xref: /llvm-project/llvm/lib/Target/ARM/ARMLegalizerInfo.cpp (revision 7145d22f81fc9265f63a900ae4bac81d79548390)
1 //===- ARMLegalizerInfo.cpp --------------------------------------*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file implements the targeting of the Machinelegalizer class for ARM.
11 /// \todo This should be generated by TableGen.
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMLegalizerInfo.h"
15 #include "ARMCallLowering.h"
16 #include "ARMSubtarget.h"
17 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
18 #include "llvm/CodeGen/LowLevelType.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/ValueTypes.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Type.h"
23 #include "llvm/Target/TargetOpcodes.h"
24 
25 using namespace llvm;
26 
27 #ifndef LLVM_BUILD_GLOBAL_ISEL
28 #error "You shouldn't build this"
29 #endif
30 
31 ARMLegalizerInfo::ARMLegalizerInfo(const ARMSubtarget &ST) {
32   using namespace TargetOpcode;
33 
34   const LLT p0 = LLT::pointer(0, 32);
35 
36   const LLT s1 = LLT::scalar(1);
37   const LLT s8 = LLT::scalar(8);
38   const LLT s16 = LLT::scalar(16);
39   const LLT s32 = LLT::scalar(32);
40   const LLT s64 = LLT::scalar(64);
41 
42   setAction({G_FRAME_INDEX, p0}, Legal);
43 
44   for (unsigned Op : {G_LOAD, G_STORE}) {
45     for (auto Ty : {s1, s8, s16, s32, p0})
46       setAction({Op, Ty}, Legal);
47     setAction({Op, 1, p0}, Legal);
48   }
49 
50   for (unsigned Op : {G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR}) {
51     for (auto Ty : {s1, s8, s16})
52       setAction({Op, Ty}, WidenScalar);
53     setAction({Op, s32}, Legal);
54   }
55 
56   for (unsigned Op : {G_SDIV, G_UDIV}) {
57     for (auto Ty : {s8, s16})
58       // FIXME: We need WidenScalar here, but in the case of targets with
59       // software division we'll also need Libcall afterwards. Treat as Custom
60       // until we have better support for chaining legalization actions.
61       setAction({Op, Ty}, Custom);
62     if (ST.hasDivideInARMMode())
63       setAction({Op, s32}, Legal);
64     else
65       setAction({Op, s32}, Libcall);
66   }
67 
68   // FIXME: Support s8 and s16 as well
69   for (unsigned Op : {G_SREM, G_UREM})
70     if (ST.hasDivideInARMMode())
71       setAction({Op, s32}, Lower);
72     else if (ST.isTargetAEABI() || ST.isTargetGNUAEABI() ||
73              ST.isTargetMuslAEABI())
74       setAction({Op, s32}, Custom);
75     else
76       setAction({Op, s32}, Libcall);
77 
78   for (unsigned Op : {G_SEXT, G_ZEXT}) {
79     setAction({Op, s32}, Legal);
80     for (auto Ty : {s1, s8, s16})
81       setAction({Op, 1, Ty}, Legal);
82   }
83 
84   setAction({G_GEP, p0}, Legal);
85   setAction({G_GEP, 1, s32}, Legal);
86 
87   setAction({G_SELECT, s32}, Legal);
88   setAction({G_SELECT, 1, s1}, Legal);
89 
90   setAction({G_CONSTANT, s32}, Legal);
91 
92   setAction({G_ICMP, s1}, Legal);
93   for (auto Ty : {s8, s16})
94     setAction({G_ICMP, 1, Ty}, WidenScalar);
95   for (auto Ty : {s32, p0})
96     setAction({G_ICMP, 1, Ty}, Legal);
97 
98   if (!ST.useSoftFloat() && ST.hasVFP2()) {
99     setAction({G_FADD, s32}, Legal);
100     setAction({G_FADD, s64}, Legal);
101 
102     setAction({G_LOAD, s64}, Legal);
103     setAction({G_STORE, s64}, Legal);
104   } else {
105     for (auto Ty : {s32, s64})
106       setAction({G_FADD, Ty}, Libcall);
107   }
108 
109   for (unsigned Op : {G_FREM, G_FPOW})
110     for (auto Ty : {s32, s64})
111       setAction({Op, Ty}, Libcall);
112 
113   computeTables();
114 }
115 
116 bool ARMLegalizerInfo::legalizeCustom(MachineInstr &MI,
117                                       MachineRegisterInfo &MRI,
118                                       MachineIRBuilder &MIRBuilder) const {
119   using namespace TargetOpcode;
120 
121   switch (MI.getOpcode()) {
122   default:
123     return false;
124   case G_SDIV:
125   case G_UDIV: {
126     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
127     if (Ty != LLT::scalar(16) && Ty != LLT::scalar(8))
128       return false;
129 
130     // We need to widen to 32 bits and then maybe, if the target requires,
131     // transform into a libcall.
132     LegalizerHelper Helper(MIRBuilder.getMF());
133 
134     MachineInstr *NewMI = nullptr;
135     Helper.MIRBuilder.recordInsertions([&](MachineInstr *MI) {
136       // Store the new, 32-bit div instruction.
137       if (MI->getOpcode() == G_SDIV || MI->getOpcode() == G_UDIV)
138         NewMI = MI;
139     });
140 
141     auto Result = Helper.widenScalar(MI, 0, LLT::scalar(32));
142     Helper.MIRBuilder.stopRecordingInsertions();
143     if (Result == LegalizerHelper::UnableToLegalize) {
144       return false;
145     }
146     assert(NewMI && "Couldn't find widened instruction");
147     assert((NewMI->getOpcode() == G_SDIV || NewMI->getOpcode() == G_UDIV) &&
148            "Unexpected widened instruction");
149     assert(MRI.getType(NewMI->getOperand(0).getReg()).getSizeInBits() == 32 &&
150            "Unexpected type for the widened instruction");
151 
152     Result = Helper.legalizeInstrStep(*NewMI);
153     if (Result == LegalizerHelper::UnableToLegalize) {
154       return false;
155     }
156     return true;
157   }
158   case G_SREM:
159   case G_UREM: {
160     unsigned OriginalResult = MI.getOperand(0).getReg();
161     auto Size = MRI.getType(OriginalResult).getSizeInBits();
162     if (Size != 32)
163       return false;
164 
165     auto Libcall =
166         MI.getOpcode() == G_SREM ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
167 
168     // Our divmod libcalls return a struct containing the quotient and the
169     // remainder. We need to create a virtual register for it.
170     auto &Ctx = MIRBuilder.getMF().getFunction()->getContext();
171     Type *ArgTy = Type::getInt32Ty(Ctx);
172     StructType *RetTy = StructType::get(Ctx, {ArgTy, ArgTy}, /* Packed */ true);
173     auto RetVal = MRI.createGenericVirtualRegister(
174         getLLTForType(*RetTy, MIRBuilder.getMF().getDataLayout()));
175 
176     auto Status = replaceWithLibcall(MI, MIRBuilder, Libcall, {RetVal, RetTy},
177                                      {{MI.getOperand(1).getReg(), ArgTy},
178                                       {MI.getOperand(2).getReg(), ArgTy}});
179     if (Status != LegalizerHelper::Legalized)
180       return false;
181 
182     // The remainder is the second result of divmod. Split the return value into
183     // a new, unused register for the quotient and the destination of the
184     // original instruction for the remainder.
185     MIRBuilder.buildUnmerge(
186         {MRI.createGenericVirtualRegister(LLT::scalar(32)), OriginalResult},
187         RetVal);
188 
189     return LegalizerHelper::Legalized;
190   }
191   }
192 }
193