xref: /llvm-project/llvm/lib/Target/ARM/ARMLegalizerInfo.cpp (revision dcaa939ab75eadf0bea3753046b206288e94a7e9)
1 //===- ARMLegalizerInfo.cpp --------------------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the Machinelegalizer class for ARM.
10 /// \todo This should be generated by TableGen.
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARMLegalizerInfo.h"
14 #include "ARMCallLowering.h"
15 #include "ARMSubtarget.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
17 #include "llvm/CodeGen/LowLevelType.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/TargetOpcodes.h"
20 #include "llvm/CodeGen/ValueTypes.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Type.h"
23 
24 using namespace llvm;
25 using namespace LegalizeActions;
26 
27 /// FIXME: The following static functions are SizeChangeStrategy functions
28 /// that are meant to temporarily mimic the behaviour of the old legalization
29 /// based on doubling/halving non-legal types as closely as possible. This is
30 /// not entirly possible as only legalizing the types that are exactly a power
31 /// of 2 times the size of the legal types would require specifying all those
32 /// sizes explicitly.
33 /// In practice, not specifying those isn't a problem, and the below functions
34 /// should disappear quickly as we add support for legalizing non-power-of-2
35 /// sized types further.
36 static void
37 addAndInterleaveWithUnsupported(LegalizerInfo::SizeAndActionsVec &result,
38                                 const LegalizerInfo::SizeAndActionsVec &v) {
39   for (unsigned i = 0; i < v.size(); ++i) {
40     result.push_back(v[i]);
41     if (i + 1 < v[i].first && i + 1 < v.size() &&
42         v[i + 1].first != v[i].first + 1)
43       result.push_back({v[i].first + 1, Unsupported});
44   }
45 }
46 
47 static LegalizerInfo::SizeAndActionsVec
48 widen_8_16(const LegalizerInfo::SizeAndActionsVec &v) {
49   assert(v.size() >= 1);
50   assert(v[0].first > 17);
51   LegalizerInfo::SizeAndActionsVec result = {{1, Unsupported},
52                                              {8, WidenScalar},
53                                              {9, Unsupported},
54                                              {16, WidenScalar},
55                                              {17, Unsupported}};
56   addAndInterleaveWithUnsupported(result, v);
57   auto Largest = result.back().first;
58   result.push_back({Largest + 1, Unsupported});
59   return result;
60 }
61 
62 static bool AEABI(const ARMSubtarget &ST) {
63   return ST.isTargetAEABI() || ST.isTargetGNUAEABI() || ST.isTargetMuslAEABI();
64 }
65 
66 ARMLegalizerInfo::ARMLegalizerInfo(const ARMSubtarget &ST) {
67   using namespace TargetOpcode;
68 
69   const LLT p0 = LLT::pointer(0, 32);
70 
71   const LLT s1 = LLT::scalar(1);
72   const LLT s8 = LLT::scalar(8);
73   const LLT s16 = LLT::scalar(16);
74   const LLT s32 = LLT::scalar(32);
75   const LLT s64 = LLT::scalar(64);
76 
77   if (ST.isThumb1Only()) {
78     // Thumb1 is not supported yet.
79     computeTables();
80     verify(*ST.getInstrInfo());
81     return;
82   }
83 
84   getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT})
85       .legalForCartesianProduct({s32}, {s1, s8, s16});
86 
87   getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR})
88       .legalFor({s32})
89       .minScalar(0, s32);
90 
91   getActionDefinitionsBuilder({G_ASHR, G_LSHR, G_SHL})
92     .legalFor({{s32, s32}})
93     .clampScalar(1, s32, s32);
94 
95   bool HasHWDivide = (!ST.isThumb() && ST.hasDivideInARMMode()) ||
96                      (ST.isThumb() && ST.hasDivideInThumbMode());
97   if (HasHWDivide)
98     getActionDefinitionsBuilder({G_SDIV, G_UDIV})
99         .legalFor({s32})
100         .clampScalar(0, s32, s32);
101   else
102     getActionDefinitionsBuilder({G_SDIV, G_UDIV})
103         .libcallFor({s32})
104         .clampScalar(0, s32, s32);
105 
106   for (unsigned Op : {G_SREM, G_UREM}) {
107     setLegalizeScalarToDifferentSizeStrategy(Op, 0, widen_8_16);
108     if (HasHWDivide)
109       setAction({Op, s32}, Lower);
110     else if (AEABI(ST))
111       setAction({Op, s32}, Custom);
112     else
113       setAction({Op, s32}, Libcall);
114   }
115 
116   getActionDefinitionsBuilder(G_INTTOPTR).legalFor({{p0, s32}});
117   getActionDefinitionsBuilder(G_PTRTOINT).legalFor({{s32, p0}});
118 
119   getActionDefinitionsBuilder(G_CONSTANT)
120       .legalFor({s32, p0})
121       .clampScalar(0, s32, s32);
122 
123   getActionDefinitionsBuilder(G_ICMP)
124       .legalForCartesianProduct({s1}, {s32, p0})
125       .minScalar(1, s32);
126 
127   getActionDefinitionsBuilder(G_SELECT).legalForCartesianProduct({s32, p0},
128                                                                  {s1});
129 
130   // We're keeping these builders around because we'll want to add support for
131   // floating point to them.
132   auto &LoadStoreBuilder =
133       getActionDefinitionsBuilder({G_LOAD, G_STORE})
134           .legalForTypesWithMemDesc({
135               {s1, p0, 8, 8},
136               {s8, p0, 8, 8},
137               {s16, p0, 16, 8},
138               {s32, p0, 32, 8},
139               {p0, p0, 32, 8}});
140 
141   getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
142 
143   auto &PhiBuilder =
144       getActionDefinitionsBuilder(G_PHI)
145           .legalFor({s32, p0})
146           .minScalar(0, s32);
147 
148   getActionDefinitionsBuilder(G_GEP).legalFor({{p0, s32}});
149 
150   getActionDefinitionsBuilder(G_BRCOND).legalFor({s1});
151 
152   if (ST.isThumb()) {
153     // FIXME: merge with the code for non-Thumb.
154     computeTables();
155     verify(*ST.getInstrInfo());
156     return;
157   }
158 
159   getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0});
160 
161   if (ST.hasV5TOps()) {
162     getActionDefinitionsBuilder(G_CTLZ)
163         .legalFor({s32, s32})
164         .clampScalar(1, s32, s32)
165         .clampScalar(0, s32, s32);
166     getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF)
167         .lowerFor({s32, s32})
168         .clampScalar(1, s32, s32)
169         .clampScalar(0, s32, s32);
170   } else {
171     getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF)
172         .libcallFor({s32, s32})
173         .clampScalar(1, s32, s32)
174         .clampScalar(0, s32, s32);
175     getActionDefinitionsBuilder(G_CTLZ)
176         .lowerFor({s32, s32})
177         .clampScalar(1, s32, s32)
178         .clampScalar(0, s32, s32);
179   }
180 
181   if (!ST.useSoftFloat() && ST.hasVFP2()) {
182     getActionDefinitionsBuilder(
183         {G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FCONSTANT, G_FNEG})
184         .legalFor({s32, s64});
185 
186     LoadStoreBuilder.legalFor({{s64, p0}});
187     PhiBuilder.legalFor({s64});
188 
189     getActionDefinitionsBuilder(G_FCMP).legalForCartesianProduct({s1},
190                                                                  {s32, s64});
191 
192     getActionDefinitionsBuilder(G_MERGE_VALUES).legalFor({{s64, s32}});
193     getActionDefinitionsBuilder(G_UNMERGE_VALUES).legalFor({{s32, s64}});
194 
195     getActionDefinitionsBuilder(G_FPEXT).legalFor({{s64, s32}});
196     getActionDefinitionsBuilder(G_FPTRUNC).legalFor({{s32, s64}});
197 
198     getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
199         .legalForCartesianProduct({s32}, {s32, s64});
200     getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
201         .legalForCartesianProduct({s32, s64}, {s32});
202   } else {
203     getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV})
204         .libcallFor({s32, s64});
205 
206     LoadStoreBuilder.maxScalar(0, s32);
207 
208     for (auto Ty : {s32, s64})
209       setAction({G_FNEG, Ty}, Lower);
210 
211     getActionDefinitionsBuilder(G_FCONSTANT).customFor({s32, s64});
212 
213     getActionDefinitionsBuilder(G_FCMP).customForCartesianProduct({s1},
214                                                                   {s32, s64});
215 
216     if (AEABI(ST))
217       setFCmpLibcallsAEABI();
218     else
219       setFCmpLibcallsGNU();
220 
221     getActionDefinitionsBuilder(G_FPEXT).libcallFor({{s64, s32}});
222     getActionDefinitionsBuilder(G_FPTRUNC).libcallFor({{s32, s64}});
223 
224     getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
225         .libcallForCartesianProduct({s32}, {s32, s64});
226     getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
227         .libcallForCartesianProduct({s32, s64}, {s32});
228   }
229 
230   if (!ST.useSoftFloat() && ST.hasVFP4())
231     getActionDefinitionsBuilder(G_FMA).legalFor({s32, s64});
232   else
233     getActionDefinitionsBuilder(G_FMA).libcallFor({s32, s64});
234 
235   getActionDefinitionsBuilder({G_FREM, G_FPOW}).libcallFor({s32, s64});
236 
237   computeTables();
238   verify(*ST.getInstrInfo());
239 }
240 
241 void ARMLegalizerInfo::setFCmpLibcallsAEABI() {
242   // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be
243   // default-initialized.
244   FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
245   FCmp32Libcalls[CmpInst::FCMP_OEQ] = {
246       {RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE}};
247   FCmp32Libcalls[CmpInst::FCMP_OGE] = {
248       {RTLIB::OGE_F32, CmpInst::BAD_ICMP_PREDICATE}};
249   FCmp32Libcalls[CmpInst::FCMP_OGT] = {
250       {RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE}};
251   FCmp32Libcalls[CmpInst::FCMP_OLE] = {
252       {RTLIB::OLE_F32, CmpInst::BAD_ICMP_PREDICATE}};
253   FCmp32Libcalls[CmpInst::FCMP_OLT] = {
254       {RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}};
255   FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F32, CmpInst::ICMP_EQ}};
256   FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_EQ}};
257   FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_EQ}};
258   FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_EQ}};
259   FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_EQ}};
260   FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_EQ}};
261   FCmp32Libcalls[CmpInst::FCMP_UNO] = {
262       {RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}};
263   FCmp32Libcalls[CmpInst::FCMP_ONE] = {
264       {RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE},
265       {RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}};
266   FCmp32Libcalls[CmpInst::FCMP_UEQ] = {
267       {RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE},
268       {RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}};
269 
270   FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
271   FCmp64Libcalls[CmpInst::FCMP_OEQ] = {
272       {RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE}};
273   FCmp64Libcalls[CmpInst::FCMP_OGE] = {
274       {RTLIB::OGE_F64, CmpInst::BAD_ICMP_PREDICATE}};
275   FCmp64Libcalls[CmpInst::FCMP_OGT] = {
276       {RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE}};
277   FCmp64Libcalls[CmpInst::FCMP_OLE] = {
278       {RTLIB::OLE_F64, CmpInst::BAD_ICMP_PREDICATE}};
279   FCmp64Libcalls[CmpInst::FCMP_OLT] = {
280       {RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}};
281   FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F64, CmpInst::ICMP_EQ}};
282   FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_EQ}};
283   FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_EQ}};
284   FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_EQ}};
285   FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_EQ}};
286   FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_EQ}};
287   FCmp64Libcalls[CmpInst::FCMP_UNO] = {
288       {RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}};
289   FCmp64Libcalls[CmpInst::FCMP_ONE] = {
290       {RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE},
291       {RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}};
292   FCmp64Libcalls[CmpInst::FCMP_UEQ] = {
293       {RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE},
294       {RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}};
295 }
296 
297 void ARMLegalizerInfo::setFCmpLibcallsGNU() {
298   // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be
299   // default-initialized.
300   FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
301   FCmp32Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ}};
302   FCmp32Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F32, CmpInst::ICMP_SGE}};
303   FCmp32Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT}};
304   FCmp32Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F32, CmpInst::ICMP_SLE}};
305   FCmp32Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F32, CmpInst::ICMP_SLT}};
306   FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F32, CmpInst::ICMP_EQ}};
307   FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_SGE}};
308   FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_SGT}};
309   FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SLE}};
310   FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_SLT}};
311   FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_NE}};
312   FCmp32Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F32, CmpInst::ICMP_NE}};
313   FCmp32Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT},
314                                        {RTLIB::OLT_F32, CmpInst::ICMP_SLT}};
315   FCmp32Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ},
316                                        {RTLIB::UO_F32, CmpInst::ICMP_NE}};
317 
318   FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
319   FCmp64Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ}};
320   FCmp64Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F64, CmpInst::ICMP_SGE}};
321   FCmp64Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT}};
322   FCmp64Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F64, CmpInst::ICMP_SLE}};
323   FCmp64Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F64, CmpInst::ICMP_SLT}};
324   FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F64, CmpInst::ICMP_EQ}};
325   FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_SGE}};
326   FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_SGT}};
327   FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SLE}};
328   FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_SLT}};
329   FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_NE}};
330   FCmp64Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F64, CmpInst::ICMP_NE}};
331   FCmp64Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT},
332                                        {RTLIB::OLT_F64, CmpInst::ICMP_SLT}};
333   FCmp64Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ},
334                                        {RTLIB::UO_F64, CmpInst::ICMP_NE}};
335 }
336 
337 ARMLegalizerInfo::FCmpLibcallsList
338 ARMLegalizerInfo::getFCmpLibcalls(CmpInst::Predicate Predicate,
339                                   unsigned Size) const {
340   assert(CmpInst::isFPPredicate(Predicate) && "Unsupported FCmp predicate");
341   if (Size == 32)
342     return FCmp32Libcalls[Predicate];
343   if (Size == 64)
344     return FCmp64Libcalls[Predicate];
345   llvm_unreachable("Unsupported size for FCmp predicate");
346 }
347 
348 bool ARMLegalizerInfo::legalizeCustom(MachineInstr &MI,
349                                       MachineRegisterInfo &MRI,
350                                       MachineIRBuilder &MIRBuilder,
351                                       GISelChangeObserver &Observer) const {
352   using namespace TargetOpcode;
353 
354   MIRBuilder.setInstr(MI);
355   LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
356 
357   switch (MI.getOpcode()) {
358   default:
359     return false;
360   case G_SREM:
361   case G_UREM: {
362     unsigned OriginalResult = MI.getOperand(0).getReg();
363     auto Size = MRI.getType(OriginalResult).getSizeInBits();
364     if (Size != 32)
365       return false;
366 
367     auto Libcall =
368         MI.getOpcode() == G_SREM ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
369 
370     // Our divmod libcalls return a struct containing the quotient and the
371     // remainder. We need to create a virtual register for it.
372     Type *ArgTy = Type::getInt32Ty(Ctx);
373     StructType *RetTy = StructType::get(Ctx, {ArgTy, ArgTy}, /* Packed */ true);
374     auto RetVal = MRI.createGenericVirtualRegister(
375         getLLTForType(*RetTy, MIRBuilder.getMF().getDataLayout()));
376 
377     auto Status = createLibcall(MIRBuilder, Libcall, {RetVal, RetTy},
378                                 {{MI.getOperand(1).getReg(), ArgTy},
379                                  {MI.getOperand(2).getReg(), ArgTy}});
380     if (Status != LegalizerHelper::Legalized)
381       return false;
382 
383     // The remainder is the second result of divmod. Split the return value into
384     // a new, unused register for the quotient and the destination of the
385     // original instruction for the remainder.
386     MIRBuilder.buildUnmerge(
387         {MRI.createGenericVirtualRegister(LLT::scalar(32)), OriginalResult},
388         RetVal);
389     break;
390   }
391   case G_FCMP: {
392     assert(MRI.getType(MI.getOperand(2).getReg()) ==
393                MRI.getType(MI.getOperand(3).getReg()) &&
394            "Mismatched operands for G_FCMP");
395     auto OpSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
396 
397     auto OriginalResult = MI.getOperand(0).getReg();
398     auto Predicate =
399         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
400     auto Libcalls = getFCmpLibcalls(Predicate, OpSize);
401 
402     if (Libcalls.empty()) {
403       assert((Predicate == CmpInst::FCMP_TRUE ||
404               Predicate == CmpInst::FCMP_FALSE) &&
405              "Predicate needs libcalls, but none specified");
406       MIRBuilder.buildConstant(OriginalResult,
407                                Predicate == CmpInst::FCMP_TRUE ? 1 : 0);
408       MI.eraseFromParent();
409       return true;
410     }
411 
412     assert((OpSize == 32 || OpSize == 64) && "Unsupported operand size");
413     auto *ArgTy = OpSize == 32 ? Type::getFloatTy(Ctx) : Type::getDoubleTy(Ctx);
414     auto *RetTy = Type::getInt32Ty(Ctx);
415 
416     SmallVector<unsigned, 2> Results;
417     for (auto Libcall : Libcalls) {
418       auto LibcallResult = MRI.createGenericVirtualRegister(LLT::scalar(32));
419       auto Status =
420           createLibcall(MIRBuilder, Libcall.LibcallID, {LibcallResult, RetTy},
421                         {{MI.getOperand(2).getReg(), ArgTy},
422                          {MI.getOperand(3).getReg(), ArgTy}});
423 
424       if (Status != LegalizerHelper::Legalized)
425         return false;
426 
427       auto ProcessedResult =
428           Libcalls.size() == 1
429               ? OriginalResult
430               : MRI.createGenericVirtualRegister(MRI.getType(OriginalResult));
431 
432       // We have a result, but we need to transform it into a proper 1-bit 0 or
433       // 1, taking into account the different peculiarities of the values
434       // returned by the comparison functions.
435       CmpInst::Predicate ResultPred = Libcall.Predicate;
436       if (ResultPred == CmpInst::BAD_ICMP_PREDICATE) {
437         // We have a nice 0 or 1, and we just need to truncate it back to 1 bit
438         // to keep the types consistent.
439         MIRBuilder.buildTrunc(ProcessedResult, LibcallResult);
440       } else {
441         // We need to compare against 0.
442         assert(CmpInst::isIntPredicate(ResultPred) && "Unsupported predicate");
443         auto Zero = MRI.createGenericVirtualRegister(LLT::scalar(32));
444         MIRBuilder.buildConstant(Zero, 0);
445         MIRBuilder.buildICmp(ResultPred, ProcessedResult, LibcallResult, Zero);
446       }
447       Results.push_back(ProcessedResult);
448     }
449 
450     if (Results.size() != 1) {
451       assert(Results.size() == 2 && "Unexpected number of results");
452       MIRBuilder.buildOr(OriginalResult, Results[0], Results[1]);
453     }
454     break;
455   }
456   case G_FCONSTANT: {
457     // Convert to integer constants, while preserving the binary representation.
458     auto AsInteger =
459         MI.getOperand(1).getFPImm()->getValueAPF().bitcastToAPInt();
460     MIRBuilder.buildConstant(MI.getOperand(0).getReg(),
461                              *ConstantInt::get(Ctx, AsInteger));
462     break;
463   }
464   }
465 
466   MI.eraseFromParent();
467   return true;
468 }
469