1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the ARM implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 // 13 // This file contains the ARM implementation of TargetFrameLowering class. 14 // 15 // On ARM, stack frames are structured as follows: 16 // 17 // The stack grows downward. 18 // 19 // All of the individual frame areas on the frame below are optional, i.e. it's 20 // possible to create a function so that the particular area isn't present 21 // in the frame. 22 // 23 // At function entry, the "frame" looks as follows: 24 // 25 // | | Higher address 26 // |-----------------------------------| 27 // | | 28 // | arguments passed on the stack | 29 // | | 30 // |-----------------------------------| <- sp 31 // | | Lower address 32 // 33 // 34 // After the prologue has run, the frame has the following general structure. 35 // Technically the last frame area (VLAs) doesn't get created until in the 36 // main function body, after the prologue is run. However, it's depicted here 37 // for completeness. 38 // 39 // | | Higher address 40 // |-----------------------------------| 41 // | | 42 // | arguments passed on the stack | 43 // | | 44 // |-----------------------------------| <- (sp at function entry) 45 // | | 46 // | varargs from registers | 47 // | | 48 // |-----------------------------------| 49 // | | 50 // | prev_lr | 51 // | prev_fp | 52 // | (a.k.a. "frame record") | 53 // | | 54 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11) 55 // | | 56 // | callee-saved gpr registers | 57 // | | 58 // |-----------------------------------| 59 // | | 60 // | callee-saved fp/simd regs | 61 // | | 62 // |-----------------------------------| 63 // |.empty.space.to.make.part.below....| 64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at 65 // |.the.standard.8-byte.alignment.....| compile time; if present) 66 // |-----------------------------------| 67 // | | 68 // | local variables of fixed size | 69 // | including spill slots | 70 // |-----------------------------------| <- base pointer (not defined by ABI, 71 // |.variable-sized.local.variables....| LLVM chooses r6) 72 // |.(VLAs)............................| (size of this area is unknown at 73 // |...................................| compile time) 74 // |-----------------------------------| <- sp 75 // | | Lower address 76 // 77 // 78 // To access the data in a frame, at-compile time, a constant offset must be 79 // computable from one of the pointers (fp, bp, sp) to access it. The size 80 // of the areas with a dotted background cannot be computed at compile-time 81 // if they are present, making it required to have all three of fp, bp and 82 // sp to be set up to be able to access all contents in the frame areas, 83 // assuming all of the frame areas are non-empty. 84 // 85 // For most functions, some of the frame areas are empty. For those functions, 86 // it may not be necessary to set up fp or bp: 87 // * A base pointer is definitely needed when there are both VLAs and local 88 // variables with more-than-default alignment requirements. 89 // * A frame pointer is definitely needed when there are local variables with 90 // more-than-default alignment requirements. 91 // 92 // In some cases when a base pointer is not strictly needed, it is generated 93 // anyway when offsets from the frame pointer to access local variables become 94 // so large that the offset can't be encoded in the immediate fields of loads 95 // or stores. 96 // 97 // The frame pointer might be chosen to be r7 or r11, depending on the target 98 // architecture and operating system. See ARMSubtarget::getFramePointerReg for 99 // details. 100 // 101 // Outgoing function arguments must be at the bottom of the stack frame when 102 // calling another function. If we do not have variable-sized stack objects, we 103 // can allocate a "reserved call frame" area at the bottom of the local 104 // variable area, large enough for all outgoing calls. If we do have VLAs, then 105 // the stack pointer must be decremented and incremented around each call to 106 // make space for the arguments below the VLAs. 107 // 108 //===----------------------------------------------------------------------===// 109 110 #include "ARMFrameLowering.h" 111 #include "ARMBaseInstrInfo.h" 112 #include "ARMBaseRegisterInfo.h" 113 #include "ARMConstantPoolValue.h" 114 #include "ARMMachineFunctionInfo.h" 115 #include "ARMSubtarget.h" 116 #include "MCTargetDesc/ARMAddressingModes.h" 117 #include "MCTargetDesc/ARMBaseInfo.h" 118 #include "Utils/ARMBaseInfo.h" 119 #include "llvm/ADT/BitVector.h" 120 #include "llvm/ADT/STLExtras.h" 121 #include "llvm/ADT/SmallPtrSet.h" 122 #include "llvm/ADT/SmallVector.h" 123 #include "llvm/CodeGen/MachineBasicBlock.h" 124 #include "llvm/CodeGen/MachineConstantPool.h" 125 #include "llvm/CodeGen/MachineFrameInfo.h" 126 #include "llvm/CodeGen/MachineFunction.h" 127 #include "llvm/CodeGen/MachineInstr.h" 128 #include "llvm/CodeGen/MachineInstrBuilder.h" 129 #include "llvm/CodeGen/MachineJumpTableInfo.h" 130 #include "llvm/CodeGen/MachineModuleInfo.h" 131 #include "llvm/CodeGen/MachineOperand.h" 132 #include "llvm/CodeGen/MachineRegisterInfo.h" 133 #include "llvm/CodeGen/RegisterScavenging.h" 134 #include "llvm/CodeGen/TargetInstrInfo.h" 135 #include "llvm/CodeGen/TargetOpcodes.h" 136 #include "llvm/CodeGen/TargetRegisterInfo.h" 137 #include "llvm/CodeGen/TargetSubtargetInfo.h" 138 #include "llvm/IR/Attributes.h" 139 #include "llvm/IR/CallingConv.h" 140 #include "llvm/IR/DebugLoc.h" 141 #include "llvm/IR/Function.h" 142 #include "llvm/MC/MCAsmInfo.h" 143 #include "llvm/MC/MCContext.h" 144 #include "llvm/MC/MCDwarf.h" 145 #include "llvm/MC/MCInstrDesc.h" 146 #include "llvm/MC/MCRegisterInfo.h" 147 #include "llvm/Support/CodeGen.h" 148 #include "llvm/Support/CommandLine.h" 149 #include "llvm/Support/Compiler.h" 150 #include "llvm/Support/Debug.h" 151 #include "llvm/Support/ErrorHandling.h" 152 #include "llvm/Support/MathExtras.h" 153 #include "llvm/Support/raw_ostream.h" 154 #include "llvm/Target/TargetMachine.h" 155 #include "llvm/Target/TargetOptions.h" 156 #include <algorithm> 157 #include <cassert> 158 #include <cstddef> 159 #include <cstdint> 160 #include <iterator> 161 #include <utility> 162 #include <vector> 163 164 #define DEBUG_TYPE "arm-frame-lowering" 165 166 using namespace llvm; 167 168 static cl::opt<bool> 169 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 170 cl::desc("Align ARM NEON spills in prolog and epilog")); 171 172 static MachineBasicBlock::iterator 173 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 174 unsigned NumAlignedDPRCS2Regs); 175 176 enum class SpillArea { 177 GPRCS1, 178 GPRCS2, 179 DPRCS1, 180 DPRCS2, 181 FPCXT, 182 }; 183 184 /// Get the spill area that Reg should be saved into in the prologue. 185 SpillArea getSpillArea(Register Reg, 186 ARMSubtarget::PushPopSplitVariation Variation, 187 unsigned NumAlignedDPRCS2Regs, 188 const ARMBaseRegisterInfo *RegInfo) { 189 // NoSplit: 190 // push {r0-r12, lr} GPRCS1 191 // vpush {r8-d15} DPRCS1 192 // 193 // SplitR7: 194 // push {r0-r7, lr} GPRCS1 195 // push {r8-r12} GPRCS2 196 // vpush {r8-d15} DPRCS1 197 // 198 // SplitR11WindowsSEH: 199 // push {r0-r10, r12} GPRCS1 200 // vpush {r8-d15} DPRCS1 201 // push {r11, lr} GPRCS2 202 203 // If FPCXTNS is spilled (for CMSE secure entryfunctions), it is always at 204 // the top of the stack frame. 205 // The DPRCS2 region is used for ABIs which only guarantee 4-byte alignment 206 // of SP. If used, it will be below the other save areas, after the stack has 207 // been re-aligned. 208 209 switch (Reg) { 210 default: 211 dbgs() << "Don't know where to spill " << printReg(Reg, RegInfo) << "\n"; 212 llvm_unreachable("Don't know where to spill this register"); 213 break; 214 215 case ARM::FPCXTNS: 216 return SpillArea::FPCXT; 217 218 case ARM::R0: 219 case ARM::R1: 220 case ARM::R2: 221 case ARM::R3: 222 case ARM::R4: 223 case ARM::R5: 224 case ARM::R6: 225 case ARM::R7: 226 return SpillArea::GPRCS1; 227 228 case ARM::R8: 229 case ARM::R9: 230 case ARM::R10: 231 if (Variation == ARMSubtarget::SplitR7) 232 return SpillArea::GPRCS2; 233 else 234 return SpillArea::GPRCS1; 235 236 case ARM::R11: 237 if (Variation == ARMSubtarget::NoSplit) 238 return SpillArea::GPRCS1; 239 else 240 return SpillArea::GPRCS2; 241 242 case ARM::R12: 243 if (Variation == ARMSubtarget::SplitR7) 244 return SpillArea::GPRCS2; 245 else 246 return SpillArea::GPRCS1; 247 248 case ARM::LR: 249 if (Variation == ARMSubtarget::SplitR11WindowsSEH) 250 return SpillArea::GPRCS2; 251 else 252 return SpillArea::GPRCS1; 253 254 case ARM::D0: 255 case ARM::D1: 256 case ARM::D2: 257 case ARM::D3: 258 case ARM::D4: 259 case ARM::D5: 260 case ARM::D6: 261 case ARM::D7: 262 return SpillArea::DPRCS1; 263 264 case ARM::D8: 265 case ARM::D9: 266 case ARM::D10: 267 case ARM::D11: 268 case ARM::D12: 269 case ARM::D13: 270 case ARM::D14: 271 case ARM::D15: 272 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 273 return SpillArea::DPRCS2; 274 else 275 return SpillArea::DPRCS1; 276 277 case ARM::D16: 278 case ARM::D17: 279 case ARM::D18: 280 case ARM::D19: 281 case ARM::D20: 282 case ARM::D21: 283 case ARM::D22: 284 case ARM::D23: 285 case ARM::D24: 286 case ARM::D25: 287 case ARM::D26: 288 case ARM::D27: 289 case ARM::D28: 290 case ARM::D29: 291 case ARM::D30: 292 case ARM::D31: 293 return SpillArea::DPRCS1; 294 } 295 } 296 297 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 298 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)), 299 STI(sti) {} 300 301 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const { 302 // iOS always has a FP for backtracking, force other targets to keep their FP 303 // when doing FastISel. The emitted code is currently superior, and in cases 304 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 305 return MF.getSubtarget<ARMSubtarget>().useFastISel(); 306 } 307 308 /// Returns true if the target can safely skip saving callee-saved registers 309 /// for noreturn nounwind functions. 310 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const { 311 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) && 312 MF.getFunction().hasFnAttribute(Attribute::NoUnwind) && 313 !MF.getFunction().hasFnAttribute(Attribute::UWTable)); 314 315 // Frame pointer and link register are not treated as normal CSR, thus we 316 // can always skip CSR saves for nonreturning functions. 317 return true; 318 } 319 320 /// hasFP - Return true if the specified function should have a dedicated frame 321 /// pointer register. This is true if the function has variable sized allocas 322 /// or if frame pointer elimination is disabled. 323 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { 324 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 325 const MachineFrameInfo &MFI = MF.getFrameInfo(); 326 327 // ABI-required frame pointer. 328 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 329 return true; 330 331 // Frame pointer required for use within this function. 332 return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 333 MFI.isFrameAddressTaken()); 334 } 335 336 /// isFPReserved - Return true if the frame pointer register should be 337 /// considered a reserved register on the scope of the specified function. 338 bool ARMFrameLowering::isFPReserved(const MachineFunction &MF) const { 339 return hasFP(MF) || MF.getTarget().Options.FramePointerIsReserved(MF); 340 } 341 342 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 343 /// not required, we reserve argument space for call sites in the function 344 /// immediately on entry to the current function. This eliminates the need for 345 /// add/sub sp brackets around call sites. Returns true if the call frame is 346 /// included as part of the stack frame. 347 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 348 const MachineFrameInfo &MFI = MF.getFrameInfo(); 349 unsigned CFSize = MFI.getMaxCallFrameSize(); 350 // It's not always a good idea to include the call frame as part of the 351 // stack frame. ARM (especially Thumb) has small immediate offset to 352 // address the stack frame. So a large call frame can cause poor codegen 353 // and may even makes it impossible to scavenge a register. 354 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 355 return false; 356 357 return !MFI.hasVarSizedObjects(); 358 } 359 360 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 361 /// call frame pseudos can be simplified. Unlike most targets, having a FP 362 /// is not sufficient here since we still may reference some objects via SP 363 /// even when FP is available in Thumb2 mode. 364 bool 365 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 366 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 367 } 368 369 // Returns how much of the incoming argument stack area we should clean up in an 370 // epilogue. For the C calling convention this will be 0, for guaranteed tail 371 // call conventions it can be positive (a normal return or a tail call to a 372 // function that uses less stack space for arguments) or negative (for a tail 373 // call to a function that needs more stack space than us for arguments). 374 static int getArgumentStackToRestore(MachineFunction &MF, 375 MachineBasicBlock &MBB) { 376 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 377 bool IsTailCallReturn = false; 378 if (MBB.end() != MBBI) { 379 unsigned RetOpcode = MBBI->getOpcode(); 380 IsTailCallReturn = RetOpcode == ARM::TCRETURNdi || 381 RetOpcode == ARM::TCRETURNri || 382 RetOpcode == ARM::TCRETURNrinotr12; 383 } 384 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 385 386 int ArgumentPopSize = 0; 387 if (IsTailCallReturn) { 388 MachineOperand &StackAdjust = MBBI->getOperand(1); 389 390 // For a tail-call in a callee-pops-arguments environment, some or all of 391 // the stack may actually be in use for the call's arguments, this is 392 // calculated during LowerCall and consumed here... 393 ArgumentPopSize = StackAdjust.getImm(); 394 } else { 395 // ... otherwise the amount to pop is *all* of the argument space, 396 // conveniently stored in the MachineFunctionInfo by 397 // LowerFormalArguments. This will, of course, be zero for the C calling 398 // convention. 399 ArgumentPopSize = AFI->getArgumentStackToRestore(); 400 } 401 402 return ArgumentPopSize; 403 } 404 405 static bool needsWinCFI(const MachineFunction &MF) { 406 const Function &F = MF.getFunction(); 407 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 408 F.needsUnwindTableEntry(); 409 } 410 411 // Given a load or a store instruction, generate an appropriate unwinding SEH 412 // code on Windows. 413 static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI, 414 const TargetInstrInfo &TII, 415 unsigned Flags) { 416 unsigned Opc = MBBI->getOpcode(); 417 MachineBasicBlock *MBB = MBBI->getParent(); 418 MachineFunction &MF = *MBB->getParent(); 419 DebugLoc DL = MBBI->getDebugLoc(); 420 MachineInstrBuilder MIB; 421 const ARMSubtarget &Subtarget = MF.getSubtarget<ARMSubtarget>(); 422 const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 423 424 Flags |= MachineInstr::NoMerge; 425 426 switch (Opc) { 427 default: 428 report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc)); 429 break; 430 case ARM::t2ADDri: // add.w r11, sp, #xx 431 case ARM::t2ADDri12: // add.w r11, sp, #xx 432 case ARM::t2MOVTi16: // movt r4, #xx 433 case ARM::tBL: // bl __chkstk 434 // These are harmless if used for just setting up a frame pointer, 435 // but that frame pointer can't be relied upon for unwinding, unless 436 // set up with SEH_SaveSP. 437 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 438 .addImm(/*Wide=*/1) 439 .setMIFlags(Flags); 440 break; 441 442 case ARM::t2MOVi16: { // mov(w) r4, #xx 443 bool Wide = MBBI->getOperand(1).getImm() >= 256; 444 if (!Wide) { 445 MachineInstrBuilder NewInstr = 446 BuildMI(MF, DL, TII.get(ARM::tMOVi8)).setMIFlags(MBBI->getFlags()); 447 NewInstr.add(MBBI->getOperand(0)); 448 NewInstr.add(t1CondCodeOp(/*isDead=*/true)); 449 for (MachineOperand &MO : llvm::drop_begin(MBBI->operands())) 450 NewInstr.add(MO); 451 MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr); 452 MBB->erase(MBBI); 453 MBBI = NewMBBI; 454 } 455 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)).addImm(Wide).setMIFlags(Flags); 456 break; 457 } 458 459 case ARM::tBLXr: // blx r12 (__chkstk) 460 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 461 .addImm(/*Wide=*/0) 462 .setMIFlags(Flags); 463 break; 464 465 case ARM::t2MOVi32imm: // movw+movt 466 // This pseudo instruction expands into two mov instructions. If the 467 // second operand is a symbol reference, this will stay as two wide 468 // instructions, movw+movt. If they're immediates, the first one can 469 // end up as a narrow mov though. 470 // As two SEH instructions are appended here, they won't get interleaved 471 // between the two final movw/movt instructions, but it doesn't make any 472 // practical difference. 473 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 474 .addImm(/*Wide=*/1) 475 .setMIFlags(Flags); 476 MBB->insertAfter(MBBI, MIB); 477 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 478 .addImm(/*Wide=*/1) 479 .setMIFlags(Flags); 480 break; 481 482 case ARM::t2STR_PRE: 483 if (MBBI->getOperand(0).getReg() == ARM::SP && 484 MBBI->getOperand(2).getReg() == ARM::SP && 485 MBBI->getOperand(3).getImm() == -4) { 486 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 487 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs)) 488 .addImm(1ULL << Reg) 489 .addImm(/*Wide=*/1) 490 .setMIFlags(Flags); 491 } else { 492 report_fatal_error("No matching SEH Opcode for t2STR_PRE"); 493 } 494 break; 495 496 case ARM::t2LDR_POST: 497 if (MBBI->getOperand(1).getReg() == ARM::SP && 498 MBBI->getOperand(2).getReg() == ARM::SP && 499 MBBI->getOperand(3).getImm() == 4) { 500 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 501 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs)) 502 .addImm(1ULL << Reg) 503 .addImm(/*Wide=*/1) 504 .setMIFlags(Flags); 505 } else { 506 report_fatal_error("No matching SEH Opcode for t2LDR_POST"); 507 } 508 break; 509 510 case ARM::t2LDMIA_RET: 511 case ARM::t2LDMIA_UPD: 512 case ARM::t2STMDB_UPD: { 513 unsigned Mask = 0; 514 bool Wide = false; 515 for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) { 516 const MachineOperand &MO = MBBI->getOperand(i); 517 if (!MO.isReg() || MO.isImplicit()) 518 continue; 519 unsigned Reg = RegInfo->getSEHRegNum(MO.getReg()); 520 if (Reg == 15) 521 Reg = 14; 522 if (Reg >= 8 && Reg <= 13) 523 Wide = true; 524 else if (Opc == ARM::t2LDMIA_UPD && Reg == 14) 525 Wide = true; 526 Mask |= 1 << Reg; 527 } 528 if (!Wide) { 529 unsigned NewOpc; 530 switch (Opc) { 531 case ARM::t2LDMIA_RET: 532 NewOpc = ARM::tPOP_RET; 533 break; 534 case ARM::t2LDMIA_UPD: 535 NewOpc = ARM::tPOP; 536 break; 537 case ARM::t2STMDB_UPD: 538 NewOpc = ARM::tPUSH; 539 break; 540 default: 541 llvm_unreachable(""); 542 } 543 MachineInstrBuilder NewInstr = 544 BuildMI(MF, DL, TII.get(NewOpc)).setMIFlags(MBBI->getFlags()); 545 for (unsigned i = 2, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) 546 NewInstr.add(MBBI->getOperand(i)); 547 MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr); 548 MBB->erase(MBBI); 549 MBBI = NewMBBI; 550 } 551 unsigned SEHOpc = 552 (Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs; 553 MIB = BuildMI(MF, DL, TII.get(SEHOpc)) 554 .addImm(Mask) 555 .addImm(Wide ? 1 : 0) 556 .setMIFlags(Flags); 557 break; 558 } 559 case ARM::VSTMDDB_UPD: 560 case ARM::VLDMDIA_UPD: { 561 int First = -1, Last = 0; 562 for (const MachineOperand &MO : llvm::drop_begin(MBBI->operands(), 4)) { 563 unsigned Reg = RegInfo->getSEHRegNum(MO.getReg()); 564 if (First == -1) 565 First = Reg; 566 Last = Reg; 567 } 568 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs)) 569 .addImm(First) 570 .addImm(Last) 571 .setMIFlags(Flags); 572 break; 573 } 574 case ARM::tSUBspi: 575 case ARM::tADDspi: 576 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc)) 577 .addImm(MBBI->getOperand(2).getImm() * 4) 578 .addImm(/*Wide=*/0) 579 .setMIFlags(Flags); 580 break; 581 case ARM::t2SUBspImm: 582 case ARM::t2SUBspImm12: 583 case ARM::t2ADDspImm: 584 case ARM::t2ADDspImm12: 585 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc)) 586 .addImm(MBBI->getOperand(2).getImm()) 587 .addImm(/*Wide=*/1) 588 .setMIFlags(Flags); 589 break; 590 591 case ARM::tMOVr: 592 if (MBBI->getOperand(1).getReg() == ARM::SP && 593 (Flags & MachineInstr::FrameSetup)) { 594 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 595 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP)) 596 .addImm(Reg) 597 .setMIFlags(Flags); 598 } else if (MBBI->getOperand(0).getReg() == ARM::SP && 599 (Flags & MachineInstr::FrameDestroy)) { 600 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 601 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP)) 602 .addImm(Reg) 603 .setMIFlags(Flags); 604 } else { 605 report_fatal_error("No SEH Opcode for MOV"); 606 } 607 break; 608 609 case ARM::tBX_RET: 610 case ARM::TCRETURNri: 611 case ARM::TCRETURNrinotr12: 612 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret)) 613 .addImm(/*Wide=*/0) 614 .setMIFlags(Flags); 615 break; 616 617 case ARM::TCRETURNdi: 618 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret)) 619 .addImm(/*Wide=*/1) 620 .setMIFlags(Flags); 621 break; 622 } 623 return MBB->insertAfter(MBBI, MIB); 624 } 625 626 static MachineBasicBlock::iterator 627 initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) { 628 if (MBBI == MBB.begin()) 629 return MachineBasicBlock::iterator(); 630 return std::prev(MBBI); 631 } 632 633 static void insertSEHRange(MachineBasicBlock &MBB, 634 MachineBasicBlock::iterator Start, 635 const MachineBasicBlock::iterator &End, 636 const ARMBaseInstrInfo &TII, unsigned MIFlags) { 637 if (Start.isValid()) 638 Start = std::next(Start); 639 else 640 Start = MBB.begin(); 641 642 for (auto MI = Start; MI != End;) { 643 auto Next = std::next(MI); 644 // Check if this instruction already has got a SEH opcode added. In that 645 // case, don't do this generic mapping. 646 if (Next != End && isSEHInstruction(*Next)) { 647 MI = std::next(Next); 648 while (MI != End && isSEHInstruction(*MI)) 649 ++MI; 650 continue; 651 } 652 insertSEH(MI, TII, MIFlags); 653 MI = Next; 654 } 655 } 656 657 static void emitRegPlusImmediate( 658 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 659 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 660 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 661 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 662 if (isARM) 663 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 664 Pred, PredReg, TII, MIFlags); 665 else 666 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 667 Pred, PredReg, TII, MIFlags); 668 } 669 670 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 671 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 672 const ARMBaseInstrInfo &TII, int NumBytes, 673 unsigned MIFlags = MachineInstr::NoFlags, 674 ARMCC::CondCodes Pred = ARMCC::AL, 675 unsigned PredReg = 0) { 676 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 677 MIFlags, Pred, PredReg); 678 } 679 680 static int sizeOfSPAdjustment(const MachineInstr &MI) { 681 int RegSize; 682 switch (MI.getOpcode()) { 683 case ARM::VSTMDDB_UPD: 684 RegSize = 8; 685 break; 686 case ARM::STMDB_UPD: 687 case ARM::t2STMDB_UPD: 688 RegSize = 4; 689 break; 690 case ARM::t2STR_PRE: 691 case ARM::STR_PRE_IMM: 692 return 4; 693 default: 694 llvm_unreachable("Unknown push or pop like instruction"); 695 } 696 697 int count = 0; 698 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 699 // pred) so the list starts at 4. 700 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 701 count += RegSize; 702 return count; 703 } 704 705 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 706 size_t StackSizeInBytes) { 707 const MachineFrameInfo &MFI = MF.getFrameInfo(); 708 const Function &F = MF.getFunction(); 709 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 710 711 StackProbeSize = 712 F.getFnAttributeAsParsedInteger("stack-probe-size", StackProbeSize); 713 return (StackSizeInBytes >= StackProbeSize) && 714 !F.hasFnAttribute("no-stack-arg-probe"); 715 } 716 717 namespace { 718 719 struct StackAdjustingInsts { 720 struct InstInfo { 721 MachineBasicBlock::iterator I; 722 unsigned SPAdjust; 723 bool BeforeFPSet; 724 }; 725 726 SmallVector<InstInfo, 4> Insts; 727 728 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 729 bool BeforeFPSet = false) { 730 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 731 Insts.push_back(Info); 732 } 733 734 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 735 auto Info = 736 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 737 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 738 Info->SPAdjust += ExtraBytes; 739 } 740 741 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 742 const ARMBaseInstrInfo &TII, bool HasFP) { 743 MachineFunction &MF = *MBB.getParent(); 744 unsigned CFAOffset = 0; 745 for (auto &Info : Insts) { 746 if (HasFP && !Info.BeforeFPSet) 747 return; 748 749 CFAOffset += Info.SPAdjust; 750 unsigned CFIIndex = MF.addFrameInst( 751 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset)); 752 BuildMI(MBB, std::next(Info.I), dl, 753 TII.get(TargetOpcode::CFI_INSTRUCTION)) 754 .addCFIIndex(CFIIndex) 755 .setMIFlags(MachineInstr::FrameSetup); 756 } 757 } 758 }; 759 760 } // end anonymous namespace 761 762 /// Emit an instruction sequence that will align the address in 763 /// register Reg by zero-ing out the lower bits. For versions of the 764 /// architecture that support Neon, this must be done in a single 765 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 766 /// single instruction. That function only gets called when optimizing 767 /// spilling of D registers on a core with the Neon instruction set 768 /// present. 769 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 770 const TargetInstrInfo &TII, 771 MachineBasicBlock &MBB, 772 MachineBasicBlock::iterator MBBI, 773 const DebugLoc &DL, const unsigned Reg, 774 const Align Alignment, 775 const bool MustBeSingleInstruction) { 776 const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>(); 777 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 778 const unsigned AlignMask = Alignment.value() - 1U; 779 const unsigned NrBitsToZero = Log2(Alignment); 780 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 781 if (!AFI->isThumbFunction()) { 782 // if the BFC instruction is available, use that to zero the lower 783 // bits: 784 // bfc Reg, #0, log2(Alignment) 785 // otherwise use BIC, if the mask to zero the required number of bits 786 // can be encoded in the bic immediate field 787 // bic Reg, Reg, Alignment-1 788 // otherwise, emit 789 // lsr Reg, Reg, log2(Alignment) 790 // lsl Reg, Reg, log2(Alignment) 791 if (CanUseBFC) { 792 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 793 .addReg(Reg, RegState::Kill) 794 .addImm(~AlignMask) 795 .add(predOps(ARMCC::AL)); 796 } else if (AlignMask <= 255) { 797 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 798 .addReg(Reg, RegState::Kill) 799 .addImm(AlignMask) 800 .add(predOps(ARMCC::AL)) 801 .add(condCodeOp()); 802 } else { 803 assert(!MustBeSingleInstruction && 804 "Shouldn't call emitAligningInstructions demanding a single " 805 "instruction to be emitted for large stack alignment for a target " 806 "without BFC."); 807 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 808 .addReg(Reg, RegState::Kill) 809 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 810 .add(predOps(ARMCC::AL)) 811 .add(condCodeOp()); 812 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 813 .addReg(Reg, RegState::Kill) 814 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 815 .add(predOps(ARMCC::AL)) 816 .add(condCodeOp()); 817 } 818 } else { 819 // Since this is only reached for Thumb-2 targets, the BFC instruction 820 // should always be available. 821 assert(CanUseBFC); 822 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 823 .addReg(Reg, RegState::Kill) 824 .addImm(~AlignMask) 825 .add(predOps(ARMCC::AL)); 826 } 827 } 828 829 /// We need the offset of the frame pointer relative to other MachineFrameInfo 830 /// offsets which are encoded relative to SP at function begin. 831 /// See also emitPrologue() for how the FP is set up. 832 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet 833 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use 834 /// this to produce a conservative estimate that we check in an assert() later. 835 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI, 836 const MachineFunction &MF) { 837 ARMSubtarget::PushPopSplitVariation PushPopSplit = 838 STI.getPushPopSplitVariation(MF); 839 // For Thumb1, push.w isn't available, so the first push will always push 840 // r7 and lr onto the stack first. 841 if (AFI.isThumb1OnlyFunction()) 842 return -AFI.getArgRegsSaveSize() - (2 * 4); 843 // This is a conservative estimation: Assume the frame pointer being r7 and 844 // pc("r15") up to r8 getting spilled before (= 8 registers). 845 int MaxRegBytes = 8 * 4; 846 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 847 // Here, r11 can be stored below all of r4-r15 plus d8-d15. 848 MaxRegBytes = 11 * 4 + 8 * 8; 849 } 850 int FPCXTSaveSize = 851 (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0; 852 return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes; 853 } 854 855 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 856 MachineBasicBlock &MBB) const { 857 MachineBasicBlock::iterator MBBI = MBB.begin(); 858 MachineFrameInfo &MFI = MF.getFrameInfo(); 859 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 860 MCContext &Context = MF.getContext(); 861 const TargetMachine &TM = MF.getTarget(); 862 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 863 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 864 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 865 assert(!AFI->isThumb1OnlyFunction() && 866 "This emitPrologue does not support Thumb1!"); 867 bool isARM = !AFI->isThumbFunction(); 868 Align Alignment = STI.getFrameLowering()->getStackAlign(); 869 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 870 unsigned NumBytes = MFI.getStackSize(); 871 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 872 int FPCXTSaveSize = 0; 873 bool NeedsWinCFI = needsWinCFI(MF); 874 ARMSubtarget::PushPopSplitVariation PushPopSplit = 875 STI.getPushPopSplitVariation(MF); 876 877 // Debug location must be unknown since the first debug location is used 878 // to determine the end of the prologue. 879 DebugLoc dl; 880 881 Register FramePtr = RegInfo->getFrameRegister(MF); 882 883 // Determine the sizes of each callee-save spill areas and record which frame 884 // belongs to which callee-save spill areas. 885 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 886 int FramePtrSpillFI = 0; 887 int D8SpillFI = 0; 888 889 // All calls are tail calls in GHC calling conv, and functions have no 890 // prologue/epilogue. 891 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 892 return; 893 894 StackAdjustingInsts DefCFAOffsetCandidates; 895 bool HasFP = hasFP(MF); 896 897 if (!AFI->hasStackFrame() && 898 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 899 if (NumBytes != 0) { 900 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 901 MachineInstr::FrameSetup); 902 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true); 903 } 904 if (!NeedsWinCFI) 905 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 906 if (NeedsWinCFI && MBBI != MBB.begin()) { 907 insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup); 908 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd)) 909 .setMIFlag(MachineInstr::FrameSetup); 910 MF.setHasWinCFI(true); 911 } 912 return; 913 } 914 915 // Determine spill area sizes, and some important frame indices. 916 for (const CalleeSavedInfo &I : CSI) { 917 Register Reg = I.getReg(); 918 int FI = I.getFrameIdx(); 919 920 if (Reg == FramePtr) 921 FramePtrSpillFI = FI; 922 if (Reg == ARM::D8) 923 D8SpillFI = FI; 924 925 switch (getSpillArea(Reg, PushPopSplit, AFI->getNumAlignedDPRCS2Regs(), 926 RegInfo)) { 927 case SpillArea::FPCXT: 928 FPCXTSaveSize += 4; 929 break; 930 case SpillArea::GPRCS1: 931 GPRCS1Size += 4; 932 break; 933 case SpillArea::GPRCS2: 934 GPRCS2Size += 4; 935 break; 936 case SpillArea::DPRCS1: 937 DPRCSSize += 8; 938 break; 939 case SpillArea::DPRCS2: 940 break; 941 } 942 } 943 944 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 945 946 // Move past the PAC computation. 947 if (AFI->shouldSignReturnAddress()) 948 LastPush = MBBI++; 949 950 // Move past FPCXT area. 951 if (FPCXTSaveSize > 0) { 952 LastPush = MBBI++; 953 DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true); 954 } 955 956 // Allocate the vararg register save area. 957 if (ArgRegsSaveSize) { 958 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 959 MachineInstr::FrameSetup); 960 LastPush = std::prev(MBBI); 961 DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, true); 962 } 963 964 // Move past area 1. 965 if (GPRCS1Size > 0) { 966 GPRCS1Push = LastPush = MBBI++; 967 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); 968 } 969 970 // Determine starting offsets of spill areas. These offsets are all positive 971 // offsets from the bottom of the lowest-addressed callee-save area 972 // (excluding DPRCS2, which is th the re-aligned stack region) to the bottom 973 // of the spill area in question. 974 unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize; 975 unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size; 976 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 977 Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4); 978 unsigned DPRGapSize = GPRCS1Size + FPCXTSaveSize + ArgRegsSaveSize; 979 if (PushPopSplit != ARMSubtarget::SplitR11WindowsSEH) { 980 DPRGapSize += GPRCS2Size; 981 } 982 DPRGapSize %= DPRAlign.value(); 983 984 unsigned DPRCSOffset; 985 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 986 DPRCSOffset = GPRCS1Offset - DPRGapSize - DPRCSSize; 987 GPRCS2Offset = DPRCSOffset - GPRCS2Size; 988 } else { 989 DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 990 } 991 int FramePtrOffsetInPush = 0; 992 if (HasFP) { 993 // Offset from the CFA to the saved frame pointer, will be negative. 994 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); 995 LLVM_DEBUG(dbgs() << "FramePtrSpillFI: " << FramePtrSpillFI 996 << ", FPOffset: " << FPOffset << "\n"); 997 assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset && 998 "Max FP estimation is wrong"); 999 // Offset from the top of the GPRCS1 area to the saved frame pointer, will 1000 // be negative. 1001 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize; 1002 LLVM_DEBUG(dbgs() << "FramePtrOffsetInPush=" << FramePtrOffsetInPush 1003 << ", FramePtrSpillOffset=" 1004 << (MFI.getObjectOffset(FramePtrSpillFI) + NumBytes) 1005 << "\n"); 1006 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 1007 NumBytes); 1008 } 1009 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 1010 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 1011 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 1012 1013 // Move GPRCS2, unless using SplitR11WindowsSEH, in which case it will be 1014 // after DPRCS1. 1015 if (GPRCS2Size > 0 && PushPopSplit != ARMSubtarget::SplitR11WindowsSEH) { 1016 GPRCS2Push = LastPush = MBBI++; 1017 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 1018 } 1019 1020 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 1021 // .cfi_offset operations will reflect that. 1022 if (DPRGapSize) { 1023 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 1024 if (LastPush != MBB.end() && 1025 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 1026 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 1027 else { 1028 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 1029 MachineInstr::FrameSetup); 1030 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); 1031 } 1032 } 1033 1034 // Move past DPRCS1. 1035 if (DPRCSSize > 0) { 1036 // Since vpush register list cannot have gaps, there may be multiple vpush 1037 // instructions in the prologue. 1038 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 1039 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); 1040 LastPush = MBBI++; 1041 } 1042 } 1043 1044 // Move past the aligned DPRCS2 area. 1045 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 1046 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 1047 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 1048 // leaves the stack pointer pointing to the DPRCS2 area. 1049 // 1050 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 1051 NumBytes += MFI.getObjectOffset(D8SpillFI); 1052 } else 1053 NumBytes = DPRCSOffset; 1054 1055 // Move GPRCS2, if using using SplitR11WindowsSEH. 1056 if (GPRCS2Size > 0 && PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 1057 GPRCS2Push = LastPush = MBBI++; 1058 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 1059 } 1060 1061 bool NeedsWinCFIStackAlloc = NeedsWinCFI; 1062 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH && HasFP) 1063 NeedsWinCFIStackAlloc = false; 1064 1065 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 1066 uint32_t NumWords = NumBytes >> 2; 1067 1068 if (NumWords < 65536) { 1069 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 1070 .addImm(NumWords) 1071 .setMIFlags(MachineInstr::FrameSetup) 1072 .add(predOps(ARMCC::AL)); 1073 } else { 1074 // Split into two instructions here, instead of using t2MOVi32imm, 1075 // to allow inserting accurate SEH instructions (including accurate 1076 // instruction size for each of them). 1077 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 1078 .addImm(NumWords & 0xffff) 1079 .setMIFlags(MachineInstr::FrameSetup) 1080 .add(predOps(ARMCC::AL)); 1081 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4) 1082 .addReg(ARM::R4) 1083 .addImm(NumWords >> 16) 1084 .setMIFlags(MachineInstr::FrameSetup) 1085 .add(predOps(ARMCC::AL)); 1086 } 1087 1088 switch (TM.getCodeModel()) { 1089 case CodeModel::Tiny: 1090 llvm_unreachable("Tiny code model not available on ARM."); 1091 case CodeModel::Small: 1092 case CodeModel::Medium: 1093 case CodeModel::Kernel: 1094 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 1095 .add(predOps(ARMCC::AL)) 1096 .addExternalSymbol("__chkstk") 1097 .addReg(ARM::R4, RegState::Implicit) 1098 .setMIFlags(MachineInstr::FrameSetup); 1099 break; 1100 case CodeModel::Large: 1101 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 1102 .addExternalSymbol("__chkstk") 1103 .setMIFlags(MachineInstr::FrameSetup); 1104 1105 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 1106 .add(predOps(ARMCC::AL)) 1107 .addReg(ARM::R12, RegState::Kill) 1108 .addReg(ARM::R4, RegState::Implicit) 1109 .setMIFlags(MachineInstr::FrameSetup); 1110 break; 1111 } 1112 1113 MachineInstrBuilder Instr, SEH; 1114 Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 1115 .addReg(ARM::SP, RegState::Kill) 1116 .addReg(ARM::R4, RegState::Kill) 1117 .setMIFlags(MachineInstr::FrameSetup) 1118 .add(predOps(ARMCC::AL)) 1119 .add(condCodeOp()); 1120 if (NeedsWinCFIStackAlloc) { 1121 SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc)) 1122 .addImm(NumBytes) 1123 .addImm(/*Wide=*/1) 1124 .setMIFlags(MachineInstr::FrameSetup); 1125 MBB.insertAfter(Instr, SEH); 1126 } 1127 NumBytes = 0; 1128 } 1129 1130 if (NumBytes) { 1131 // Adjust SP after all the callee-save spills. 1132 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 1133 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 1134 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 1135 else { 1136 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 1137 MachineInstr::FrameSetup); 1138 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 1139 } 1140 1141 if (HasFP && isARM) 1142 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 1143 // Note it's not safe to do this in Thumb2 mode because it would have 1144 // taken two instructions: 1145 // mov sp, r7 1146 // sub sp, #24 1147 // If an interrupt is taken between the two instructions, then sp is in 1148 // an inconsistent state (pointing to the middle of callee-saved area). 1149 // The interrupt handler can end up clobbering the registers. 1150 AFI->setShouldRestoreSPFromFP(true); 1151 } 1152 1153 // Set FP to point to the stack slot that contains the previous FP. 1154 // For iOS, FP is R7, which has now been stored in spill area 1. 1155 // Otherwise, if this is not iOS, all the callee-saved registers go 1156 // into spill area 1, including the FP in R11. In either case, it 1157 // is in area one and the adjustment needs to take place just after 1158 // that push. 1159 // FIXME: The above is not necessary true when PACBTI is enabled. 1160 // AAPCS requires use of R11, and PACBTI gets in the way of regular pushes, 1161 // so FP ends up on area two. 1162 MachineBasicBlock::iterator AfterPush; 1163 if (HasFP) { 1164 AfterPush = std::next(GPRCS1Push); 1165 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); 1166 int FPOffset = PushSize + FramePtrOffsetInPush; 1167 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 1168 AfterPush = std::next(GPRCS2Push); 1169 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII, 1170 FramePtr, ARM::SP, 0, MachineInstr::FrameSetup); 1171 } else { 1172 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII, 1173 FramePtr, ARM::SP, FPOffset, 1174 MachineInstr::FrameSetup); 1175 } 1176 if (!NeedsWinCFI) { 1177 if (FramePtrOffsetInPush + PushSize != 0) { 1178 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( 1179 nullptr, MRI->getDwarfRegNum(FramePtr, true), 1180 FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush)); 1181 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1182 .addCFIIndex(CFIIndex) 1183 .setMIFlags(MachineInstr::FrameSetup); 1184 } else { 1185 unsigned CFIIndex = 1186 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 1187 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 1188 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1189 .addCFIIndex(CFIIndex) 1190 .setMIFlags(MachineInstr::FrameSetup); 1191 } 1192 } 1193 } 1194 1195 // Emit a SEH opcode indicating the prologue end. The rest of the prologue 1196 // instructions below don't need to be replayed to unwind the stack. 1197 if (NeedsWinCFI && MBBI != MBB.begin()) { 1198 MachineBasicBlock::iterator End = MBBI; 1199 if (HasFP && PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) 1200 End = AfterPush; 1201 insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup); 1202 BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd)) 1203 .setMIFlag(MachineInstr::FrameSetup); 1204 MF.setHasWinCFI(true); 1205 } 1206 1207 // Now that the prologue's actual instructions are finalised, we can insert 1208 // the necessary DWARF cf instructions to describe the situation. Start by 1209 // recording where each register ended up: 1210 if (!NeedsWinCFI) { 1211 for (const auto &Entry : reverse(CSI)) { 1212 Register Reg = Entry.getReg(); 1213 int FI = Entry.getFrameIdx(); 1214 MachineBasicBlock::iterator CFIPos; 1215 switch (getSpillArea(Reg, PushPopSplit, AFI->getNumAlignedDPRCS2Regs(), 1216 RegInfo)) { 1217 case SpillArea::GPRCS1: 1218 CFIPos = std::next(GPRCS1Push); 1219 break; 1220 case SpillArea::GPRCS2: 1221 CFIPos = std::next(GPRCS2Push); 1222 break; 1223 case SpillArea::DPRCS1: 1224 CFIPos = std::next(LastPush); 1225 break; 1226 case SpillArea::FPCXT: 1227 case SpillArea::DPRCS2: 1228 // FPCXT and DPRCS2 are not represented in the DWARF info. 1229 break; 1230 } 1231 1232 if (CFIPos.isValid()) { 1233 int CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1234 nullptr, 1235 MRI->getDwarfRegNum(Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, 1236 true), 1237 MFI.getObjectOffset(FI))); 1238 BuildMI(MBB, CFIPos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1239 .addCFIIndex(CFIIndex) 1240 .setMIFlags(MachineInstr::FrameSetup); 1241 } 1242 } 1243 } 1244 1245 // Now we can emit descriptions of where the canonical frame address was 1246 // throughout the process. If we have a frame pointer, it takes over the job 1247 // half-way through, so only the first few .cfi_def_cfa_offset instructions 1248 // actually get emitted. 1249 if (!NeedsWinCFI) 1250 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 1251 1252 if (STI.isTargetELF() && hasFP(MF)) 1253 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 1254 AFI->getFramePtrSpillOffset()); 1255 1256 AFI->setFPCXTSaveAreaSize(FPCXTSaveSize); 1257 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 1258 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 1259 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 1260 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 1261 1262 // If we need dynamic stack realignment, do it here. Be paranoid and make 1263 // sure if we also have VLAs, we have a base pointer for frame access. 1264 // If aligned NEON registers were spilled, the stack has already been 1265 // realigned. 1266 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) { 1267 Align MaxAlign = MFI.getMaxAlign(); 1268 assert(!AFI->isThumb1OnlyFunction()); 1269 if (!AFI->isThumbFunction()) { 1270 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 1271 false); 1272 } else { 1273 // We cannot use sp as source/dest register here, thus we're using r4 to 1274 // perform the calculations. We're emitting the following sequence: 1275 // mov r4, sp 1276 // -- use emitAligningInstructions to produce best sequence to zero 1277 // -- out lower bits in r4 1278 // mov sp, r4 1279 // FIXME: It will be better just to find spare register here. 1280 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 1281 .addReg(ARM::SP, RegState::Kill) 1282 .add(predOps(ARMCC::AL)); 1283 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 1284 false); 1285 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1286 .addReg(ARM::R4, RegState::Kill) 1287 .add(predOps(ARMCC::AL)); 1288 } 1289 1290 AFI->setShouldRestoreSPFromFP(true); 1291 } 1292 1293 // If we need a base pointer, set it up here. It's whatever the value 1294 // of the stack pointer is at this point. Any variable size objects 1295 // will be allocated after this, so we can still use the base pointer 1296 // to reference locals. 1297 // FIXME: Clarify FrameSetup flags here. 1298 if (RegInfo->hasBasePointer(MF)) { 1299 if (isARM) 1300 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 1301 .addReg(ARM::SP) 1302 .add(predOps(ARMCC::AL)) 1303 .add(condCodeOp()); 1304 else 1305 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 1306 .addReg(ARM::SP) 1307 .add(predOps(ARMCC::AL)); 1308 } 1309 1310 // If the frame has variable sized objects then the epilogue must restore 1311 // the sp from fp. We can assume there's an FP here since hasFP already 1312 // checks for hasVarSizedObjects. 1313 if (MFI.hasVarSizedObjects()) 1314 AFI->setShouldRestoreSPFromFP(true); 1315 } 1316 1317 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 1318 MachineBasicBlock &MBB) const { 1319 MachineFrameInfo &MFI = MF.getFrameInfo(); 1320 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1321 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 1322 const ARMBaseInstrInfo &TII = 1323 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1324 assert(!AFI->isThumb1OnlyFunction() && 1325 "This emitEpilogue does not support Thumb1!"); 1326 bool isARM = !AFI->isThumbFunction(); 1327 ARMSubtarget::PushPopSplitVariation PushPopSplit = 1328 STI.getPushPopSplitVariation(MF); 1329 1330 // Amount of stack space we reserved next to incoming args for either 1331 // varargs registers or stack arguments in tail calls made by this function. 1332 unsigned ReservedArgStack = AFI->getArgRegsSaveSize(); 1333 1334 // How much of the stack used by incoming arguments this function is expected 1335 // to restore in this particular epilogue. 1336 int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB); 1337 int NumBytes = (int)MFI.getStackSize(); 1338 Register FramePtr = RegInfo->getFrameRegister(MF); 1339 1340 // All calls are tail calls in GHC calling conv, and functions have no 1341 // prologue/epilogue. 1342 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 1343 return; 1344 1345 // First put ourselves on the first (from top) terminator instructions. 1346 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1347 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1348 1349 MachineBasicBlock::iterator RangeStart; 1350 if (!AFI->hasStackFrame()) { 1351 if (MF.hasWinCFI()) { 1352 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart)) 1353 .setMIFlag(MachineInstr::FrameDestroy); 1354 RangeStart = initMBBRange(MBB, MBBI); 1355 } 1356 1357 if (NumBytes + IncomingArgStackToRestore != 0) 1358 emitSPUpdate(isARM, MBB, MBBI, dl, TII, 1359 NumBytes + IncomingArgStackToRestore, 1360 MachineInstr::FrameDestroy); 1361 } else { 1362 // Unwind MBBI to point to first LDR / VLDRD. 1363 if (MBBI != MBB.begin()) { 1364 do { 1365 --MBBI; 1366 } while (MBBI != MBB.begin() && 1367 MBBI->getFlag(MachineInstr::FrameDestroy)); 1368 if (!MBBI->getFlag(MachineInstr::FrameDestroy)) 1369 ++MBBI; 1370 } 1371 1372 if (MF.hasWinCFI()) { 1373 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart)) 1374 .setMIFlag(MachineInstr::FrameDestroy); 1375 RangeStart = initMBBRange(MBB, MBBI); 1376 } 1377 1378 // Move SP to start of FP callee save spill area. 1379 NumBytes -= (ReservedArgStack + 1380 AFI->getFPCXTSaveAreaSize() + 1381 AFI->getGPRCalleeSavedArea1Size() + 1382 AFI->getGPRCalleeSavedArea2Size() + 1383 AFI->getDPRCalleeSavedGapSize() + 1384 AFI->getDPRCalleeSavedAreaSize()); 1385 1386 // Reset SP based on frame pointer only if the stack frame extends beyond 1387 // frame pointer stack slot or target is ELF and the function has FP. 1388 if (AFI->shouldRestoreSPFromFP()) { 1389 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 1390 if (NumBytes) { 1391 if (isARM) 1392 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 1393 ARMCC::AL, 0, TII, 1394 MachineInstr::FrameDestroy); 1395 else { 1396 // It's not possible to restore SP from FP in a single instruction. 1397 // For iOS, this looks like: 1398 // mov sp, r7 1399 // sub sp, #24 1400 // This is bad, if an interrupt is taken after the mov, sp is in an 1401 // inconsistent state. 1402 // Use the first callee-saved register as a scratch register. 1403 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 1404 "No scratch register to restore SP from FP!"); 1405 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 1406 ARMCC::AL, 0, TII, MachineInstr::FrameDestroy); 1407 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1408 .addReg(ARM::R4) 1409 .add(predOps(ARMCC::AL)) 1410 .setMIFlag(MachineInstr::FrameDestroy); 1411 } 1412 } else { 1413 // Thumb2 or ARM. 1414 if (isARM) 1415 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 1416 .addReg(FramePtr) 1417 .add(predOps(ARMCC::AL)) 1418 .add(condCodeOp()) 1419 .setMIFlag(MachineInstr::FrameDestroy); 1420 else 1421 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1422 .addReg(FramePtr) 1423 .add(predOps(ARMCC::AL)) 1424 .setMIFlag(MachineInstr::FrameDestroy); 1425 } 1426 } else if (NumBytes && 1427 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 1428 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes, 1429 MachineInstr::FrameDestroy); 1430 1431 // Increment past our save areas. 1432 if (AFI->getGPRCalleeSavedArea2Size() && 1433 PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) 1434 MBBI++; 1435 1436 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { 1437 MBBI++; 1438 // Since vpop register list cannot have gaps, there may be multiple vpop 1439 // instructions in the epilogue. 1440 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 1441 MBBI++; 1442 } 1443 if (AFI->getDPRCalleeSavedGapSize()) { 1444 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 1445 "unexpected DPR alignment gap"); 1446 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(), 1447 MachineInstr::FrameDestroy); 1448 } 1449 1450 if (AFI->getGPRCalleeSavedArea2Size() && 1451 PushPopSplit != ARMSubtarget::SplitR11WindowsSEH) 1452 MBBI++; 1453 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 1454 1455 if (ReservedArgStack || IncomingArgStackToRestore) { 1456 assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 && 1457 "attempting to restore negative stack amount"); 1458 emitSPUpdate(isARM, MBB, MBBI, dl, TII, 1459 ReservedArgStack + IncomingArgStackToRestore, 1460 MachineInstr::FrameDestroy); 1461 } 1462 1463 // Validate PAC, It should have been already popped into R12. For CMSE entry 1464 // function, the validation instruction is emitted during expansion of the 1465 // tBXNS_RET, since the validation must use the value of SP at function 1466 // entry, before saving, resp. after restoring, FPCXTNS. 1467 if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction()) 1468 BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT)); 1469 } 1470 1471 if (MF.hasWinCFI()) { 1472 insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy); 1473 BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd)) 1474 .setMIFlag(MachineInstr::FrameDestroy); 1475 } 1476 } 1477 1478 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 1479 /// debug info. It's the same as what we use for resolving the code-gen 1480 /// references for now. FIXME: This can go wrong when references are 1481 /// SP-relative and simple call frames aren't used. 1482 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, 1483 int FI, 1484 Register &FrameReg) const { 1485 return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0)); 1486 } 1487 1488 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 1489 int FI, Register &FrameReg, 1490 int SPAdj) const { 1491 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1492 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1493 MF.getSubtarget().getRegisterInfo()); 1494 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1495 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 1496 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 1497 bool isFixed = MFI.isFixedObjectIndex(FI); 1498 1499 FrameReg = ARM::SP; 1500 Offset += SPAdj; 1501 1502 // SP can move around if there are allocas. We may also lose track of SP 1503 // when emergency spilling inside a non-reserved call frame setup. 1504 bool hasMovingSP = !hasReservedCallFrame(MF); 1505 1506 // When dynamically realigning the stack, use the frame pointer for 1507 // parameters, and the stack/base pointer for locals. 1508 if (RegInfo->hasStackRealignment(MF)) { 1509 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 1510 if (isFixed) { 1511 FrameReg = RegInfo->getFrameRegister(MF); 1512 Offset = FPOffset; 1513 } else if (hasMovingSP) { 1514 assert(RegInfo->hasBasePointer(MF) && 1515 "VLAs and dynamic stack alignment, but missing base pointer!"); 1516 FrameReg = RegInfo->getBaseRegister(); 1517 Offset -= SPAdj; 1518 } 1519 return Offset; 1520 } 1521 1522 // If there is a frame pointer, use it when we can. 1523 if (hasFP(MF) && AFI->hasStackFrame()) { 1524 // Use frame pointer to reference fixed objects. Use it for locals if 1525 // there are VLAs (and thus the SP isn't reliable as a base). 1526 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 1527 FrameReg = RegInfo->getFrameRegister(MF); 1528 return FPOffset; 1529 } else if (hasMovingSP) { 1530 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 1531 if (AFI->isThumb2Function()) { 1532 // Try to use the frame pointer if we can, else use the base pointer 1533 // since it's available. This is handy for the emergency spill slot, in 1534 // particular. 1535 if (FPOffset >= -255 && FPOffset < 0) { 1536 FrameReg = RegInfo->getFrameRegister(MF); 1537 return FPOffset; 1538 } 1539 } 1540 } else if (AFI->isThumbFunction()) { 1541 // Prefer SP to base pointer, if the offset is suitably aligned and in 1542 // range as the effective range of the immediate offset is bigger when 1543 // basing off SP. 1544 // Use add <rd>, sp, #<imm8> 1545 // ldr <rd>, [sp, #<imm8>] 1546 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 1547 return Offset; 1548 // In Thumb2 mode, the negative offset is very limited. Try to avoid 1549 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 1550 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) { 1551 FrameReg = RegInfo->getFrameRegister(MF); 1552 return FPOffset; 1553 } 1554 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 1555 // Otherwise, use SP or FP, whichever is closer to the stack slot. 1556 FrameReg = RegInfo->getFrameRegister(MF); 1557 return FPOffset; 1558 } 1559 } 1560 // Use the base pointer if we have one. 1561 // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper? 1562 // That can happen if we forced a base pointer for a large call frame. 1563 if (RegInfo->hasBasePointer(MF)) { 1564 FrameReg = RegInfo->getBaseRegister(); 1565 Offset -= SPAdj; 1566 } 1567 return Offset; 1568 } 1569 1570 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 1571 MachineBasicBlock::iterator MI, 1572 ArrayRef<CalleeSavedInfo> CSI, 1573 unsigned StmOpc, unsigned StrOpc, 1574 bool NoGap, 1575 function_ref<bool(unsigned)> Func) const { 1576 MachineFunction &MF = *MBB.getParent(); 1577 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1578 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1579 1580 DebugLoc DL; 1581 1582 using RegAndKill = std::pair<unsigned, bool>; 1583 1584 SmallVector<RegAndKill, 4> Regs; 1585 unsigned i = CSI.size(); 1586 while (i != 0) { 1587 unsigned LastReg = 0; 1588 for (; i != 0; --i) { 1589 Register Reg = CSI[i-1].getReg(); 1590 if (!Func(Reg)) 1591 continue; 1592 1593 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1594 bool isLiveIn = MRI.isLiveIn(Reg); 1595 if (!isLiveIn && !MRI.isReserved(Reg)) 1596 MBB.addLiveIn(Reg); 1597 // If NoGap is true, push consecutive registers and then leave the rest 1598 // for other instructions. e.g. 1599 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 1600 if (NoGap && LastReg && LastReg != Reg-1) 1601 break; 1602 LastReg = Reg; 1603 // Do not set a kill flag on values that are also marked as live-in. This 1604 // happens with the @llvm-returnaddress intrinsic and with arguments 1605 // passed in callee saved registers. 1606 // Omitting the kill flags is conservatively correct even if the live-in 1607 // is not used after all. 1608 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 1609 } 1610 1611 if (Regs.empty()) 1612 continue; 1613 1614 llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) { 1615 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 1616 }); 1617 1618 if (Regs.size() > 1 || StrOpc== 0) { 1619 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 1620 .addReg(ARM::SP) 1621 .setMIFlags(MachineInstr::FrameSetup) 1622 .add(predOps(ARMCC::AL)); 1623 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1624 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 1625 } else if (Regs.size() == 1) { 1626 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 1627 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 1628 .addReg(ARM::SP) 1629 .setMIFlags(MachineInstr::FrameSetup) 1630 .addImm(-4) 1631 .add(predOps(ARMCC::AL)); 1632 } 1633 Regs.clear(); 1634 1635 // Put any subsequent vpush instructions before this one: they will refer to 1636 // higher register numbers so need to be pushed first in order to preserve 1637 // monotonicity. 1638 if (MI != MBB.begin()) 1639 --MI; 1640 } 1641 } 1642 1643 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1644 MachineBasicBlock::iterator MI, 1645 MutableArrayRef<CalleeSavedInfo> CSI, 1646 unsigned LdmOpc, unsigned LdrOpc, 1647 bool isVarArg, bool NoGap, 1648 function_ref<bool(unsigned)> Func) const { 1649 MachineFunction &MF = *MBB.getParent(); 1650 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1651 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1652 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1653 bool hasPAC = AFI->shouldSignReturnAddress(); 1654 DebugLoc DL; 1655 bool isTailCall = false; 1656 bool isInterrupt = false; 1657 bool isTrap = false; 1658 bool isCmseEntry = false; 1659 ARMSubtarget::PushPopSplitVariation PushPopSplit = 1660 STI.getPushPopSplitVariation(MF); 1661 if (MBB.end() != MI) { 1662 DL = MI->getDebugLoc(); 1663 unsigned RetOpcode = MI->getOpcode(); 1664 isTailCall = 1665 (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri || 1666 RetOpcode == ARM::TCRETURNrinotr12); 1667 isInterrupt = 1668 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1669 isTrap = 1670 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1671 RetOpcode == ARM::tTRAP; 1672 isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET); 1673 } 1674 1675 SmallVector<unsigned, 4> Regs; 1676 unsigned i = CSI.size(); 1677 while (i != 0) { 1678 unsigned LastReg = 0; 1679 bool DeleteRet = false; 1680 for (; i != 0; --i) { 1681 CalleeSavedInfo &Info = CSI[i-1]; 1682 Register Reg = Info.getReg(); 1683 if (!Func(Reg)) 1684 continue; 1685 1686 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1687 !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 && 1688 STI.hasV5TOps() && MBB.succ_empty() && !hasPAC && 1689 PushPopSplit != ARMSubtarget::SplitR11WindowsSEH) { 1690 Reg = ARM::PC; 1691 // Fold the return instruction into the LDM. 1692 DeleteRet = true; 1693 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1694 } 1695 1696 // If NoGap is true, pop consecutive registers and then leave the rest 1697 // for other instructions. e.g. 1698 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1699 if (NoGap && LastReg && LastReg != Reg-1) 1700 break; 1701 1702 LastReg = Reg; 1703 Regs.push_back(Reg); 1704 } 1705 1706 if (Regs.empty()) 1707 continue; 1708 1709 llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) { 1710 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1711 }); 1712 1713 if (Regs.size() > 1 || LdrOpc == 0) { 1714 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1715 .addReg(ARM::SP) 1716 .add(predOps(ARMCC::AL)) 1717 .setMIFlags(MachineInstr::FrameDestroy); 1718 for (unsigned Reg : Regs) 1719 MIB.addReg(Reg, getDefRegState(true)); 1720 if (DeleteRet) { 1721 if (MI != MBB.end()) { 1722 MIB.copyImplicitOps(*MI); 1723 MI->eraseFromParent(); 1724 } 1725 } 1726 MI = MIB; 1727 } else if (Regs.size() == 1) { 1728 // If we adjusted the reg to PC from LR above, switch it back here. We 1729 // only do that for LDM. 1730 if (Regs[0] == ARM::PC) 1731 Regs[0] = ARM::LR; 1732 MachineInstrBuilder MIB = 1733 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1734 .addReg(ARM::SP, RegState::Define) 1735 .addReg(ARM::SP) 1736 .setMIFlags(MachineInstr::FrameDestroy); 1737 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1738 // that refactoring is complete (eventually). 1739 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1740 MIB.addReg(0); 1741 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1742 } else 1743 MIB.addImm(4); 1744 MIB.add(predOps(ARMCC::AL)); 1745 } 1746 Regs.clear(); 1747 1748 // Put any subsequent vpop instructions after this one: they will refer to 1749 // higher register numbers so need to be popped afterwards. 1750 if (MI != MBB.end()) 1751 ++MI; 1752 } 1753 } 1754 1755 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1756 /// starting from d8. Also insert stack realignment code and leave the stack 1757 /// pointer pointing to the d8 spill slot. 1758 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1759 MachineBasicBlock::iterator MI, 1760 unsigned NumAlignedDPRCS2Regs, 1761 ArrayRef<CalleeSavedInfo> CSI, 1762 const TargetRegisterInfo *TRI) { 1763 MachineFunction &MF = *MBB.getParent(); 1764 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1765 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1766 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1767 MachineFrameInfo &MFI = MF.getFrameInfo(); 1768 1769 // Mark the D-register spill slots as properly aligned. Since MFI computes 1770 // stack slot layout backwards, this can actually mean that the d-reg stack 1771 // slot offsets can be wrong. The offset for d8 will always be correct. 1772 for (const CalleeSavedInfo &I : CSI) { 1773 unsigned DNum = I.getReg() - ARM::D8; 1774 if (DNum > NumAlignedDPRCS2Regs - 1) 1775 continue; 1776 int FI = I.getFrameIdx(); 1777 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1778 // registers will be 8-byte aligned. 1779 MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16)); 1780 1781 // The stack slot for D8 needs to be maximally aligned because this is 1782 // actually the point where we align the stack pointer. MachineFrameInfo 1783 // computes all offsets relative to the incoming stack pointer which is a 1784 // bit weird when realigning the stack. Any extra padding for this 1785 // over-alignment is not realized because the code inserted below adjusts 1786 // the stack pointer by numregs * 8 before aligning the stack pointer. 1787 if (DNum == 0) 1788 MFI.setObjectAlignment(FI, MFI.getMaxAlign()); 1789 } 1790 1791 // Move the stack pointer to the d8 spill slot, and align it at the same 1792 // time. Leave the stack slot address in the scratch register r4. 1793 // 1794 // sub r4, sp, #numregs * 8 1795 // bic r4, r4, #align - 1 1796 // mov sp, r4 1797 // 1798 bool isThumb = AFI->isThumbFunction(); 1799 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1800 AFI->setShouldRestoreSPFromFP(true); 1801 1802 // sub r4, sp, #numregs * 8 1803 // The immediate is <= 64, so it doesn't need any special encoding. 1804 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1805 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1806 .addReg(ARM::SP) 1807 .addImm(8 * NumAlignedDPRCS2Regs) 1808 .add(predOps(ARMCC::AL)) 1809 .add(condCodeOp()); 1810 1811 Align MaxAlign = MF.getFrameInfo().getMaxAlign(); 1812 // We must set parameter MustBeSingleInstruction to true, since 1813 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1814 // stack alignment. Luckily, this can always be done since all ARM 1815 // architecture versions that support Neon also support the BFC 1816 // instruction. 1817 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1818 1819 // mov sp, r4 1820 // The stack pointer must be adjusted before spilling anything, otherwise 1821 // the stack slots could be clobbered by an interrupt handler. 1822 // Leave r4 live, it is used below. 1823 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1824 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1825 .addReg(ARM::R4) 1826 .add(predOps(ARMCC::AL)); 1827 if (!isThumb) 1828 MIB.add(condCodeOp()); 1829 1830 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1831 // r4 holds the stack slot address. 1832 unsigned NextReg = ARM::D8; 1833 1834 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1835 // The writeback is only needed when emitting two vst1.64 instructions. 1836 if (NumAlignedDPRCS2Regs >= 6) { 1837 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1838 &ARM::QQPRRegClass); 1839 MBB.addLiveIn(SupReg); 1840 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1841 .addReg(ARM::R4, RegState::Kill) 1842 .addImm(16) 1843 .addReg(NextReg) 1844 .addReg(SupReg, RegState::ImplicitKill) 1845 .add(predOps(ARMCC::AL)); 1846 NextReg += 4; 1847 NumAlignedDPRCS2Regs -= 4; 1848 } 1849 1850 // We won't modify r4 beyond this point. It currently points to the next 1851 // register to be spilled. 1852 unsigned R4BaseReg = NextReg; 1853 1854 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1855 if (NumAlignedDPRCS2Regs >= 4) { 1856 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1857 &ARM::QQPRRegClass); 1858 MBB.addLiveIn(SupReg); 1859 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1860 .addReg(ARM::R4) 1861 .addImm(16) 1862 .addReg(NextReg) 1863 .addReg(SupReg, RegState::ImplicitKill) 1864 .add(predOps(ARMCC::AL)); 1865 NextReg += 4; 1866 NumAlignedDPRCS2Regs -= 4; 1867 } 1868 1869 // 16-byte aligned vst1.64 with 2 d-regs. 1870 if (NumAlignedDPRCS2Regs >= 2) { 1871 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1872 &ARM::QPRRegClass); 1873 MBB.addLiveIn(SupReg); 1874 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1875 .addReg(ARM::R4) 1876 .addImm(16) 1877 .addReg(SupReg) 1878 .add(predOps(ARMCC::AL)); 1879 NextReg += 2; 1880 NumAlignedDPRCS2Regs -= 2; 1881 } 1882 1883 // Finally, use a vanilla vstr.64 for the odd last register. 1884 if (NumAlignedDPRCS2Regs) { 1885 MBB.addLiveIn(NextReg); 1886 // vstr.64 uses addrmode5 which has an offset scale of 4. 1887 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1888 .addReg(NextReg) 1889 .addReg(ARM::R4) 1890 .addImm((NextReg - R4BaseReg) * 2) 1891 .add(predOps(ARMCC::AL)); 1892 } 1893 1894 // The last spill instruction inserted should kill the scratch register r4. 1895 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1896 } 1897 1898 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1899 /// iterator to the following instruction. 1900 static MachineBasicBlock::iterator 1901 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1902 unsigned NumAlignedDPRCS2Regs) { 1903 // sub r4, sp, #numregs * 8 1904 // bic r4, r4, #align - 1 1905 // mov sp, r4 1906 ++MI; ++MI; ++MI; 1907 assert(MI->mayStore() && "Expecting spill instruction"); 1908 1909 // These switches all fall through. 1910 switch(NumAlignedDPRCS2Regs) { 1911 case 7: 1912 ++MI; 1913 assert(MI->mayStore() && "Expecting spill instruction"); 1914 [[fallthrough]]; 1915 default: 1916 ++MI; 1917 assert(MI->mayStore() && "Expecting spill instruction"); 1918 [[fallthrough]]; 1919 case 1: 1920 case 2: 1921 case 4: 1922 assert(MI->killsRegister(ARM::R4, /*TRI=*/nullptr) && "Missed kill flag"); 1923 ++MI; 1924 } 1925 return MI; 1926 } 1927 1928 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1929 /// starting from d8. These instructions are assumed to execute while the 1930 /// stack is still aligned, unlike the code inserted by emitPopInst. 1931 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1932 MachineBasicBlock::iterator MI, 1933 unsigned NumAlignedDPRCS2Regs, 1934 ArrayRef<CalleeSavedInfo> CSI, 1935 const TargetRegisterInfo *TRI) { 1936 MachineFunction &MF = *MBB.getParent(); 1937 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1938 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1939 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1940 1941 // Find the frame index assigned to d8. 1942 int D8SpillFI = 0; 1943 for (const CalleeSavedInfo &I : CSI) 1944 if (I.getReg() == ARM::D8) { 1945 D8SpillFI = I.getFrameIdx(); 1946 break; 1947 } 1948 1949 // Materialize the address of the d8 spill slot into the scratch register r4. 1950 // This can be fairly complicated if the stack frame is large, so just use 1951 // the normal frame index elimination mechanism to do it. This code runs as 1952 // the initial part of the epilog where the stack and base pointers haven't 1953 // been changed yet. 1954 bool isThumb = AFI->isThumbFunction(); 1955 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1956 1957 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 1958 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1959 .addFrameIndex(D8SpillFI) 1960 .addImm(0) 1961 .add(predOps(ARMCC::AL)) 1962 .add(condCodeOp()); 1963 1964 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 1965 unsigned NextReg = ARM::D8; 1966 1967 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 1968 if (NumAlignedDPRCS2Regs >= 6) { 1969 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1970 &ARM::QQPRRegClass); 1971 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 1972 .addReg(ARM::R4, RegState::Define) 1973 .addReg(ARM::R4, RegState::Kill) 1974 .addImm(16) 1975 .addReg(SupReg, RegState::ImplicitDefine) 1976 .add(predOps(ARMCC::AL)); 1977 NextReg += 4; 1978 NumAlignedDPRCS2Regs -= 4; 1979 } 1980 1981 // We won't modify r4 beyond this point. It currently points to the next 1982 // register to be spilled. 1983 unsigned R4BaseReg = NextReg; 1984 1985 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 1986 if (NumAlignedDPRCS2Regs >= 4) { 1987 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1988 &ARM::QQPRRegClass); 1989 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 1990 .addReg(ARM::R4) 1991 .addImm(16) 1992 .addReg(SupReg, RegState::ImplicitDefine) 1993 .add(predOps(ARMCC::AL)); 1994 NextReg += 4; 1995 NumAlignedDPRCS2Regs -= 4; 1996 } 1997 1998 // 16-byte aligned vld1.64 with 2 d-regs. 1999 if (NumAlignedDPRCS2Regs >= 2) { 2000 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 2001 &ARM::QPRRegClass); 2002 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 2003 .addReg(ARM::R4) 2004 .addImm(16) 2005 .add(predOps(ARMCC::AL)); 2006 NextReg += 2; 2007 NumAlignedDPRCS2Regs -= 2; 2008 } 2009 2010 // Finally, use a vanilla vldr.64 for the remaining odd register. 2011 if (NumAlignedDPRCS2Regs) 2012 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 2013 .addReg(ARM::R4) 2014 .addImm(2 * (NextReg - R4BaseReg)) 2015 .add(predOps(ARMCC::AL)); 2016 2017 // Last store kills r4. 2018 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 2019 } 2020 2021 bool ARMFrameLowering::spillCalleeSavedRegisters( 2022 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2023 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2024 if (CSI.empty()) 2025 return false; 2026 2027 MachineFunction &MF = *MBB.getParent(); 2028 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2029 ARMSubtarget::PushPopSplitVariation PushPopSplit = 2030 STI.getPushPopSplitVariation(MF); 2031 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 2032 2033 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 2034 unsigned PushOneOpc = AFI->isThumbFunction() ? 2035 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 2036 unsigned FltOpc = ARM::VSTMDDB_UPD; 2037 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 2038 // Compute PAC in R12. 2039 if (AFI->shouldSignReturnAddress()) { 2040 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC)) 2041 .setMIFlags(MachineInstr::FrameSetup); 2042 } 2043 // Save the non-secure floating point context. 2044 if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) { 2045 return C.getReg() == ARM::FPCXTNS; 2046 })) { 2047 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre), 2048 ARM::SP) 2049 .addReg(ARM::SP) 2050 .addImm(-4) 2051 .add(predOps(ARMCC::AL)); 2052 } 2053 2054 auto CheckRegArea = [PushPopSplit, NumAlignedDPRCS2Regs, 2055 RegInfo](unsigned Reg, SpillArea TestArea) { 2056 return getSpillArea(Reg, PushPopSplit, NumAlignedDPRCS2Regs, RegInfo) == 2057 TestArea; 2058 }; 2059 auto IsGPRCS1 = [&CheckRegArea](unsigned Reg) { 2060 return CheckRegArea(Reg, SpillArea::GPRCS1); 2061 }; 2062 auto IsGPRCS2 = [&CheckRegArea](unsigned Reg) { 2063 return CheckRegArea(Reg, SpillArea::GPRCS2); 2064 }; 2065 auto IsDPRCS1 = [&CheckRegArea](unsigned Reg) { 2066 return CheckRegArea(Reg, SpillArea::DPRCS1); 2067 }; 2068 2069 // Windows SEH requires the floating-point registers to be pushed between the 2070 // two blocks of GPRs in some situations. In all other cases, they are pushed 2071 // below the GPRs. 2072 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 2073 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS1); 2074 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, IsDPRCS1); 2075 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS2); 2076 } else { 2077 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS1); 2078 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS2); 2079 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, IsDPRCS1); 2080 } 2081 2082 // The code above does not insert spill code for the aligned DPRCS2 registers. 2083 // The stack realignment code will be inserted between the push instructions 2084 // and these spills. 2085 if (NumAlignedDPRCS2Regs) 2086 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 2087 2088 return true; 2089 } 2090 2091 bool ARMFrameLowering::restoreCalleeSavedRegisters( 2092 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2093 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2094 if (CSI.empty()) 2095 return false; 2096 2097 MachineFunction &MF = *MBB.getParent(); 2098 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2099 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 2100 2101 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 2102 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 2103 ARMSubtarget::PushPopSplitVariation PushPopSplit = 2104 STI.getPushPopSplitVariation(MF); 2105 2106 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 2107 // registers. Do that here instead. 2108 if (NumAlignedDPRCS2Regs) 2109 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 2110 2111 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 2112 unsigned LdrOpc = 2113 AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; 2114 unsigned FltOpc = ARM::VLDMDIA_UPD; 2115 2116 auto CheckRegArea = [PushPopSplit, NumAlignedDPRCS2Regs, 2117 RegInfo](unsigned Reg, SpillArea TestArea) { 2118 return getSpillArea(Reg, PushPopSplit, NumAlignedDPRCS2Regs, RegInfo) == 2119 TestArea; 2120 }; 2121 auto IsGPRCS1 = [&CheckRegArea](unsigned Reg) { 2122 return CheckRegArea(Reg, SpillArea::GPRCS1); 2123 }; 2124 auto IsGPRCS2 = [&CheckRegArea](unsigned Reg) { 2125 return CheckRegArea(Reg, SpillArea::GPRCS2); 2126 }; 2127 auto IsDPRCS1 = [&CheckRegArea](unsigned Reg) { 2128 return CheckRegArea(Reg, SpillArea::DPRCS1); 2129 }; 2130 2131 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 2132 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS2); 2133 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, IsDPRCS1); 2134 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS1); 2135 } else { 2136 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, IsDPRCS1); 2137 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS2); 2138 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS1); 2139 } 2140 2141 return true; 2142 } 2143 2144 // FIXME: Make generic? 2145 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF, 2146 const ARMBaseInstrInfo &TII) { 2147 unsigned FnSize = 0; 2148 for (auto &MBB : MF) { 2149 for (auto &MI : MBB) 2150 FnSize += TII.getInstSizeInBytes(MI); 2151 } 2152 if (MF.getJumpTableInfo()) 2153 for (auto &Table: MF.getJumpTableInfo()->getJumpTables()) 2154 FnSize += Table.MBBs.size() * 4; 2155 FnSize += MF.getConstantPool()->getConstants().size() * 4; 2156 return FnSize; 2157 } 2158 2159 /// estimateRSStackSizeLimit - Look at each instruction that references stack 2160 /// frames and return the stack size limit beyond which some of these 2161 /// instructions will require a scratch register during their expansion later. 2162 // FIXME: Move to TII? 2163 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 2164 const TargetFrameLowering *TFI, 2165 bool &HasNonSPFrameIndex) { 2166 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2167 const ARMBaseInstrInfo &TII = 2168 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2169 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2170 unsigned Limit = (1 << 12) - 1; 2171 for (auto &MBB : MF) { 2172 for (auto &MI : MBB) { 2173 if (MI.isDebugInstr()) 2174 continue; 2175 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 2176 if (!MI.getOperand(i).isFI()) 2177 continue; 2178 2179 // When using ADDri to get the address of a stack object, 255 is the 2180 // largest offset guaranteed to fit in the immediate offset. 2181 if (MI.getOpcode() == ARM::ADDri) { 2182 Limit = std::min(Limit, (1U << 8) - 1); 2183 break; 2184 } 2185 // t2ADDri will not require an extra register, it can reuse the 2186 // destination. 2187 if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12) 2188 break; 2189 2190 const MCInstrDesc &MCID = MI.getDesc(); 2191 const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF); 2192 if (RegClass && !RegClass->contains(ARM::SP)) 2193 HasNonSPFrameIndex = true; 2194 2195 // Otherwise check the addressing mode. 2196 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 2197 case ARMII::AddrMode_i12: 2198 case ARMII::AddrMode2: 2199 // Default 12 bit limit. 2200 break; 2201 case ARMII::AddrMode3: 2202 case ARMII::AddrModeT2_i8neg: 2203 Limit = std::min(Limit, (1U << 8) - 1); 2204 break; 2205 case ARMII::AddrMode5FP16: 2206 Limit = std::min(Limit, ((1U << 8) - 1) * 2); 2207 break; 2208 case ARMII::AddrMode5: 2209 case ARMII::AddrModeT2_i8s4: 2210 case ARMII::AddrModeT2_ldrex: 2211 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 2212 break; 2213 case ARMII::AddrModeT2_i12: 2214 // i12 supports only positive offset so these will be converted to 2215 // i8 opcodes. See llvm::rewriteT2FrameIndex. 2216 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 2217 Limit = std::min(Limit, (1U << 8) - 1); 2218 break; 2219 case ARMII::AddrMode4: 2220 case ARMII::AddrMode6: 2221 // Addressing modes 4 & 6 (load/store) instructions can't encode an 2222 // immediate offset for stack references. 2223 return 0; 2224 case ARMII::AddrModeT2_i7: 2225 Limit = std::min(Limit, ((1U << 7) - 1) * 1); 2226 break; 2227 case ARMII::AddrModeT2_i7s2: 2228 Limit = std::min(Limit, ((1U << 7) - 1) * 2); 2229 break; 2230 case ARMII::AddrModeT2_i7s4: 2231 Limit = std::min(Limit, ((1U << 7) - 1) * 4); 2232 break; 2233 default: 2234 llvm_unreachable("Unhandled addressing mode in stack size limit calculation"); 2235 } 2236 break; // At most one FI per instruction 2237 } 2238 } 2239 } 2240 2241 return Limit; 2242 } 2243 2244 // In functions that realign the stack, it can be an advantage to spill the 2245 // callee-saved vector registers after realigning the stack. The vst1 and vld1 2246 // instructions take alignment hints that can improve performance. 2247 static void 2248 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 2249 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 2250 if (!SpillAlignedNEONRegs) 2251 return; 2252 2253 // Naked functions don't spill callee-saved registers. 2254 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 2255 return; 2256 2257 // We are planning to use NEON instructions vst1 / vld1. 2258 if (!MF.getSubtarget<ARMSubtarget>().hasNEON()) 2259 return; 2260 2261 // Don't bother if the default stack alignment is sufficiently high. 2262 if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8)) 2263 return; 2264 2265 // Aligned spills require stack realignment. 2266 if (!static_cast<const ARMBaseRegisterInfo *>( 2267 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 2268 return; 2269 2270 // We always spill contiguous d-registers starting from d8. Count how many 2271 // needs spilling. The register allocator will almost always use the 2272 // callee-saved registers in order, but it can happen that there are holes in 2273 // the range. Registers above the hole will be spilled to the standard DPRCS 2274 // area. 2275 unsigned NumSpills = 0; 2276 for (; NumSpills < 8; ++NumSpills) 2277 if (!SavedRegs.test(ARM::D8 + NumSpills)) 2278 break; 2279 2280 // Don't do this for just one d-register. It's not worth it. 2281 if (NumSpills < 2) 2282 return; 2283 2284 // Spill the first NumSpills D-registers after realigning the stack. 2285 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 2286 2287 // A scratch register is required for the vst1 / vld1 instructions. 2288 SavedRegs.set(ARM::R4); 2289 } 2290 2291 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2292 // For CMSE entry functions, we want to save the FPCXT_NS immediately 2293 // upon function entry (resp. restore it immmediately before return) 2294 if (STI.hasV8_1MMainlineOps() && 2295 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) 2296 return false; 2297 2298 // We are disabling shrinkwrapping for now when PAC is enabled, as 2299 // shrinkwrapping can cause clobbering of r12 when the PAC code is 2300 // generated. A follow-up patch will fix this in a more performant manner. 2301 if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress( 2302 true /* SpillsLR */)) 2303 return false; 2304 2305 return true; 2306 } 2307 2308 bool ARMFrameLowering::requiresAAPCSFrameRecord( 2309 const MachineFunction &MF) const { 2310 const auto &Subtarget = MF.getSubtarget<ARMSubtarget>(); 2311 return Subtarget.createAAPCSFrameChain() && hasFP(MF); 2312 } 2313 2314 // Thumb1 may require a spill when storing to a frame index through FP (or any 2315 // access with execute-only), for cases where FP is a high register (R11). This 2316 // scans the function for cases where this may happen. 2317 static bool canSpillOnFrameIndexAccess(const MachineFunction &MF, 2318 const TargetFrameLowering &TFI) { 2319 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2320 if (!AFI->isThumb1OnlyFunction()) 2321 return false; 2322 2323 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 2324 for (const auto &MBB : MF) 2325 for (const auto &MI : MBB) 2326 if (MI.getOpcode() == ARM::tSTRspi || MI.getOpcode() == ARM::tSTRi || 2327 STI.genExecuteOnly()) 2328 for (const auto &Op : MI.operands()) 2329 if (Op.isFI()) { 2330 Register Reg; 2331 TFI.getFrameIndexReference(MF, Op.getIndex(), Reg); 2332 if (ARM::hGPRRegClass.contains(Reg) && Reg != ARM::SP) 2333 return true; 2334 } 2335 return false; 2336 } 2337 2338 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 2339 BitVector &SavedRegs, 2340 RegScavenger *RS) const { 2341 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2342 // This tells PEI to spill the FP as if it is any other callee-save register 2343 // to take advantage the eliminateFrameIndex machinery. This also ensures it 2344 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 2345 // to combine multiple loads / stores. 2346 bool CanEliminateFrame = !(requiresAAPCSFrameRecord(MF) && hasFP(MF)); 2347 bool CS1Spilled = false; 2348 bool LRSpilled = false; 2349 unsigned NumGPRSpills = 0; 2350 unsigned NumFPRSpills = 0; 2351 SmallVector<unsigned, 4> UnspilledCS1GPRs; 2352 SmallVector<unsigned, 4> UnspilledCS2GPRs; 2353 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 2354 MF.getSubtarget().getRegisterInfo()); 2355 const ARMBaseInstrInfo &TII = 2356 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2357 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2358 MachineFrameInfo &MFI = MF.getFrameInfo(); 2359 MachineRegisterInfo &MRI = MF.getRegInfo(); 2360 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2361 (void)TRI; // Silence unused warning in non-assert builds. 2362 Register FramePtr = RegInfo->getFrameRegister(MF); 2363 ARMSubtarget::PushPopSplitVariation PushPopSplit = 2364 STI.getPushPopSplitVariation(MF); 2365 2366 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 2367 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 2368 // since it's not always possible to restore sp from fp in a single 2369 // instruction. 2370 // FIXME: It will be better just to find spare register here. 2371 if (AFI->isThumb2Function() && 2372 (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))) 2373 SavedRegs.set(ARM::R4); 2374 2375 // If a stack probe will be emitted, spill R4 and LR, since they are 2376 // clobbered by the stack probe call. 2377 // This estimate should be a safe, conservative estimate. The actual 2378 // stack probe is enabled based on the size of the local objects; 2379 // this estimate also includes the varargs store size. 2380 if (STI.isTargetWindows() && 2381 WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) { 2382 SavedRegs.set(ARM::R4); 2383 SavedRegs.set(ARM::LR); 2384 } 2385 2386 if (AFI->isThumb1OnlyFunction()) { 2387 // Spill LR if Thumb1 function uses variable length argument lists. 2388 if (AFI->getArgRegsSaveSize() > 0) 2389 SavedRegs.set(ARM::LR); 2390 2391 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function 2392 // requires stack alignment. We don't know for sure what the stack size 2393 // will be, but for this, an estimate is good enough. If there anything 2394 // changes it, it'll be a spill, which implies we've used all the registers 2395 // and so R4 is already used, so not marking it here will be OK. 2396 // FIXME: It will be better just to find spare register here. 2397 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) || 2398 MFI.estimateStackSize(MF) > 508) 2399 SavedRegs.set(ARM::R4); 2400 } 2401 2402 // See if we can spill vector registers to aligned stack. 2403 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 2404 2405 // Spill the BasePtr if it's used. 2406 if (RegInfo->hasBasePointer(MF)) 2407 SavedRegs.set(RegInfo->getBaseRegister()); 2408 2409 // On v8.1-M.Main CMSE entry functions save/restore FPCXT. 2410 if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction()) 2411 CanEliminateFrame = false; 2412 2413 // When return address signing is enabled R12 is treated as callee-saved. 2414 if (AFI->shouldSignReturnAddress()) 2415 CanEliminateFrame = false; 2416 2417 // Don't spill FP if the frame can be eliminated. This is determined 2418 // by scanning the callee-save registers to see if any is modified. 2419 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 2420 for (unsigned i = 0; CSRegs[i]; ++i) { 2421 unsigned Reg = CSRegs[i]; 2422 bool Spilled = false; 2423 if (SavedRegs.test(Reg)) { 2424 Spilled = true; 2425 CanEliminateFrame = false; 2426 } 2427 2428 if (!ARM::GPRRegClass.contains(Reg)) { 2429 if (Spilled) { 2430 if (ARM::SPRRegClass.contains(Reg)) 2431 NumFPRSpills++; 2432 else if (ARM::DPRRegClass.contains(Reg)) 2433 NumFPRSpills += 2; 2434 else if (ARM::QPRRegClass.contains(Reg)) 2435 NumFPRSpills += 4; 2436 } 2437 continue; 2438 } 2439 2440 if (Spilled) { 2441 NumGPRSpills++; 2442 2443 if (PushPopSplit != ARMSubtarget::SplitR7) { 2444 if (Reg == ARM::LR) 2445 LRSpilled = true; 2446 CS1Spilled = true; 2447 continue; 2448 } 2449 2450 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 2451 switch (Reg) { 2452 case ARM::LR: 2453 LRSpilled = true; 2454 [[fallthrough]]; 2455 case ARM::R0: case ARM::R1: 2456 case ARM::R2: case ARM::R3: 2457 case ARM::R4: case ARM::R5: 2458 case ARM::R6: case ARM::R7: 2459 CS1Spilled = true; 2460 break; 2461 default: 2462 break; 2463 } 2464 } else { 2465 if (PushPopSplit != ARMSubtarget::SplitR7) { 2466 UnspilledCS1GPRs.push_back(Reg); 2467 continue; 2468 } 2469 2470 switch (Reg) { 2471 case ARM::R0: case ARM::R1: 2472 case ARM::R2: case ARM::R3: 2473 case ARM::R4: case ARM::R5: 2474 case ARM::R6: case ARM::R7: 2475 case ARM::LR: 2476 UnspilledCS1GPRs.push_back(Reg); 2477 break; 2478 default: 2479 UnspilledCS2GPRs.push_back(Reg); 2480 break; 2481 } 2482 } 2483 } 2484 2485 bool ForceLRSpill = false; 2486 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 2487 unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII); 2488 // Force LR to be spilled if the Thumb function size is > 2048. This enables 2489 // use of BL to implement far jump. 2490 if (FnSize >= (1 << 11)) { 2491 CanEliminateFrame = false; 2492 ForceLRSpill = true; 2493 } 2494 } 2495 2496 // If any of the stack slot references may be out of range of an immediate 2497 // offset, make sure a register (or a spill slot) is available for the 2498 // register scavenger. Note that if we're indexing off the frame pointer, the 2499 // effective stack size is 4 bytes larger since the FP points to the stack 2500 // slot of the previous FP. Also, if we have variable sized objects in the 2501 // function, stack slot references will often be negative, and some of 2502 // our instructions are positive-offset only, so conservatively consider 2503 // that case to want a spill slot (or register) as well. Similarly, if 2504 // the function adjusts the stack pointer during execution and the 2505 // adjustments aren't already part of our stack size estimate, our offset 2506 // calculations may be off, so be conservative. 2507 // FIXME: We could add logic to be more precise about negative offsets 2508 // and which instructions will need a scratch register for them. Is it 2509 // worth the effort and added fragility? 2510 unsigned EstimatedStackSize = 2511 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 2512 2513 // Determine biggest (positive) SP offset in MachineFrameInfo. 2514 int MaxFixedOffset = 0; 2515 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 2516 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); 2517 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); 2518 } 2519 2520 bool HasFP = hasFP(MF); 2521 if (HasFP) { 2522 if (AFI->hasStackFrame()) 2523 EstimatedStackSize += 4; 2524 } else { 2525 // If FP is not used, SP will be used to access arguments, so count the 2526 // size of arguments into the estimation. 2527 EstimatedStackSize += MaxFixedOffset; 2528 } 2529 EstimatedStackSize += 16; // For possible paddings. 2530 2531 unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit; 2532 bool HasNonSPFrameIndex = false; 2533 if (AFI->isThumb1OnlyFunction()) { 2534 // For Thumb1, don't bother to iterate over the function. The only 2535 // instruction that requires an emergency spill slot is a store to a 2536 // frame index. 2537 // 2538 // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned 2539 // immediate. tSTRi, which is used for bp- and fp-relative accesses, has 2540 // a 5-bit unsigned immediate. 2541 // 2542 // We could try to check if the function actually contains a tSTRspi 2543 // that might need the spill slot, but it's not really important. 2544 // Functions with VLAs or extremely large call frames are rare, and 2545 // if a function is allocating more than 1KB of stack, an extra 4-byte 2546 // slot probably isn't relevant. 2547 // 2548 // A special case is the scenario where r11 is used as FP, where accesses 2549 // to a frame index will require its value to be moved into a low reg. 2550 // This is handled later on, once we are able to determine if we have any 2551 // fp-relative accesses. 2552 if (RegInfo->hasBasePointer(MF)) 2553 EstimatedRSStackSizeLimit = (1U << 5) * 4; 2554 else 2555 EstimatedRSStackSizeLimit = (1U << 8) * 4; 2556 EstimatedRSFixedSizeLimit = (1U << 5) * 4; 2557 } else { 2558 EstimatedRSStackSizeLimit = 2559 estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex); 2560 EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit; 2561 } 2562 // Final estimate of whether sp or bp-relative accesses might require 2563 // scavenging. 2564 bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit; 2565 2566 // If the stack pointer moves and we don't have a base pointer, the 2567 // estimate logic doesn't work. The actual offsets might be larger when 2568 // we're constructing a call frame, or we might need to use negative 2569 // offsets from fp. 2570 bool HasMovingSP = MFI.hasVarSizedObjects() || 2571 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)); 2572 bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP; 2573 2574 // If we have a frame pointer, we assume arguments will be accessed 2575 // relative to the frame pointer. Check whether fp-relative accesses to 2576 // arguments require scavenging. 2577 // 2578 // We could do slightly better on Thumb1; in some cases, an sp-relative 2579 // offset would be legal even though an fp-relative offset is not. 2580 int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF); 2581 bool HasLargeArgumentList = 2582 HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit; 2583 2584 bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP || 2585 HasLargeArgumentList || HasNonSPFrameIndex; 2586 LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit 2587 << "; EstimatedStack: " << EstimatedStackSize 2588 << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset 2589 << "; BigFrameOffsets: " << BigFrameOffsets << "\n"); 2590 if (BigFrameOffsets || 2591 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 2592 AFI->setHasStackFrame(true); 2593 2594 if (HasFP) { 2595 SavedRegs.set(FramePtr); 2596 // If the frame pointer is required by the ABI, also spill LR so that we 2597 // emit a complete frame record. 2598 if ((requiresAAPCSFrameRecord(MF) || 2599 MF.getTarget().Options.DisableFramePointerElim(MF)) && 2600 !LRSpilled) { 2601 SavedRegs.set(ARM::LR); 2602 LRSpilled = true; 2603 NumGPRSpills++; 2604 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 2605 if (LRPos != UnspilledCS1GPRs.end()) 2606 UnspilledCS1GPRs.erase(LRPos); 2607 } 2608 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 2609 if (FPPos != UnspilledCS1GPRs.end()) 2610 UnspilledCS1GPRs.erase(FPPos); 2611 NumGPRSpills++; 2612 if (FramePtr == ARM::R7) 2613 CS1Spilled = true; 2614 } 2615 2616 // This is the number of extra spills inserted for callee-save GPRs which 2617 // would not otherwise be used by the function. When greater than zero it 2618 // guaranteees that it is possible to scavenge a register to hold the 2619 // address of a stack slot. On Thumb1, the register must be a valid operand 2620 // to tSTRi, i.e. r4-r7. For other subtargets, this is any GPR, i.e. r4-r11 2621 // or lr. 2622 // 2623 // If we don't insert a spill, we instead allocate an emergency spill 2624 // slot, which can be used by scavenging to spill an arbitrary register. 2625 // 2626 // We currently don't try to figure out whether any specific instruction 2627 // requires scavening an additional register. 2628 unsigned NumExtraCSSpill = 0; 2629 2630 if (AFI->isThumb1OnlyFunction()) { 2631 // For Thumb1-only targets, we need some low registers when we save and 2632 // restore the high registers (which aren't allocatable, but could be 2633 // used by inline assembly) because the push/pop instructions can not 2634 // access high registers. If necessary, we might need to push more low 2635 // registers to ensure that there is at least one free that can be used 2636 // for the saving & restoring, and preferably we should ensure that as 2637 // many as are needed are available so that fewer push/pop instructions 2638 // are required. 2639 2640 // Low registers which are not currently pushed, but could be (r4-r7). 2641 SmallVector<unsigned, 4> AvailableRegs; 2642 2643 // Unused argument registers (r0-r3) can be clobbered in the prologue for 2644 // free. 2645 int EntryRegDeficit = 0; 2646 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 2647 if (!MF.getRegInfo().isLiveIn(Reg)) { 2648 --EntryRegDeficit; 2649 LLVM_DEBUG(dbgs() 2650 << printReg(Reg, TRI) 2651 << " is unused argument register, EntryRegDeficit = " 2652 << EntryRegDeficit << "\n"); 2653 } 2654 } 2655 2656 // Unused return registers can be clobbered in the epilogue for free. 2657 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 2658 LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount() 2659 << " return regs used, ExitRegDeficit = " 2660 << ExitRegDeficit << "\n"); 2661 2662 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 2663 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 2664 2665 // r4-r6 can be used in the prologue if they are pushed by the first push 2666 // instruction. 2667 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 2668 if (SavedRegs.test(Reg)) { 2669 --RegDeficit; 2670 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2671 << " is saved low register, RegDeficit = " 2672 << RegDeficit << "\n"); 2673 } else { 2674 AvailableRegs.push_back(Reg); 2675 LLVM_DEBUG( 2676 dbgs() 2677 << printReg(Reg, TRI) 2678 << " is non-saved low register, adding to AvailableRegs\n"); 2679 } 2680 } 2681 2682 // r7 can be used if it is not being used as the frame pointer. 2683 if (!HasFP || FramePtr != ARM::R7) { 2684 if (SavedRegs.test(ARM::R7)) { 2685 --RegDeficit; 2686 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = " 2687 << RegDeficit << "\n"); 2688 } else { 2689 AvailableRegs.push_back(ARM::R7); 2690 LLVM_DEBUG( 2691 dbgs() 2692 << "%r7 is non-saved low register, adding to AvailableRegs\n"); 2693 } 2694 } 2695 2696 // Each of r8-r11 needs to be copied to a low register, then pushed. 2697 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 2698 if (SavedRegs.test(Reg)) { 2699 ++RegDeficit; 2700 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2701 << " is saved high register, RegDeficit = " 2702 << RegDeficit << "\n"); 2703 } 2704 } 2705 2706 // LR can only be used by PUSH, not POP, and can't be used at all if the 2707 // llvm.returnaddress intrinsic is used. This is only worth doing if we 2708 // are more limited at function entry than exit. 2709 if ((EntryRegDeficit > ExitRegDeficit) && 2710 !(MF.getRegInfo().isLiveIn(ARM::LR) && 2711 MF.getFrameInfo().isReturnAddressTaken())) { 2712 if (SavedRegs.test(ARM::LR)) { 2713 --RegDeficit; 2714 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = " 2715 << RegDeficit << "\n"); 2716 } else { 2717 AvailableRegs.push_back(ARM::LR); 2718 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n"); 2719 } 2720 } 2721 2722 // If there are more high registers that need pushing than low registers 2723 // available, push some more low registers so that we can use fewer push 2724 // instructions. This might not reduce RegDeficit all the way to zero, 2725 // because we can only guarantee that r4-r6 are available, but r8-r11 may 2726 // need saving. 2727 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 2728 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 2729 unsigned Reg = AvailableRegs.pop_back_val(); 2730 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2731 << " to make up reg deficit\n"); 2732 SavedRegs.set(Reg); 2733 NumGPRSpills++; 2734 CS1Spilled = true; 2735 assert(!MRI.isReserved(Reg) && "Should not be reserved"); 2736 if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg)) 2737 NumExtraCSSpill++; 2738 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 2739 if (Reg == ARM::LR) 2740 LRSpilled = true; 2741 } 2742 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit 2743 << "\n"); 2744 } 2745 2746 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to 2747 // restore LR in that case. 2748 bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall(); 2749 2750 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 2751 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 2752 if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) { 2753 SavedRegs.set(ARM::LR); 2754 NumGPRSpills++; 2755 SmallVectorImpl<unsigned>::iterator LRPos; 2756 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 2757 if (LRPos != UnspilledCS1GPRs.end()) 2758 UnspilledCS1GPRs.erase(LRPos); 2759 2760 ForceLRSpill = false; 2761 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) && 2762 !AFI->isThumb1OnlyFunction()) 2763 NumExtraCSSpill++; 2764 } 2765 2766 // If stack and double are 8-byte aligned and we are spilling an odd number 2767 // of GPRs, spill one extra callee save GPR so we won't have to pad between 2768 // the integer and double callee save areas. 2769 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 2770 const Align TargetAlign = getStackAlign(); 2771 if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) { 2772 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 2773 for (unsigned Reg : UnspilledCS1GPRs) { 2774 // Don't spill high register if the function is thumb. In the case of 2775 // Windows on ARM, accept R11 (frame pointer) 2776 if (!AFI->isThumbFunction() || 2777 (STI.isTargetWindows() && Reg == ARM::R11) || 2778 isARMLowRegister(Reg) || 2779 (Reg == ARM::LR && !ExpensiveLRRestore)) { 2780 SavedRegs.set(Reg); 2781 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2782 << " to make up alignment\n"); 2783 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) && 2784 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction())) 2785 NumExtraCSSpill++; 2786 break; 2787 } 2788 } 2789 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 2790 unsigned Reg = UnspilledCS2GPRs.front(); 2791 SavedRegs.set(Reg); 2792 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2793 << " to make up alignment\n"); 2794 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 2795 NumExtraCSSpill++; 2796 } 2797 } 2798 2799 // Estimate if we might need to scavenge registers at some point in order 2800 // to materialize a stack offset. If so, either spill one additional 2801 // callee-saved register or reserve a special spill slot to facilitate 2802 // register scavenging. Thumb1 needs a spill slot for stack pointer 2803 // adjustments and for frame index accesses when FP is high register, 2804 // even when the frame itself is small. 2805 unsigned RegsNeeded = 0; 2806 if (BigFrameOffsets || canSpillOnFrameIndexAccess(MF, *this)) { 2807 RegsNeeded++; 2808 // With thumb1 execute-only we may need an additional register for saving 2809 // and restoring the CPSR. 2810 if (AFI->isThumb1OnlyFunction() && STI.genExecuteOnly() && !STI.useMovt()) 2811 RegsNeeded++; 2812 } 2813 2814 if (RegsNeeded > NumExtraCSSpill) { 2815 // If any non-reserved CS register isn't spilled, just spill one or two 2816 // extra. That should take care of it! 2817 unsigned NumExtras = TargetAlign.value() / 4; 2818 SmallVector<unsigned, 2> Extras; 2819 while (NumExtras && !UnspilledCS1GPRs.empty()) { 2820 unsigned Reg = UnspilledCS1GPRs.pop_back_val(); 2821 if (!MRI.isReserved(Reg) && 2822 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) { 2823 Extras.push_back(Reg); 2824 NumExtras--; 2825 } 2826 } 2827 // For non-Thumb1 functions, also check for hi-reg CS registers 2828 if (!AFI->isThumb1OnlyFunction()) { 2829 while (NumExtras && !UnspilledCS2GPRs.empty()) { 2830 unsigned Reg = UnspilledCS2GPRs.pop_back_val(); 2831 if (!MRI.isReserved(Reg)) { 2832 Extras.push_back(Reg); 2833 NumExtras--; 2834 } 2835 } 2836 } 2837 if (NumExtras == 0) { 2838 for (unsigned Reg : Extras) { 2839 SavedRegs.set(Reg); 2840 if (!MRI.isPhysRegUsed(Reg)) 2841 NumExtraCSSpill++; 2842 } 2843 } 2844 while ((RegsNeeded > NumExtraCSSpill) && RS) { 2845 // Reserve a slot closest to SP or frame pointer. 2846 LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n"); 2847 const TargetRegisterClass &RC = ARM::GPRRegClass; 2848 unsigned Size = TRI->getSpillSize(RC); 2849 Align Alignment = TRI->getSpillAlign(RC); 2850 RS->addScavengingFrameIndex( 2851 MFI.CreateStackObject(Size, Alignment, false)); 2852 --RegsNeeded; 2853 } 2854 } 2855 } 2856 2857 if (ForceLRSpill) 2858 SavedRegs.set(ARM::LR); 2859 AFI->setLRIsSpilled(SavedRegs.test(ARM::LR)); 2860 } 2861 2862 void ARMFrameLowering::updateLRRestored(MachineFunction &MF) { 2863 MachineFrameInfo &MFI = MF.getFrameInfo(); 2864 if (!MFI.isCalleeSavedInfoValid()) 2865 return; 2866 2867 // Check if all terminators do not implicitly use LR. Then we can 'restore' LR 2868 // into PC so it is not live out of the return block: Clear the Restored bit 2869 // in that case. 2870 for (CalleeSavedInfo &Info : MFI.getCalleeSavedInfo()) { 2871 if (Info.getReg() != ARM::LR) 2872 continue; 2873 if (all_of(MF, [](const MachineBasicBlock &MBB) { 2874 return all_of(MBB.terminators(), [](const MachineInstr &Term) { 2875 return !Term.isReturn() || Term.getOpcode() == ARM::LDMIA_RET || 2876 Term.getOpcode() == ARM::t2LDMIA_RET || 2877 Term.getOpcode() == ARM::tPOP_RET; 2878 }); 2879 })) { 2880 Info.setRestored(false); 2881 break; 2882 } 2883 } 2884 } 2885 2886 void ARMFrameLowering::processFunctionBeforeFrameFinalized( 2887 MachineFunction &MF, RegScavenger *RS) const { 2888 TargetFrameLowering::processFunctionBeforeFrameFinalized(MF, RS); 2889 updateLRRestored(MF); 2890 } 2891 2892 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF, 2893 BitVector &SavedRegs) const { 2894 TargetFrameLowering::getCalleeSaves(MF, SavedRegs); 2895 2896 // If we have the "returned" parameter attribute which guarantees that we 2897 // return the value which was passed in r0 unmodified (e.g. C++ 'structors), 2898 // record that fact for IPRA. 2899 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2900 if (AFI->getPreservesR0()) 2901 SavedRegs.set(ARM::R0); 2902 } 2903 2904 bool ARMFrameLowering::assignCalleeSavedSpillSlots( 2905 MachineFunction &MF, const TargetRegisterInfo *TRI, 2906 std::vector<CalleeSavedInfo> &CSI) const { 2907 // For CMSE entry functions, handle floating-point context as if it was a 2908 // callee-saved register. 2909 if (STI.hasV8_1MMainlineOps() && 2910 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) { 2911 CSI.emplace_back(ARM::FPCXTNS); 2912 CSI.back().setRestored(false); 2913 } 2914 2915 // For functions, which sign their return address, upon function entry, the 2916 // return address PAC is computed in R12. Treat R12 as a callee-saved register 2917 // in this case. 2918 const auto &AFI = *MF.getInfo<ARMFunctionInfo>(); 2919 if (AFI.shouldSignReturnAddress()) { 2920 // The order of register must match the order we push them, because the 2921 // PEI assigns frame indices in that order. When compiling for return 2922 // address sign and authenication, we use split push, therefore the orders 2923 // we want are: 2924 // LR, R7, R6, R5, R4, <R12>, R11, R10, R9, R8, D15-D8 2925 CSI.insert(find_if(CSI, 2926 [=](const auto &CS) { 2927 Register Reg = CS.getReg(); 2928 return Reg == ARM::R10 || Reg == ARM::R11 || 2929 Reg == ARM::R8 || Reg == ARM::R9 || 2930 ARM::DPRRegClass.contains(Reg); 2931 }), 2932 CalleeSavedInfo(ARM::R12)); 2933 } 2934 2935 return false; 2936 } 2937 2938 const TargetFrameLowering::SpillSlot * 2939 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const { 2940 static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}}; 2941 NumEntries = std::size(FixedSpillOffsets); 2942 return FixedSpillOffsets; 2943 } 2944 2945 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 2946 MachineFunction &MF, MachineBasicBlock &MBB, 2947 MachineBasicBlock::iterator I) const { 2948 const ARMBaseInstrInfo &TII = 2949 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2950 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2951 bool isARM = !AFI->isThumbFunction(); 2952 DebugLoc dl = I->getDebugLoc(); 2953 unsigned Opc = I->getOpcode(); 2954 bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode(); 2955 unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; 2956 2957 assert(!AFI->isThumb1OnlyFunction() && 2958 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 2959 2960 int PIdx = I->findFirstPredOperandIdx(); 2961 ARMCC::CondCodes Pred = (PIdx == -1) 2962 ? ARMCC::AL 2963 : (ARMCC::CondCodes)I->getOperand(PIdx).getImm(); 2964 unsigned PredReg = TII.getFramePred(*I); 2965 2966 if (!hasReservedCallFrame(MF)) { 2967 // Bail early if the callee is expected to do the adjustment. 2968 if (IsDestroy && CalleePopAmount != -1U) 2969 return MBB.erase(I); 2970 2971 // If we have alloca, convert as follows: 2972 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 2973 // ADJCALLSTACKUP -> add, sp, sp, amount 2974 unsigned Amount = TII.getFrameSize(*I); 2975 if (Amount != 0) { 2976 // We need to keep the stack aligned properly. To do this, we round the 2977 // amount of space needed for the outgoing arguments up to the next 2978 // alignment boundary. 2979 Amount = alignSPAdjust(Amount); 2980 2981 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 2982 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 2983 Pred, PredReg); 2984 } else { 2985 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 2986 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 2987 Pred, PredReg); 2988 } 2989 } 2990 } else if (CalleePopAmount != -1U) { 2991 // If the calling convention demands that the callee pops arguments from the 2992 // stack, we want to add it back if we have a reserved call frame. 2993 emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount, 2994 MachineInstr::NoFlags, Pred, PredReg); 2995 } 2996 return MBB.erase(I); 2997 } 2998 2999 /// Get the minimum constant for ARM that is greater than or equal to the 3000 /// argument. In ARM, constants can have any value that can be produced by 3001 /// rotating an 8-bit value to the right by an even number of bits within a 3002 /// 32-bit word. 3003 static uint32_t alignToARMConstant(uint32_t Value) { 3004 unsigned Shifted = 0; 3005 3006 if (Value == 0) 3007 return 0; 3008 3009 while (!(Value & 0xC0000000)) { 3010 Value = Value << 2; 3011 Shifted += 2; 3012 } 3013 3014 bool Carry = (Value & 0x00FFFFFF); 3015 Value = ((Value & 0xFF000000) >> 24) + Carry; 3016 3017 if (Value & 0x0000100) 3018 Value = Value & 0x000001FC; 3019 3020 if (Shifted > 24) 3021 Value = Value >> (Shifted - 24); 3022 else 3023 Value = Value << (24 - Shifted); 3024 3025 return Value; 3026 } 3027 3028 // The stack limit in the TCB is set to this many bytes above the actual 3029 // stack limit. 3030 static const uint64_t kSplitStackAvailable = 256; 3031 3032 // Adjust the function prologue to enable split stacks. This currently only 3033 // supports android and linux. 3034 // 3035 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 3036 // must be well defined in order to allow for consistent implementations of the 3037 // __morestack helper function. The ABI is also not a normal ABI in that it 3038 // doesn't follow the normal calling conventions because this allows the 3039 // prologue of each function to be optimized further. 3040 // 3041 // Currently, the ABI looks like (when calling __morestack) 3042 // 3043 // * r4 holds the minimum stack size requested for this function call 3044 // * r5 holds the stack size of the arguments to the function 3045 // * the beginning of the function is 3 instructions after the call to 3046 // __morestack 3047 // 3048 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 3049 // place the arguments on to the new stack, and the 3-instruction knowledge to 3050 // jump directly to the body of the function when working on the new stack. 3051 // 3052 // An old (and possibly no longer compatible) implementation of __morestack for 3053 // ARM can be found at [1]. 3054 // 3055 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 3056 void ARMFrameLowering::adjustForSegmentedStacks( 3057 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3058 unsigned Opcode; 3059 unsigned CFIIndex; 3060 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 3061 bool Thumb = ST->isThumb(); 3062 bool Thumb2 = ST->isThumb2(); 3063 3064 // Sadly, this currently doesn't support varargs, platforms other than 3065 // android/linux. Note that thumb1/thumb2 are support for android/linux. 3066 if (MF.getFunction().isVarArg()) 3067 report_fatal_error("Segmented stacks do not support vararg functions."); 3068 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 3069 report_fatal_error("Segmented stacks not supported on this platform."); 3070 3071 MachineFrameInfo &MFI = MF.getFrameInfo(); 3072 MCContext &Context = MF.getContext(); 3073 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 3074 const ARMBaseInstrInfo &TII = 3075 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 3076 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 3077 DebugLoc DL; 3078 3079 if (!MFI.needsSplitStackProlog()) 3080 return; 3081 3082 uint64_t StackSize = MFI.getStackSize(); 3083 3084 // Use R4 and R5 as scratch registers. 3085 // We save R4 and R5 before use and restore them before leaving the function. 3086 unsigned ScratchReg0 = ARM::R4; 3087 unsigned ScratchReg1 = ARM::R5; 3088 unsigned MovOp = ST->useMovt() ? ARM::t2MOVi32imm : ARM::tMOVi32imm; 3089 uint64_t AlignedStackSize; 3090 3091 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 3092 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 3093 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 3094 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 3095 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 3096 3097 // Grab everything that reaches PrologueMBB to update there liveness as well. 3098 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 3099 SmallVector<MachineBasicBlock *, 2> WalkList; 3100 WalkList.push_back(&PrologueMBB); 3101 3102 do { 3103 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 3104 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 3105 if (BeforePrologueRegion.insert(PredBB).second) 3106 WalkList.push_back(PredBB); 3107 } 3108 } while (!WalkList.empty()); 3109 3110 // The order in that list is important. 3111 // The blocks will all be inserted before PrologueMBB using that order. 3112 // Therefore the block that should appear first in the CFG should appear 3113 // first in the list. 3114 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 3115 PostStackMBB}; 3116 3117 for (MachineBasicBlock *B : AddedBlocks) 3118 BeforePrologueRegion.insert(B); 3119 3120 for (const auto &LI : PrologueMBB.liveins()) { 3121 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 3122 PredBB->addLiveIn(LI); 3123 } 3124 3125 // Remove the newly added blocks from the list, since we know 3126 // we do not have to do the following updates for them. 3127 for (MachineBasicBlock *B : AddedBlocks) { 3128 BeforePrologueRegion.erase(B); 3129 MF.insert(PrologueMBB.getIterator(), B); 3130 } 3131 3132 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 3133 // Make sure the LiveIns are still sorted and unique. 3134 MBB->sortUniqueLiveIns(); 3135 // Replace the edges to PrologueMBB by edges to the sequences 3136 // we are about to add, but only update for immediate predecessors. 3137 if (MBB->isSuccessor(&PrologueMBB)) 3138 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 3139 } 3140 3141 // The required stack size that is aligned to ARM constant criterion. 3142 AlignedStackSize = alignToARMConstant(StackSize); 3143 3144 // When the frame size is less than 256 we just compare the stack 3145 // boundary directly to the value of the stack pointer, per gcc. 3146 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 3147 3148 // We will use two of the callee save registers as scratch registers so we 3149 // need to save those registers onto the stack. 3150 // We will use SR0 to hold stack limit and SR1 to hold the stack size 3151 // requested and arguments for __morestack(). 3152 // SR0: Scratch Register #0 3153 // SR1: Scratch Register #1 3154 // push {SR0, SR1} 3155 if (Thumb) { 3156 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 3157 .add(predOps(ARMCC::AL)) 3158 .addReg(ScratchReg0) 3159 .addReg(ScratchReg1); 3160 } else { 3161 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 3162 .addReg(ARM::SP, RegState::Define) 3163 .addReg(ARM::SP) 3164 .add(predOps(ARMCC::AL)) 3165 .addReg(ScratchReg0) 3166 .addReg(ScratchReg1); 3167 } 3168 3169 // Emit the relevant DWARF information about the change in stack pointer as 3170 // well as where to find both r4 and r5 (the callee-save registers) 3171 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3172 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8)); 3173 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3174 .addCFIIndex(CFIIndex); 3175 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3176 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 3177 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3178 .addCFIIndex(CFIIndex); 3179 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3180 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 3181 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3182 .addCFIIndex(CFIIndex); 3183 } 3184 3185 // mov SR1, sp 3186 if (Thumb) { 3187 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 3188 .addReg(ARM::SP) 3189 .add(predOps(ARMCC::AL)); 3190 } else if (CompareStackPointer) { 3191 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 3192 .addReg(ARM::SP) 3193 .add(predOps(ARMCC::AL)) 3194 .add(condCodeOp()); 3195 } 3196 3197 // sub SR1, sp, #StackSize 3198 if (!CompareStackPointer && Thumb) { 3199 if (AlignedStackSize < 256) { 3200 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 3201 .add(condCodeOp()) 3202 .addReg(ScratchReg1) 3203 .addImm(AlignedStackSize) 3204 .add(predOps(ARMCC::AL)); 3205 } else { 3206 if (Thumb2 || ST->genExecuteOnly()) { 3207 BuildMI(McrMBB, DL, TII.get(MovOp), ScratchReg0) 3208 .addImm(AlignedStackSize); 3209 } else { 3210 auto MBBI = McrMBB->end(); 3211 auto RegInfo = STI.getRegisterInfo(); 3212 RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0, 3213 AlignedStackSize); 3214 } 3215 BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1) 3216 .add(condCodeOp()) 3217 .addReg(ScratchReg1) 3218 .addReg(ScratchReg0) 3219 .add(predOps(ARMCC::AL)); 3220 } 3221 } else if (!CompareStackPointer) { 3222 if (AlignedStackSize < 256) { 3223 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 3224 .addReg(ARM::SP) 3225 .addImm(AlignedStackSize) 3226 .add(predOps(ARMCC::AL)) 3227 .add(condCodeOp()); 3228 } else { 3229 auto MBBI = McrMBB->end(); 3230 auto RegInfo = STI.getRegisterInfo(); 3231 RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0, 3232 AlignedStackSize); 3233 BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1) 3234 .addReg(ARM::SP) 3235 .addReg(ScratchReg0) 3236 .add(predOps(ARMCC::AL)) 3237 .add(condCodeOp()); 3238 } 3239 } 3240 3241 if (Thumb && ST->isThumb1Only()) { 3242 if (ST->genExecuteOnly()) { 3243 BuildMI(GetMBB, DL, TII.get(MovOp), ScratchReg0) 3244 .addExternalSymbol("__STACK_LIMIT"); 3245 } else { 3246 unsigned PCLabelId = ARMFI->createPICLabelUId(); 3247 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 3248 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0); 3249 MachineConstantPool *MCP = MF.getConstantPool(); 3250 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4)); 3251 3252 // ldr SR0, [pc, offset(STACK_LIMIT)] 3253 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 3254 .addConstantPoolIndex(CPI) 3255 .add(predOps(ARMCC::AL)); 3256 } 3257 3258 // ldr SR0, [SR0] 3259 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 3260 .addReg(ScratchReg0) 3261 .addImm(0) 3262 .add(predOps(ARMCC::AL)); 3263 } else { 3264 // Get TLS base address from the coprocessor 3265 // mrc p15, #0, SR0, c13, c0, #3 3266 BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC), 3267 ScratchReg0) 3268 .addImm(15) 3269 .addImm(0) 3270 .addImm(13) 3271 .addImm(0) 3272 .addImm(3) 3273 .add(predOps(ARMCC::AL)); 3274 3275 // Use the last tls slot on android and a private field of the TCP on linux. 3276 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 3277 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 3278 3279 // Get the stack limit from the right offset 3280 // ldr SR0, [sr0, #4 * TlsOffset] 3281 BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12), 3282 ScratchReg0) 3283 .addReg(ScratchReg0) 3284 .addImm(4 * TlsOffset) 3285 .add(predOps(ARMCC::AL)); 3286 } 3287 3288 // Compare stack limit with stack size requested. 3289 // cmp SR0, SR1 3290 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 3291 BuildMI(GetMBB, DL, TII.get(Opcode)) 3292 .addReg(ScratchReg0) 3293 .addReg(ScratchReg1) 3294 .add(predOps(ARMCC::AL)); 3295 3296 // This jump is taken if StackLimit <= SP - stack required. 3297 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 3298 BuildMI(GetMBB, DL, TII.get(Opcode)) 3299 .addMBB(PostStackMBB) 3300 .addImm(ARMCC::LS) 3301 .addReg(ARM::CPSR); 3302 3303 // Calling __morestack(StackSize, Size of stack arguments). 3304 // __morestack knows that the stack size requested is in SR0(r4) 3305 // and amount size of stack arguments is in SR1(r5). 3306 3307 // Pass first argument for the __morestack by Scratch Register #0. 3308 // The amount size of stack required 3309 if (Thumb) { 3310 if (AlignedStackSize < 256) { 3311 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 3312 .add(condCodeOp()) 3313 .addImm(AlignedStackSize) 3314 .add(predOps(ARMCC::AL)); 3315 } else { 3316 if (Thumb2 || ST->genExecuteOnly()) { 3317 BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg0) 3318 .addImm(AlignedStackSize); 3319 } else { 3320 auto MBBI = AllocMBB->end(); 3321 auto RegInfo = STI.getRegisterInfo(); 3322 RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0, 3323 AlignedStackSize); 3324 } 3325 } 3326 } else { 3327 if (AlignedStackSize < 256) { 3328 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 3329 .addImm(AlignedStackSize) 3330 .add(predOps(ARMCC::AL)) 3331 .add(condCodeOp()); 3332 } else { 3333 auto MBBI = AllocMBB->end(); 3334 auto RegInfo = STI.getRegisterInfo(); 3335 RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0, 3336 AlignedStackSize); 3337 } 3338 } 3339 3340 // Pass second argument for the __morestack by Scratch Register #1. 3341 // The amount size of stack consumed to save function arguments. 3342 if (Thumb) { 3343 if (ARMFI->getArgumentStackSize() < 256) { 3344 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 3345 .add(condCodeOp()) 3346 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 3347 .add(predOps(ARMCC::AL)); 3348 } else { 3349 if (Thumb2 || ST->genExecuteOnly()) { 3350 BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg1) 3351 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())); 3352 } else { 3353 auto MBBI = AllocMBB->end(); 3354 auto RegInfo = STI.getRegisterInfo(); 3355 RegInfo->emitLoadConstPool( 3356 *AllocMBB, MBBI, DL, ScratchReg1, 0, 3357 alignToARMConstant(ARMFI->getArgumentStackSize())); 3358 } 3359 } 3360 } else { 3361 if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) { 3362 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 3363 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 3364 .add(predOps(ARMCC::AL)) 3365 .add(condCodeOp()); 3366 } else { 3367 auto MBBI = AllocMBB->end(); 3368 auto RegInfo = STI.getRegisterInfo(); 3369 RegInfo->emitLoadConstPool( 3370 *AllocMBB, MBBI, DL, ScratchReg1, 0, 3371 alignToARMConstant(ARMFI->getArgumentStackSize())); 3372 } 3373 } 3374 3375 // push {lr} - Save return address of this function. 3376 if (Thumb) { 3377 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 3378 .add(predOps(ARMCC::AL)) 3379 .addReg(ARM::LR); 3380 } else { 3381 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 3382 .addReg(ARM::SP, RegState::Define) 3383 .addReg(ARM::SP) 3384 .add(predOps(ARMCC::AL)) 3385 .addReg(ARM::LR); 3386 } 3387 3388 // Emit the DWARF info about the change in stack as well as where to find the 3389 // previous link register 3390 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3391 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12)); 3392 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3393 .addCFIIndex(CFIIndex); 3394 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3395 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 3396 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3397 .addCFIIndex(CFIIndex); 3398 } 3399 3400 // Call __morestack(). 3401 if (Thumb) { 3402 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 3403 .add(predOps(ARMCC::AL)) 3404 .addExternalSymbol("__morestack"); 3405 } else { 3406 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 3407 .addExternalSymbol("__morestack"); 3408 } 3409 3410 // pop {lr} - Restore return address of this original function. 3411 if (Thumb) { 3412 if (ST->isThumb1Only()) { 3413 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 3414 .add(predOps(ARMCC::AL)) 3415 .addReg(ScratchReg0); 3416 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 3417 .addReg(ScratchReg0) 3418 .add(predOps(ARMCC::AL)); 3419 } else { 3420 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 3421 .addReg(ARM::LR, RegState::Define) 3422 .addReg(ARM::SP, RegState::Define) 3423 .addReg(ARM::SP) 3424 .addImm(4) 3425 .add(predOps(ARMCC::AL)); 3426 } 3427 } else { 3428 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 3429 .addReg(ARM::SP, RegState::Define) 3430 .addReg(ARM::SP) 3431 .add(predOps(ARMCC::AL)) 3432 .addReg(ARM::LR); 3433 } 3434 3435 // Restore SR0 and SR1 in case of __morestack() was called. 3436 // __morestack() will skip PostStackMBB block so we need to restore 3437 // scratch registers from here. 3438 // pop {SR0, SR1} 3439 if (Thumb) { 3440 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 3441 .add(predOps(ARMCC::AL)) 3442 .addReg(ScratchReg0) 3443 .addReg(ScratchReg1); 3444 } else { 3445 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 3446 .addReg(ARM::SP, RegState::Define) 3447 .addReg(ARM::SP) 3448 .add(predOps(ARMCC::AL)) 3449 .addReg(ScratchReg0) 3450 .addReg(ScratchReg1); 3451 } 3452 3453 // Update the CFA offset now that we've popped 3454 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3455 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 3456 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3457 .addCFIIndex(CFIIndex); 3458 } 3459 3460 // Return from this function. 3461 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL)); 3462 3463 // Restore SR0 and SR1 in case of __morestack() was not called. 3464 // pop {SR0, SR1} 3465 if (Thumb) { 3466 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 3467 .add(predOps(ARMCC::AL)) 3468 .addReg(ScratchReg0) 3469 .addReg(ScratchReg1); 3470 } else { 3471 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 3472 .addReg(ARM::SP, RegState::Define) 3473 .addReg(ARM::SP) 3474 .add(predOps(ARMCC::AL)) 3475 .addReg(ScratchReg0) 3476 .addReg(ScratchReg1); 3477 } 3478 3479 // Update the CFA offset now that we've popped 3480 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3481 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 3482 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3483 .addCFIIndex(CFIIndex); 3484 3485 // Tell debuggers that r4 and r5 are now the same as they were in the 3486 // previous function, that they're the "Same Value". 3487 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 3488 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 3489 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3490 .addCFIIndex(CFIIndex); 3491 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 3492 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 3493 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3494 .addCFIIndex(CFIIndex); 3495 } 3496 3497 // Organizing MBB lists 3498 PostStackMBB->addSuccessor(&PrologueMBB); 3499 3500 AllocMBB->addSuccessor(PostStackMBB); 3501 3502 GetMBB->addSuccessor(PostStackMBB); 3503 GetMBB->addSuccessor(AllocMBB); 3504 3505 McrMBB->addSuccessor(GetMBB); 3506 3507 PrevStackMBB->addSuccessor(McrMBB); 3508 3509 #ifdef EXPENSIVE_CHECKS 3510 MF.verify(); 3511 #endif 3512 } 3513