1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 //===----------------------------------------------------------------------===// 39 40 #include "ARM.h" 41 #include "ARMBaseInstrInfo.h" 42 #include "ARMBaseRegisterInfo.h" 43 #include "ARMBasicBlockInfo.h" 44 #include "ARMSubtarget.h" 45 #include "Thumb2InstrInfo.h" 46 #include "llvm/ADT/SetOperations.h" 47 #include "llvm/ADT/SmallSet.h" 48 #include "llvm/CodeGen/LivePhysRegs.h" 49 #include "llvm/CodeGen/MachineFunctionPass.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineLoopUtils.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/Passes.h" 54 #include "llvm/CodeGen/ReachingDefAnalysis.h" 55 #include "llvm/MC/MCInstrDesc.h" 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "arm-low-overhead-loops" 60 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 61 62 namespace { 63 64 using InstSet = SmallPtrSetImpl<MachineInstr *>; 65 66 class PostOrderLoopTraversal { 67 MachineLoop &ML; 68 MachineLoopInfo &MLI; 69 SmallPtrSet<MachineBasicBlock*, 4> Visited; 70 SmallVector<MachineBasicBlock*, 4> Order; 71 72 public: 73 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 74 : ML(ML), MLI(MLI) { } 75 76 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 77 return Order; 78 } 79 80 // Visit all the blocks within the loop, as well as exit blocks and any 81 // blocks properly dominating the header. 82 void ProcessLoop() { 83 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 84 (MachineBasicBlock *MBB) -> void { 85 if (Visited.count(MBB)) 86 return; 87 88 Visited.insert(MBB); 89 for (auto *Succ : MBB->successors()) { 90 if (!ML.contains(Succ)) 91 continue; 92 Search(Succ); 93 } 94 Order.push_back(MBB); 95 }; 96 97 // Insert exit blocks. 98 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 99 ML.getExitBlocks(ExitBlocks); 100 for (auto *MBB : ExitBlocks) 101 Order.push_back(MBB); 102 103 // Then add the loop body. 104 Search(ML.getHeader()); 105 106 // Then try the preheader and its predecessors. 107 std::function<void(MachineBasicBlock*)> GetPredecessor = 108 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 109 Order.push_back(MBB); 110 if (MBB->pred_size() == 1) 111 GetPredecessor(*MBB->pred_begin()); 112 }; 113 114 if (auto *Preheader = ML.getLoopPreheader()) 115 GetPredecessor(Preheader); 116 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true)) 117 GetPredecessor(Preheader); 118 } 119 }; 120 121 struct PredicatedMI { 122 MachineInstr *MI = nullptr; 123 SetVector<MachineInstr*> Predicates; 124 125 public: 126 PredicatedMI(MachineInstr *I, SetVector<MachineInstr*> &Preds) : 127 MI(I) { Predicates.insert(Preds.begin(), Preds.end()); } 128 }; 129 130 // Represent a VPT block, a list of instructions that begins with a VPST and 131 // has a maximum of four proceeding instructions. All instructions within the 132 // block are predicated upon the vpr and we allow instructions to define the 133 // vpr within in the block too. 134 class VPTBlock { 135 std::unique_ptr<PredicatedMI> VPST; 136 PredicatedMI *Divergent = nullptr; 137 SmallVector<PredicatedMI, 4> Insts; 138 139 public: 140 VPTBlock(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { 141 VPST = std::make_unique<PredicatedMI>(MI, Preds); 142 } 143 144 void addInst(MachineInstr *MI, SetVector<MachineInstr*> &Preds) { 145 LLVM_DEBUG(dbgs() << "ARM Loops: Adding predicated MI: " << *MI); 146 if (!Divergent && !set_difference(Preds, VPST->Predicates).empty()) { 147 Divergent = &Insts.back(); 148 LLVM_DEBUG(dbgs() << " - has divergent predicate: " << *Divergent->MI); 149 } 150 Insts.emplace_back(MI, Preds); 151 assert(Insts.size() <= 4 && "Too many instructions in VPT block!"); 152 } 153 154 // Have we found an instruction within the block which defines the vpr? If 155 // so, not all the instructions in the block will have the same predicate. 156 bool HasNonUniformPredicate() const { 157 return Divergent != nullptr; 158 } 159 160 // Is the given instruction part of the predicate set controlling the entry 161 // to the block. 162 bool IsPredicatedOn(MachineInstr *MI) const { 163 return VPST->Predicates.count(MI); 164 } 165 166 // Is the given instruction the only predicate which controls the entry to 167 // the block. 168 bool IsOnlyPredicatedOn(MachineInstr *MI) const { 169 return IsPredicatedOn(MI) && VPST->Predicates.size() == 1; 170 } 171 172 unsigned size() const { return Insts.size(); } 173 SmallVectorImpl<PredicatedMI> &getInsts() { return Insts; } 174 MachineInstr *getVPST() const { return VPST->MI; } 175 PredicatedMI *getDivergent() const { return Divergent; } 176 }; 177 178 struct LowOverheadLoop { 179 180 MachineLoop &ML; 181 MachineLoopInfo &MLI; 182 ReachingDefAnalysis &RDA; 183 const TargetRegisterInfo &TRI; 184 MachineFunction *MF = nullptr; 185 MachineInstr *InsertPt = nullptr; 186 MachineInstr *Start = nullptr; 187 MachineInstr *Dec = nullptr; 188 MachineInstr *End = nullptr; 189 MachineInstr *VCTP = nullptr; 190 VPTBlock *CurrentBlock = nullptr; 191 SetVector<MachineInstr*> CurrentPredicate; 192 SmallVector<VPTBlock, 4> VPTBlocks; 193 SmallPtrSet<MachineInstr*, 4> ToRemove; 194 SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute; 195 bool Revert = false; 196 bool CannotTailPredicate = false; 197 198 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 199 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI) 200 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI) { 201 MF = ML.getHeader()->getParent(); 202 } 203 204 // If this is an MVE instruction, check that we know how to use tail 205 // predication with it. Record VPT blocks and return whether the 206 // instruction is valid for tail predication. 207 bool ValidateMVEInst(MachineInstr *MI); 208 209 void AnalyseMVEInst(MachineInstr *MI) { 210 CannotTailPredicate = !ValidateMVEInst(MI); 211 } 212 213 bool IsTailPredicationLegal() const { 214 // For now, let's keep things really simple and only support a single 215 // block for tail predication. 216 return !Revert && FoundAllComponents() && VCTP && 217 !CannotTailPredicate && ML.getNumBlocks() == 1; 218 } 219 220 // Check that the predication in the loop will be equivalent once we 221 // perform the conversion. Also ensure that we can provide the number 222 // of elements to the loop start instruction. 223 bool ValidateTailPredicate(MachineInstr *StartInsertPt); 224 225 // Check that any values available outside of the loop will be the same 226 // after tail predication conversion. 227 bool ValidateLiveOuts() const; 228 229 // Is it safe to define LR with DLS/WLS? 230 // LR can be defined if it is the operand to start, because it's the same 231 // value, or if it's going to be equivalent to the operand to Start. 232 MachineInstr *isSafeToDefineLR(); 233 234 // Check the branch targets are within range and we satisfy our 235 // restrictions. 236 void CheckLegality(ARMBasicBlockUtils *BBUtils); 237 238 bool FoundAllComponents() const { 239 return Start && Dec && End; 240 } 241 242 SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTBlocks; } 243 244 // Return the loop iteration count, or the number of elements if we're tail 245 // predicating. 246 MachineOperand &getCount() { 247 return IsTailPredicationLegal() ? 248 VCTP->getOperand(1) : Start->getOperand(0); 249 } 250 251 unsigned getStartOpcode() const { 252 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 253 if (!IsTailPredicationLegal()) 254 return IsDo ? ARM::t2DLS : ARM::t2WLS; 255 256 return VCTPOpcodeToLSTP(VCTP->getOpcode(), IsDo); 257 } 258 259 void dump() const { 260 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 261 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 262 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 263 if (VCTP) dbgs() << "ARM Loops: Found VCTP: " << *VCTP; 264 if (!FoundAllComponents()) 265 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 266 else if (!(Start && Dec && End)) 267 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 268 } 269 }; 270 271 class ARMLowOverheadLoops : public MachineFunctionPass { 272 MachineFunction *MF = nullptr; 273 MachineLoopInfo *MLI = nullptr; 274 ReachingDefAnalysis *RDA = nullptr; 275 const ARMBaseInstrInfo *TII = nullptr; 276 MachineRegisterInfo *MRI = nullptr; 277 const TargetRegisterInfo *TRI = nullptr; 278 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 279 280 public: 281 static char ID; 282 283 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 284 285 void getAnalysisUsage(AnalysisUsage &AU) const override { 286 AU.setPreservesCFG(); 287 AU.addRequired<MachineLoopInfo>(); 288 AU.addRequired<ReachingDefAnalysis>(); 289 MachineFunctionPass::getAnalysisUsage(AU); 290 } 291 292 bool runOnMachineFunction(MachineFunction &MF) override; 293 294 MachineFunctionProperties getRequiredProperties() const override { 295 return MachineFunctionProperties().set( 296 MachineFunctionProperties::Property::NoVRegs).set( 297 MachineFunctionProperties::Property::TracksLiveness); 298 } 299 300 StringRef getPassName() const override { 301 return ARM_LOW_OVERHEAD_LOOPS_NAME; 302 } 303 304 private: 305 bool ProcessLoop(MachineLoop *ML); 306 307 bool RevertNonLoops(); 308 309 void RevertWhile(MachineInstr *MI) const; 310 311 bool RevertLoopDec(MachineInstr *MI) const; 312 313 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 314 315 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 316 317 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 318 319 void Expand(LowOverheadLoop &LoLoop); 320 321 void IterationCountDCE(LowOverheadLoop &LoLoop); 322 }; 323 } 324 325 char ARMLowOverheadLoops::ID = 0; 326 327 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 328 false, false) 329 330 MachineInstr *LowOverheadLoop::isSafeToDefineLR() { 331 // We can define LR because LR already contains the same value. 332 if (Start->getOperand(0).getReg() == ARM::LR) 333 return Start; 334 335 unsigned CountReg = Start->getOperand(0).getReg(); 336 auto IsMoveLR = [&CountReg](MachineInstr *MI) { 337 return MI->getOpcode() == ARM::tMOVr && 338 MI->getOperand(0).getReg() == ARM::LR && 339 MI->getOperand(1).getReg() == CountReg && 340 MI->getOperand(2).getImm() == ARMCC::AL; 341 }; 342 343 MachineBasicBlock *MBB = Start->getParent(); 344 345 // Find an insertion point: 346 // - Is there a (mov lr, Count) before Start? If so, and nothing else writes 347 // to Count before Start, we can insert at that mov. 348 if (auto *LRDef = RDA.getUniqueReachingMIDef(Start, ARM::LR)) 349 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 350 return LRDef; 351 352 // - Is there a (mov lr, Count) after Start? If so, and nothing else writes 353 // to Count after Start, we can insert at that mov. 354 if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR)) 355 if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg)) 356 return LRDef; 357 358 // We've found no suitable LR def and Start doesn't use LR directly. Can we 359 // just define LR anyway? 360 return RDA.isSafeToDefRegAt(Start, ARM::LR) ? Start : nullptr; 361 } 362 363 bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt) { 364 assert(VCTP && "VCTP instruction expected but is not set"); 365 // All predication within the loop should be based on vctp. If the block 366 // isn't predicated on entry, check whether the vctp is within the block 367 // and that all other instructions are then predicated on it. 368 for (auto &Block : VPTBlocks) { 369 if (Block.IsPredicatedOn(VCTP)) 370 continue; 371 if (!Block.HasNonUniformPredicate() || !isVCTP(Block.getDivergent()->MI)) { 372 LLVM_DEBUG(dbgs() << "ARM Loops: Found unsupported diverging predicate: " 373 << *Block.getDivergent()->MI); 374 return false; 375 } 376 SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); 377 for (auto &PredMI : Insts) { 378 if (PredMI.Predicates.count(VCTP) || isVCTP(PredMI.MI)) 379 continue; 380 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *PredMI.MI 381 << " - which is predicated on:\n"; 382 for (auto *MI : PredMI.Predicates) 383 dbgs() << " - " << *MI); 384 return false; 385 } 386 } 387 388 if (!ValidateLiveOuts()) 389 return false; 390 391 // For tail predication, we need to provide the number of elements, instead 392 // of the iteration count, to the loop start instruction. The number of 393 // elements is provided to the vctp instruction, so we need to check that 394 // we can use this register at InsertPt. 395 Register NumElements = VCTP->getOperand(1).getReg(); 396 397 // If the register is defined within loop, then we can't perform TP. 398 // TODO: Check whether this is just a mov of a register that would be 399 // available. 400 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 401 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 402 return false; 403 } 404 405 // The element count register maybe defined after InsertPt, in which case we 406 // need to try to move either InsertPt or the def so that the [w|d]lstp can 407 // use the value. 408 // TODO: On failing to move an instruction, check if the count is provided by 409 // a mov and whether we can use the mov operand directly. 410 MachineBasicBlock *InsertBB = StartInsertPt->getParent(); 411 if (!RDA.isReachingDefLiveOut(StartInsertPt, NumElements)) { 412 if (auto *ElemDef = RDA.getLocalLiveOutMIDef(InsertBB, NumElements)) { 413 if (RDA.isSafeToMoveForwards(ElemDef, StartInsertPt)) { 414 ElemDef->removeFromParent(); 415 InsertBB->insert(MachineBasicBlock::iterator(StartInsertPt), ElemDef); 416 LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: " 417 << *ElemDef); 418 } else if (RDA.isSafeToMoveBackwards(StartInsertPt, ElemDef)) { 419 StartInsertPt->removeFromParent(); 420 InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 421 StartInsertPt); 422 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 423 } else { 424 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to move element count to loop " 425 << "start instruction.\n"); 426 return false; 427 } 428 } 429 } 430 431 // Especially in the case of while loops, InsertBB may not be the 432 // preheader, so we need to check that the register isn't redefined 433 // before entering the loop. 434 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 435 Register NumElements) { 436 // NumElements is redefined in this block. 437 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 438 return true; 439 440 // Don't continue searching up through multiple predecessors. 441 if (MBB->pred_size() > 1) 442 return true; 443 444 return false; 445 }; 446 447 // First, find the block that looks like the preheader. 448 MachineBasicBlock *MBB = MLI.findLoopPreheader(&ML, true); 449 if (!MBB) { 450 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find preheader.\n"); 451 return false; 452 } 453 454 // Then search backwards for a def, until we get to InsertBB. 455 while (MBB != InsertBB) { 456 if (CannotProvideElements(MBB, NumElements)) { 457 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 458 return false; 459 } 460 MBB = *MBB->pred_begin(); 461 } 462 463 // Check that the value change of the element count is what we expect and 464 // that the predication will be equivalent. For this we need: 465 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 466 // and we can also allow register copies within the chain too. 467 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 468 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 469 }; 470 471 MBB = VCTP->getParent(); 472 if (auto *Def = RDA.getUniqueReachingMIDef(&MBB->back(), NumElements)) { 473 SmallPtrSet<MachineInstr*, 2> ElementChain; 474 SmallPtrSet<MachineInstr*, 2> Ignore = { VCTP }; 475 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 476 477 if (RDA.isSafeToRemove(Def, ElementChain, Ignore)) { 478 bool FoundSub = false; 479 480 for (auto *MI : ElementChain) { 481 if (isMovRegOpcode(MI->getOpcode())) 482 continue; 483 484 if (isSubImmOpcode(MI->getOpcode())) { 485 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) 486 return false; 487 FoundSub = true; 488 } else 489 return false; 490 } 491 492 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove element count chain:\n"; 493 for (auto *MI : ElementChain) 494 dbgs() << " - " << *MI); 495 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 496 } 497 } 498 return true; 499 } 500 501 static bool isVectorPredicated(MachineInstr *MI) { 502 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 503 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 504 } 505 506 static bool isRegInClass(const MachineOperand &MO, 507 const TargetRegisterClass *Class) { 508 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 509 } 510 511 // MVE 'narrowing' operate on half a lane, reading from half and writing 512 // to half, which are referred to has the top and bottom half. The other 513 // half retains its previous value. 514 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 515 const MCInstrDesc &MCID = MI.getDesc(); 516 uint64_t Flags = MCID.TSFlags; 517 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 518 } 519 520 // Some MVE instructions read from the top/bottom halves of their operand(s) 521 // and generate a vector result with result elements that are double the 522 // width of the input. 523 static bool producesDoubleWidthResult(const MachineInstr &MI) { 524 const MCInstrDesc &MCID = MI.getDesc(); 525 uint64_t Flags = MCID.TSFlags; 526 return (Flags & ARMII::DoubleWidthResult) != 0; 527 } 528 529 static bool isHorizontalReduction(const MachineInstr &MI) { 530 const MCInstrDesc &MCID = MI.getDesc(); 531 uint64_t Flags = MCID.TSFlags; 532 return (Flags & ARMII::HorizontalReduction) != 0; 533 } 534 535 // Can this instruction generate a non-zero result when given only zeroed 536 // operands? This allows us to know that, given operands with false bytes 537 // zeroed by masked loads, that the result will also contain zeros in those 538 // bytes. 539 static bool canGenerateNonZeros(const MachineInstr &MI) { 540 541 // Check for instructions which can write into a larger element size, 542 // possibly writing into a previous zero'd lane. 543 if (producesDoubleWidthResult(MI)) 544 return true; 545 546 switch (MI.getOpcode()) { 547 default: 548 break; 549 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 550 // fp16 -> fp32 vector conversions. 551 // Instructions that perform a NOT will generate 1s from 0s. 552 case ARM::MVE_VMVN: 553 case ARM::MVE_VORN: 554 // Count leading zeros will do just that! 555 case ARM::MVE_VCLZs8: 556 case ARM::MVE_VCLZs16: 557 case ARM::MVE_VCLZs32: 558 return true; 559 } 560 return false; 561 } 562 563 564 // Look at its register uses to see if it only can only receive zeros 565 // into its false lanes which would then produce zeros. Also check that 566 // the output register is also defined by an FalseLanesZero instruction 567 // so that if tail-predication happens, the lanes that aren't updated will 568 // still be zeros. 569 static bool producesFalseLanesZero(MachineInstr &MI, 570 const TargetRegisterClass *QPRs, 571 const ReachingDefAnalysis &RDA, 572 InstSet &FalseLanesZero) { 573 if (canGenerateNonZeros(MI)) 574 return false; 575 576 bool AllowScalars = isHorizontalReduction(MI); 577 for (auto &MO : MI.operands()) { 578 if (!MO.isReg() || !MO.getReg()) 579 continue; 580 if (!isRegInClass(MO, QPRs) && AllowScalars) 581 continue; 582 if (auto *OpDef = RDA.getMIOperand(&MI, MO)) 583 if (FalseLanesZero.count(OpDef)) 584 continue; 585 return false; 586 } 587 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 588 return true; 589 } 590 591 bool LowOverheadLoop::ValidateLiveOuts() const { 592 // We want to find out if the tail-predicated version of this loop will 593 // produce the same values as the loop in its original form. For this to 594 // be true, the newly inserted implicit predication must not change the 595 // the (observable) results. 596 // We're doing this because many instructions in the loop will not be 597 // predicated and so the conversion from VPT predication to tail-predication 598 // can result in different values being produced; due to the tail-predication 599 // preventing many instructions from updating their falsely predicated 600 // lanes. This analysis assumes that all the instructions perform lane-wise 601 // operations and don't perform any exchanges. 602 // A masked load, whether through VPT or tail predication, will write zeros 603 // to any of the falsely predicated bytes. So, from the loads, we know that 604 // the false lanes are zeroed and here we're trying to track that those false 605 // lanes remain zero, or where they change, the differences are masked away 606 // by their user(s). 607 // All MVE loads and stores have to be predicated, so we know that any load 608 // operands, or stored results are equivalent already. Other explicitly 609 // predicated instructions will perform the same operation in the original 610 // loop and the tail-predicated form too. Because of this, we can insert 611 // loads, stores and other predicated instructions into our Predicated 612 // set and build from there. 613 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 614 SetVector<MachineInstr *> FalseLanesUnknown; 615 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 616 SmallPtrSet<MachineInstr *, 4> Predicated; 617 MachineBasicBlock *MBB = ML.getHeader(); 618 619 for (auto &MI : *MBB) { 620 const MCInstrDesc &MCID = MI.getDesc(); 621 uint64_t Flags = MCID.TSFlags; 622 if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE) 623 continue; 624 625 if (isVCTP(&MI) || MI.getOpcode() == ARM::MVE_VPST) 626 continue; 627 628 // Predicated loads will write zeros to the falsely predicated bytes of the 629 // destination register. 630 if (isVectorPredicated(&MI)) { 631 if (MI.mayLoad()) 632 FalseLanesZero.insert(&MI); 633 Predicated.insert(&MI); 634 continue; 635 } 636 637 if (MI.getNumDefs() == 0) 638 continue; 639 640 if (!producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) { 641 // We require retaining and horizontal operations to operate upon zero'd 642 // false lanes to ensure the conversion doesn't change the output. 643 if (retainsPreviousHalfElement(MI) || isHorizontalReduction(MI)) 644 return false; 645 // Otherwise we need to evaluate this instruction later to see whether 646 // unknown false lanes will get masked away by their user(s). 647 FalseLanesUnknown.insert(&MI); 648 } else if (!isHorizontalReduction(MI)) 649 FalseLanesZero.insert(&MI); 650 } 651 652 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 653 SmallPtrSetImpl<MachineInstr *> &Predicated) { 654 SmallPtrSet<MachineInstr *, 2> Uses; 655 RDA.getGlobalUses(MI, MO.getReg(), Uses); 656 for (auto *Use : Uses) { 657 if (Use != MI && !Predicated.count(Use)) 658 return false; 659 } 660 return true; 661 }; 662 663 // Visit the unknowns in reverse so that we can start at the values being 664 // stored and then we can work towards the leaves, hopefully adding more 665 // instructions to Predicated. Successfully terminating the loop means that 666 // all the unknown values have to found to be masked by predicated user(s). 667 for (auto *MI : reverse(FalseLanesUnknown)) { 668 for (auto &MO : MI->operands()) { 669 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 670 continue; 671 if (!HasPredicatedUsers(MI, MO, Predicated)) { 672 LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : " 673 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 674 return false; 675 } 676 } 677 // Any unknown false lanes have been masked away by the user(s). 678 Predicated.insert(MI); 679 } 680 681 // Collect Q-regs that are live in the exit blocks. We don't collect scalars 682 // because they won't be affected by lane predication. 683 SmallSet<Register, 2> LiveOuts; 684 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 685 ML.getExitBlocks(ExitBlocks); 686 for (auto *MBB : ExitBlocks) 687 for (const MachineBasicBlock::RegisterMaskPair &RegMask : MBB->liveins()) 688 if (QPRs->contains(RegMask.PhysReg)) 689 LiveOuts.insert(RegMask.PhysReg); 690 691 // Collect the instructions in the loop body that define the live-out values. 692 SmallPtrSet<MachineInstr *, 2> LiveMIs; 693 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 694 for (auto Reg : LiveOuts) 695 if (auto *MI = RDA.getLocalLiveOutMIDef(MBB, Reg)) 696 LiveMIs.insert(MI); 697 698 LLVM_DEBUG(dbgs() << "ARM Loops: Found loop live-outs:\n"; 699 for (auto *MI : LiveMIs) 700 dbgs() << " - " << *MI); 701 // We've already validated that any VPT predication within the loop will be 702 // equivalent when we perform the predication transformation; so we know that 703 // any VPT predicated instruction is predicated upon VCTP. Any live-out 704 // instruction needs to be predicated, so check this here. 705 for (auto *MI : LiveMIs) 706 if (!isVectorPredicated(MI)) 707 return false; 708 709 return true; 710 } 711 712 void LowOverheadLoop::CheckLegality(ARMBasicBlockUtils *BBUtils) { 713 if (Revert) 714 return; 715 716 if (!End->getOperand(1).isMBB()) 717 report_fatal_error("Expected LoopEnd to target basic block"); 718 719 // TODO Maybe there's cases where the target doesn't have to be the header, 720 // but for now be safe and revert. 721 if (End->getOperand(1).getMBB() != ML.getHeader()) { 722 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targetting header.\n"); 723 Revert = true; 724 return; 725 } 726 727 // The WLS and LE instructions have 12-bits for the label offset. WLS 728 // requires a positive offset, while LE uses negative. 729 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 730 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 731 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 732 Revert = true; 733 return; 734 } 735 736 if (Start->getOpcode() == ARM::t2WhileLoopStart && 737 (BBUtils->getOffsetOf(Start) > 738 BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) || 739 !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) { 740 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 741 Revert = true; 742 return; 743 } 744 745 InsertPt = Revert ? nullptr : isSafeToDefineLR(); 746 if (!InsertPt) { 747 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n"); 748 Revert = true; 749 return; 750 } else 751 LLVM_DEBUG(dbgs() << "ARM Loops: Start insertion point: " << *InsertPt); 752 753 if (!IsTailPredicationLegal()) { 754 LLVM_DEBUG(if (!VCTP) 755 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 756 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 757 return; 758 } 759 760 assert(ML.getBlocks().size() == 1 && 761 "Shouldn't be processing a loop with more than one block"); 762 CannotTailPredicate = !ValidateTailPredicate(InsertPt); 763 LLVM_DEBUG(if (CannotTailPredicate) 764 dbgs() << "ARM Loops: Couldn't validate tail predicate.\n"); 765 } 766 767 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) { 768 if (CannotTailPredicate) 769 return false; 770 771 // Only support a single vctp. 772 if (isVCTP(MI) && VCTP) 773 return false; 774 775 // Start a new vpt block when we discover a vpt. 776 if (MI->getOpcode() == ARM::MVE_VPST) { 777 VPTBlocks.emplace_back(MI, CurrentPredicate); 778 CurrentBlock = &VPTBlocks.back(); 779 return true; 780 } else if (isVCTP(MI)) 781 VCTP = MI; 782 else if (MI->getOpcode() == ARM::MVE_VPSEL || 783 MI->getOpcode() == ARM::MVE_VPNOT) 784 return false; 785 786 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 787 // 1) It will use the VPR as a predicate operand, but doesn't have to be 788 // instead a VPT block, which means we can assert while building up 789 // the VPT block because we don't find another VPST to being a new 790 // one. 791 // 2) VPSEL still requires a VPR operand even after tail predicating, 792 // which means we can't remove it unless there is another 793 // instruction, such as vcmp, that can provide the VPR def. 794 795 bool IsUse = false; 796 bool IsDef = false; 797 const MCInstrDesc &MCID = MI->getDesc(); 798 for (int i = MI->getNumOperands() - 1; i >= 0; --i) { 799 const MachineOperand &MO = MI->getOperand(i); 800 if (!MO.isReg() || MO.getReg() != ARM::VPR) 801 continue; 802 803 if (MO.isDef()) { 804 CurrentPredicate.insert(MI); 805 IsDef = true; 806 } else if (ARM::isVpred(MCID.OpInfo[i].OperandType)) { 807 CurrentBlock->addInst(MI, CurrentPredicate); 808 IsUse = true; 809 } else { 810 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 811 return false; 812 } 813 } 814 815 // If we find a vpr def that is not already predicated on the vctp, we've 816 // got disjoint predicates that may not be equivalent when we do the 817 // conversion. 818 if (IsDef && !IsUse && VCTP && !isVCTP(MI)) { 819 LLVM_DEBUG(dbgs() << "ARM Loops: Found disjoint vpr def: " << *MI); 820 return false; 821 } 822 823 uint64_t Flags = MCID.TSFlags; 824 if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE) 825 return true; 826 827 // If we find an instruction that has been marked as not valid for tail 828 // predication, only allow the instruction if it's contained within a valid 829 // VPT block. 830 if ((Flags & ARMII::ValidForTailPredication) == 0 && !IsUse) { 831 LLVM_DEBUG(dbgs() << "ARM Loops: Can't tail predicate: " << *MI); 832 return false; 833 } 834 835 // If the instruction is already explicitly predicated, then the conversion 836 // will be fine, but ensure that all memory operations are predicated. 837 return !IsUse && MI->mayLoadOrStore() ? false : true; 838 } 839 840 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 841 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 842 if (!ST.hasLOB()) 843 return false; 844 845 MF = &mf; 846 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 847 848 MLI = &getAnalysis<MachineLoopInfo>(); 849 RDA = &getAnalysis<ReachingDefAnalysis>(); 850 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 851 MRI = &MF->getRegInfo(); 852 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 853 TRI = ST.getRegisterInfo(); 854 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 855 BBUtils->computeAllBlockSizes(); 856 BBUtils->adjustBBOffsetsAfter(&MF->front()); 857 858 bool Changed = false; 859 for (auto ML : *MLI) { 860 if (!ML->getParentLoop()) 861 Changed |= ProcessLoop(ML); 862 } 863 Changed |= RevertNonLoops(); 864 return Changed; 865 } 866 867 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 868 869 bool Changed = false; 870 871 // Process inner loops first. 872 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 873 Changed |= ProcessLoop(*I); 874 875 LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n"; 876 if (auto *Preheader = ML->getLoopPreheader()) 877 dbgs() << " - " << Preheader->getName() << "\n"; 878 else if (auto *Preheader = MLI->findLoopPreheader(ML)) 879 dbgs() << " - " << Preheader->getName() << "\n"; 880 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 881 dbgs() << " - " << Preheader->getName() << "\n"; 882 for (auto *MBB : ML->getBlocks()) 883 dbgs() << " - " << MBB->getName() << "\n"; 884 ); 885 886 // Search the given block for a loop start instruction. If one isn't found, 887 // and there's only one predecessor block, search that one too. 888 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 889 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 890 for (auto &MI : *MBB) { 891 if (isLoopStart(MI)) 892 return &MI; 893 } 894 if (MBB->pred_size() == 1) 895 return SearchForStart(*MBB->pred_begin()); 896 return nullptr; 897 }; 898 899 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI); 900 // Search the preheader for the start intrinsic. 901 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 902 // with potentially multiple set.loop.iterations, so we need to enable this. 903 if (auto *Preheader = ML->getLoopPreheader()) 904 LoLoop.Start = SearchForStart(Preheader); 905 else if (auto *Preheader = MLI->findLoopPreheader(ML, true)) 906 LoLoop.Start = SearchForStart(Preheader); 907 else 908 return false; 909 910 // Find the low-overhead loop components and decide whether or not to fall 911 // back to a normal loop. Also look for a vctp instructions and decide 912 // whether we can convert that predicate using tail predication. 913 for (auto *MBB : reverse(ML->getBlocks())) { 914 for (auto &MI : *MBB) { 915 if (MI.isDebugValue()) 916 continue; 917 else if (MI.getOpcode() == ARM::t2LoopDec) 918 LoLoop.Dec = &MI; 919 else if (MI.getOpcode() == ARM::t2LoopEnd) 920 LoLoop.End = &MI; 921 else if (isLoopStart(MI)) 922 LoLoop.Start = &MI; 923 else if (MI.getDesc().isCall()) { 924 // TODO: Though the call will require LE to execute again, does this 925 // mean we should revert? Always executing LE hopefully should be 926 // faster than performing a sub,cmp,br or even subs,br. 927 LoLoop.Revert = true; 928 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 929 } else { 930 // Record VPR defs and build up their corresponding vpt blocks. 931 // Check we know how to tail predicate any mve instructions. 932 LoLoop.AnalyseMVEInst(&MI); 933 } 934 } 935 } 936 937 LLVM_DEBUG(LoLoop.dump()); 938 if (!LoLoop.FoundAllComponents()) { 939 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 940 return false; 941 } 942 943 // Check that the only instruction using LoopDec is LoopEnd. 944 // TODO: Check for copy chains that really have no effect. 945 SmallPtrSet<MachineInstr*, 2> Uses; 946 RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses); 947 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 948 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 949 LoLoop.Revert = true; 950 } 951 LoLoop.CheckLegality(BBUtils.get()); 952 Expand(LoLoop); 953 return true; 954 } 955 956 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 957 // beq that branches to the exit branch. 958 // TODO: We could also try to generate a cbz if the value in LR is also in 959 // another low register. 960 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 961 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 962 MachineBasicBlock *MBB = MI->getParent(); 963 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 964 TII->get(ARM::t2CMPri)); 965 MIB.add(MI->getOperand(0)); 966 MIB.addImm(0); 967 MIB.addImm(ARMCC::AL); 968 MIB.addReg(ARM::NoRegister); 969 970 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 971 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 972 ARM::tBcc : ARM::t2Bcc; 973 974 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 975 MIB.add(MI->getOperand(1)); // branch target 976 MIB.addImm(ARMCC::EQ); // condition code 977 MIB.addReg(ARM::CPSR); 978 MI->eraseFromParent(); 979 } 980 981 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 982 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 983 MachineBasicBlock *MBB = MI->getParent(); 984 SmallPtrSet<MachineInstr*, 1> Ignore; 985 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 986 if (I->getOpcode() == ARM::t2LoopEnd) { 987 Ignore.insert(&*I); 988 break; 989 } 990 } 991 992 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 993 bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore); 994 995 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 996 TII->get(ARM::t2SUBri)); 997 MIB.addDef(ARM::LR); 998 MIB.add(MI->getOperand(1)); 999 MIB.add(MI->getOperand(2)); 1000 MIB.addImm(ARMCC::AL); 1001 MIB.addReg(0); 1002 1003 if (SetFlags) { 1004 MIB.addReg(ARM::CPSR); 1005 MIB->getOperand(5).setIsDef(true); 1006 } else 1007 MIB.addReg(0); 1008 1009 MI->eraseFromParent(); 1010 return SetFlags; 1011 } 1012 1013 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1014 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1015 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1016 1017 MachineBasicBlock *MBB = MI->getParent(); 1018 // Create cmp 1019 if (!SkipCmp) { 1020 MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), 1021 TII->get(ARM::t2CMPri)); 1022 MIB.addReg(ARM::LR); 1023 MIB.addImm(0); 1024 MIB.addImm(ARMCC::AL); 1025 MIB.addReg(ARM::NoRegister); 1026 } 1027 1028 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1029 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1030 ARM::tBcc : ARM::t2Bcc; 1031 1032 // Create bne 1033 MachineInstrBuilder MIB = 1034 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1035 MIB.add(MI->getOperand(1)); // branch target 1036 MIB.addImm(ARMCC::NE); // condition code 1037 MIB.addReg(ARM::CPSR); 1038 MI->eraseFromParent(); 1039 } 1040 1041 // Perform dead code elimation on the loop iteration count setup expression. 1042 // If we are tail-predicating, the number of elements to be processed is the 1043 // operand of the VCTP instruction in the vector body, see getCount(), which is 1044 // register $r3 in this example: 1045 // 1046 // $lr = big-itercount-expression 1047 // .. 1048 // t2DoLoopStart renamable $lr 1049 // vector.body: 1050 // .. 1051 // $vpr = MVE_VCTP32 renamable $r3 1052 // renamable $lr = t2LoopDec killed renamable $lr, 1 1053 // t2LoopEnd renamable $lr, %vector.body 1054 // tB %end 1055 // 1056 // What we would like achieve here is to replace the do-loop start pseudo 1057 // instruction t2DoLoopStart with: 1058 // 1059 // $lr = MVE_DLSTP_32 killed renamable $r3 1060 // 1061 // Thus, $r3 which defines the number of elements, is written to $lr, 1062 // and then we want to delete the whole chain that used to define $lr, 1063 // see the comment below how this chain could look like. 1064 // 1065 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1066 if (!LoLoop.IsTailPredicationLegal()) 1067 return; 1068 1069 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1070 1071 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0); 1072 if (!Def) { 1073 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1074 return; 1075 } 1076 1077 // Collect and remove the users of iteration count. 1078 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1079 LoLoop.End, LoLoop.InsertPt }; 1080 SmallPtrSet<MachineInstr*, 2> Remove; 1081 if (RDA->isSafeToRemove(Def, Remove, Killed)) 1082 LoLoop.ToRemove.insert(Remove.begin(), Remove.end()); 1083 else { 1084 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1085 return; 1086 } 1087 1088 // Collect the dead code and the MBBs in which they reside. 1089 RDA->collectKilledOperands(Def, Killed); 1090 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 1091 for (auto *MI : Killed) 1092 BasicBlocks.insert(MI->getParent()); 1093 1094 // Collect IT blocks in all affected basic blocks. 1095 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 1096 for (auto *MBB : BasicBlocks) { 1097 for (auto &MI : *MBB) { 1098 if (MI.getOpcode() != ARM::t2IT) 1099 continue; 1100 RDA->getReachingLocalUses(&MI, ARM::ITSTATE, ITBlocks[&MI]); 1101 } 1102 } 1103 1104 // If we're removing all of the instructions within an IT block, then 1105 // also remove the IT instruction. 1106 SmallPtrSet<MachineInstr*, 2> ModifiedITs; 1107 for (auto *MI : Killed) { 1108 if (MachineOperand *MO = MI->findRegisterUseOperand(ARM::ITSTATE)) { 1109 MachineInstr *IT = RDA->getMIOperand(MI, *MO); 1110 auto &CurrentBlock = ITBlocks[IT]; 1111 CurrentBlock.erase(MI); 1112 if (CurrentBlock.empty()) 1113 ModifiedITs.erase(IT); 1114 else 1115 ModifiedITs.insert(IT); 1116 } 1117 } 1118 1119 // Delete the killed instructions only if we don't have any IT blocks that 1120 // need to be modified because we need to fixup the mask. 1121 // TODO: Handle cases where IT blocks are modified. 1122 if (ModifiedITs.empty()) { 1123 LLVM_DEBUG(dbgs() << "ARM Loops: Will remove iteration count:\n"; 1124 for (auto *MI : Killed) 1125 dbgs() << " - " << *MI); 1126 LoLoop.ToRemove.insert(Killed.begin(), Killed.end()); 1127 } else 1128 LLVM_DEBUG(dbgs() << "ARM Loops: Would need to modify IT block(s).\n"); 1129 } 1130 1131 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1132 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1133 // When using tail-predication, try to delete the dead code that was used to 1134 // calculate the number of loop iterations. 1135 IterationCountDCE(LoLoop); 1136 1137 MachineInstr *InsertPt = LoLoop.InsertPt; 1138 MachineInstr *Start = LoLoop.Start; 1139 MachineBasicBlock *MBB = InsertPt->getParent(); 1140 bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart; 1141 unsigned Opc = LoLoop.getStartOpcode(); 1142 MachineOperand &Count = LoLoop.getCount(); 1143 1144 MachineInstrBuilder MIB = 1145 BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc)); 1146 1147 MIB.addDef(ARM::LR); 1148 MIB.add(Count); 1149 if (!IsDo) 1150 MIB.add(Start->getOperand(1)); 1151 1152 // If we're inserting at a mov lr, then remove it as it's redundant. 1153 if (InsertPt != Start) 1154 LoLoop.ToRemove.insert(InsertPt); 1155 LoLoop.ToRemove.insert(Start); 1156 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1157 return &*MIB; 1158 } 1159 1160 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1161 auto RemovePredicate = [](MachineInstr *MI) { 1162 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1163 if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) { 1164 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1165 "Expected Then predicate!"); 1166 MI->getOperand(PIdx).setImm(ARMVCC::None); 1167 MI->getOperand(PIdx+1).setReg(0); 1168 } else 1169 llvm_unreachable("trying to unpredicate a non-predicated instruction"); 1170 }; 1171 1172 // There are a few scenarios which we have to fix up: 1173 // 1) A VPT block with is only predicated by the vctp and has no internal vpr 1174 // defs. 1175 // 2) A VPT block which is only predicated by the vctp but has an internal 1176 // vpr def. 1177 // 3) A VPT block which is predicated upon the vctp as well as another vpr 1178 // def. 1179 // 4) A VPT block which is not predicated upon a vctp, but contains it and 1180 // all instructions within the block are predicated upon in. 1181 1182 for (auto &Block : LoLoop.getVPTBlocks()) { 1183 SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts(); 1184 if (Block.HasNonUniformPredicate()) { 1185 PredicatedMI *Divergent = Block.getDivergent(); 1186 if (isVCTP(Divergent->MI)) { 1187 // The vctp will be removed, so the block mask of the VPST/VPT will need 1188 // to be recomputed. 1189 LoLoop.BlockMasksToRecompute.insert(Block.getVPST()); 1190 } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { 1191 // The VPT block has a non-uniform predicate but it's entry is guarded 1192 // only by a vctp, which means we: 1193 // - Need to remove the original vpst. 1194 // - Then need to unpredicate any following instructions, until 1195 // we come across the divergent vpr def. 1196 // - Insert a new vpst to predicate the instruction(s) that following 1197 // the divergent vpr def. 1198 // TODO: We could be producing more VPT blocks than necessary and could 1199 // fold the newly created one into a proceeding one. 1200 for (auto I = ++MachineBasicBlock::iterator(Block.getVPST()), 1201 E = ++MachineBasicBlock::iterator(Divergent->MI); I != E; ++I) 1202 RemovePredicate(&*I); 1203 1204 unsigned Size = 0; 1205 auto E = MachineBasicBlock::reverse_iterator(Divergent->MI); 1206 auto I = MachineBasicBlock::reverse_iterator(Insts.back().MI); 1207 MachineInstr *InsertAt = nullptr; 1208 while (I != E) { 1209 InsertAt = &*I; 1210 ++Size; 1211 ++I; 1212 } 1213 // Create a VPST with a null mask, we'll recompute it later. 1214 MachineInstrBuilder MIB = BuildMI(*InsertAt->getParent(), InsertAt, 1215 InsertAt->getDebugLoc(), 1216 TII->get(ARM::MVE_VPST)); 1217 MIB.addImm(0); 1218 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST()); 1219 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1220 LoLoop.ToRemove.insert(Block.getVPST()); 1221 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1222 } 1223 } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP)) { 1224 // A vpt block which is only predicated upon vctp and has no internal vpr 1225 // defs: 1226 // - Remove vpst. 1227 // - Unpredicate the remaining instructions. 1228 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getVPST()); 1229 LoLoop.ToRemove.insert(Block.getVPST()); 1230 for (auto &PredMI : Insts) 1231 RemovePredicate(PredMI.MI); 1232 } 1233 } 1234 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VCTP: " << *LoLoop.VCTP); 1235 LoLoop.ToRemove.insert(LoLoop.VCTP); 1236 } 1237 1238 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1239 1240 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1241 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1242 MachineInstr *End = LoLoop.End; 1243 MachineBasicBlock *MBB = End->getParent(); 1244 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1245 ARM::MVE_LETP : ARM::t2LEUpdate; 1246 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1247 TII->get(Opc)); 1248 MIB.addDef(ARM::LR); 1249 MIB.add(End->getOperand(0)); 1250 MIB.add(End->getOperand(1)); 1251 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1252 LoLoop.ToRemove.insert(LoLoop.Dec); 1253 LoLoop.ToRemove.insert(End); 1254 return &*MIB; 1255 }; 1256 1257 // TODO: We should be able to automatically remove these branches before we 1258 // get here - probably by teaching analyzeBranch about the pseudo 1259 // instructions. 1260 // If there is an unconditional branch, after I, that just branches to the 1261 // next block, remove it. 1262 auto RemoveDeadBranch = [](MachineInstr *I) { 1263 MachineBasicBlock *BB = I->getParent(); 1264 MachineInstr *Terminator = &BB->instr_back(); 1265 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1266 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1267 if (BB->isLayoutSuccessor(Succ)) { 1268 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1269 Terminator->eraseFromParent(); 1270 } 1271 } 1272 }; 1273 1274 if (LoLoop.Revert) { 1275 if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart) 1276 RevertWhile(LoLoop.Start); 1277 else 1278 LoLoop.Start->eraseFromParent(); 1279 bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec); 1280 RevertLoopEnd(LoLoop.End, FlagsAlreadySet); 1281 } else { 1282 LoLoop.Start = ExpandLoopStart(LoLoop); 1283 RemoveDeadBranch(LoLoop.Start); 1284 LoLoop.End = ExpandLoopEnd(LoLoop); 1285 RemoveDeadBranch(LoLoop.End); 1286 if (LoLoop.IsTailPredicationLegal()) 1287 ConvertVPTBlocks(LoLoop); 1288 for (auto *I : LoLoop.ToRemove) { 1289 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1290 I->eraseFromParent(); 1291 } 1292 for (auto *I : LoLoop.BlockMasksToRecompute) { 1293 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1294 recomputeVPTBlockMask(*I); 1295 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1296 } 1297 } 1298 1299 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1300 DFS.ProcessLoop(); 1301 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1302 for (auto *MBB : PostOrder) { 1303 recomputeLiveIns(*MBB); 1304 // FIXME: For some reason, the live-in print order is non-deterministic for 1305 // our tests and I can't out why... So just sort them. 1306 MBB->sortUniqueLiveIns(); 1307 } 1308 1309 for (auto *MBB : reverse(PostOrder)) 1310 recomputeLivenessFlags(*MBB); 1311 1312 // We've moved, removed and inserted new instructions, so update RDA. 1313 RDA->reset(); 1314 } 1315 1316 bool ARMLowOverheadLoops::RevertNonLoops() { 1317 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1318 bool Changed = false; 1319 1320 for (auto &MBB : *MF) { 1321 SmallVector<MachineInstr*, 4> Starts; 1322 SmallVector<MachineInstr*, 4> Decs; 1323 SmallVector<MachineInstr*, 4> Ends; 1324 1325 for (auto &I : MBB) { 1326 if (isLoopStart(I)) 1327 Starts.push_back(&I); 1328 else if (I.getOpcode() == ARM::t2LoopDec) 1329 Decs.push_back(&I); 1330 else if (I.getOpcode() == ARM::t2LoopEnd) 1331 Ends.push_back(&I); 1332 } 1333 1334 if (Starts.empty() && Decs.empty() && Ends.empty()) 1335 continue; 1336 1337 Changed = true; 1338 1339 for (auto *Start : Starts) { 1340 if (Start->getOpcode() == ARM::t2WhileLoopStart) 1341 RevertWhile(Start); 1342 else 1343 Start->eraseFromParent(); 1344 } 1345 for (auto *Dec : Decs) 1346 RevertLoopDec(Dec); 1347 1348 for (auto *End : Ends) 1349 RevertLoopEnd(End); 1350 } 1351 return Changed; 1352 } 1353 1354 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1355 return new ARMLowOverheadLoops(); 1356 } 1357