1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStartLR and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 /// A note on VPR.P0 (the lane mask): 39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a 40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks). 41 /// They will simply "and" the result of their calculation with the current 42 /// value of VPR.P0. You can think of it like this: 43 /// \verbatim 44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs 45 /// VPR.P0 &= Value 46 /// else 47 /// VPR.P0 = Value 48 /// \endverbatim 49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always 50 /// fall in the "VPT active" case, so we can consider that all VPR writes by 51 /// one of those instruction is actually a "and". 52 //===----------------------------------------------------------------------===// 53 54 #include "ARM.h" 55 #include "ARMBaseInstrInfo.h" 56 #include "ARMBaseRegisterInfo.h" 57 #include "ARMBasicBlockInfo.h" 58 #include "ARMSubtarget.h" 59 #include "MVETailPredUtils.h" 60 #include "Thumb2InstrInfo.h" 61 #include "llvm/ADT/SetOperations.h" 62 #include "llvm/ADT/SmallSet.h" 63 #include "llvm/CodeGen/LivePhysRegs.h" 64 #include "llvm/CodeGen/MachineFunctionPass.h" 65 #include "llvm/CodeGen/MachineLoopInfo.h" 66 #include "llvm/CodeGen/MachineLoopUtils.h" 67 #include "llvm/CodeGen/MachineRegisterInfo.h" 68 #include "llvm/CodeGen/Passes.h" 69 #include "llvm/CodeGen/ReachingDefAnalysis.h" 70 #include "llvm/MC/MCInstrDesc.h" 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "arm-low-overhead-loops" 75 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 76 77 static cl::opt<bool> 78 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden, 79 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"), 80 cl::init(false)); 81 82 static bool isVectorPredicated(MachineInstr *MI) { 83 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 84 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 85 } 86 87 static bool isVectorPredicate(MachineInstr *MI) { 88 return MI->findRegisterDefOperandIdx(ARM::VPR) != -1; 89 } 90 91 static bool hasVPRUse(MachineInstr &MI) { 92 return MI.findRegisterUseOperandIdx(ARM::VPR) != -1; 93 } 94 95 static bool isDomainMVE(MachineInstr *MI) { 96 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask; 97 return Domain == ARMII::DomainMVE; 98 } 99 100 static int getVecSize(const MachineInstr &MI) { 101 const MCInstrDesc &MCID = MI.getDesc(); 102 uint64_t Flags = MCID.TSFlags; 103 return (Flags & ARMII::VecSize) >> ARMII::VecSizeShift; 104 } 105 106 static bool shouldInspect(MachineInstr &MI) { 107 if (MI.isDebugInstr()) 108 return false; 109 return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI); 110 } 111 112 namespace { 113 114 using InstSet = SmallPtrSetImpl<MachineInstr *>; 115 116 class PostOrderLoopTraversal { 117 MachineLoop &ML; 118 MachineLoopInfo &MLI; 119 SmallPtrSet<MachineBasicBlock*, 4> Visited; 120 SmallVector<MachineBasicBlock*, 4> Order; 121 122 public: 123 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 124 : ML(ML), MLI(MLI) { } 125 126 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 127 return Order; 128 } 129 130 // Visit all the blocks within the loop, as well as exit blocks and any 131 // blocks properly dominating the header. 132 void ProcessLoop() { 133 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 134 (MachineBasicBlock *MBB) -> void { 135 if (Visited.count(MBB)) 136 return; 137 138 Visited.insert(MBB); 139 for (auto *Succ : MBB->successors()) { 140 if (!ML.contains(Succ)) 141 continue; 142 Search(Succ); 143 } 144 Order.push_back(MBB); 145 }; 146 147 // Insert exit blocks. 148 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 149 ML.getExitBlocks(ExitBlocks); 150 append_range(Order, ExitBlocks); 151 152 // Then add the loop body. 153 Search(ML.getHeader()); 154 155 // Then try the preheader and its predecessors. 156 std::function<void(MachineBasicBlock*)> GetPredecessor = 157 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 158 Order.push_back(MBB); 159 if (MBB->pred_size() == 1) 160 GetPredecessor(*MBB->pred_begin()); 161 }; 162 163 if (auto *Preheader = ML.getLoopPreheader()) 164 GetPredecessor(Preheader); 165 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true, true)) 166 GetPredecessor(Preheader); 167 } 168 }; 169 170 struct PredicatedMI { 171 MachineInstr *MI = nullptr; 172 SetVector<MachineInstr*> Predicates; 173 174 public: 175 PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) { 176 assert(I && "Instruction must not be null!"); 177 Predicates.insert(Preds.begin(), Preds.end()); 178 } 179 }; 180 181 // Represent the current state of the VPR and hold all instances which 182 // represent a VPT block, which is a list of instructions that begins with a 183 // VPT/VPST and has a maximum of four proceeding instructions. All 184 // instructions within the block are predicated upon the vpr and we allow 185 // instructions to define the vpr within in the block too. 186 class VPTState { 187 friend struct LowOverheadLoop; 188 189 SmallVector<MachineInstr *, 4> Insts; 190 191 static SmallVector<VPTState, 4> Blocks; 192 static SetVector<MachineInstr *> CurrentPredicates; 193 static std::map<MachineInstr *, 194 std::unique_ptr<PredicatedMI>> PredicatedInsts; 195 196 static void CreateVPTBlock(MachineInstr *MI) { 197 assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR)) 198 && "Can't begin VPT without predicate"); 199 Blocks.emplace_back(MI); 200 // The execution of MI is predicated upon the current set of instructions 201 // that are AND'ed together to form the VPR predicate value. In the case 202 // that MI is a VPT, CurrentPredicates will also just be MI. 203 PredicatedInsts.emplace( 204 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 205 } 206 207 static void reset() { 208 Blocks.clear(); 209 PredicatedInsts.clear(); 210 CurrentPredicates.clear(); 211 } 212 213 static void addInst(MachineInstr *MI) { 214 Blocks.back().insert(MI); 215 PredicatedInsts.emplace( 216 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 217 } 218 219 static void addPredicate(MachineInstr *MI) { 220 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI); 221 CurrentPredicates.insert(MI); 222 } 223 224 static void resetPredicate(MachineInstr *MI) { 225 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI); 226 CurrentPredicates.clear(); 227 CurrentPredicates.insert(MI); 228 } 229 230 public: 231 // Have we found an instruction within the block which defines the vpr? If 232 // so, not all the instructions in the block will have the same predicate. 233 static bool hasUniformPredicate(VPTState &Block) { 234 return getDivergent(Block) == nullptr; 235 } 236 237 // If it exists, return the first internal instruction which modifies the 238 // VPR. 239 static MachineInstr *getDivergent(VPTState &Block) { 240 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 241 for (unsigned i = 1; i < Insts.size(); ++i) { 242 MachineInstr *Next = Insts[i]; 243 if (isVectorPredicate(Next)) 244 return Next; // Found an instruction altering the vpr. 245 } 246 return nullptr; 247 } 248 249 // Return whether the given instruction is predicated upon a VCTP. 250 static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) { 251 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates; 252 if (Exclusive && Predicates.size() != 1) 253 return false; 254 for (auto *PredMI : Predicates) 255 if (isVCTP(PredMI)) 256 return true; 257 return false; 258 } 259 260 // Is the VPST, controlling the block entry, predicated upon a VCTP. 261 static bool isEntryPredicatedOnVCTP(VPTState &Block, 262 bool Exclusive = false) { 263 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 264 return isPredicatedOnVCTP(Insts.front(), Exclusive); 265 } 266 267 // If this block begins with a VPT, we can check whether it's using 268 // at least one predicated input(s), as well as possible loop invariant 269 // which would result in it being implicitly predicated. 270 static bool hasImplicitlyValidVPT(VPTState &Block, 271 ReachingDefAnalysis &RDA) { 272 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 273 MachineInstr *VPT = Insts.front(); 274 assert(isVPTOpcode(VPT->getOpcode()) && 275 "Expected VPT block to begin with VPT/VPST"); 276 277 if (VPT->getOpcode() == ARM::MVE_VPST) 278 return false; 279 280 auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) { 281 MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx)); 282 return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op); 283 }; 284 285 auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) { 286 MachineOperand &MO = MI->getOperand(Idx); 287 if (!MO.isReg() || !MO.getReg()) 288 return true; 289 290 SmallPtrSet<MachineInstr *, 2> Defs; 291 RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs); 292 if (Defs.empty()) 293 return true; 294 295 for (auto *Def : Defs) 296 if (Def->getParent() == VPT->getParent()) 297 return false; 298 return true; 299 }; 300 301 // Check that at least one of the operands is directly predicated on a 302 // vctp and allow an invariant value too. 303 return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) && 304 (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) && 305 (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2)); 306 } 307 308 static bool isValid(ReachingDefAnalysis &RDA) { 309 // All predication within the loop should be based on vctp. If the block 310 // isn't predicated on entry, check whether the vctp is within the block 311 // and that all other instructions are then predicated on it. 312 for (auto &Block : Blocks) { 313 if (isEntryPredicatedOnVCTP(Block, false) || 314 hasImplicitlyValidVPT(Block, RDA)) 315 continue; 316 317 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 318 // We don't know how to convert a block with just a VPT;VCTP into 319 // anything valid once we remove the VCTP. For now just bail out. 320 assert(isVPTOpcode(Insts.front()->getOpcode()) && 321 "Expected VPT block to start with a VPST or VPT!"); 322 if (Insts.size() == 2 && Insts.front()->getOpcode() != ARM::MVE_VPST && 323 isVCTP(Insts.back())) 324 return false; 325 326 for (auto *MI : Insts) { 327 // Check that any internal VCTPs are 'Then' predicated. 328 if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then) 329 return false; 330 // Skip other instructions that build up the predicate. 331 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI)) 332 continue; 333 // Check that any other instructions are predicated upon a vctp. 334 // TODO: We could infer when VPTs are implicitly predicated on the 335 // vctp (when the operands are predicated). 336 if (!isPredicatedOnVCTP(MI)) { 337 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI); 338 return false; 339 } 340 } 341 } 342 return true; 343 } 344 345 VPTState(MachineInstr *MI) { Insts.push_back(MI); } 346 347 void insert(MachineInstr *MI) { 348 Insts.push_back(MI); 349 // VPT/VPST + 4 predicated instructions. 350 assert(Insts.size() <= 5 && "Too many instructions in VPT block!"); 351 } 352 353 bool containsVCTP() const { 354 for (auto *MI : Insts) 355 if (isVCTP(MI)) 356 return true; 357 return false; 358 } 359 360 unsigned size() const { return Insts.size(); } 361 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; } 362 }; 363 364 struct LowOverheadLoop { 365 366 MachineLoop &ML; 367 MachineBasicBlock *Preheader = nullptr; 368 MachineLoopInfo &MLI; 369 ReachingDefAnalysis &RDA; 370 const TargetRegisterInfo &TRI; 371 const ARMBaseInstrInfo &TII; 372 MachineFunction *MF = nullptr; 373 MachineBasicBlock::iterator StartInsertPt; 374 MachineBasicBlock *StartInsertBB = nullptr; 375 MachineInstr *Start = nullptr; 376 MachineInstr *Dec = nullptr; 377 MachineInstr *End = nullptr; 378 MachineOperand TPNumElements; 379 SmallVector<MachineInstr*, 4> VCTPs; 380 SmallPtrSet<MachineInstr*, 4> ToRemove; 381 SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute; 382 SmallPtrSet<MachineInstr*, 4> DoubleWidthResultInstrs; 383 bool Revert = false; 384 bool CannotTailPredicate = false; 385 386 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 387 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI, 388 const ARMBaseInstrInfo &TII) 389 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII), 390 TPNumElements(MachineOperand::CreateImm(0)) { 391 MF = ML.getHeader()->getParent(); 392 if (auto *MBB = ML.getLoopPreheader()) 393 Preheader = MBB; 394 else if (auto *MBB = MLI.findLoopPreheader(&ML, true, true)) 395 Preheader = MBB; 396 VPTState::reset(); 397 } 398 399 // If this is an MVE instruction, check that we know how to use tail 400 // predication with it. Record VPT blocks and return whether the 401 // instruction is valid for tail predication. 402 bool ValidateMVEInst(MachineInstr *MI); 403 404 void AnalyseMVEInst(MachineInstr *MI) { 405 CannotTailPredicate = !ValidateMVEInst(MI); 406 } 407 408 bool IsTailPredicationLegal() const { 409 // For now, let's keep things really simple and only support a single 410 // block for tail predication. 411 return !Revert && FoundAllComponents() && !VCTPs.empty() && 412 !CannotTailPredicate && ML.getNumBlocks() == 1; 413 } 414 415 // Given that MI is a VCTP, check that is equivalent to any other VCTPs 416 // found. 417 bool AddVCTP(MachineInstr *MI); 418 419 // Check that the predication in the loop will be equivalent once we 420 // perform the conversion. Also ensure that we can provide the number 421 // of elements to the loop start instruction. 422 bool ValidateTailPredicate(); 423 424 // Check that any values available outside of the loop will be the same 425 // after tail predication conversion. 426 bool ValidateLiveOuts(); 427 428 // Is it safe to define LR with DLS/WLS? 429 // LR can be defined if it is the operand to start, because it's the same 430 // value, or if it's going to be equivalent to the operand to Start. 431 MachineInstr *isSafeToDefineLR(); 432 433 // Check the branch targets are within range and we satisfy our 434 // restrictions. 435 void Validate(ARMBasicBlockUtils *BBUtils); 436 437 bool FoundAllComponents() const { 438 return Start && Dec && End; 439 } 440 441 SmallVectorImpl<VPTState> &getVPTBlocks() { 442 return VPTState::Blocks; 443 } 444 445 // Return the operand for the loop start instruction. This will be the loop 446 // iteration count, or the number of elements if we're tail predicating. 447 MachineOperand &getLoopStartOperand() { 448 if (IsTailPredicationLegal()) 449 return TPNumElements; 450 return Start->getOperand(1); 451 } 452 453 unsigned getStartOpcode() const { 454 bool IsDo = isDoLoopStart(*Start); 455 if (!IsTailPredicationLegal()) 456 return IsDo ? ARM::t2DLS : ARM::t2WLS; 457 458 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo); 459 } 460 461 void dump() const { 462 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 463 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 464 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 465 if (!VCTPs.empty()) { 466 dbgs() << "ARM Loops: Found VCTP(s):\n"; 467 for (auto *MI : VCTPs) 468 dbgs() << " - " << *MI; 469 } 470 if (!FoundAllComponents()) 471 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 472 else if (!(Start && Dec && End)) 473 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 474 } 475 }; 476 477 class ARMLowOverheadLoops : public MachineFunctionPass { 478 MachineFunction *MF = nullptr; 479 MachineLoopInfo *MLI = nullptr; 480 ReachingDefAnalysis *RDA = nullptr; 481 const ARMBaseInstrInfo *TII = nullptr; 482 MachineRegisterInfo *MRI = nullptr; 483 const TargetRegisterInfo *TRI = nullptr; 484 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 485 486 public: 487 static char ID; 488 489 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 490 491 void getAnalysisUsage(AnalysisUsage &AU) const override { 492 AU.setPreservesCFG(); 493 AU.addRequired<MachineLoopInfo>(); 494 AU.addRequired<ReachingDefAnalysis>(); 495 MachineFunctionPass::getAnalysisUsage(AU); 496 } 497 498 bool runOnMachineFunction(MachineFunction &MF) override; 499 500 MachineFunctionProperties getRequiredProperties() const override { 501 return MachineFunctionProperties().set( 502 MachineFunctionProperties::Property::NoVRegs).set( 503 MachineFunctionProperties::Property::TracksLiveness); 504 } 505 506 StringRef getPassName() const override { 507 return ARM_LOW_OVERHEAD_LOOPS_NAME; 508 } 509 510 private: 511 bool ProcessLoop(MachineLoop *ML); 512 513 bool RevertNonLoops(); 514 515 void RevertWhile(MachineInstr *MI) const; 516 void RevertDo(MachineInstr *MI) const; 517 518 bool RevertLoopDec(MachineInstr *MI) const; 519 520 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 521 522 void RevertLoopEndDec(MachineInstr *MI) const; 523 524 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 525 526 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 527 528 void Expand(LowOverheadLoop &LoLoop); 529 530 void IterationCountDCE(LowOverheadLoop &LoLoop); 531 }; 532 } 533 534 char ARMLowOverheadLoops::ID = 0; 535 536 SmallVector<VPTState, 4> VPTState::Blocks; 537 SetVector<MachineInstr *> VPTState::CurrentPredicates; 538 std::map<MachineInstr *, 539 std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts; 540 541 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 542 false, false) 543 544 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA, 545 InstSet &ToRemove, InstSet &Ignore) { 546 547 // Check that we can remove all of Killed without having to modify any IT 548 // blocks. 549 auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) { 550 // Collect the dead code and the MBBs in which they reside. 551 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 552 for (auto *Dead : Killed) 553 BasicBlocks.insert(Dead->getParent()); 554 555 // Collect IT blocks in all affected basic blocks. 556 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 557 for (auto *MBB : BasicBlocks) { 558 for (auto &IT : *MBB) { 559 if (IT.getOpcode() != ARM::t2IT) 560 continue; 561 RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE), 562 ITBlocks[&IT]); 563 } 564 } 565 566 // If we're removing all of the instructions within an IT block, then 567 // also remove the IT instruction. 568 SmallPtrSet<MachineInstr *, 2> ModifiedITs; 569 SmallPtrSet<MachineInstr *, 2> RemoveITs; 570 for (auto *Dead : Killed) { 571 if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) { 572 MachineInstr *IT = RDA.getMIOperand(Dead, *MO); 573 RemoveITs.insert(IT); 574 auto &CurrentBlock = ITBlocks[IT]; 575 CurrentBlock.erase(Dead); 576 if (CurrentBlock.empty()) 577 ModifiedITs.erase(IT); 578 else 579 ModifiedITs.insert(IT); 580 } 581 } 582 if (!ModifiedITs.empty()) 583 return false; 584 Killed.insert(RemoveITs.begin(), RemoveITs.end()); 585 return true; 586 }; 587 588 SmallPtrSet<MachineInstr *, 2> Uses; 589 if (!RDA.isSafeToRemove(MI, Uses, Ignore)) 590 return false; 591 592 if (WontCorruptITs(Uses, RDA)) { 593 ToRemove.insert(Uses.begin(), Uses.end()); 594 LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI 595 << " - can also remove:\n"; 596 for (auto *Use : Uses) 597 dbgs() << " - " << *Use); 598 599 SmallPtrSet<MachineInstr*, 4> Killed; 600 RDA.collectKilledOperands(MI, Killed); 601 if (WontCorruptITs(Killed, RDA)) { 602 ToRemove.insert(Killed.begin(), Killed.end()); 603 LLVM_DEBUG(for (auto *Dead : Killed) 604 dbgs() << " - " << *Dead); 605 } 606 return true; 607 } 608 return false; 609 } 610 611 bool LowOverheadLoop::ValidateTailPredicate() { 612 if (!IsTailPredicationLegal()) { 613 LLVM_DEBUG(if (VCTPs.empty()) 614 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 615 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 616 return false; 617 } 618 619 assert(!VCTPs.empty() && "VCTP instruction expected but is not set"); 620 assert(ML.getBlocks().size() == 1 && 621 "Shouldn't be processing a loop with more than one block"); 622 623 if (DisableTailPredication) { 624 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n"); 625 return false; 626 } 627 628 if (!VPTState::isValid(RDA)) { 629 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n"); 630 return false; 631 } 632 633 if (!ValidateLiveOuts()) { 634 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n"); 635 return false; 636 } 637 638 // For tail predication, we need to provide the number of elements, instead 639 // of the iteration count, to the loop start instruction. The number of 640 // elements is provided to the vctp instruction, so we need to check that 641 // we can use this register at InsertPt. 642 MachineInstr *VCTP = VCTPs.back(); 643 if (Start->getOpcode() == ARM::t2DoLoopStartTP || 644 Start->getOpcode() == ARM::t2WhileLoopStartTP) { 645 TPNumElements = Start->getOperand(2); 646 StartInsertPt = Start; 647 StartInsertBB = Start->getParent(); 648 } else { 649 TPNumElements = VCTP->getOperand(1); 650 MCRegister NumElements = TPNumElements.getReg().asMCReg(); 651 652 // If the register is defined within loop, then we can't perform TP. 653 // TODO: Check whether this is just a mov of a register that would be 654 // available. 655 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 656 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 657 return false; 658 } 659 660 // The element count register maybe defined after InsertPt, in which case we 661 // need to try to move either InsertPt or the def so that the [w|d]lstp can 662 // use the value. 663 664 if (StartInsertPt != StartInsertBB->end() && 665 !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) { 666 if (auto *ElemDef = 667 RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) { 668 if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) { 669 ElemDef->removeFromParent(); 670 StartInsertBB->insert(StartInsertPt, ElemDef); 671 LLVM_DEBUG(dbgs() 672 << "ARM Loops: Moved element count def: " << *ElemDef); 673 } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) { 674 StartInsertPt->removeFromParent(); 675 StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 676 &*StartInsertPt); 677 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 678 } else { 679 // If we fail to move an instruction and the element count is provided 680 // by a mov, use the mov operand if it will have the same value at the 681 // insertion point 682 MachineOperand Operand = ElemDef->getOperand(1); 683 if (isMovRegOpcode(ElemDef->getOpcode()) && 684 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) == 685 RDA.getUniqueReachingMIDef(&*StartInsertPt, 686 Operand.getReg().asMCReg())) { 687 TPNumElements = Operand; 688 NumElements = TPNumElements.getReg(); 689 } else { 690 LLVM_DEBUG(dbgs() 691 << "ARM Loops: Unable to move element count to loop " 692 << "start instruction.\n"); 693 return false; 694 } 695 } 696 } 697 } 698 699 // Especially in the case of while loops, InsertBB may not be the 700 // preheader, so we need to check that the register isn't redefined 701 // before entering the loop. 702 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 703 MCRegister NumElements) { 704 if (MBB->empty()) 705 return false; 706 // NumElements is redefined in this block. 707 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 708 return true; 709 710 // Don't continue searching up through multiple predecessors. 711 if (MBB->pred_size() > 1) 712 return true; 713 714 return false; 715 }; 716 717 // Search backwards for a def, until we get to InsertBB. 718 MachineBasicBlock *MBB = Preheader; 719 while (MBB && MBB != StartInsertBB) { 720 if (CannotProvideElements(MBB, NumElements)) { 721 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 722 return false; 723 } 724 MBB = *MBB->pred_begin(); 725 } 726 } 727 728 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect 729 // world the [w|d]lstp instruction would be last instruction in the preheader 730 // and so it would only affect instructions within the loop body. But due to 731 // scheduling, and/or the logic in this pass (above), the insertion point can 732 // be moved earlier. So if the Loop Start isn't the last instruction in the 733 // preheader, and if the initial element count is smaller than the vector 734 // width, the Loop Start instruction will immediately generate one or more 735 // false lane mask which can, incorrectly, affect the proceeding MVE 736 // instructions in the preheader. 737 if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) { 738 LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n"); 739 return false; 740 } 741 742 // For any DoubleWidthResultInstrs we found whilst scanning instructions, they 743 // need to compute an output size that is smaller than the VCTP mask operates 744 // on. The VecSize of the DoubleWidthResult is the larger vector size - the 745 // size it extends into, so any VCTP VecSize <= is valid. 746 unsigned VCTPVecSize = getVecSize(*VCTP); 747 for (MachineInstr *MI : DoubleWidthResultInstrs) { 748 unsigned InstrVecSize = getVecSize(*MI); 749 if (InstrVecSize > VCTPVecSize) { 750 LLVM_DEBUG(dbgs() << "ARM Loops: Double width result larger than VCTP " 751 << "VecSize:\n" << *MI); 752 return false; 753 } 754 } 755 756 // Check that the value change of the element count is what we expect and 757 // that the predication will be equivalent. For this we need: 758 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 759 // and we can also allow register copies within the chain too. 760 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 761 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 762 }; 763 764 MachineBasicBlock *MBB = VCTP->getParent(); 765 // Remove modifications to the element count since they have no purpose in a 766 // tail predicated loop. Explicitly refer to the vctp operand no matter which 767 // register NumElements has been assigned to, since that is what the 768 // modifications will be using 769 if (auto *Def = RDA.getUniqueReachingMIDef( 770 &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) { 771 SmallPtrSet<MachineInstr*, 2> ElementChain; 772 SmallPtrSet<MachineInstr*, 2> Ignore; 773 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 774 775 Ignore.insert(VCTPs.begin(), VCTPs.end()); 776 777 if (TryRemove(Def, RDA, ElementChain, Ignore)) { 778 bool FoundSub = false; 779 780 for (auto *MI : ElementChain) { 781 if (isMovRegOpcode(MI->getOpcode())) 782 continue; 783 784 if (isSubImmOpcode(MI->getOpcode())) { 785 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) { 786 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 787 " count: " << *MI); 788 return false; 789 } 790 FoundSub = true; 791 } else { 792 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 793 " count: " << *MI); 794 return false; 795 } 796 } 797 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 798 } 799 } 800 801 // If we converted the LoopStart to a t2DoLoopStartTP/t2WhileLoopStartTP, we 802 // can also remove any extra instructions in the preheader, which often 803 // includes a now unused MOV. 804 if ((Start->getOpcode() == ARM::t2DoLoopStartTP || 805 Start->getOpcode() == ARM::t2WhileLoopStartTP) && 806 Preheader && !Preheader->empty() && 807 !RDA.hasLocalDefBefore(VCTP, VCTP->getOperand(1).getReg())) { 808 if (auto *Def = RDA.getUniqueReachingMIDef( 809 &Preheader->back(), VCTP->getOperand(1).getReg().asMCReg())) { 810 SmallPtrSet<MachineInstr*, 2> Ignore; 811 Ignore.insert(VCTPs.begin(), VCTPs.end()); 812 TryRemove(Def, RDA, ToRemove, Ignore); 813 } 814 } 815 816 return true; 817 } 818 819 static bool isRegInClass(const MachineOperand &MO, 820 const TargetRegisterClass *Class) { 821 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 822 } 823 824 // MVE 'narrowing' operate on half a lane, reading from half and writing 825 // to half, which are referred to has the top and bottom half. The other 826 // half retains its previous value. 827 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 828 const MCInstrDesc &MCID = MI.getDesc(); 829 uint64_t Flags = MCID.TSFlags; 830 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 831 } 832 833 // Some MVE instructions read from the top/bottom halves of their operand(s) 834 // and generate a vector result with result elements that are double the 835 // width of the input. 836 static bool producesDoubleWidthResult(const MachineInstr &MI) { 837 const MCInstrDesc &MCID = MI.getDesc(); 838 uint64_t Flags = MCID.TSFlags; 839 return (Flags & ARMII::DoubleWidthResult) != 0; 840 } 841 842 static bool isHorizontalReduction(const MachineInstr &MI) { 843 const MCInstrDesc &MCID = MI.getDesc(); 844 uint64_t Flags = MCID.TSFlags; 845 return (Flags & ARMII::HorizontalReduction) != 0; 846 } 847 848 // Can this instruction generate a non-zero result when given only zeroed 849 // operands? This allows us to know that, given operands with false bytes 850 // zeroed by masked loads, that the result will also contain zeros in those 851 // bytes. 852 static bool canGenerateNonZeros(const MachineInstr &MI) { 853 854 // Check for instructions which can write into a larger element size, 855 // possibly writing into a previous zero'd lane. 856 if (producesDoubleWidthResult(MI)) 857 return true; 858 859 switch (MI.getOpcode()) { 860 default: 861 break; 862 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 863 // fp16 -> fp32 vector conversions. 864 // Instructions that perform a NOT will generate 1s from 0s. 865 case ARM::MVE_VMVN: 866 case ARM::MVE_VORN: 867 // Count leading zeros will do just that! 868 case ARM::MVE_VCLZs8: 869 case ARM::MVE_VCLZs16: 870 case ARM::MVE_VCLZs32: 871 return true; 872 } 873 return false; 874 } 875 876 // Look at its register uses to see if it only can only receive zeros 877 // into its false lanes which would then produce zeros. Also check that 878 // the output register is also defined by an FalseLanesZero instruction 879 // so that if tail-predication happens, the lanes that aren't updated will 880 // still be zeros. 881 static bool producesFalseLanesZero(MachineInstr &MI, 882 const TargetRegisterClass *QPRs, 883 const ReachingDefAnalysis &RDA, 884 InstSet &FalseLanesZero) { 885 if (canGenerateNonZeros(MI)) 886 return false; 887 888 bool isPredicated = isVectorPredicated(&MI); 889 // Predicated loads will write zeros to the falsely predicated bytes of the 890 // destination register. 891 if (MI.mayLoad()) 892 return isPredicated; 893 894 auto IsZeroInit = [](MachineInstr *Def) { 895 return !isVectorPredicated(Def) && 896 Def->getOpcode() == ARM::MVE_VMOVimmi32 && 897 Def->getOperand(1).getImm() == 0; 898 }; 899 900 bool AllowScalars = isHorizontalReduction(MI); 901 for (auto &MO : MI.operands()) { 902 if (!MO.isReg() || !MO.getReg()) 903 continue; 904 if (!isRegInClass(MO, QPRs) && AllowScalars) 905 continue; 906 // Skip the lr predicate reg 907 int PIdx = llvm::findFirstVPTPredOperandIdx(MI); 908 if (PIdx != -1 && (int)MI.getOperandNo(&MO) == PIdx + 2) 909 continue; 910 911 // Check that this instruction will produce zeros in its false lanes: 912 // - If it only consumes false lanes zero or constant 0 (vmov #0) 913 // - If it's predicated, it only matters that it's def register already has 914 // false lane zeros, so we can ignore the uses. 915 SmallPtrSet<MachineInstr *, 2> Defs; 916 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs); 917 for (auto *Def : Defs) { 918 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def)) 919 continue; 920 if (MO.isUse() && isPredicated) 921 continue; 922 return false; 923 } 924 } 925 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 926 return true; 927 } 928 929 bool LowOverheadLoop::ValidateLiveOuts() { 930 // We want to find out if the tail-predicated version of this loop will 931 // produce the same values as the loop in its original form. For this to 932 // be true, the newly inserted implicit predication must not change the 933 // the (observable) results. 934 // We're doing this because many instructions in the loop will not be 935 // predicated and so the conversion from VPT predication to tail-predication 936 // can result in different values being produced; due to the tail-predication 937 // preventing many instructions from updating their falsely predicated 938 // lanes. This analysis assumes that all the instructions perform lane-wise 939 // operations and don't perform any exchanges. 940 // A masked load, whether through VPT or tail predication, will write zeros 941 // to any of the falsely predicated bytes. So, from the loads, we know that 942 // the false lanes are zeroed and here we're trying to track that those false 943 // lanes remain zero, or where they change, the differences are masked away 944 // by their user(s). 945 // All MVE stores have to be predicated, so we know that any predicate load 946 // operands, or stored results are equivalent already. Other explicitly 947 // predicated instructions will perform the same operation in the original 948 // loop and the tail-predicated form too. Because of this, we can insert 949 // loads, stores and other predicated instructions into our Predicated 950 // set and build from there. 951 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 952 SetVector<MachineInstr *> FalseLanesUnknown; 953 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 954 SmallPtrSet<MachineInstr *, 4> Predicated; 955 MachineBasicBlock *Header = ML.getHeader(); 956 957 LLVM_DEBUG(dbgs() << "ARM Loops: Validating Live outs\n"); 958 959 for (auto &MI : *Header) { 960 if (!shouldInspect(MI)) 961 continue; 962 963 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) 964 continue; 965 966 bool isPredicated = isVectorPredicated(&MI); 967 bool retainsOrReduces = 968 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI); 969 970 if (isPredicated) 971 Predicated.insert(&MI); 972 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) 973 FalseLanesZero.insert(&MI); 974 else if (MI.getNumDefs() == 0) 975 continue; 976 else if (!isPredicated && retainsOrReduces) { 977 LLVM_DEBUG(dbgs() << " Unpredicated instruction that retainsOrReduces: " << MI); 978 return false; 979 } 980 else if (!isPredicated) 981 FalseLanesUnknown.insert(&MI); 982 } 983 984 LLVM_DEBUG({ 985 dbgs() << " Predicated:\n"; 986 for (auto *I : Predicated) 987 dbgs() << " " << *I; 988 dbgs() << " FalseLanesZero:\n"; 989 for (auto *I : FalseLanesZero) 990 dbgs() << " " << *I; 991 dbgs() << " FalseLanesUnknown:\n"; 992 for (auto *I : FalseLanesUnknown) 993 dbgs() << " " << *I; 994 }); 995 996 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 997 SmallPtrSetImpl<MachineInstr *> &Predicated) { 998 SmallPtrSet<MachineInstr *, 2> Uses; 999 RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses); 1000 for (auto *Use : Uses) { 1001 if (Use != MI && !Predicated.count(Use)) 1002 return false; 1003 } 1004 return true; 1005 }; 1006 1007 // Visit the unknowns in reverse so that we can start at the values being 1008 // stored and then we can work towards the leaves, hopefully adding more 1009 // instructions to Predicated. Successfully terminating the loop means that 1010 // all the unknown values have to found to be masked by predicated user(s). 1011 // For any unpredicated values, we store them in NonPredicated so that we 1012 // can later check whether these form a reduction. 1013 SmallPtrSet<MachineInstr*, 2> NonPredicated; 1014 for (auto *MI : reverse(FalseLanesUnknown)) { 1015 for (auto &MO : MI->operands()) { 1016 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 1017 continue; 1018 if (!HasPredicatedUsers(MI, MO, Predicated)) { 1019 LLVM_DEBUG(dbgs() << " Found an unknown def of : " 1020 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 1021 NonPredicated.insert(MI); 1022 break; 1023 } 1024 } 1025 // Any unknown false lanes have been masked away by the user(s). 1026 if (!NonPredicated.contains(MI)) 1027 Predicated.insert(MI); 1028 } 1029 1030 SmallPtrSet<MachineInstr *, 2> LiveOutMIs; 1031 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 1032 ML.getExitBlocks(ExitBlocks); 1033 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 1034 assert(ExitBlocks.size() == 1 && "Expected a single exit block"); 1035 MachineBasicBlock *ExitBB = ExitBlocks.front(); 1036 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) { 1037 // TODO: Instead of blocking predication, we could move the vctp to the exit 1038 // block and calculate it's operand there in or the preheader. 1039 if (RegMask.PhysReg == ARM::VPR) { 1040 LLVM_DEBUG(dbgs() << " VPR is live in to the exit block."); 1041 return false; 1042 } 1043 // Check Q-regs that are live in the exit blocks. We don't collect scalars 1044 // because they won't be affected by lane predication. 1045 if (QPRs->contains(RegMask.PhysReg)) 1046 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg)) 1047 LiveOutMIs.insert(MI); 1048 } 1049 1050 // We've already validated that any VPT predication within the loop will be 1051 // equivalent when we perform the predication transformation; so we know that 1052 // any VPT predicated instruction is predicated upon VCTP. Any live-out 1053 // instruction needs to be predicated, so check this here. The instructions 1054 // in NonPredicated have been found to be a reduction that we can ensure its 1055 // legality. 1056 for (auto *MI : LiveOutMIs) { 1057 if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) { 1058 LLVM_DEBUG(dbgs() << " Unable to handle live out: " << *MI); 1059 return false; 1060 } 1061 } 1062 1063 return true; 1064 } 1065 1066 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) { 1067 if (Revert) 1068 return; 1069 1070 // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP] 1071 // can only jump back. 1072 auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End, 1073 ARMBasicBlockUtils *BBUtils, MachineLoop &ML) { 1074 MachineBasicBlock *TgtBB = End->getOpcode() == ARM::t2LoopEnd 1075 ? End->getOperand(1).getMBB() 1076 : End->getOperand(2).getMBB(); 1077 // TODO Maybe there's cases where the target doesn't have to be the header, 1078 // but for now be safe and revert. 1079 if (TgtBB != ML.getHeader()) { 1080 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n"); 1081 return false; 1082 } 1083 1084 // The WLS and LE instructions have 12-bits for the label offset. WLS 1085 // requires a positive offset, while LE uses negative. 1086 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 1087 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 1088 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 1089 return false; 1090 } 1091 1092 if (isWhileLoopStart(*Start)) { 1093 MachineBasicBlock *TargetBB = getWhileLoopStartTargetBB(*Start); 1094 if (BBUtils->getOffsetOf(Start) > BBUtils->getOffsetOf(TargetBB) || 1095 !BBUtils->isBBInRange(Start, TargetBB, 4094)) { 1096 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 1097 return false; 1098 } 1099 } 1100 return true; 1101 }; 1102 1103 StartInsertPt = MachineBasicBlock::iterator(Start); 1104 StartInsertBB = Start->getParent(); 1105 LLVM_DEBUG(dbgs() << "ARM Loops: Will insert LoopStart at " 1106 << *StartInsertPt); 1107 1108 Revert = !ValidateRanges(Start, End, BBUtils, ML); 1109 CannotTailPredicate = !ValidateTailPredicate(); 1110 } 1111 1112 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) { 1113 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI); 1114 if (VCTPs.empty()) { 1115 VCTPs.push_back(MI); 1116 return true; 1117 } 1118 1119 // If we find another VCTP, check whether it uses the same value as the main VCTP. 1120 // If it does, store it in the VCTPs set, else refuse it. 1121 MachineInstr *Prev = VCTPs.back(); 1122 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) || 1123 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) { 1124 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " 1125 "definition from the main VCTP"); 1126 return false; 1127 } 1128 VCTPs.push_back(MI); 1129 return true; 1130 } 1131 1132 static bool ValidateMVEStore(MachineInstr *MI, MachineLoop *ML) { 1133 1134 auto GetFrameIndex = [](MachineMemOperand *Operand) { 1135 const PseudoSourceValue *PseudoValue = Operand->getPseudoValue(); 1136 if (PseudoValue && PseudoValue->kind() == PseudoSourceValue::FixedStack) { 1137 if (const auto *FS = dyn_cast<FixedStackPseudoSourceValue>(PseudoValue)) { 1138 return FS->getFrameIndex(); 1139 } 1140 } 1141 return -1; 1142 }; 1143 1144 auto IsStackOp = [GetFrameIndex](MachineInstr *I) { 1145 switch (I->getOpcode()) { 1146 case ARM::MVE_VSTRWU32: 1147 case ARM::MVE_VLDRWU32: { 1148 return I->getOperand(1).getReg() == ARM::SP && 1149 I->memoperands().size() == 1 && 1150 GetFrameIndex(I->memoperands().front()) >= 0; 1151 } 1152 default: 1153 return false; 1154 } 1155 }; 1156 1157 // An unpredicated vector register spill is allowed if all of the uses of the 1158 // stack slot are within the loop 1159 if (MI->getOpcode() != ARM::MVE_VSTRWU32 || !IsStackOp(MI)) 1160 return false; 1161 1162 // Search all blocks after the loop for accesses to the same stack slot. 1163 // ReachingDefAnalysis doesn't work for sp as it relies on registers being 1164 // live-out (which sp never is) to know what blocks to look in 1165 if (MI->memoperands().size() == 0) 1166 return false; 1167 int FI = GetFrameIndex(MI->memoperands().front()); 1168 1169 auto &FrameInfo = MI->getParent()->getParent()->getFrameInfo(); 1170 if (FI == -1 || !FrameInfo.isSpillSlotObjectIndex(FI)) 1171 return false; 1172 1173 SmallVector<MachineBasicBlock *> Frontier; 1174 ML->getExitBlocks(Frontier); 1175 SmallPtrSet<MachineBasicBlock *, 4> Visited{MI->getParent()}; 1176 unsigned Idx = 0; 1177 while (Idx < Frontier.size()) { 1178 MachineBasicBlock *BB = Frontier[Idx]; 1179 bool LookAtSuccessors = true; 1180 for (auto &I : *BB) { 1181 if (!IsStackOp(&I) || I.memoperands().size() == 0) 1182 continue; 1183 if (GetFrameIndex(I.memoperands().front()) != FI) 1184 continue; 1185 // If this block has a store to the stack slot before any loads then we 1186 // can ignore the block 1187 if (I.getOpcode() == ARM::MVE_VSTRWU32) { 1188 LookAtSuccessors = false; 1189 break; 1190 } 1191 // If the store and the load are using the same stack slot then the 1192 // store isn't valid for tail predication 1193 if (I.getOpcode() == ARM::MVE_VLDRWU32) 1194 return false; 1195 } 1196 1197 if (LookAtSuccessors) { 1198 for (auto Succ : BB->successors()) { 1199 if (!Visited.contains(Succ) && !is_contained(Frontier, Succ)) 1200 Frontier.push_back(Succ); 1201 } 1202 } 1203 Visited.insert(BB); 1204 Idx++; 1205 } 1206 1207 return true; 1208 } 1209 1210 bool LowOverheadLoop::ValidateMVEInst(MachineInstr *MI) { 1211 if (CannotTailPredicate) 1212 return false; 1213 1214 if (!shouldInspect(*MI)) 1215 return true; 1216 1217 if (MI->getOpcode() == ARM::MVE_VPSEL || 1218 MI->getOpcode() == ARM::MVE_VPNOT) { 1219 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 1220 // 1) It will use the VPR as a predicate operand, but doesn't have to be 1221 // instead a VPT block, which means we can assert while building up 1222 // the VPT block because we don't find another VPT or VPST to being a new 1223 // one. 1224 // 2) VPSEL still requires a VPR operand even after tail predicating, 1225 // which means we can't remove it unless there is another 1226 // instruction, such as vcmp, that can provide the VPR def. 1227 return false; 1228 } 1229 1230 // Record all VCTPs and check that they're equivalent to one another. 1231 if (isVCTP(MI) && !AddVCTP(MI)) 1232 return false; 1233 1234 // Inspect uses first so that any instructions that alter the VPR don't 1235 // alter the predicate upon themselves. 1236 const MCInstrDesc &MCID = MI->getDesc(); 1237 bool IsUse = false; 1238 unsigned LastOpIdx = MI->getNumOperands() - 1; 1239 for (auto &Op : enumerate(reverse(MCID.operands()))) { 1240 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index()); 1241 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR) 1242 continue; 1243 1244 if (ARM::isVpred(Op.value().OperandType)) { 1245 VPTState::addInst(MI); 1246 IsUse = true; 1247 } else if (MI->getOpcode() != ARM::MVE_VPST) { 1248 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 1249 return false; 1250 } 1251 } 1252 1253 // If we find an instruction that has been marked as not valid for tail 1254 // predication, only allow the instruction if it's contained within a valid 1255 // VPT block. 1256 bool RequiresExplicitPredication = 1257 (MCID.TSFlags & ARMII::ValidForTailPredication) == 0; 1258 if (isDomainMVE(MI) && RequiresExplicitPredication) { 1259 if (!IsUse && producesDoubleWidthResult(*MI)) { 1260 DoubleWidthResultInstrs.insert(MI); 1261 return true; 1262 } 1263 1264 LLVM_DEBUG(if (!IsUse) dbgs() 1265 << "ARM Loops: Can't tail predicate: " << *MI); 1266 return IsUse; 1267 } 1268 1269 // If the instruction is already explicitly predicated, then the conversion 1270 // will be fine, but ensure that all store operations are predicated. 1271 if (MI->mayStore() && !ValidateMVEStore(MI, &ML)) 1272 return IsUse; 1273 1274 // If this instruction defines the VPR, update the predicate for the 1275 // proceeding instructions. 1276 if (isVectorPredicate(MI)) { 1277 // Clear the existing predicate when we're not in VPT Active state, 1278 // otherwise we add to it. 1279 if (!isVectorPredicated(MI)) 1280 VPTState::resetPredicate(MI); 1281 else 1282 VPTState::addPredicate(MI); 1283 } 1284 1285 // Finally once the predicate has been modified, we can start a new VPT 1286 // block if necessary. 1287 if (isVPTOpcode(MI->getOpcode())) 1288 VPTState::CreateVPTBlock(MI); 1289 1290 return true; 1291 } 1292 1293 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 1294 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 1295 if (!ST.hasLOB()) 1296 return false; 1297 1298 MF = &mf; 1299 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 1300 1301 MLI = &getAnalysis<MachineLoopInfo>(); 1302 RDA = &getAnalysis<ReachingDefAnalysis>(); 1303 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 1304 MRI = &MF->getRegInfo(); 1305 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 1306 TRI = ST.getRegisterInfo(); 1307 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 1308 BBUtils->computeAllBlockSizes(); 1309 BBUtils->adjustBBOffsetsAfter(&MF->front()); 1310 1311 bool Changed = false; 1312 for (auto ML : *MLI) { 1313 if (ML->isOutermost()) 1314 Changed |= ProcessLoop(ML); 1315 } 1316 Changed |= RevertNonLoops(); 1317 return Changed; 1318 } 1319 1320 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 1321 1322 bool Changed = false; 1323 1324 // Process inner loops first. 1325 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 1326 Changed |= ProcessLoop(*I); 1327 1328 LLVM_DEBUG({ 1329 dbgs() << "ARM Loops: Processing loop containing:\n"; 1330 if (auto *Preheader = ML->getLoopPreheader()) 1331 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n"; 1332 else if (auto *Preheader = MLI->findLoopPreheader(ML, true, true)) 1333 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n"; 1334 for (auto *MBB : ML->getBlocks()) 1335 dbgs() << " - Block: " << printMBBReference(*MBB) << "\n"; 1336 }); 1337 1338 // Search the given block for a loop start instruction. If one isn't found, 1339 // and there's only one predecessor block, search that one too. 1340 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 1341 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 1342 for (auto &MI : *MBB) { 1343 if (isLoopStart(MI)) 1344 return &MI; 1345 } 1346 if (MBB->pred_size() == 1) 1347 return SearchForStart(*MBB->pred_begin()); 1348 return nullptr; 1349 }; 1350 1351 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII); 1352 // Search the preheader for the start intrinsic. 1353 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 1354 // with potentially multiple set.loop.iterations, so we need to enable this. 1355 if (LoLoop.Preheader) 1356 LoLoop.Start = SearchForStart(LoLoop.Preheader); 1357 else 1358 return Changed; 1359 1360 // Find the low-overhead loop components and decide whether or not to fall 1361 // back to a normal loop. Also look for a vctp instructions and decide 1362 // whether we can convert that predicate using tail predication. 1363 for (auto *MBB : reverse(ML->getBlocks())) { 1364 for (auto &MI : *MBB) { 1365 if (MI.isDebugValue()) 1366 continue; 1367 else if (MI.getOpcode() == ARM::t2LoopDec) 1368 LoLoop.Dec = &MI; 1369 else if (MI.getOpcode() == ARM::t2LoopEnd) 1370 LoLoop.End = &MI; 1371 else if (MI.getOpcode() == ARM::t2LoopEndDec) 1372 LoLoop.End = LoLoop.Dec = &MI; 1373 else if (isLoopStart(MI)) 1374 LoLoop.Start = &MI; 1375 else if (MI.getDesc().isCall()) { 1376 // TODO: Though the call will require LE to execute again, does this 1377 // mean we should revert? Always executing LE hopefully should be 1378 // faster than performing a sub,cmp,br or even subs,br. 1379 LoLoop.Revert = true; 1380 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 1381 } else { 1382 // Record VPR defs and build up their corresponding vpt blocks. 1383 // Check we know how to tail predicate any mve instructions. 1384 LoLoop.AnalyseMVEInst(&MI); 1385 } 1386 } 1387 } 1388 1389 LLVM_DEBUG(LoLoop.dump()); 1390 if (!LoLoop.FoundAllComponents()) { 1391 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 1392 return Changed; 1393 } 1394 1395 assert(LoLoop.Start->getOpcode() != ARM::t2WhileLoopStart && 1396 "Expected t2WhileLoopStart to be removed before regalloc!"); 1397 1398 // Check that the only instruction using LoopDec is LoopEnd. This can only 1399 // happen when the Dec and End are separate, not a single t2LoopEndDec. 1400 // TODO: Check for copy chains that really have no effect. 1401 if (LoLoop.Dec != LoLoop.End) { 1402 SmallPtrSet<MachineInstr *, 2> Uses; 1403 RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses); 1404 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 1405 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 1406 LoLoop.Revert = true; 1407 } 1408 } 1409 LoLoop.Validate(BBUtils.get()); 1410 Expand(LoLoop); 1411 return true; 1412 } 1413 1414 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 1415 // beq that branches to the exit branch. 1416 // TODO: We could also try to generate a cbz if the value in LR is also in 1417 // another low register. 1418 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 1419 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 1420 MachineBasicBlock *DestBB = getWhileLoopStartTargetBB(*MI); 1421 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1422 ARM::tBcc : ARM::t2Bcc; 1423 1424 RevertWhileLoopStartLR(MI, TII, BrOpc); 1425 } 1426 1427 void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const { 1428 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI); 1429 RevertDoLoopStart(MI, TII); 1430 } 1431 1432 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 1433 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 1434 MachineBasicBlock *MBB = MI->getParent(); 1435 SmallPtrSet<MachineInstr*, 1> Ignore; 1436 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 1437 if (I->getOpcode() == ARM::t2LoopEnd) { 1438 Ignore.insert(&*I); 1439 break; 1440 } 1441 } 1442 1443 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1444 bool SetFlags = 1445 RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore); 1446 1447 llvm::RevertLoopDec(MI, TII, SetFlags); 1448 return SetFlags; 1449 } 1450 1451 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1452 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1453 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1454 1455 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1456 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1457 ARM::tBcc : ARM::t2Bcc; 1458 1459 llvm::RevertLoopEnd(MI, TII, BrOpc, SkipCmp); 1460 } 1461 1462 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1463 void ARMLowOverheadLoops::RevertLoopEndDec(MachineInstr *MI) const { 1464 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to subs, br: " << *MI); 1465 assert(MI->getOpcode() == ARM::t2LoopEndDec && "Expected a t2LoopEndDec!"); 1466 MachineBasicBlock *MBB = MI->getParent(); 1467 1468 MachineInstrBuilder MIB = 1469 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2SUBri)); 1470 MIB.addDef(ARM::LR); 1471 MIB.add(MI->getOperand(1)); 1472 MIB.addImm(1); 1473 MIB.addImm(ARMCC::AL); 1474 MIB.addReg(ARM::NoRegister); 1475 MIB.addReg(ARM::CPSR); 1476 MIB->getOperand(5).setIsDef(true); 1477 1478 MachineBasicBlock *DestBB = MI->getOperand(2).getMBB(); 1479 unsigned BrOpc = 1480 BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc; 1481 1482 // Create bne 1483 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1484 MIB.add(MI->getOperand(2)); // branch target 1485 MIB.addImm(ARMCC::NE); // condition code 1486 MIB.addReg(ARM::CPSR); 1487 1488 MI->eraseFromParent(); 1489 } 1490 1491 // Perform dead code elimation on the loop iteration count setup expression. 1492 // If we are tail-predicating, the number of elements to be processed is the 1493 // operand of the VCTP instruction in the vector body, see getCount(), which is 1494 // register $r3 in this example: 1495 // 1496 // $lr = big-itercount-expression 1497 // .. 1498 // $lr = t2DoLoopStart renamable $lr 1499 // vector.body: 1500 // .. 1501 // $vpr = MVE_VCTP32 renamable $r3 1502 // renamable $lr = t2LoopDec killed renamable $lr, 1 1503 // t2LoopEnd renamable $lr, %vector.body 1504 // tB %end 1505 // 1506 // What we would like achieve here is to replace the do-loop start pseudo 1507 // instruction t2DoLoopStart with: 1508 // 1509 // $lr = MVE_DLSTP_32 killed renamable $r3 1510 // 1511 // Thus, $r3 which defines the number of elements, is written to $lr, 1512 // and then we want to delete the whole chain that used to define $lr, 1513 // see the comment below how this chain could look like. 1514 // 1515 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1516 if (!LoLoop.IsTailPredicationLegal()) 1517 return; 1518 1519 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1520 1521 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 1); 1522 if (!Def) { 1523 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1524 return; 1525 } 1526 1527 // Collect and remove the users of iteration count. 1528 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1529 LoLoop.End }; 1530 if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed)) 1531 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1532 } 1533 1534 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1535 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1536 // When using tail-predication, try to delete the dead code that was used to 1537 // calculate the number of loop iterations. 1538 IterationCountDCE(LoLoop); 1539 1540 MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt; 1541 MachineInstr *Start = LoLoop.Start; 1542 MachineBasicBlock *MBB = LoLoop.StartInsertBB; 1543 unsigned Opc = LoLoop.getStartOpcode(); 1544 MachineOperand &Count = LoLoop.getLoopStartOperand(); 1545 1546 // A DLS lr, lr we needn't emit 1547 MachineInstr* NewStart; 1548 if (Opc == ARM::t2DLS && Count.isReg() && Count.getReg() == ARM::LR) { 1549 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't insert start: DLS lr, lr"); 1550 NewStart = nullptr; 1551 } else { 1552 MachineInstrBuilder MIB = 1553 BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc)); 1554 1555 MIB.addDef(ARM::LR); 1556 MIB.add(Count); 1557 if (isWhileLoopStart(*Start)) 1558 MIB.addMBB(getWhileLoopStartTargetBB(*Start)); 1559 1560 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1561 NewStart = &*MIB; 1562 } 1563 1564 LoLoop.ToRemove.insert(Start); 1565 return NewStart; 1566 } 1567 1568 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1569 auto RemovePredicate = [](MachineInstr *MI) { 1570 if (MI->isDebugInstr()) 1571 return; 1572 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1573 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 1574 assert(PIdx >= 1 && "Trying to unpredicate a non-predicated instruction"); 1575 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1576 "Expected Then predicate!"); 1577 MI->getOperand(PIdx).setImm(ARMVCC::None); 1578 MI->getOperand(PIdx + 1).setReg(0); 1579 }; 1580 1581 for (auto &Block : LoLoop.getVPTBlocks()) { 1582 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 1583 1584 auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) { 1585 assert(TheVCMP && "Replacing a removed or non-existent VCMP"); 1586 // Replace the VCMP with a VPT 1587 MachineInstrBuilder MIB = 1588 BuildMI(*At->getParent(), At, At->getDebugLoc(), 1589 TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode()))); 1590 MIB.addImm(ARMVCC::Then); 1591 // Register one 1592 MIB.add(TheVCMP->getOperand(1)); 1593 // Register two 1594 MIB.add(TheVCMP->getOperand(2)); 1595 // The comparison code, e.g. ge, eq, lt 1596 MIB.add(TheVCMP->getOperand(3)); 1597 LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB); 1598 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1599 LoLoop.ToRemove.insert(TheVCMP); 1600 TheVCMP = nullptr; 1601 }; 1602 1603 if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) { 1604 MachineInstr *VPST = Insts.front(); 1605 if (VPTState::hasUniformPredicate(Block)) { 1606 // A vpt block starting with VPST, is only predicated upon vctp and has no 1607 // internal vpr defs: 1608 // - Remove vpst. 1609 // - Unpredicate the remaining instructions. 1610 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1611 for (unsigned i = 1; i < Insts.size(); ++i) 1612 RemovePredicate(Insts[i]); 1613 } else { 1614 // The VPT block has a non-uniform predicate but it uses a vpst and its 1615 // entry is guarded only by a vctp, which means we: 1616 // - Need to remove the original vpst. 1617 // - Then need to unpredicate any following instructions, until 1618 // we come across the divergent vpr def. 1619 // - Insert a new vpst to predicate the instruction(s) that following 1620 // the divergent vpr def. 1621 MachineInstr *Divergent = VPTState::getDivergent(Block); 1622 MachineBasicBlock *MBB = Divergent->getParent(); 1623 auto DivergentNext = ++MachineBasicBlock::iterator(Divergent); 1624 while (DivergentNext != MBB->end() && DivergentNext->isDebugInstr()) 1625 ++DivergentNext; 1626 1627 bool DivergentNextIsPredicated = 1628 DivergentNext != MBB->end() && 1629 getVPTInstrPredicate(*DivergentNext) != ARMVCC::None; 1630 1631 for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext; 1632 I != E; ++I) 1633 RemovePredicate(&*I); 1634 1635 // Check if the instruction defining vpr is a vcmp so it can be combined 1636 // with the VPST This should be the divergent instruction 1637 MachineInstr *VCMP = 1638 VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr; 1639 1640 if (DivergentNextIsPredicated) { 1641 // Insert a VPST at the divergent only if the next instruction 1642 // would actually use it. A VCMP following a VPST can be 1643 // merged into a VPT so do that instead if the VCMP exists. 1644 if (!VCMP) { 1645 // Create a VPST (with a null mask for now, we'll recompute it 1646 // later) 1647 MachineInstrBuilder MIB = 1648 BuildMI(*Divergent->getParent(), Divergent, 1649 Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST)); 1650 MIB.addImm(0); 1651 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1652 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1653 } else { 1654 // No RDA checks are necessary here since the VPST would have been 1655 // directly after the VCMP 1656 ReplaceVCMPWithVPT(VCMP, VCMP); 1657 } 1658 } 1659 } 1660 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1661 LoLoop.ToRemove.insert(VPST); 1662 } else if (Block.containsVCTP()) { 1663 // The vctp will be removed, so either the entire block will be dead or 1664 // the block mask of the vp(s)t will need to be recomputed. 1665 MachineInstr *VPST = Insts.front(); 1666 if (Block.size() == 2) { 1667 assert(VPST->getOpcode() == ARM::MVE_VPST && 1668 "Found a VPST in an otherwise empty vpt block"); 1669 LoLoop.ToRemove.insert(VPST); 1670 } else 1671 LoLoop.BlockMasksToRecompute.insert(VPST); 1672 } else if (Insts.front()->getOpcode() == ARM::MVE_VPST) { 1673 // If this block starts with a VPST then attempt to merge it with the 1674 // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT 1675 // block that no longer exists 1676 MachineInstr *VPST = Insts.front(); 1677 auto Next = ++MachineBasicBlock::iterator(VPST); 1678 assert(getVPTInstrPredicate(*Next) != ARMVCC::None && 1679 "The instruction after a VPST must be predicated"); 1680 (void)Next; 1681 MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR); 1682 if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) && 1683 !LoLoop.ToRemove.contains(VprDef)) { 1684 MachineInstr *VCMP = VprDef; 1685 // The VCMP and VPST can only be merged if the VCMP's operands will have 1686 // the same values at the VPST. 1687 // If any of the instructions between the VCMP and VPST are predicated 1688 // then a different code path is expected to have merged the VCMP and 1689 // VPST already. 1690 if (!std::any_of(++MachineBasicBlock::iterator(VCMP), 1691 MachineBasicBlock::iterator(VPST), hasVPRUse) && 1692 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) && 1693 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) { 1694 ReplaceVCMPWithVPT(VCMP, VPST); 1695 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1696 LoLoop.ToRemove.insert(VPST); 1697 } 1698 } 1699 } 1700 } 1701 1702 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end()); 1703 } 1704 1705 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1706 1707 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1708 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1709 MachineInstr *End = LoLoop.End; 1710 MachineBasicBlock *MBB = End->getParent(); 1711 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1712 ARM::MVE_LETP : ARM::t2LEUpdate; 1713 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1714 TII->get(Opc)); 1715 MIB.addDef(ARM::LR); 1716 unsigned Off = LoLoop.Dec == LoLoop.End ? 1 : 0; 1717 MIB.add(End->getOperand(Off + 0)); 1718 MIB.add(End->getOperand(Off + 1)); 1719 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1720 LoLoop.ToRemove.insert(LoLoop.Dec); 1721 LoLoop.ToRemove.insert(End); 1722 return &*MIB; 1723 }; 1724 1725 // TODO: We should be able to automatically remove these branches before we 1726 // get here - probably by teaching analyzeBranch about the pseudo 1727 // instructions. 1728 // If there is an unconditional branch, after I, that just branches to the 1729 // next block, remove it. 1730 auto RemoveDeadBranch = [](MachineInstr *I) { 1731 MachineBasicBlock *BB = I->getParent(); 1732 MachineInstr *Terminator = &BB->instr_back(); 1733 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1734 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1735 if (BB->isLayoutSuccessor(Succ)) { 1736 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1737 Terminator->eraseFromParent(); 1738 } 1739 } 1740 }; 1741 1742 if (LoLoop.Revert) { 1743 if (isWhileLoopStart(*LoLoop.Start)) 1744 RevertWhile(LoLoop.Start); 1745 else 1746 RevertDo(LoLoop.Start); 1747 if (LoLoop.Dec == LoLoop.End) 1748 RevertLoopEndDec(LoLoop.End); 1749 else 1750 RevertLoopEnd(LoLoop.End, RevertLoopDec(LoLoop.Dec)); 1751 } else { 1752 LoLoop.Start = ExpandLoopStart(LoLoop); 1753 if (LoLoop.Start) 1754 RemoveDeadBranch(LoLoop.Start); 1755 LoLoop.End = ExpandLoopEnd(LoLoop); 1756 RemoveDeadBranch(LoLoop.End); 1757 if (LoLoop.IsTailPredicationLegal()) 1758 ConvertVPTBlocks(LoLoop); 1759 for (auto *I : LoLoop.ToRemove) { 1760 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1761 I->eraseFromParent(); 1762 } 1763 for (auto *I : LoLoop.BlockMasksToRecompute) { 1764 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1765 recomputeVPTBlockMask(*I); 1766 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1767 } 1768 } 1769 1770 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1771 DFS.ProcessLoop(); 1772 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1773 for (auto *MBB : PostOrder) { 1774 recomputeLiveIns(*MBB); 1775 // FIXME: For some reason, the live-in print order is non-deterministic for 1776 // our tests and I can't out why... So just sort them. 1777 MBB->sortUniqueLiveIns(); 1778 } 1779 1780 for (auto *MBB : reverse(PostOrder)) 1781 recomputeLivenessFlags(*MBB); 1782 1783 // We've moved, removed and inserted new instructions, so update RDA. 1784 RDA->reset(); 1785 } 1786 1787 bool ARMLowOverheadLoops::RevertNonLoops() { 1788 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1789 bool Changed = false; 1790 1791 for (auto &MBB : *MF) { 1792 SmallVector<MachineInstr*, 4> Starts; 1793 SmallVector<MachineInstr*, 4> Decs; 1794 SmallVector<MachineInstr*, 4> Ends; 1795 SmallVector<MachineInstr *, 4> EndDecs; 1796 1797 for (auto &I : MBB) { 1798 if (isLoopStart(I)) 1799 Starts.push_back(&I); 1800 else if (I.getOpcode() == ARM::t2LoopDec) 1801 Decs.push_back(&I); 1802 else if (I.getOpcode() == ARM::t2LoopEnd) 1803 Ends.push_back(&I); 1804 else if (I.getOpcode() == ARM::t2LoopEndDec) 1805 EndDecs.push_back(&I); 1806 } 1807 1808 if (Starts.empty() && Decs.empty() && Ends.empty() && EndDecs.empty()) 1809 continue; 1810 1811 Changed = true; 1812 1813 for (auto *Start : Starts) { 1814 if (isWhileLoopStart(*Start)) 1815 RevertWhile(Start); 1816 else 1817 RevertDo(Start); 1818 } 1819 for (auto *Dec : Decs) 1820 RevertLoopDec(Dec); 1821 1822 for (auto *End : Ends) 1823 RevertLoopEnd(End); 1824 for (auto *End : EndDecs) 1825 RevertLoopEndDec(End); 1826 } 1827 return Changed; 1828 } 1829 1830 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1831 return new ARMLowOverheadLoops(); 1832 } 1833