xref: /llvm-project/llvm/lib/Target/ARM/ARMLegalizerInfo.cpp (revision 30989e492b8e32ec5f558777b8988ccea8ce5155)
1 //===- ARMLegalizerInfo.cpp --------------------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the Machinelegalizer class for ARM.
10 /// \todo This should be generated by TableGen.
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARMLegalizerInfo.h"
14 #include "ARMCallLowering.h"
15 #include "ARMSubtarget.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
17 #include "llvm/CodeGen/LowLevelType.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/TargetOpcodes.h"
20 #include "llvm/CodeGen/ValueTypes.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Type.h"
23 
24 using namespace llvm;
25 using namespace LegalizeActions;
26 
27 /// FIXME: The following static functions are SizeChangeStrategy functions
28 /// that are meant to temporarily mimic the behaviour of the old legalization
29 /// based on doubling/halving non-legal types as closely as possible. This is
30 /// not entirly possible as only legalizing the types that are exactly a power
31 /// of 2 times the size of the legal types would require specifying all those
32 /// sizes explicitly.
33 /// In practice, not specifying those isn't a problem, and the below functions
34 /// should disappear quickly as we add support for legalizing non-power-of-2
35 /// sized types further.
36 static void
37 addAndInterleaveWithUnsupported(LegalizerInfo::SizeAndActionsVec &result,
38                                 const LegalizerInfo::SizeAndActionsVec &v) {
39   for (unsigned i = 0; i < v.size(); ++i) {
40     result.push_back(v[i]);
41     if (i + 1 < v[i].first && i + 1 < v.size() &&
42         v[i + 1].first != v[i].first + 1)
43       result.push_back({v[i].first + 1, Unsupported});
44   }
45 }
46 
47 static LegalizerInfo::SizeAndActionsVec
48 widen_8_16(const LegalizerInfo::SizeAndActionsVec &v) {
49   assert(v.size() >= 1);
50   assert(v[0].first > 17);
51   LegalizerInfo::SizeAndActionsVec result = {{1, Unsupported},
52                                              {8, WidenScalar},
53                                              {9, Unsupported},
54                                              {16, WidenScalar},
55                                              {17, Unsupported}};
56   addAndInterleaveWithUnsupported(result, v);
57   auto Largest = result.back().first;
58   result.push_back({Largest + 1, Unsupported});
59   return result;
60 }
61 
62 static bool AEABI(const ARMSubtarget &ST) {
63   return ST.isTargetAEABI() || ST.isTargetGNUAEABI() || ST.isTargetMuslAEABI();
64 }
65 
66 ARMLegalizerInfo::ARMLegalizerInfo(const ARMSubtarget &ST) {
67   using namespace TargetOpcode;
68 
69   const LLT p0 = LLT::pointer(0, 32);
70 
71   const LLT s1 = LLT::scalar(1);
72   const LLT s8 = LLT::scalar(8);
73   const LLT s16 = LLT::scalar(16);
74   const LLT s32 = LLT::scalar(32);
75   const LLT s64 = LLT::scalar(64);
76 
77   if (ST.isThumb1Only()) {
78     // Thumb1 is not supported yet.
79     computeTables();
80     verify(*ST.getInstrInfo());
81     return;
82   }
83 
84   getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT})
85       .legalForCartesianProduct({s32}, {s1, s8, s16});
86 
87   getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR})
88       .legalFor({s32})
89       .minScalar(0, s32);
90 
91   getActionDefinitionsBuilder(G_INTTOPTR).legalFor({{p0, s32}});
92   getActionDefinitionsBuilder(G_PTRTOINT).legalFor({{s32, p0}});
93 
94   getActionDefinitionsBuilder(G_CONSTANT)
95       .legalFor({s32, p0})
96       .clampScalar(0, s32, s32);
97 
98   // We're keeping these builders around because we'll want to add support for
99   // floating point to them.
100   auto &LoadStoreBuilder =
101       getActionDefinitionsBuilder({G_LOAD, G_STORE})
102           .legalForTypesWithMemSize({
103               {s1, p0, 8},
104               {s8, p0, 8},
105               {s16, p0, 16},
106               {s32, p0, 32},
107               {p0, p0, 32}});
108 
109   if (ST.isThumb()) {
110     // FIXME: merge with the code for non-Thumb.
111     computeTables();
112     verify(*ST.getInstrInfo());
113     return;
114   }
115 
116   getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0});
117   getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
118 
119   if (ST.hasDivideInARMMode())
120     getActionDefinitionsBuilder({G_SDIV, G_UDIV})
121         .legalFor({s32})
122         .clampScalar(0, s32, s32);
123   else
124     getActionDefinitionsBuilder({G_SDIV, G_UDIV})
125         .libcallFor({s32})
126         .clampScalar(0, s32, s32);
127 
128   for (unsigned Op : {G_SREM, G_UREM}) {
129     setLegalizeScalarToDifferentSizeStrategy(Op, 0, widen_8_16);
130     if (ST.hasDivideInARMMode())
131       setAction({Op, s32}, Lower);
132     else if (AEABI(ST))
133       setAction({Op, s32}, Custom);
134     else
135       setAction({Op, s32}, Libcall);
136   }
137 
138   getActionDefinitionsBuilder(G_INTTOPTR).legalFor({{p0, s32}});
139   getActionDefinitionsBuilder(G_PTRTOINT).legalFor({{s32, p0}});
140 
141   getActionDefinitionsBuilder({G_ASHR, G_LSHR, G_SHL})
142     .legalFor({{s32, s32}})
143     .clampScalar(1, s32, s32);
144 
145   if (ST.hasV5TOps()) {
146     getActionDefinitionsBuilder(G_CTLZ)
147         .legalFor({s32})
148         .clampScalar(0, s32, s32);
149     getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF)
150         .lowerFor({s32})
151         .clampScalar(0, s32, s32);
152   } else {
153     getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF)
154         .libcallFor({s32})
155         .clampScalar(0, s32, s32);
156     getActionDefinitionsBuilder(G_CTLZ)
157         .lowerFor({s32})
158         .clampScalar(0, s32, s32);
159   }
160 
161   getActionDefinitionsBuilder(G_GEP).legalFor({{p0, s32}});
162 
163   getActionDefinitionsBuilder(G_SELECT).legalForCartesianProduct({s32, p0},
164                                                                  {s1});
165 
166   getActionDefinitionsBuilder(G_BRCOND).legalFor({s1});
167 
168   getActionDefinitionsBuilder(G_ICMP)
169       .legalForCartesianProduct({s1}, {s32, p0})
170       .minScalar(1, s32);
171 
172   // We're keeping these builders around because we'll want to add support for
173   // floating point to them.
174   auto &PhiBuilder =
175       getActionDefinitionsBuilder(G_PHI).legalFor({s32, p0}).minScalar(0, s32);
176 
177   if (!ST.useSoftFloat() && ST.hasVFP2()) {
178     getActionDefinitionsBuilder(
179         {G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FCONSTANT, G_FNEG})
180         .legalFor({s32, s64});
181 
182     LoadStoreBuilder.legalFor({{s64, p0}});
183     PhiBuilder.legalFor({s64});
184 
185     getActionDefinitionsBuilder(G_FCMP).legalForCartesianProduct({s1},
186                                                                  {s32, s64});
187 
188     getActionDefinitionsBuilder(G_MERGE_VALUES).legalFor({{s64, s32}});
189     getActionDefinitionsBuilder(G_UNMERGE_VALUES).legalFor({{s32, s64}});
190 
191     getActionDefinitionsBuilder(G_FPEXT).legalFor({{s64, s32}});
192     getActionDefinitionsBuilder(G_FPTRUNC).legalFor({{s32, s64}});
193 
194     getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
195         .legalForCartesianProduct({s32}, {s32, s64});
196     getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
197         .legalForCartesianProduct({s32, s64}, {s32});
198   } else {
199     getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV})
200         .libcallFor({s32, s64});
201 
202     LoadStoreBuilder.maxScalar(0, s32);
203 
204     for (auto Ty : {s32, s64})
205       setAction({G_FNEG, Ty}, Lower);
206 
207     getActionDefinitionsBuilder(G_FCONSTANT).customFor({s32, s64});
208 
209     getActionDefinitionsBuilder(G_FCMP).customForCartesianProduct({s1},
210                                                                   {s32, s64});
211 
212     if (AEABI(ST))
213       setFCmpLibcallsAEABI();
214     else
215       setFCmpLibcallsGNU();
216 
217     getActionDefinitionsBuilder(G_FPEXT).libcallFor({{s64, s32}});
218     getActionDefinitionsBuilder(G_FPTRUNC).libcallFor({{s32, s64}});
219 
220     getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
221         .libcallForCartesianProduct({s32}, {s32, s64});
222     getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
223         .libcallForCartesianProduct({s32, s64}, {s32});
224   }
225 
226   if (!ST.useSoftFloat() && ST.hasVFP4())
227     getActionDefinitionsBuilder(G_FMA).legalFor({s32, s64});
228   else
229     getActionDefinitionsBuilder(G_FMA).libcallFor({s32, s64});
230 
231   getActionDefinitionsBuilder({G_FREM, G_FPOW}).libcallFor({s32, s64});
232 
233   computeTables();
234   verify(*ST.getInstrInfo());
235 }
236 
237 void ARMLegalizerInfo::setFCmpLibcallsAEABI() {
238   // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be
239   // default-initialized.
240   FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
241   FCmp32Libcalls[CmpInst::FCMP_OEQ] = {
242       {RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE}};
243   FCmp32Libcalls[CmpInst::FCMP_OGE] = {
244       {RTLIB::OGE_F32, CmpInst::BAD_ICMP_PREDICATE}};
245   FCmp32Libcalls[CmpInst::FCMP_OGT] = {
246       {RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE}};
247   FCmp32Libcalls[CmpInst::FCMP_OLE] = {
248       {RTLIB::OLE_F32, CmpInst::BAD_ICMP_PREDICATE}};
249   FCmp32Libcalls[CmpInst::FCMP_OLT] = {
250       {RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}};
251   FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F32, CmpInst::ICMP_EQ}};
252   FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_EQ}};
253   FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_EQ}};
254   FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_EQ}};
255   FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_EQ}};
256   FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_EQ}};
257   FCmp32Libcalls[CmpInst::FCMP_UNO] = {
258       {RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}};
259   FCmp32Libcalls[CmpInst::FCMP_ONE] = {
260       {RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE},
261       {RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}};
262   FCmp32Libcalls[CmpInst::FCMP_UEQ] = {
263       {RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE},
264       {RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}};
265 
266   FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
267   FCmp64Libcalls[CmpInst::FCMP_OEQ] = {
268       {RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE}};
269   FCmp64Libcalls[CmpInst::FCMP_OGE] = {
270       {RTLIB::OGE_F64, CmpInst::BAD_ICMP_PREDICATE}};
271   FCmp64Libcalls[CmpInst::FCMP_OGT] = {
272       {RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE}};
273   FCmp64Libcalls[CmpInst::FCMP_OLE] = {
274       {RTLIB::OLE_F64, CmpInst::BAD_ICMP_PREDICATE}};
275   FCmp64Libcalls[CmpInst::FCMP_OLT] = {
276       {RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}};
277   FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F64, CmpInst::ICMP_EQ}};
278   FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_EQ}};
279   FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_EQ}};
280   FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_EQ}};
281   FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_EQ}};
282   FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_EQ}};
283   FCmp64Libcalls[CmpInst::FCMP_UNO] = {
284       {RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}};
285   FCmp64Libcalls[CmpInst::FCMP_ONE] = {
286       {RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE},
287       {RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}};
288   FCmp64Libcalls[CmpInst::FCMP_UEQ] = {
289       {RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE},
290       {RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}};
291 }
292 
293 void ARMLegalizerInfo::setFCmpLibcallsGNU() {
294   // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be
295   // default-initialized.
296   FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
297   FCmp32Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ}};
298   FCmp32Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F32, CmpInst::ICMP_SGE}};
299   FCmp32Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT}};
300   FCmp32Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F32, CmpInst::ICMP_SLE}};
301   FCmp32Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F32, CmpInst::ICMP_SLT}};
302   FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F32, CmpInst::ICMP_EQ}};
303   FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_SGE}};
304   FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_SGT}};
305   FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SLE}};
306   FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_SLT}};
307   FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_NE}};
308   FCmp32Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F32, CmpInst::ICMP_NE}};
309   FCmp32Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT},
310                                        {RTLIB::OLT_F32, CmpInst::ICMP_SLT}};
311   FCmp32Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ},
312                                        {RTLIB::UO_F32, CmpInst::ICMP_NE}};
313 
314   FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
315   FCmp64Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ}};
316   FCmp64Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F64, CmpInst::ICMP_SGE}};
317   FCmp64Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT}};
318   FCmp64Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F64, CmpInst::ICMP_SLE}};
319   FCmp64Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F64, CmpInst::ICMP_SLT}};
320   FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F64, CmpInst::ICMP_EQ}};
321   FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_SGE}};
322   FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_SGT}};
323   FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SLE}};
324   FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_SLT}};
325   FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_NE}};
326   FCmp64Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F64, CmpInst::ICMP_NE}};
327   FCmp64Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT},
328                                        {RTLIB::OLT_F64, CmpInst::ICMP_SLT}};
329   FCmp64Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ},
330                                        {RTLIB::UO_F64, CmpInst::ICMP_NE}};
331 }
332 
333 ARMLegalizerInfo::FCmpLibcallsList
334 ARMLegalizerInfo::getFCmpLibcalls(CmpInst::Predicate Predicate,
335                                   unsigned Size) const {
336   assert(CmpInst::isFPPredicate(Predicate) && "Unsupported FCmp predicate");
337   if (Size == 32)
338     return FCmp32Libcalls[Predicate];
339   if (Size == 64)
340     return FCmp64Libcalls[Predicate];
341   llvm_unreachable("Unsupported size for FCmp predicate");
342 }
343 
344 bool ARMLegalizerInfo::legalizeCustom(MachineInstr &MI,
345                                       MachineRegisterInfo &MRI,
346                                       MachineIRBuilder &MIRBuilder,
347                                       GISelChangeObserver &Observer) const {
348   using namespace TargetOpcode;
349 
350   MIRBuilder.setInstr(MI);
351   LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
352 
353   switch (MI.getOpcode()) {
354   default:
355     return false;
356   case G_SREM:
357   case G_UREM: {
358     unsigned OriginalResult = MI.getOperand(0).getReg();
359     auto Size = MRI.getType(OriginalResult).getSizeInBits();
360     if (Size != 32)
361       return false;
362 
363     auto Libcall =
364         MI.getOpcode() == G_SREM ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
365 
366     // Our divmod libcalls return a struct containing the quotient and the
367     // remainder. We need to create a virtual register for it.
368     Type *ArgTy = Type::getInt32Ty(Ctx);
369     StructType *RetTy = StructType::get(Ctx, {ArgTy, ArgTy}, /* Packed */ true);
370     auto RetVal = MRI.createGenericVirtualRegister(
371         getLLTForType(*RetTy, MIRBuilder.getMF().getDataLayout()));
372 
373     auto Status = createLibcall(MIRBuilder, Libcall, {RetVal, RetTy},
374                                 {{MI.getOperand(1).getReg(), ArgTy},
375                                  {MI.getOperand(2).getReg(), ArgTy}});
376     if (Status != LegalizerHelper::Legalized)
377       return false;
378 
379     // The remainder is the second result of divmod. Split the return value into
380     // a new, unused register for the quotient and the destination of the
381     // original instruction for the remainder.
382     MIRBuilder.buildUnmerge(
383         {MRI.createGenericVirtualRegister(LLT::scalar(32)), OriginalResult},
384         RetVal);
385     break;
386   }
387   case G_FCMP: {
388     assert(MRI.getType(MI.getOperand(2).getReg()) ==
389                MRI.getType(MI.getOperand(3).getReg()) &&
390            "Mismatched operands for G_FCMP");
391     auto OpSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
392 
393     auto OriginalResult = MI.getOperand(0).getReg();
394     auto Predicate =
395         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
396     auto Libcalls = getFCmpLibcalls(Predicate, OpSize);
397 
398     if (Libcalls.empty()) {
399       assert((Predicate == CmpInst::FCMP_TRUE ||
400               Predicate == CmpInst::FCMP_FALSE) &&
401              "Predicate needs libcalls, but none specified");
402       MIRBuilder.buildConstant(OriginalResult,
403                                Predicate == CmpInst::FCMP_TRUE ? 1 : 0);
404       MI.eraseFromParent();
405       return true;
406     }
407 
408     assert((OpSize == 32 || OpSize == 64) && "Unsupported operand size");
409     auto *ArgTy = OpSize == 32 ? Type::getFloatTy(Ctx) : Type::getDoubleTy(Ctx);
410     auto *RetTy = Type::getInt32Ty(Ctx);
411 
412     SmallVector<unsigned, 2> Results;
413     for (auto Libcall : Libcalls) {
414       auto LibcallResult = MRI.createGenericVirtualRegister(LLT::scalar(32));
415       auto Status =
416           createLibcall(MIRBuilder, Libcall.LibcallID, {LibcallResult, RetTy},
417                         {{MI.getOperand(2).getReg(), ArgTy},
418                          {MI.getOperand(3).getReg(), ArgTy}});
419 
420       if (Status != LegalizerHelper::Legalized)
421         return false;
422 
423       auto ProcessedResult =
424           Libcalls.size() == 1
425               ? OriginalResult
426               : MRI.createGenericVirtualRegister(MRI.getType(OriginalResult));
427 
428       // We have a result, but we need to transform it into a proper 1-bit 0 or
429       // 1, taking into account the different peculiarities of the values
430       // returned by the comparison functions.
431       CmpInst::Predicate ResultPred = Libcall.Predicate;
432       if (ResultPred == CmpInst::BAD_ICMP_PREDICATE) {
433         // We have a nice 0 or 1, and we just need to truncate it back to 1 bit
434         // to keep the types consistent.
435         MIRBuilder.buildTrunc(ProcessedResult, LibcallResult);
436       } else {
437         // We need to compare against 0.
438         assert(CmpInst::isIntPredicate(ResultPred) && "Unsupported predicate");
439         auto Zero = MRI.createGenericVirtualRegister(LLT::scalar(32));
440         MIRBuilder.buildConstant(Zero, 0);
441         MIRBuilder.buildICmp(ResultPred, ProcessedResult, LibcallResult, Zero);
442       }
443       Results.push_back(ProcessedResult);
444     }
445 
446     if (Results.size() != 1) {
447       assert(Results.size() == 2 && "Unexpected number of results");
448       MIRBuilder.buildOr(OriginalResult, Results[0], Results[1]);
449     }
450     break;
451   }
452   case G_FCONSTANT: {
453     // Convert to integer constants, while preserving the binary representation.
454     auto AsInteger =
455         MI.getOperand(1).getFPImm()->getValueAPF().bitcastToAPInt();
456     MIRBuilder.buildConstant(MI.getOperand(0).getReg(),
457                              *ConstantInt::get(Ctx, AsInteger));
458     break;
459   }
460   }
461 
462   MI.eraseFromParent();
463   return true;
464 }
465