallPtrSet<MachineInstr*, 1> Ignore; 1201 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 1202 if (I->getOpcode() == ARM::t2LoopEnd) { 1203 Ignore.insert(&*I); 1204 break; 1205 } 1206 } 1207 1208 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1209 bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore); 1210 1211 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1212 TII->get(ARM::t2SUBri)); 1213 MIB.addDef(ARM::LR); 1214 MIB.add(MI->getOperand(1)); 1215 MIB.add(MI->getOperand(2)); 1216 MIB.addImm(ARMCC::AL); 1217 MIB.addReg(0); 1218 1219 if (SetFlags) { 1220 MIB.addReg(ARM::CPSR); 1221 MIB->getOperand(5).setIsDef(true); 1222 } else 1223 MIB.addReg(0); 1224 1225 MI->eraseFromParent(); 1226 return SetFlags; 1227 } 1228 1229 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1230 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1231 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1232 1233 MachineBasicBlock *MBB = MI->getParent(); 1234 // Create cmp 1235 if (!SkipCmp) { 1236 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1237 TII->get(ARM::t2CMPri)); 1238 MIB.addReg(ARM::LR); 1239 MIB.addImm(0); 1240 MIB.addImm(ARMCC::AL); 1241 MIB.addReg(ARM::NoRegister); 1242 } 1243 1244 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1245 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1246 ARM::tBcc : ARM::t2Bcc; 1247 1248 // Create bne 1249 MachineInstrBuilder MIB = 1250 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1251 MIB.add(MI->getOperand(1)); // branch target 1252 MIB.addImm(ARMCC::NE); // condition code 1253 MIB.addReg(ARM::CPSR); 1254 MI->eraseFromParent(); 1255 } 1256 1257 // Perform dead code elimation on the loop iteration count setup expression. 1258 // If we are tail-predicating, the number of elements to be processed is the 1259 // operand of the VCTP instruction in the vector body, see getCount(), which is 1260 // register $r3 in this example: 1261 // 1262 // $lr = big-itercount-expression 1263 // .. 1264 // t2DoLoopStart renamable $lr 1265 // vector.body: 1266 // .. 1267 // $vpr = MVE_VCTP32 renamable $r3 1268 // renamable $lr = t2LoopDec killed renamable $lr, 1 1269 // t2LoopEnd renamable $lr, %vector.body 1270 // tB %end 1271 // 1272 // What we would like achieve here is to replace the do-loop start pseudo 1273 // instruction t2DoLoopStart with: 1274 // 1275 // $lr = MVE_DLSTP_32 killed renamable $r3 1276 // 1277 // Thus, $r3 which defines the number of elements, is written to $lr, 1278 // and then we want to delete the whole chain that used to define $lr, 1279 // see the comment below how this chain could look like. 1280 // 1281 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1282 if (!LoLoop.IsTailPredicationLegal()) 1283 return; 1284 1285 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1286 1287 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0); 1288 if (!Def) { 1289 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1290 return; 1291 } 1292 1293 // Collect and remove the users of iteration count. 1294 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1295 LoLoop.End, LoLoop.InsertPt }; 1296 SmallPtrSet<MachineInstr*, 2> Remove; 1297 if (RDA->isSafeToRemove(Def, Remove, Killed)) 1298 LoLoop.ToRemove.insert(Remove.begin(), Remove.end()); 1299 else { 1300 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1301 return; 1302 } 1303 1304 // Collect the dead code and the MBBs in which they reside. 1305 RDA->collectKilledOperands(Def, Killed); 1306 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 1307 for (auto *MI : Killed) 1308 BasicBlocks.insert(MI->getParent()); 1309 1310 // Collect IT blocks in all affected basic blocks. 1311 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 1312 for (auto *MBB : BasicBlocks) { 1313 for (auto &MI : *MBB) { 1314 if (MI.getOpcode() != ARM::t2IT) 1315 continue; 1316 RDA->getReachingLocalUses(&MI, ARM::ITSTATE, ITBlocks[&MI]); 1317 } 1318 } 1319 1320 // If we're removing all of the instructions within an IT block, then 1321 // also remove the IT instruction. 1322 SmallPtrSet<MachineInstr*, 2> ModifiedITs; 1323 for (auto *MI : Killed) { 1324 if (MachineOperand *MO = MI->findRegisterUseOperand(ARM::ITSTATE)) { 1325 MachineInstr *IT = RDA->getMIOperand(MI, *MO); 1326 auto &CurrentBlock = ITBlocks[IT]; 1327 CurrentBlock.erase(MI); 1328 if (CurrentBlock.empty()) 1329 ModifiedITs.erase(IT); 1330 else 1331 ModifiedITs.insert(IT); 1332 } 1333 } 1334 1335 // Delete the killed instructions only if we don't have any IT blocks that 1336 // need to be modified because we need to fixup the mask. 1337 // TODO: Handle cases where IT blocks are modified. 1338 if (ModifiedITs.empty()) { 1339 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove iteration count:\n"; 1340 for (auto *MI : Killed) 1341 dbgs() << " - " << *MI); 1342 LoLoop.ToRemove.insert(Killed.begin(), Killed.end()); 1343 } else 1344 LLVM_DEBUG(dbgs() << "ARM Loops: Would need to modify IT block(s).\n"); 1345 } 1346 1347 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1348 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1349 // When using tail-predication, try to delete the dead code that was used to 1350 // calculate the number of loop iterations. 1351 IterationCountDCE(LoLoop); 1352 1353 MachineInstr *InsertPt = LoLoop.InsertPt; 1354 MachineInstr *Start = LoLoop.Start; 1355 MachineBasicBlock *MBB = InsertPt->getParent(); 1356 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 1357 unsigned Opc = LoLoop.getStartOpcode(); 1358 MachineOperand &Count = LoLoop.getLoopStartOperand(); 1359 1360 MachineInstrBuilder MIB = 1361 BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc)); 1362 1363 MIB.addDef(ARM::LR); 1364 MIB.add(Count); 1365 if (!IsDo) 1366 MIB.add(Start->getOperand(1)); 1367 1368 // If we're inserting at a mov lr, then remove it as it's redundant. 1369 if (InsertPt != Start) 1370 LoLoop.ToRemove.insert(InsertPt); 1371 LoLoop.ToRemove.insert(Start); 1372 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1373 return &*MIB; 1374 } 1375 1376 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1377 auto RemovePredicate = [](MachineInstr *MI) { 1378 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1379 if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) { 1380 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1381 "Expected Then predicate!"); 1382 MI->getOperand(PIdx).setImm(ARMVCC::None); 1383 MI->getOperand(PIdx+1).setReg(0); 1384 } else 1385 llvm_unreachable("trying to unpredicate a non-predicated instruction"); 1386 }; 1387 1388 for (auto &Block : LoLoop.getVPTBlocks()) { 1389 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 1390 1391 if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/true)) { 1392 if (VPTState::hasUniformPredicate(Block)) { 1393 // A vpt block starting with VPST, is only predicated upon vctp and has no 1394 // internal vpr defs: 1395 // - Remove vpst. 1396 // - Unpredicate the remaining instructions. 1397 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front()); 1398 LoLoop.ToRemove.insert(Insts.front()); 1399 for (unsigned i = 1; i < Insts.size(); ++i) 1400 RemovePredicate(Insts[i]); 1401 } else { 1402 // The VPT block has a non-uniform predicate but it uses a vpst and its 1403 // entry is guarded only by a vctp, which means we: 1404 // - Need to remove the original vpst. 1405 // - Then need to unpredicate any following instructions, until 1406 // we come across the divergent vpr def. 1407 // - Insert a new vpst to predicate the instruction(s) that following 1408 // the divergent vpr def. 1409 // TODO: We could be producing more VPT blocks than necessary and could 1410 // fold the newly created one into a proceeding one. 1411 MachineInstr *Divergent = VPTState::getDivergent(Block); 1412 for (auto I = ++MachineBasicBlock::iterator(Insts.front()), 1413 E = ++MachineBasicBlock::iterator(Divergent); I != E; ++I) 1414 RemovePredicate(&*I); 1415 1416 // Check if the instruction defining vpr is a vcmp so it can be combined 1417 // with the VPST This should be the divergent instruction 1418 MachineInstr *VCMP = VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 1419 ? Divergent 1420 : nullptr; 1421 1422 unsigned Size = 0; 1423 auto E = MachineBasicBlock::reverse_iterator(Divergent); 1424 auto I = MachineBasicBlock::reverse_iterator(Insts.back()); 1425 MachineInstr *InsertAt = nullptr; 1426 while (I != E) { 1427 InsertAt = &*I; 1428 ++Size; 1429 ++I; 1430 } 1431 1432 MachineInstrBuilder MIB; 1433 if (VCMP) { 1434 // Combine the VPST and VCMP into a VPT 1435 MIB = 1436 BuildMI(*InsertAt->getParent(), InsertAt, InsertAt->getDebugLoc(), 1437 TII->get(VCMPOpcodeToVPT(VCMP->getOpcode()))); 1438 MIB.addImm(ARMVCC::Then); 1439 // Register one 1440 MIB.add(VCMP->getOperand(1)); 1441 // Register two 1442 MIB.add(VCMP->getOperand(2)); 1443 // The comparison code, e.g. ge, eq, lt 1444 MIB.add(VCMP->getOperand(3)); 1445 LLVM_DEBUG(dbgs() 1446 << "ARM Loops: Combining with VCMP to VPT: " << *MIB); 1447 LoLoop.ToRemove.insert(VCMP); 1448 } else { 1449 // Create a VPST (with a null mask for now, we'll recompute it later) 1450 // or a VPT in case there was a VCMP right before it 1451 MIB = BuildMI(*InsertAt->getParent(), InsertAt, 1452 InsertAt->getDebugLoc(), TII->get(ARM::MVE_VPST)); 1453 MIB.addImm(0); 1454 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1455 } 1456 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Insts.front()); 1457 LoLoop.ToRemove.insert(Insts.front()); 1458 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1459 } 1460 } else if (Block.containsVCTP()) { 1461 // The vctp will be removed, so the block mask of the vp(s)t will need 1462 // to be recomputed. 1463 LoLoop.BlockMasksToRecompute.insert(Insts.front()); 1464 } 1465 } 1466 1467 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end()); 1468 } 1469 1470 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1471 1472 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1473 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1474 MachineInstr *End = LoLoop.End; 1475 MachineBasicBlock *MBB = End->getParent(); 1476 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1477 ARM::MVE_LETP : ARM::t2LEUpdate; 1478 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1479 TII->get(Opc)); 1480 MIB.addDef(ARM::LR); 1481 MIB.add(End->getOperand(0)); 1482 MIB.add(End->getOperand(1)); 1483 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1484 LoLoop.ToRemove.insert(LoLoop.Dec); 1485 LoLoop.ToRemove.insert(End); 1486 return &*MIB; 1487 }; 1488 1489 // TODO: We should be able to automatically remove these branches before we 1490 // get here - probably by teaching analyzeBranch about the pseudo 1491 // instructions. 1492 // If there is an unconditional branch, after I, that just branches to the 1493 // next block, remove it. 1494 auto RemoveDeadBranch = [](MachineInstr *I) { 1495 MachineBasicBlock *BB = I->getParent(); 1496 MachineInstr *Terminator = &BB->instr_back(); 1497 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1498 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1499 if (BB->isLayoutSuccessor(Succ)) { 1500 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1501 Terminator->eraseFromParent(); 1502 } 1503 } 1504 }; 1505 1506 if (LoLoop.Revert) { 1507 if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) 1508 RevertWhile(LoLoop.Start); 1509 else 1510 LoLoop.Start->eraseFromParent(); 1511 bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec); 1512 RevertLoopEnd(LoLoop.End, FlagsAlreadySet); 1513 } else { 1514 LoLoop.Start = ExpandLoopStart(LoLoop); 1515 RemoveDeadBranch(LoLoop.Start); 1516 LoLoop.End = ExpandLoopEnd(LoLoop); 1517 RemoveDeadBranch(LoLoop.End); 1518 if (LoLoop.IsTailPredicationLegal()) 1519 ConvertVPTBlocks(LoLoop); 1520 for (auto *I : LoLoop.ToRemove) { 1521 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1522 I->eraseFromParent(); 1523 } 1524 for (auto *I : LoLoop.BlockMasksToRecompute) { 1525 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1526 recomputeVPTBlockMask(*I); 1527 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1528 } 1529 } 1530 1531 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1532 DFS.ProcessLoop(); 1533 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1534 for (auto *MBB : PostOrder) { 1535 recomputeLiveIns(*MBB); 1536 // FIXME: For some reason, the live-in print order is non-deterministic for 1537 // our tests and I can't out why... So just sort them. 1538 MBB->sortUniqueLiveIns(); 1539 } 1540 1541 for (auto *MBB : reverse(PostOrder)) 1542 recomputeLivenessFlags(*MBB); 1543 1544 // We've moved, removed and inserted new instructions, so update RDA. 1545 RDA->reset(); 1546 } 1547 1548 bool ARMLowOverheadLoops::RevertNonLoops() { 1549 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1550 bool Changed = false; 1551 1552 for (auto &MBB : *MF) { 1553 SmallVector<MachineInstr*, 4> Starts; 1554 SmallVector<MachineInstr*, 4> Decs; 1555 SmallVector<MachineInstr*, 4> Ends; 1556 1557 for (auto &I : MBB) { 1558 if (isLoopStart(I)) 1559 Starts.push_back(&I); 1560 else if (I.getOpcode() == ARM::t2LoopDec) 1561 Decs.push_back(&I); 1562 else if (I.getOpcode() == ARM::t2LoopEnd) 1563 Ends.push_back(&I); 1564 } 1565 1566 if (Starts.empty() && Decs.empty() && Ends.empty()) 1567 continue; 1568 1569 Changed = true; 1570 1571 for (auto *Start : Starts) { 1572 if (Start->getOpcode() == ARM::t2WhileLoopStart) 1573 RevertWhile(Start); 1574 else 1575 Start->eraseFromParent(); 1576 } 1577 for (auto *Dec : Decs) 1578 RevertLoopDec(Dec); 1579 1580 for (auto *End : Ends) 1581 RevertLoopEnd(End); 1582 } 1583 return Changed; 1584 } 1585 1586 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1587 return new ARMLowOverheadLoops(); 1588 } 1589