1 //===-- ARMFrameLowering.cpp - ARM Frame Information ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the ARM implementation of TargetFrameLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMFrameLowering.h" 15 #include "ARMBaseInstrInfo.h" 16 #include "ARMBaseRegisterInfo.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "llvm/ADT/BitVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/RegisterScavenging.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/MC/MCContext.h" 41 #include "llvm/MC/MCDwarf.h" 42 #include "llvm/MC/MCRegisterInfo.h" 43 #include "llvm/Support/CodeGen.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/MathExtras.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetInstrInfo.h" 51 #include "llvm/Target/TargetMachine.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Target/TargetRegisterInfo.h" 54 #include "llvm/Target/TargetSubtargetInfo.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstddef> 58 #include <cstdint> 59 #include <iterator> 60 #include <utility> 61 #include <vector> 62 63 #define DEBUG_TYPE "arm-frame-lowering" 64 65 using namespace llvm; 66 67 static cl::opt<bool> 68 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 69 cl::desc("Align ARM NEON spills in prolog and epilog")); 70 71 static MachineBasicBlock::iterator 72 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 73 unsigned NumAlignedDPRCS2Regs); 74 75 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 76 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, 4), 77 STI(sti) {} 78 79 bool ARMFrameLowering::noFramePointerElim(const MachineFunction &MF) const { 80 // iOS always has a FP for backtracking, force other targets to keep their FP 81 // when doing FastISel. The emitted code is currently superior, and in cases 82 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 83 return TargetFrameLowering::noFramePointerElim(MF) || 84 MF.getSubtarget<ARMSubtarget>().useFastISel(); 85 } 86 87 /// hasFP - Return true if the specified function should have a dedicated frame 88 /// pointer register. This is true if the function has variable sized allocas 89 /// or if frame pointer elimination is disabled. 90 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { 91 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 92 const MachineFrameInfo &MFI = MF.getFrameInfo(); 93 94 // ABI-required frame pointer. 95 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 96 return true; 97 98 // Frame pointer required for use within this function. 99 return (RegInfo->needsStackRealignment(MF) || 100 MFI.hasVarSizedObjects() || 101 MFI.isFrameAddressTaken()); 102 } 103 104 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 105 /// not required, we reserve argument space for call sites in the function 106 /// immediately on entry to the current function. This eliminates the need for 107 /// add/sub sp brackets around call sites. Returns true if the call frame is 108 /// included as part of the stack frame. 109 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 110 const MachineFrameInfo &MFI = MF.getFrameInfo(); 111 unsigned CFSize = MFI.getMaxCallFrameSize(); 112 // It's not always a good idea to include the call frame as part of the 113 // stack frame. ARM (especially Thumb) has small immediate offset to 114 // address the stack frame. So a large call frame can cause poor codegen 115 // and may even makes it impossible to scavenge a register. 116 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 117 return false; 118 119 return !MFI.hasVarSizedObjects(); 120 } 121 122 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 123 /// call frame pseudos can be simplified. Unlike most targets, having a FP 124 /// is not sufficient here since we still may reference some objects via SP 125 /// even when FP is available in Thumb2 mode. 126 bool 127 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 128 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 129 } 130 131 static bool isCSRestore(MachineInstr &MI, const ARMBaseInstrInfo &TII, 132 const MCPhysReg *CSRegs) { 133 // Integer spill area is handled with "pop". 134 if (isPopOpcode(MI.getOpcode())) { 135 // The first two operands are predicates. The last two are 136 // imp-def and imp-use of SP. Check everything in between. 137 for (int i = 5, e = MI.getNumOperands(); i != e; ++i) 138 if (!isCalleeSavedRegister(MI.getOperand(i).getReg(), CSRegs)) 139 return false; 140 return true; 141 } 142 if ((MI.getOpcode() == ARM::LDR_POST_IMM || 143 MI.getOpcode() == ARM::LDR_POST_REG || 144 MI.getOpcode() == ARM::t2LDR_POST) && 145 isCalleeSavedRegister(MI.getOperand(0).getReg(), CSRegs) && 146 MI.getOperand(1).getReg() == ARM::SP) 147 return true; 148 149 return false; 150 } 151 152 static void emitRegPlusImmediate( 153 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 154 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 155 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 156 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 157 if (isARM) 158 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 159 Pred, PredReg, TII, MIFlags); 160 else 161 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 162 Pred, PredReg, TII, MIFlags); 163 } 164 165 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 166 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 167 const ARMBaseInstrInfo &TII, int NumBytes, 168 unsigned MIFlags = MachineInstr::NoFlags, 169 ARMCC::CondCodes Pred = ARMCC::AL, 170 unsigned PredReg = 0) { 171 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 172 MIFlags, Pred, PredReg); 173 } 174 175 static int sizeOfSPAdjustment(const MachineInstr &MI) { 176 int RegSize; 177 switch (MI.getOpcode()) { 178 case ARM::VSTMDDB_UPD: 179 RegSize = 8; 180 break; 181 case ARM::STMDB_UPD: 182 case ARM::t2STMDB_UPD: 183 RegSize = 4; 184 break; 185 case ARM::t2STR_PRE: 186 case ARM::STR_PRE_IMM: 187 return 4; 188 default: 189 llvm_unreachable("Unknown push or pop like instruction"); 190 } 191 192 int count = 0; 193 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 194 // pred) so the list starts at 4. 195 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 196 count += RegSize; 197 return count; 198 } 199 200 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 201 size_t StackSizeInBytes) { 202 const MachineFrameInfo &MFI = MF.getFrameInfo(); 203 const Function *F = MF.getFunction(); 204 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 205 if (F->hasFnAttribute("stack-probe-size")) 206 F->getFnAttribute("stack-probe-size") 207 .getValueAsString() 208 .getAsInteger(0, StackProbeSize); 209 return StackSizeInBytes >= StackProbeSize; 210 } 211 212 namespace { 213 214 struct StackAdjustingInsts { 215 struct InstInfo { 216 MachineBasicBlock::iterator I; 217 unsigned SPAdjust; 218 bool BeforeFPSet; 219 }; 220 221 SmallVector<InstInfo, 4> Insts; 222 223 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 224 bool BeforeFPSet = false) { 225 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 226 Insts.push_back(Info); 227 } 228 229 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 230 auto Info = 231 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 232 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 233 Info->SPAdjust += ExtraBytes; 234 } 235 236 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 237 const ARMBaseInstrInfo &TII, bool HasFP) { 238 MachineFunction &MF = *MBB.getParent(); 239 unsigned CFAOffset = 0; 240 for (auto &Info : Insts) { 241 if (HasFP && !Info.BeforeFPSet) 242 return; 243 244 CFAOffset -= Info.SPAdjust; 245 unsigned CFIIndex = MF.addFrameInst( 246 MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset)); 247 BuildMI(MBB, std::next(Info.I), dl, 248 TII.get(TargetOpcode::CFI_INSTRUCTION)) 249 .addCFIIndex(CFIIndex) 250 .setMIFlags(MachineInstr::FrameSetup); 251 } 252 } 253 }; 254 255 } // end anonymous namespace 256 257 /// Emit an instruction sequence that will align the address in 258 /// register Reg by zero-ing out the lower bits. For versions of the 259 /// architecture that support Neon, this must be done in a single 260 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 261 /// single instruction. That function only gets called when optimizing 262 /// spilling of D registers on a core with the Neon instruction set 263 /// present. 264 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 265 const TargetInstrInfo &TII, 266 MachineBasicBlock &MBB, 267 MachineBasicBlock::iterator MBBI, 268 const DebugLoc &DL, const unsigned Reg, 269 const unsigned Alignment, 270 const bool MustBeSingleInstruction) { 271 const ARMSubtarget &AST = 272 static_cast<const ARMSubtarget &>(MF.getSubtarget()); 273 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 274 const unsigned AlignMask = Alignment - 1; 275 const unsigned NrBitsToZero = countTrailingZeros(Alignment); 276 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 277 if (!AFI->isThumbFunction()) { 278 // if the BFC instruction is available, use that to zero the lower 279 // bits: 280 // bfc Reg, #0, log2(Alignment) 281 // otherwise use BIC, if the mask to zero the required number of bits 282 // can be encoded in the bic immediate field 283 // bic Reg, Reg, Alignment-1 284 // otherwise, emit 285 // lsr Reg, Reg, log2(Alignment) 286 // lsl Reg, Reg, log2(Alignment) 287 if (CanUseBFC) { 288 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 289 .addReg(Reg, RegState::Kill) 290 .addImm(~AlignMask) 291 .add(predOps(ARMCC::AL)); 292 } else if (AlignMask <= 255) { 293 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 294 .addReg(Reg, RegState::Kill) 295 .addImm(AlignMask) 296 .add(predOps(ARMCC::AL)) 297 .add(condCodeOp()); 298 } else { 299 assert(!MustBeSingleInstruction && 300 "Shouldn't call emitAligningInstructions demanding a single " 301 "instruction to be emitted for large stack alignment for a target " 302 "without BFC."); 303 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 304 .addReg(Reg, RegState::Kill) 305 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 306 .add(predOps(ARMCC::AL)) 307 .add(condCodeOp()); 308 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 309 .addReg(Reg, RegState::Kill) 310 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 311 .add(predOps(ARMCC::AL)) 312 .add(condCodeOp()); 313 } 314 } else { 315 // Since this is only reached for Thumb-2 targets, the BFC instruction 316 // should always be available. 317 assert(CanUseBFC); 318 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 319 .addReg(Reg, RegState::Kill) 320 .addImm(~AlignMask) 321 .add(predOps(ARMCC::AL)); 322 } 323 } 324 325 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 326 MachineBasicBlock &MBB) const { 327 MachineBasicBlock::iterator MBBI = MBB.begin(); 328 MachineFrameInfo &MFI = MF.getFrameInfo(); 329 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 330 MachineModuleInfo &MMI = MF.getMMI(); 331 MCContext &Context = MMI.getContext(); 332 const TargetMachine &TM = MF.getTarget(); 333 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 334 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 335 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 336 assert(!AFI->isThumb1OnlyFunction() && 337 "This emitPrologue does not support Thumb1!"); 338 bool isARM = !AFI->isThumbFunction(); 339 unsigned Align = STI.getFrameLowering()->getStackAlignment(); 340 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 341 unsigned NumBytes = MFI.getStackSize(); 342 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 343 344 // Debug location must be unknown since the first debug location is used 345 // to determine the end of the prologue. 346 DebugLoc dl; 347 348 unsigned FramePtr = RegInfo->getFrameRegister(MF); 349 350 // Determine the sizes of each callee-save spill areas and record which frame 351 // belongs to which callee-save spill areas. 352 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 353 int FramePtrSpillFI = 0; 354 int D8SpillFI = 0; 355 356 // All calls are tail calls in GHC calling conv, and functions have no 357 // prologue/epilogue. 358 if (MF.getFunction()->getCallingConv() == CallingConv::GHC) 359 return; 360 361 StackAdjustingInsts DefCFAOffsetCandidates; 362 bool HasFP = hasFP(MF); 363 364 // Allocate the vararg register save area. 365 if (ArgRegsSaveSize) { 366 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 367 MachineInstr::FrameSetup); 368 DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true); 369 } 370 371 if (!AFI->hasStackFrame() && 372 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 373 if (NumBytes - ArgRegsSaveSize != 0) { 374 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize), 375 MachineInstr::FrameSetup); 376 DefCFAOffsetCandidates.addInst(std::prev(MBBI), 377 NumBytes - ArgRegsSaveSize, true); 378 } 379 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 380 return; 381 } 382 383 // Determine spill area sizes. 384 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 385 unsigned Reg = CSI[i].getReg(); 386 int FI = CSI[i].getFrameIdx(); 387 switch (Reg) { 388 case ARM::R8: 389 case ARM::R9: 390 case ARM::R10: 391 case ARM::R11: 392 case ARM::R12: 393 if (STI.splitFramePushPop(MF)) { 394 GPRCS2Size += 4; 395 break; 396 } 397 LLVM_FALLTHROUGH; 398 case ARM::R0: 399 case ARM::R1: 400 case ARM::R2: 401 case ARM::R3: 402 case ARM::R4: 403 case ARM::R5: 404 case ARM::R6: 405 case ARM::R7: 406 case ARM::LR: 407 if (Reg == FramePtr) 408 FramePtrSpillFI = FI; 409 GPRCS1Size += 4; 410 break; 411 default: 412 // This is a DPR. Exclude the aligned DPRCS2 spills. 413 if (Reg == ARM::D8) 414 D8SpillFI = FI; 415 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) 416 DPRCSSize += 8; 417 } 418 } 419 420 // Move past area 1. 421 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 422 if (GPRCS1Size > 0) { 423 GPRCS1Push = LastPush = MBBI++; 424 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); 425 } 426 427 // Determine starting offsets of spill areas. 428 unsigned GPRCS1Offset = NumBytes - ArgRegsSaveSize - GPRCS1Size; 429 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 430 unsigned DPRAlign = DPRCSSize ? std::min(8U, Align) : 4U; 431 unsigned DPRGapSize = (GPRCS1Size + GPRCS2Size + ArgRegsSaveSize) % DPRAlign; 432 unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 433 int FramePtrOffsetInPush = 0; 434 if (HasFP) { 435 FramePtrOffsetInPush = 436 MFI.getObjectOffset(FramePtrSpillFI) + ArgRegsSaveSize; 437 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 438 NumBytes); 439 } 440 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 441 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 442 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 443 444 // Move past area 2. 445 if (GPRCS2Size > 0) { 446 GPRCS2Push = LastPush = MBBI++; 447 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 448 } 449 450 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 451 // .cfi_offset operations will reflect that. 452 if (DPRGapSize) { 453 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 454 if (LastPush != MBB.end() && 455 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 456 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 457 else { 458 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 459 MachineInstr::FrameSetup); 460 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); 461 } 462 } 463 464 // Move past area 3. 465 if (DPRCSSize > 0) { 466 // Since vpush register list cannot have gaps, there may be multiple vpush 467 // instructions in the prologue. 468 while (MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 469 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); 470 LastPush = MBBI++; 471 } 472 } 473 474 // Move past the aligned DPRCS2 area. 475 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 476 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 477 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 478 // leaves the stack pointer pointing to the DPRCS2 area. 479 // 480 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 481 NumBytes += MFI.getObjectOffset(D8SpillFI); 482 } else 483 NumBytes = DPRCSOffset; 484 485 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 486 uint32_t NumWords = NumBytes >> 2; 487 488 if (NumWords < 65536) 489 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 490 .addImm(NumWords) 491 .setMIFlags(MachineInstr::FrameSetup) 492 .add(predOps(ARMCC::AL)); 493 else 494 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4) 495 .addImm(NumWords) 496 .setMIFlags(MachineInstr::FrameSetup); 497 498 switch (TM.getCodeModel()) { 499 case CodeModel::Small: 500 case CodeModel::Medium: 501 case CodeModel::Default: 502 case CodeModel::Kernel: 503 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 504 .add(predOps(ARMCC::AL)) 505 .addExternalSymbol("__chkstk") 506 .addReg(ARM::R4, RegState::Implicit) 507 .setMIFlags(MachineInstr::FrameSetup); 508 break; 509 case CodeModel::Large: 510 case CodeModel::JITDefault: 511 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 512 .addExternalSymbol("__chkstk") 513 .setMIFlags(MachineInstr::FrameSetup); 514 515 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 516 .add(predOps(ARMCC::AL)) 517 .addReg(ARM::R12, RegState::Kill) 518 .addReg(ARM::R4, RegState::Implicit) 519 .setMIFlags(MachineInstr::FrameSetup); 520 break; 521 } 522 523 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 524 .addReg(ARM::SP, RegState::Kill) 525 .addReg(ARM::R4, RegState::Kill) 526 .setMIFlags(MachineInstr::FrameSetup) 527 .add(predOps(ARMCC::AL)) 528 .add(condCodeOp()); 529 NumBytes = 0; 530 } 531 532 if (NumBytes) { 533 // Adjust SP after all the callee-save spills. 534 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 535 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 536 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 537 else { 538 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 539 MachineInstr::FrameSetup); 540 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 541 } 542 543 if (HasFP && isARM) 544 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 545 // Note it's not safe to do this in Thumb2 mode because it would have 546 // taken two instructions: 547 // mov sp, r7 548 // sub sp, #24 549 // If an interrupt is taken between the two instructions, then sp is in 550 // an inconsistent state (pointing to the middle of callee-saved area). 551 // The interrupt handler can end up clobbering the registers. 552 AFI->setShouldRestoreSPFromFP(true); 553 } 554 555 // Set FP to point to the stack slot that contains the previous FP. 556 // For iOS, FP is R7, which has now been stored in spill area 1. 557 // Otherwise, if this is not iOS, all the callee-saved registers go 558 // into spill area 1, including the FP in R11. In either case, it 559 // is in area one and the adjustment needs to take place just after 560 // that push. 561 if (HasFP) { 562 MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push); 563 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); 564 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, 565 dl, TII, FramePtr, ARM::SP, 566 PushSize + FramePtrOffsetInPush, 567 MachineInstr::FrameSetup); 568 if (FramePtrOffsetInPush + PushSize != 0) { 569 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa( 570 nullptr, MRI->getDwarfRegNum(FramePtr, true), 571 -(ArgRegsSaveSize - FramePtrOffsetInPush))); 572 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 573 .addCFIIndex(CFIIndex) 574 .setMIFlags(MachineInstr::FrameSetup); 575 } else { 576 unsigned CFIIndex = 577 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 578 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 579 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 580 .addCFIIndex(CFIIndex) 581 .setMIFlags(MachineInstr::FrameSetup); 582 } 583 } 584 585 // Now that the prologue's actual instructions are finalised, we can insert 586 // the necessary DWARF cf instructions to describe the situation. Start by 587 // recording where each register ended up: 588 if (GPRCS1Size > 0) { 589 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push); 590 int CFIIndex; 591 for (const auto &Entry : CSI) { 592 unsigned Reg = Entry.getReg(); 593 int FI = Entry.getFrameIdx(); 594 switch (Reg) { 595 case ARM::R8: 596 case ARM::R9: 597 case ARM::R10: 598 case ARM::R11: 599 case ARM::R12: 600 if (STI.splitFramePushPop(MF)) 601 break; 602 LLVM_FALLTHROUGH; 603 case ARM::R0: 604 case ARM::R1: 605 case ARM::R2: 606 case ARM::R3: 607 case ARM::R4: 608 case ARM::R5: 609 case ARM::R6: 610 case ARM::R7: 611 case ARM::LR: 612 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 613 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI))); 614 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 615 .addCFIIndex(CFIIndex) 616 .setMIFlags(MachineInstr::FrameSetup); 617 break; 618 } 619 } 620 } 621 622 if (GPRCS2Size > 0) { 623 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push); 624 for (const auto &Entry : CSI) { 625 unsigned Reg = Entry.getReg(); 626 int FI = Entry.getFrameIdx(); 627 switch (Reg) { 628 case ARM::R8: 629 case ARM::R9: 630 case ARM::R10: 631 case ARM::R11: 632 case ARM::R12: 633 if (STI.splitFramePushPop(MF)) { 634 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 635 unsigned Offset = MFI.getObjectOffset(FI); 636 unsigned CFIIndex = MF.addFrameInst( 637 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 638 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 639 .addCFIIndex(CFIIndex) 640 .setMIFlags(MachineInstr::FrameSetup); 641 } 642 break; 643 } 644 } 645 } 646 647 if (DPRCSSize > 0) { 648 // Since vpush register list cannot have gaps, there may be multiple vpush 649 // instructions in the prologue. 650 MachineBasicBlock::iterator Pos = std::next(LastPush); 651 for (const auto &Entry : CSI) { 652 unsigned Reg = Entry.getReg(); 653 int FI = Entry.getFrameIdx(); 654 if ((Reg >= ARM::D0 && Reg <= ARM::D31) && 655 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) { 656 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 657 unsigned Offset = MFI.getObjectOffset(FI); 658 unsigned CFIIndex = MF.addFrameInst( 659 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 660 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 661 .addCFIIndex(CFIIndex) 662 .setMIFlags(MachineInstr::FrameSetup); 663 } 664 } 665 } 666 667 // Now we can emit descriptions of where the canonical frame address was 668 // throughout the process. If we have a frame pointer, it takes over the job 669 // half-way through, so only the first few .cfi_def_cfa_offset instructions 670 // actually get emitted. 671 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 672 673 if (STI.isTargetELF() && hasFP(MF)) 674 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 675 AFI->getFramePtrSpillOffset()); 676 677 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 678 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 679 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 680 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 681 682 // If we need dynamic stack realignment, do it here. Be paranoid and make 683 // sure if we also have VLAs, we have a base pointer for frame access. 684 // If aligned NEON registers were spilled, the stack has already been 685 // realigned. 686 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) { 687 unsigned MaxAlign = MFI.getMaxAlignment(); 688 assert(!AFI->isThumb1OnlyFunction()); 689 if (!AFI->isThumbFunction()) { 690 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 691 false); 692 } else { 693 // We cannot use sp as source/dest register here, thus we're using r4 to 694 // perform the calculations. We're emitting the following sequence: 695 // mov r4, sp 696 // -- use emitAligningInstructions to produce best sequence to zero 697 // -- out lower bits in r4 698 // mov sp, r4 699 // FIXME: It will be better just to find spare register here. 700 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 701 .addReg(ARM::SP, RegState::Kill) 702 .add(predOps(ARMCC::AL)); 703 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 704 false); 705 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 706 .addReg(ARM::R4, RegState::Kill) 707 .add(predOps(ARMCC::AL)); 708 } 709 710 AFI->setShouldRestoreSPFromFP(true); 711 } 712 713 // If we need a base pointer, set it up here. It's whatever the value 714 // of the stack pointer is at this point. Any variable size objects 715 // will be allocated after this, so we can still use the base pointer 716 // to reference locals. 717 // FIXME: Clarify FrameSetup flags here. 718 if (RegInfo->hasBasePointer(MF)) { 719 if (isARM) 720 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 721 .addReg(ARM::SP) 722 .add(predOps(ARMCC::AL)) 723 .add(condCodeOp()); 724 else 725 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 726 .addReg(ARM::SP) 727 .add(predOps(ARMCC::AL)); 728 } 729 730 // If the frame has variable sized objects then the epilogue must restore 731 // the sp from fp. We can assume there's an FP here since hasFP already 732 // checks for hasVarSizedObjects. 733 if (MFI.hasVarSizedObjects()) 734 AFI->setShouldRestoreSPFromFP(true); 735 } 736 737 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 738 MachineBasicBlock &MBB) const { 739 MachineFrameInfo &MFI = MF.getFrameInfo(); 740 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 741 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 742 const ARMBaseInstrInfo &TII = 743 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 744 assert(!AFI->isThumb1OnlyFunction() && 745 "This emitEpilogue does not support Thumb1!"); 746 bool isARM = !AFI->isThumbFunction(); 747 748 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 749 int NumBytes = (int)MFI.getStackSize(); 750 unsigned FramePtr = RegInfo->getFrameRegister(MF); 751 752 // All calls are tail calls in GHC calling conv, and functions have no 753 // prologue/epilogue. 754 if (MF.getFunction()->getCallingConv() == CallingConv::GHC) 755 return; 756 757 // First put ourselves on the first (from top) terminator instructions. 758 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 759 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 760 761 if (!AFI->hasStackFrame()) { 762 if (NumBytes - ArgRegsSaveSize != 0) 763 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize); 764 } else { 765 // Unwind MBBI to point to first LDR / VLDRD. 766 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 767 if (MBBI != MBB.begin()) { 768 do { 769 --MBBI; 770 } while (MBBI != MBB.begin() && isCSRestore(*MBBI, TII, CSRegs)); 771 if (!isCSRestore(*MBBI, TII, CSRegs)) 772 ++MBBI; 773 } 774 775 // Move SP to start of FP callee save spill area. 776 NumBytes -= (ArgRegsSaveSize + 777 AFI->getGPRCalleeSavedArea1Size() + 778 AFI->getGPRCalleeSavedArea2Size() + 779 AFI->getDPRCalleeSavedGapSize() + 780 AFI->getDPRCalleeSavedAreaSize()); 781 782 // Reset SP based on frame pointer only if the stack frame extends beyond 783 // frame pointer stack slot or target is ELF and the function has FP. 784 if (AFI->shouldRestoreSPFromFP()) { 785 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 786 if (NumBytes) { 787 if (isARM) 788 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 789 ARMCC::AL, 0, TII); 790 else { 791 // It's not possible to restore SP from FP in a single instruction. 792 // For iOS, this looks like: 793 // mov sp, r7 794 // sub sp, #24 795 // This is bad, if an interrupt is taken after the mov, sp is in an 796 // inconsistent state. 797 // Use the first callee-saved register as a scratch register. 798 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 799 "No scratch register to restore SP from FP!"); 800 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 801 ARMCC::AL, 0, TII); 802 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 803 .addReg(ARM::R4) 804 .add(predOps(ARMCC::AL)); 805 } 806 } else { 807 // Thumb2 or ARM. 808 if (isARM) 809 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 810 .addReg(FramePtr) 811 .add(predOps(ARMCC::AL)) 812 .add(condCodeOp()); 813 else 814 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 815 .addReg(FramePtr) 816 .add(predOps(ARMCC::AL)); 817 } 818 } else if (NumBytes && 819 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 820 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes); 821 822 // Increment past our save areas. 823 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { 824 MBBI++; 825 // Since vpop register list cannot have gaps, there may be multiple vpop 826 // instructions in the epilogue. 827 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 828 MBBI++; 829 } 830 if (AFI->getDPRCalleeSavedGapSize()) { 831 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 832 "unexpected DPR alignment gap"); 833 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize()); 834 } 835 836 if (AFI->getGPRCalleeSavedArea2Size()) MBBI++; 837 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 838 } 839 840 if (ArgRegsSaveSize) 841 emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize); 842 } 843 844 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 845 /// debug info. It's the same as what we use for resolving the code-gen 846 /// references for now. FIXME: This can go wrong when references are 847 /// SP-relative and simple call frames aren't used. 848 int 849 ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 850 unsigned &FrameReg) const { 851 return ResolveFrameIndexReference(MF, FI, FrameReg, 0); 852 } 853 854 int 855 ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 856 int FI, unsigned &FrameReg, 857 int SPAdj) const { 858 const MachineFrameInfo &MFI = MF.getFrameInfo(); 859 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 860 MF.getSubtarget().getRegisterInfo()); 861 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 862 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 863 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 864 bool isFixed = MFI.isFixedObjectIndex(FI); 865 866 FrameReg = ARM::SP; 867 Offset += SPAdj; 868 869 // SP can move around if there are allocas. We may also lose track of SP 870 // when emergency spilling inside a non-reserved call frame setup. 871 bool hasMovingSP = !hasReservedCallFrame(MF); 872 873 // When dynamically realigning the stack, use the frame pointer for 874 // parameters, and the stack/base pointer for locals. 875 if (RegInfo->needsStackRealignment(MF)) { 876 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 877 if (isFixed) { 878 FrameReg = RegInfo->getFrameRegister(MF); 879 Offset = FPOffset; 880 } else if (hasMovingSP) { 881 assert(RegInfo->hasBasePointer(MF) && 882 "VLAs and dynamic stack alignment, but missing base pointer!"); 883 FrameReg = RegInfo->getBaseRegister(); 884 } 885 return Offset; 886 } 887 888 // If there is a frame pointer, use it when we can. 889 if (hasFP(MF) && AFI->hasStackFrame()) { 890 // Use frame pointer to reference fixed objects. Use it for locals if 891 // there are VLAs (and thus the SP isn't reliable as a base). 892 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 893 FrameReg = RegInfo->getFrameRegister(MF); 894 return FPOffset; 895 } else if (hasMovingSP) { 896 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 897 if (AFI->isThumb2Function()) { 898 // Try to use the frame pointer if we can, else use the base pointer 899 // since it's available. This is handy for the emergency spill slot, in 900 // particular. 901 if (FPOffset >= -255 && FPOffset < 0) { 902 FrameReg = RegInfo->getFrameRegister(MF); 903 return FPOffset; 904 } 905 } 906 } else if (AFI->isThumb2Function()) { 907 // Use add <rd>, sp, #<imm8> 908 // ldr <rd>, [sp, #<imm8>] 909 // if at all possible to save space. 910 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 911 return Offset; 912 // In Thumb2 mode, the negative offset is very limited. Try to avoid 913 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 914 if (FPOffset >= -255 && FPOffset < 0) { 915 FrameReg = RegInfo->getFrameRegister(MF); 916 return FPOffset; 917 } 918 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 919 // Otherwise, use SP or FP, whichever is closer to the stack slot. 920 FrameReg = RegInfo->getFrameRegister(MF); 921 return FPOffset; 922 } 923 } 924 // Use the base pointer if we have one. 925 if (RegInfo->hasBasePointer(MF)) 926 FrameReg = RegInfo->getBaseRegister(); 927 return Offset; 928 } 929 930 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 931 MachineBasicBlock::iterator MI, 932 const std::vector<CalleeSavedInfo> &CSI, 933 unsigned StmOpc, unsigned StrOpc, 934 bool NoGap, 935 bool(*Func)(unsigned, bool), 936 unsigned NumAlignedDPRCS2Regs, 937 unsigned MIFlags) const { 938 MachineFunction &MF = *MBB.getParent(); 939 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 940 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 941 942 DebugLoc DL; 943 944 typedef std::pair<unsigned, bool> RegAndKill; 945 SmallVector<RegAndKill, 4> Regs; 946 unsigned i = CSI.size(); 947 while (i != 0) { 948 unsigned LastReg = 0; 949 for (; i != 0; --i) { 950 unsigned Reg = CSI[i-1].getReg(); 951 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 952 953 // D-registers in the aligned area DPRCS2 are NOT spilled here. 954 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 955 continue; 956 957 bool isLiveIn = MF.getRegInfo().isLiveIn(Reg); 958 if (!isLiveIn) 959 MBB.addLiveIn(Reg); 960 // If NoGap is true, push consecutive registers and then leave the rest 961 // for other instructions. e.g. 962 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 963 if (NoGap && LastReg && LastReg != Reg-1) 964 break; 965 LastReg = Reg; 966 // Do not set a kill flag on values that are also marked as live-in. This 967 // happens with the @llvm-returnaddress intrinsic and with arguments 968 // passed in callee saved registers. 969 // Omitting the kill flags is conservatively correct even if the live-in 970 // is not used after all. 971 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 972 } 973 974 if (Regs.empty()) 975 continue; 976 977 std::sort(Regs.begin(), Regs.end(), [&](const RegAndKill &LHS, 978 const RegAndKill &RHS) { 979 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 980 }); 981 982 if (Regs.size() > 1 || StrOpc== 0) { 983 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 984 .addReg(ARM::SP) 985 .setMIFlags(MIFlags) 986 .add(predOps(ARMCC::AL)); 987 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 988 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 989 } else if (Regs.size() == 1) { 990 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 991 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 992 .addReg(ARM::SP) 993 .setMIFlags(MIFlags) 994 .addImm(-4) 995 .add(predOps(ARMCC::AL)); 996 } 997 Regs.clear(); 998 999 // Put any subsequent vpush instructions before this one: they will refer to 1000 // higher register numbers so need to be pushed first in order to preserve 1001 // monotonicity. 1002 if (MI != MBB.begin()) 1003 --MI; 1004 } 1005 } 1006 1007 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1008 MachineBasicBlock::iterator MI, 1009 const std::vector<CalleeSavedInfo> &CSI, 1010 unsigned LdmOpc, unsigned LdrOpc, 1011 bool isVarArg, bool NoGap, 1012 bool(*Func)(unsigned, bool), 1013 unsigned NumAlignedDPRCS2Regs) const { 1014 MachineFunction &MF = *MBB.getParent(); 1015 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1016 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1017 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1018 DebugLoc DL; 1019 bool isTailCall = false; 1020 bool isInterrupt = false; 1021 bool isTrap = false; 1022 if (MBB.end() != MI) { 1023 DL = MI->getDebugLoc(); 1024 unsigned RetOpcode = MI->getOpcode(); 1025 isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri); 1026 isInterrupt = 1027 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1028 isTrap = 1029 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1030 RetOpcode == ARM::tTRAP; 1031 } 1032 1033 SmallVector<unsigned, 4> Regs; 1034 unsigned i = CSI.size(); 1035 while (i != 0) { 1036 unsigned LastReg = 0; 1037 bool DeleteRet = false; 1038 for (; i != 0; --i) { 1039 unsigned Reg = CSI[i-1].getReg(); 1040 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1041 1042 // The aligned reloads from area DPRCS2 are not inserted here. 1043 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1044 continue; 1045 1046 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1047 !isTrap && STI.hasV5TOps()) { 1048 if (MBB.succ_empty()) { 1049 Reg = ARM::PC; 1050 DeleteRet = true; 1051 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1052 } else 1053 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1054 // Fold the return instruction into the LDM. 1055 } 1056 1057 // If NoGap is true, pop consecutive registers and then leave the rest 1058 // for other instructions. e.g. 1059 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1060 if (NoGap && LastReg && LastReg != Reg-1) 1061 break; 1062 1063 LastReg = Reg; 1064 Regs.push_back(Reg); 1065 } 1066 1067 if (Regs.empty()) 1068 continue; 1069 1070 std::sort(Regs.begin(), Regs.end(), [&](unsigned LHS, unsigned RHS) { 1071 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1072 }); 1073 1074 if (Regs.size() > 1 || LdrOpc == 0) { 1075 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1076 .addReg(ARM::SP) 1077 .add(predOps(ARMCC::AL)); 1078 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1079 MIB.addReg(Regs[i], getDefRegState(true)); 1080 if (DeleteRet && MI != MBB.end()) { 1081 MIB.copyImplicitOps(*MI); 1082 MI->eraseFromParent(); 1083 } 1084 MI = MIB; 1085 } else if (Regs.size() == 1) { 1086 // If we adjusted the reg to PC from LR above, switch it back here. We 1087 // only do that for LDM. 1088 if (Regs[0] == ARM::PC) 1089 Regs[0] = ARM::LR; 1090 MachineInstrBuilder MIB = 1091 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1092 .addReg(ARM::SP, RegState::Define) 1093 .addReg(ARM::SP); 1094 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1095 // that refactoring is complete (eventually). 1096 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1097 MIB.addReg(0); 1098 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1099 } else 1100 MIB.addImm(4); 1101 MIB.add(predOps(ARMCC::AL)); 1102 } 1103 Regs.clear(); 1104 1105 // Put any subsequent vpop instructions after this one: they will refer to 1106 // higher register numbers so need to be popped afterwards. 1107 if (MI != MBB.end()) 1108 ++MI; 1109 } 1110 } 1111 1112 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1113 /// starting from d8. Also insert stack realignment code and leave the stack 1114 /// pointer pointing to the d8 spill slot. 1115 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1116 MachineBasicBlock::iterator MI, 1117 unsigned NumAlignedDPRCS2Regs, 1118 const std::vector<CalleeSavedInfo> &CSI, 1119 const TargetRegisterInfo *TRI) { 1120 MachineFunction &MF = *MBB.getParent(); 1121 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1122 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1123 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1124 MachineFrameInfo &MFI = MF.getFrameInfo(); 1125 1126 // Mark the D-register spill slots as properly aligned. Since MFI computes 1127 // stack slot layout backwards, this can actually mean that the d-reg stack 1128 // slot offsets can be wrong. The offset for d8 will always be correct. 1129 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 1130 unsigned DNum = CSI[i].getReg() - ARM::D8; 1131 if (DNum > NumAlignedDPRCS2Regs - 1) 1132 continue; 1133 int FI = CSI[i].getFrameIdx(); 1134 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1135 // registers will be 8-byte aligned. 1136 MFI.setObjectAlignment(FI, DNum % 2 ? 8 : 16); 1137 1138 // The stack slot for D8 needs to be maximally aligned because this is 1139 // actually the point where we align the stack pointer. MachineFrameInfo 1140 // computes all offsets relative to the incoming stack pointer which is a 1141 // bit weird when realigning the stack. Any extra padding for this 1142 // over-alignment is not realized because the code inserted below adjusts 1143 // the stack pointer by numregs * 8 before aligning the stack pointer. 1144 if (DNum == 0) 1145 MFI.setObjectAlignment(FI, MFI.getMaxAlignment()); 1146 } 1147 1148 // Move the stack pointer to the d8 spill slot, and align it at the same 1149 // time. Leave the stack slot address in the scratch register r4. 1150 // 1151 // sub r4, sp, #numregs * 8 1152 // bic r4, r4, #align - 1 1153 // mov sp, r4 1154 // 1155 bool isThumb = AFI->isThumbFunction(); 1156 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1157 AFI->setShouldRestoreSPFromFP(true); 1158 1159 // sub r4, sp, #numregs * 8 1160 // The immediate is <= 64, so it doesn't need any special encoding. 1161 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1162 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1163 .addReg(ARM::SP) 1164 .addImm(8 * NumAlignedDPRCS2Regs) 1165 .add(predOps(ARMCC::AL)) 1166 .add(condCodeOp()); 1167 1168 unsigned MaxAlign = MF.getFrameInfo().getMaxAlignment(); 1169 // We must set parameter MustBeSingleInstruction to true, since 1170 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1171 // stack alignment. Luckily, this can always be done since all ARM 1172 // architecture versions that support Neon also support the BFC 1173 // instruction. 1174 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1175 1176 // mov sp, r4 1177 // The stack pointer must be adjusted before spilling anything, otherwise 1178 // the stack slots could be clobbered by an interrupt handler. 1179 // Leave r4 live, it is used below. 1180 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1181 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1182 .addReg(ARM::R4) 1183 .add(predOps(ARMCC::AL)); 1184 if (!isThumb) 1185 MIB.add(condCodeOp()); 1186 1187 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1188 // r4 holds the stack slot address. 1189 unsigned NextReg = ARM::D8; 1190 1191 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1192 // The writeback is only needed when emitting two vst1.64 instructions. 1193 if (NumAlignedDPRCS2Regs >= 6) { 1194 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1195 &ARM::QQPRRegClass); 1196 MBB.addLiveIn(SupReg); 1197 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1198 .addReg(ARM::R4, RegState::Kill) 1199 .addImm(16) 1200 .addReg(NextReg) 1201 .addReg(SupReg, RegState::ImplicitKill) 1202 .add(predOps(ARMCC::AL)); 1203 NextReg += 4; 1204 NumAlignedDPRCS2Regs -= 4; 1205 } 1206 1207 // We won't modify r4 beyond this point. It currently points to the next 1208 // register to be spilled. 1209 unsigned R4BaseReg = NextReg; 1210 1211 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1212 if (NumAlignedDPRCS2Regs >= 4) { 1213 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1214 &ARM::QQPRRegClass); 1215 MBB.addLiveIn(SupReg); 1216 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1217 .addReg(ARM::R4) 1218 .addImm(16) 1219 .addReg(NextReg) 1220 .addReg(SupReg, RegState::ImplicitKill) 1221 .add(predOps(ARMCC::AL)); 1222 NextReg += 4; 1223 NumAlignedDPRCS2Regs -= 4; 1224 } 1225 1226 // 16-byte aligned vst1.64 with 2 d-regs. 1227 if (NumAlignedDPRCS2Regs >= 2) { 1228 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1229 &ARM::QPRRegClass); 1230 MBB.addLiveIn(SupReg); 1231 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1232 .addReg(ARM::R4) 1233 .addImm(16) 1234 .addReg(SupReg) 1235 .add(predOps(ARMCC::AL)); 1236 NextReg += 2; 1237 NumAlignedDPRCS2Regs -= 2; 1238 } 1239 1240 // Finally, use a vanilla vstr.64 for the odd last register. 1241 if (NumAlignedDPRCS2Regs) { 1242 MBB.addLiveIn(NextReg); 1243 // vstr.64 uses addrmode5 which has an offset scale of 4. 1244 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1245 .addReg(NextReg) 1246 .addReg(ARM::R4) 1247 .addImm((NextReg - R4BaseReg) * 2) 1248 .add(predOps(ARMCC::AL)); 1249 } 1250 1251 // The last spill instruction inserted should kill the scratch register r4. 1252 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1253 } 1254 1255 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1256 /// iterator to the following instruction. 1257 static MachineBasicBlock::iterator 1258 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1259 unsigned NumAlignedDPRCS2Regs) { 1260 // sub r4, sp, #numregs * 8 1261 // bic r4, r4, #align - 1 1262 // mov sp, r4 1263 ++MI; ++MI; ++MI; 1264 assert(MI->mayStore() && "Expecting spill instruction"); 1265 1266 // These switches all fall through. 1267 switch(NumAlignedDPRCS2Regs) { 1268 case 7: 1269 ++MI; 1270 assert(MI->mayStore() && "Expecting spill instruction"); 1271 default: 1272 ++MI; 1273 assert(MI->mayStore() && "Expecting spill instruction"); 1274 case 1: 1275 case 2: 1276 case 4: 1277 assert(MI->killsRegister(ARM::R4) && "Missed kill flag"); 1278 ++MI; 1279 } 1280 return MI; 1281 } 1282 1283 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1284 /// starting from d8. These instructions are assumed to execute while the 1285 /// stack is still aligned, unlike the code inserted by emitPopInst. 1286 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1287 MachineBasicBlock::iterator MI, 1288 unsigned NumAlignedDPRCS2Regs, 1289 const std::vector<CalleeSavedInfo> &CSI, 1290 const TargetRegisterInfo *TRI) { 1291 MachineFunction &MF = *MBB.getParent(); 1292 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1293 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1294 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1295 1296 // Find the frame index assigned to d8. 1297 int D8SpillFI = 0; 1298 for (unsigned i = 0, e = CSI.size(); i != e; ++i) 1299 if (CSI[i].getReg() == ARM::D8) { 1300 D8SpillFI = CSI[i].getFrameIdx(); 1301 break; 1302 } 1303 1304 // Materialize the address of the d8 spill slot into the scratch register r4. 1305 // This can be fairly complicated if the stack frame is large, so just use 1306 // the normal frame index elimination mechanism to do it. This code runs as 1307 // the initial part of the epilog where the stack and base pointers haven't 1308 // been changed yet. 1309 bool isThumb = AFI->isThumbFunction(); 1310 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1311 1312 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 1313 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1314 .addFrameIndex(D8SpillFI) 1315 .addImm(0) 1316 .add(predOps(ARMCC::AL)) 1317 .add(condCodeOp()); 1318 1319 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 1320 unsigned NextReg = ARM::D8; 1321 1322 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 1323 if (NumAlignedDPRCS2Regs >= 6) { 1324 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1325 &ARM::QQPRRegClass); 1326 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 1327 .addReg(ARM::R4, RegState::Define) 1328 .addReg(ARM::R4, RegState::Kill) 1329 .addImm(16) 1330 .addReg(SupReg, RegState::ImplicitDefine) 1331 .add(predOps(ARMCC::AL)); 1332 NextReg += 4; 1333 NumAlignedDPRCS2Regs -= 4; 1334 } 1335 1336 // We won't modify r4 beyond this point. It currently points to the next 1337 // register to be spilled. 1338 unsigned R4BaseReg = NextReg; 1339 1340 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 1341 if (NumAlignedDPRCS2Regs >= 4) { 1342 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1343 &ARM::QQPRRegClass); 1344 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 1345 .addReg(ARM::R4) 1346 .addImm(16) 1347 .addReg(SupReg, RegState::ImplicitDefine) 1348 .add(predOps(ARMCC::AL)); 1349 NextReg += 4; 1350 NumAlignedDPRCS2Regs -= 4; 1351 } 1352 1353 // 16-byte aligned vld1.64 with 2 d-regs. 1354 if (NumAlignedDPRCS2Regs >= 2) { 1355 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1356 &ARM::QPRRegClass); 1357 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 1358 .addReg(ARM::R4) 1359 .addImm(16) 1360 .add(predOps(ARMCC::AL)); 1361 NextReg += 2; 1362 NumAlignedDPRCS2Regs -= 2; 1363 } 1364 1365 // Finally, use a vanilla vldr.64 for the remaining odd register. 1366 if (NumAlignedDPRCS2Regs) 1367 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 1368 .addReg(ARM::R4) 1369 .addImm(2 * (NextReg - R4BaseReg)) 1370 .add(predOps(ARMCC::AL)); 1371 1372 // Last store kills r4. 1373 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1374 } 1375 1376 bool ARMFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB, 1377 MachineBasicBlock::iterator MI, 1378 const std::vector<CalleeSavedInfo> &CSI, 1379 const TargetRegisterInfo *TRI) const { 1380 if (CSI.empty()) 1381 return false; 1382 1383 MachineFunction &MF = *MBB.getParent(); 1384 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1385 1386 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 1387 unsigned PushOneOpc = AFI->isThumbFunction() ? 1388 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 1389 unsigned FltOpc = ARM::VSTMDDB_UPD; 1390 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1391 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0, 1392 MachineInstr::FrameSetup); 1393 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0, 1394 MachineInstr::FrameSetup); 1395 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 1396 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 1397 1398 // The code above does not insert spill code for the aligned DPRCS2 registers. 1399 // The stack realignment code will be inserted between the push instructions 1400 // and these spills. 1401 if (NumAlignedDPRCS2Regs) 1402 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1403 1404 return true; 1405 } 1406 1407 bool ARMFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, 1408 MachineBasicBlock::iterator MI, 1409 const std::vector<CalleeSavedInfo> &CSI, 1410 const TargetRegisterInfo *TRI) const { 1411 if (CSI.empty()) 1412 return false; 1413 1414 MachineFunction &MF = *MBB.getParent(); 1415 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1416 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 1417 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1418 1419 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 1420 // registers. Do that here instead. 1421 if (NumAlignedDPRCS2Regs) 1422 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1423 1424 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1425 unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM; 1426 unsigned FltOpc = ARM::VLDMDIA_UPD; 1427 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 1428 NumAlignedDPRCS2Regs); 1429 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1430 &isARMArea2Register, 0); 1431 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1432 &isARMArea1Register, 0); 1433 1434 return true; 1435 } 1436 1437 // FIXME: Make generic? 1438 static unsigned GetFunctionSizeInBytes(const MachineFunction &MF, 1439 const ARMBaseInstrInfo &TII) { 1440 unsigned FnSize = 0; 1441 for (auto &MBB : MF) { 1442 for (auto &MI : MBB) 1443 FnSize += TII.getInstSizeInBytes(MI); 1444 } 1445 return FnSize; 1446 } 1447 1448 /// estimateRSStackSizeLimit - Look at each instruction that references stack 1449 /// frames and return the stack size limit beyond which some of these 1450 /// instructions will require a scratch register during their expansion later. 1451 // FIXME: Move to TII? 1452 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 1453 const TargetFrameLowering *TFI) { 1454 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1455 unsigned Limit = (1 << 12) - 1; 1456 for (auto &MBB : MF) { 1457 for (auto &MI : MBB) { 1458 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1459 if (!MI.getOperand(i).isFI()) 1460 continue; 1461 1462 // When using ADDri to get the address of a stack object, 255 is the 1463 // largest offset guaranteed to fit in the immediate offset. 1464 if (MI.getOpcode() == ARM::ADDri) { 1465 Limit = std::min(Limit, (1U << 8) - 1); 1466 break; 1467 } 1468 1469 // Otherwise check the addressing mode. 1470 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 1471 case ARMII::AddrMode3: 1472 case ARMII::AddrModeT2_i8: 1473 Limit = std::min(Limit, (1U << 8) - 1); 1474 break; 1475 case ARMII::AddrMode5: 1476 case ARMII::AddrModeT2_i8s4: 1477 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 1478 break; 1479 case ARMII::AddrModeT2_i12: 1480 // i12 supports only positive offset so these will be converted to 1481 // i8 opcodes. See llvm::rewriteT2FrameIndex. 1482 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 1483 Limit = std::min(Limit, (1U << 8) - 1); 1484 break; 1485 case ARMII::AddrMode4: 1486 case ARMII::AddrMode6: 1487 // Addressing modes 4 & 6 (load/store) instructions can't encode an 1488 // immediate offset for stack references. 1489 return 0; 1490 default: 1491 break; 1492 } 1493 break; // At most one FI per instruction 1494 } 1495 } 1496 } 1497 1498 return Limit; 1499 } 1500 1501 // In functions that realign the stack, it can be an advantage to spill the 1502 // callee-saved vector registers after realigning the stack. The vst1 and vld1 1503 // instructions take alignment hints that can improve performance. 1504 // 1505 static void 1506 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 1507 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 1508 if (!SpillAlignedNEONRegs) 1509 return; 1510 1511 // Naked functions don't spill callee-saved registers. 1512 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 1513 return; 1514 1515 // We are planning to use NEON instructions vst1 / vld1. 1516 if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON()) 1517 return; 1518 1519 // Don't bother if the default stack alignment is sufficiently high. 1520 if (MF.getSubtarget().getFrameLowering()->getStackAlignment() >= 8) 1521 return; 1522 1523 // Aligned spills require stack realignment. 1524 if (!static_cast<const ARMBaseRegisterInfo *>( 1525 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 1526 return; 1527 1528 // We always spill contiguous d-registers starting from d8. Count how many 1529 // needs spilling. The register allocator will almost always use the 1530 // callee-saved registers in order, but it can happen that there are holes in 1531 // the range. Registers above the hole will be spilled to the standard DPRCS 1532 // area. 1533 unsigned NumSpills = 0; 1534 for (; NumSpills < 8; ++NumSpills) 1535 if (!SavedRegs.test(ARM::D8 + NumSpills)) 1536 break; 1537 1538 // Don't do this for just one d-register. It's not worth it. 1539 if (NumSpills < 2) 1540 return; 1541 1542 // Spill the first NumSpills D-registers after realigning the stack. 1543 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 1544 1545 // A scratch register is required for the vst1 / vld1 instructions. 1546 SavedRegs.set(ARM::R4); 1547 } 1548 1549 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 1550 BitVector &SavedRegs, 1551 RegScavenger *RS) const { 1552 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1553 // This tells PEI to spill the FP as if it is any other callee-save register 1554 // to take advantage the eliminateFrameIndex machinery. This also ensures it 1555 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 1556 // to combine multiple loads / stores. 1557 bool CanEliminateFrame = true; 1558 bool CS1Spilled = false; 1559 bool LRSpilled = false; 1560 unsigned NumGPRSpills = 0; 1561 unsigned NumFPRSpills = 0; 1562 SmallVector<unsigned, 4> UnspilledCS1GPRs; 1563 SmallVector<unsigned, 4> UnspilledCS2GPRs; 1564 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1565 MF.getSubtarget().getRegisterInfo()); 1566 const ARMBaseInstrInfo &TII = 1567 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1568 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1569 MachineFrameInfo &MFI = MF.getFrameInfo(); 1570 MachineRegisterInfo &MRI = MF.getRegInfo(); 1571 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1572 (void)TRI; // Silence unused warning in non-assert builds. 1573 unsigned FramePtr = RegInfo->getFrameRegister(MF); 1574 1575 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 1576 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 1577 // since it's not always possible to restore sp from fp in a single 1578 // instruction. 1579 // FIXME: It will be better just to find spare register here. 1580 if (AFI->isThumb2Function() && 1581 (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF))) 1582 SavedRegs.set(ARM::R4); 1583 1584 if (AFI->isThumb1OnlyFunction()) { 1585 // Spill LR if Thumb1 function uses variable length argument lists. 1586 if (AFI->getArgRegsSaveSize() > 0) 1587 SavedRegs.set(ARM::LR); 1588 1589 // Spill R4 if Thumb1 epilogue has to restore SP from FP. We don't know 1590 // for sure what the stack size will be, but for this, an estimate is good 1591 // enough. If there anything changes it, it'll be a spill, which implies 1592 // we've used all the registers and so R4 is already used, so not marking 1593 // it here will be OK. 1594 // FIXME: It will be better just to find spare register here. 1595 unsigned StackSize = MFI.estimateStackSize(MF); 1596 if (MFI.hasVarSizedObjects() || StackSize > 508) 1597 SavedRegs.set(ARM::R4); 1598 } 1599 1600 // See if we can spill vector registers to aligned stack. 1601 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 1602 1603 // Spill the BasePtr if it's used. 1604 if (RegInfo->hasBasePointer(MF)) 1605 SavedRegs.set(RegInfo->getBaseRegister()); 1606 1607 // Don't spill FP if the frame can be eliminated. This is determined 1608 // by scanning the callee-save registers to see if any is modified. 1609 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 1610 for (unsigned i = 0; CSRegs[i]; ++i) { 1611 unsigned Reg = CSRegs[i]; 1612 bool Spilled = false; 1613 if (SavedRegs.test(Reg)) { 1614 Spilled = true; 1615 CanEliminateFrame = false; 1616 } 1617 1618 if (!ARM::GPRRegClass.contains(Reg)) { 1619 if (Spilled) { 1620 if (ARM::SPRRegClass.contains(Reg)) 1621 NumFPRSpills++; 1622 else if (ARM::DPRRegClass.contains(Reg)) 1623 NumFPRSpills += 2; 1624 else if (ARM::QPRRegClass.contains(Reg)) 1625 NumFPRSpills += 4; 1626 } 1627 continue; 1628 } 1629 1630 if (Spilled) { 1631 NumGPRSpills++; 1632 1633 if (!STI.splitFramePushPop(MF)) { 1634 if (Reg == ARM::LR) 1635 LRSpilled = true; 1636 CS1Spilled = true; 1637 continue; 1638 } 1639 1640 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 1641 switch (Reg) { 1642 case ARM::LR: 1643 LRSpilled = true; 1644 LLVM_FALLTHROUGH; 1645 case ARM::R0: case ARM::R1: 1646 case ARM::R2: case ARM::R3: 1647 case ARM::R4: case ARM::R5: 1648 case ARM::R6: case ARM::R7: 1649 CS1Spilled = true; 1650 break; 1651 default: 1652 break; 1653 } 1654 } else { 1655 if (!STI.splitFramePushPop(MF)) { 1656 UnspilledCS1GPRs.push_back(Reg); 1657 continue; 1658 } 1659 1660 switch (Reg) { 1661 case ARM::R0: case ARM::R1: 1662 case ARM::R2: case ARM::R3: 1663 case ARM::R4: case ARM::R5: 1664 case ARM::R6: case ARM::R7: 1665 case ARM::LR: 1666 UnspilledCS1GPRs.push_back(Reg); 1667 break; 1668 default: 1669 UnspilledCS2GPRs.push_back(Reg); 1670 break; 1671 } 1672 } 1673 } 1674 1675 bool ForceLRSpill = false; 1676 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 1677 unsigned FnSize = GetFunctionSizeInBytes(MF, TII); 1678 // Force LR to be spilled if the Thumb function size is > 2048. This enables 1679 // use of BL to implement far jump. If it turns out that it's not needed 1680 // then the branch fix up path will undo it. 1681 if (FnSize >= (1 << 11)) { 1682 CanEliminateFrame = false; 1683 ForceLRSpill = true; 1684 } 1685 } 1686 1687 // If any of the stack slot references may be out of range of an immediate 1688 // offset, make sure a register (or a spill slot) is available for the 1689 // register scavenger. Note that if we're indexing off the frame pointer, the 1690 // effective stack size is 4 bytes larger since the FP points to the stack 1691 // slot of the previous FP. Also, if we have variable sized objects in the 1692 // function, stack slot references will often be negative, and some of 1693 // our instructions are positive-offset only, so conservatively consider 1694 // that case to want a spill slot (or register) as well. Similarly, if 1695 // the function adjusts the stack pointer during execution and the 1696 // adjustments aren't already part of our stack size estimate, our offset 1697 // calculations may be off, so be conservative. 1698 // FIXME: We could add logic to be more precise about negative offsets 1699 // and which instructions will need a scratch register for them. Is it 1700 // worth the effort and added fragility? 1701 unsigned EstimatedStackSize = 1702 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 1703 if (hasFP(MF)) { 1704 if (AFI->hasStackFrame()) 1705 EstimatedStackSize += 4; 1706 } else { 1707 // If FP is not used, SP will be used to access arguments, so count the 1708 // size of arguments into the estimation. 1709 EstimatedStackSize += MF.getInfo<ARMFunctionInfo>()->getArgumentStackSize(); 1710 } 1711 EstimatedStackSize += 16; // For possible paddings. 1712 1713 bool BigStack = EstimatedStackSize >= estimateRSStackSizeLimit(MF, this) || 1714 MFI.hasVarSizedObjects() || 1715 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)); 1716 bool ExtraCSSpill = false; 1717 if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 1718 AFI->setHasStackFrame(true); 1719 1720 if (hasFP(MF)) { 1721 SavedRegs.set(FramePtr); 1722 // If the frame pointer is required by the ABI, also spill LR so that we 1723 // emit a complete frame record. 1724 if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) { 1725 SavedRegs.set(ARM::LR); 1726 LRSpilled = true; 1727 NumGPRSpills++; 1728 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 1729 if (LRPos != UnspilledCS1GPRs.end()) 1730 UnspilledCS1GPRs.erase(LRPos); 1731 } 1732 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 1733 if (FPPos != UnspilledCS1GPRs.end()) 1734 UnspilledCS1GPRs.erase(FPPos); 1735 NumGPRSpills++; 1736 if (FramePtr == ARM::R7) 1737 CS1Spilled = true; 1738 } 1739 1740 if (AFI->isThumb1OnlyFunction()) { 1741 // For Thumb1-only targets, we need some low registers when we save and 1742 // restore the high registers (which aren't allocatable, but could be 1743 // used by inline assembly) because the push/pop instructions can not 1744 // access high registers. If necessary, we might need to push more low 1745 // registers to ensure that there is at least one free that can be used 1746 // for the saving & restoring, and preferably we should ensure that as 1747 // many as are needed are available so that fewer push/pop instructions 1748 // are required. 1749 1750 // Low registers which are not currently pushed, but could be (r4-r7). 1751 SmallVector<unsigned, 4> AvailableRegs; 1752 1753 // Unused argument registers (r0-r3) can be clobbered in the prologue for 1754 // free. 1755 int EntryRegDeficit = 0; 1756 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 1757 if (!MF.getRegInfo().isLiveIn(Reg)) { 1758 --EntryRegDeficit; 1759 DEBUG(dbgs() << PrintReg(Reg, TRI) 1760 << " is unused argument register, EntryRegDeficit = " 1761 << EntryRegDeficit << "\n"); 1762 } 1763 } 1764 1765 // Unused return registers can be clobbered in the epilogue for free. 1766 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 1767 DEBUG(dbgs() << AFI->getReturnRegsCount() 1768 << " return regs used, ExitRegDeficit = " << ExitRegDeficit 1769 << "\n"); 1770 1771 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 1772 DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 1773 1774 // r4-r6 can be used in the prologue if they are pushed by the first push 1775 // instruction. 1776 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 1777 if (SavedRegs.test(Reg)) { 1778 --RegDeficit; 1779 DEBUG(dbgs() << PrintReg(Reg, TRI) 1780 << " is saved low register, RegDeficit = " << RegDeficit 1781 << "\n"); 1782 } else { 1783 AvailableRegs.push_back(Reg); 1784 DEBUG(dbgs() 1785 << PrintReg(Reg, TRI) 1786 << " is non-saved low register, adding to AvailableRegs\n"); 1787 } 1788 } 1789 1790 // r7 can be used if it is not being used as the frame pointer. 1791 if (!hasFP(MF)) { 1792 if (SavedRegs.test(ARM::R7)) { 1793 --RegDeficit; 1794 DEBUG(dbgs() << "%R7 is saved low register, RegDeficit = " 1795 << RegDeficit << "\n"); 1796 } else { 1797 AvailableRegs.push_back(ARM::R7); 1798 DEBUG(dbgs() 1799 << "%R7 is non-saved low register, adding to AvailableRegs\n"); 1800 } 1801 } 1802 1803 // Each of r8-r11 needs to be copied to a low register, then pushed. 1804 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 1805 if (SavedRegs.test(Reg)) { 1806 ++RegDeficit; 1807 DEBUG(dbgs() << PrintReg(Reg, TRI) 1808 << " is saved high register, RegDeficit = " << RegDeficit 1809 << "\n"); 1810 } 1811 } 1812 1813 // LR can only be used by PUSH, not POP, and can't be used at all if the 1814 // llvm.returnaddress intrinsic is used. This is only worth doing if we 1815 // are more limited at function entry than exit. 1816 if ((EntryRegDeficit > ExitRegDeficit) && 1817 !(MF.getRegInfo().isLiveIn(ARM::LR) && 1818 MF.getFrameInfo().isReturnAddressTaken())) { 1819 if (SavedRegs.test(ARM::LR)) { 1820 --RegDeficit; 1821 DEBUG(dbgs() << "%LR is saved register, RegDeficit = " << RegDeficit 1822 << "\n"); 1823 } else { 1824 AvailableRegs.push_back(ARM::LR); 1825 DEBUG(dbgs() << "%LR is not saved, adding to AvailableRegs\n"); 1826 } 1827 } 1828 1829 // If there are more high registers that need pushing than low registers 1830 // available, push some more low registers so that we can use fewer push 1831 // instructions. This might not reduce RegDeficit all the way to zero, 1832 // because we can only guarantee that r4-r6 are available, but r8-r11 may 1833 // need saving. 1834 DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 1835 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 1836 unsigned Reg = AvailableRegs.pop_back_val(); 1837 DEBUG(dbgs() << "Spilling " << PrintReg(Reg, TRI) 1838 << " to make up reg deficit\n"); 1839 SavedRegs.set(Reg); 1840 NumGPRSpills++; 1841 CS1Spilled = true; 1842 ExtraCSSpill = true; 1843 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 1844 if (Reg == ARM::LR) 1845 LRSpilled = true; 1846 } 1847 DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit << "\n"); 1848 } 1849 1850 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 1851 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 1852 if (!LRSpilled && CS1Spilled) { 1853 SavedRegs.set(ARM::LR); 1854 NumGPRSpills++; 1855 SmallVectorImpl<unsigned>::iterator LRPos; 1856 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 1857 if (LRPos != UnspilledCS1GPRs.end()) 1858 UnspilledCS1GPRs.erase(LRPos); 1859 1860 ForceLRSpill = false; 1861 ExtraCSSpill = true; 1862 } 1863 1864 // If stack and double are 8-byte aligned and we are spilling an odd number 1865 // of GPRs, spill one extra callee save GPR so we won't have to pad between 1866 // the integer and double callee save areas. 1867 DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 1868 unsigned TargetAlign = getStackAlignment(); 1869 if (TargetAlign >= 8 && (NumGPRSpills & 1)) { 1870 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 1871 for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) { 1872 unsigned Reg = UnspilledCS1GPRs[i]; 1873 // Don't spill high register if the function is thumb. In the case of 1874 // Windows on ARM, accept R11 (frame pointer) 1875 if (!AFI->isThumbFunction() || 1876 (STI.isTargetWindows() && Reg == ARM::R11) || 1877 isARMLowRegister(Reg) || Reg == ARM::LR) { 1878 SavedRegs.set(Reg); 1879 DEBUG(dbgs() << "Spilling " << PrintReg(Reg, TRI) 1880 << " to make up alignment\n"); 1881 if (!MRI.isReserved(Reg)) 1882 ExtraCSSpill = true; 1883 break; 1884 } 1885 } 1886 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 1887 unsigned Reg = UnspilledCS2GPRs.front(); 1888 SavedRegs.set(Reg); 1889 DEBUG(dbgs() << "Spilling " << PrintReg(Reg, TRI) 1890 << " to make up alignment\n"); 1891 if (!MRI.isReserved(Reg)) 1892 ExtraCSSpill = true; 1893 } 1894 } 1895 1896 // Estimate if we might need to scavenge a register at some point in order 1897 // to materialize a stack offset. If so, either spill one additional 1898 // callee-saved register or reserve a special spill slot to facilitate 1899 // register scavenging. Thumb1 needs a spill slot for stack pointer 1900 // adjustments also, even when the frame itself is small. 1901 if (BigStack && !ExtraCSSpill) { 1902 // If any non-reserved CS register isn't spilled, just spill one or two 1903 // extra. That should take care of it! 1904 unsigned NumExtras = TargetAlign / 4; 1905 SmallVector<unsigned, 2> Extras; 1906 while (NumExtras && !UnspilledCS1GPRs.empty()) { 1907 unsigned Reg = UnspilledCS1GPRs.back(); 1908 UnspilledCS1GPRs.pop_back(); 1909 if (!MRI.isReserved(Reg) && 1910 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg) || 1911 Reg == ARM::LR)) { 1912 Extras.push_back(Reg); 1913 NumExtras--; 1914 } 1915 } 1916 // For non-Thumb1 functions, also check for hi-reg CS registers 1917 if (!AFI->isThumb1OnlyFunction()) { 1918 while (NumExtras && !UnspilledCS2GPRs.empty()) { 1919 unsigned Reg = UnspilledCS2GPRs.back(); 1920 UnspilledCS2GPRs.pop_back(); 1921 if (!MRI.isReserved(Reg)) { 1922 Extras.push_back(Reg); 1923 NumExtras--; 1924 } 1925 } 1926 } 1927 if (Extras.size() && NumExtras == 0) { 1928 for (unsigned i = 0, e = Extras.size(); i != e; ++i) { 1929 SavedRegs.set(Extras[i]); 1930 } 1931 } else if (!AFI->isThumb1OnlyFunction()) { 1932 // note: Thumb1 functions spill to R12, not the stack. Reserve a slot 1933 // closest to SP or frame pointer. 1934 assert(RS && "Register scavenging not provided"); 1935 const TargetRegisterClass *RC = &ARM::GPRRegClass; 1936 RS->addScavengingFrameIndex(MFI.CreateStackObject(RC->getSize(), 1937 RC->getAlignment(), 1938 false)); 1939 } 1940 } 1941 } 1942 1943 if (ForceLRSpill) { 1944 SavedRegs.set(ARM::LR); 1945 AFI->setLRIsSpilledForFarJump(true); 1946 } 1947 } 1948 1949 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 1950 MachineFunction &MF, MachineBasicBlock &MBB, 1951 MachineBasicBlock::iterator I) const { 1952 const ARMBaseInstrInfo &TII = 1953 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1954 if (!hasReservedCallFrame(MF)) { 1955 // If we have alloca, convert as follows: 1956 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 1957 // ADJCALLSTACKUP -> add, sp, sp, amount 1958 MachineInstr &Old = *I; 1959 DebugLoc dl = Old.getDebugLoc(); 1960 unsigned Amount = Old.getOperand(0).getImm(); 1961 if (Amount != 0) { 1962 // We need to keep the stack aligned properly. To do this, we round the 1963 // amount of space needed for the outgoing arguments up to the next 1964 // alignment boundary. 1965 Amount = alignSPAdjust(Amount); 1966 1967 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1968 assert(!AFI->isThumb1OnlyFunction() && 1969 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 1970 bool isARM = !AFI->isThumbFunction(); 1971 1972 // Replace the pseudo instruction with a new instruction... 1973 unsigned Opc = Old.getOpcode(); 1974 int PIdx = Old.findFirstPredOperandIdx(); 1975 ARMCC::CondCodes Pred = 1976 (PIdx == -1) ? ARMCC::AL 1977 : (ARMCC::CondCodes)Old.getOperand(PIdx).getImm(); 1978 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 1979 // Note: PredReg is operand 2 for ADJCALLSTACKDOWN. 1980 unsigned PredReg = Old.getOperand(2).getReg(); 1981 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 1982 Pred, PredReg); 1983 } else { 1984 // Note: PredReg is operand 3 for ADJCALLSTACKUP. 1985 unsigned PredReg = Old.getOperand(3).getReg(); 1986 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 1987 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 1988 Pred, PredReg); 1989 } 1990 } 1991 } 1992 return MBB.erase(I); 1993 } 1994 1995 /// Get the minimum constant for ARM that is greater than or equal to the 1996 /// argument. In ARM, constants can have any value that can be produced by 1997 /// rotating an 8-bit value to the right by an even number of bits within a 1998 /// 32-bit word. 1999 static uint32_t alignToARMConstant(uint32_t Value) { 2000 unsigned Shifted = 0; 2001 2002 if (Value == 0) 2003 return 0; 2004 2005 while (!(Value & 0xC0000000)) { 2006 Value = Value << 2; 2007 Shifted += 2; 2008 } 2009 2010 bool Carry = (Value & 0x00FFFFFF); 2011 Value = ((Value & 0xFF000000) >> 24) + Carry; 2012 2013 if (Value & 0x0000100) 2014 Value = Value & 0x000001FC; 2015 2016 if (Shifted > 24) 2017 Value = Value >> (Shifted - 24); 2018 else 2019 Value = Value << (24 - Shifted); 2020 2021 return Value; 2022 } 2023 2024 // The stack limit in the TCB is set to this many bytes above the actual 2025 // stack limit. 2026 static const uint64_t kSplitStackAvailable = 256; 2027 2028 // Adjust the function prologue to enable split stacks. This currently only 2029 // supports android and linux. 2030 // 2031 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 2032 // must be well defined in order to allow for consistent implementations of the 2033 // __morestack helper function. The ABI is also not a normal ABI in that it 2034 // doesn't follow the normal calling conventions because this allows the 2035 // prologue of each function to be optimized further. 2036 // 2037 // Currently, the ABI looks like (when calling __morestack) 2038 // 2039 // * r4 holds the minimum stack size requested for this function call 2040 // * r5 holds the stack size of the arguments to the function 2041 // * the beginning of the function is 3 instructions after the call to 2042 // __morestack 2043 // 2044 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 2045 // place the arguments on to the new stack, and the 3-instruction knowledge to 2046 // jump directly to the body of the function when working on the new stack. 2047 // 2048 // An old (and possibly no longer compatible) implementation of __morestack for 2049 // ARM can be found at [1]. 2050 // 2051 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 2052 void ARMFrameLowering::adjustForSegmentedStacks( 2053 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2054 unsigned Opcode; 2055 unsigned CFIIndex; 2056 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 2057 bool Thumb = ST->isThumb(); 2058 2059 // Sadly, this currently doesn't support varargs, platforms other than 2060 // android/linux. Note that thumb1/thumb2 are support for android/linux. 2061 if (MF.getFunction()->isVarArg()) 2062 report_fatal_error("Segmented stacks do not support vararg functions."); 2063 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 2064 report_fatal_error("Segmented stacks not supported on this platform."); 2065 2066 MachineFrameInfo &MFI = MF.getFrameInfo(); 2067 MachineModuleInfo &MMI = MF.getMMI(); 2068 MCContext &Context = MMI.getContext(); 2069 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 2070 const ARMBaseInstrInfo &TII = 2071 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2072 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 2073 DebugLoc DL; 2074 2075 uint64_t StackSize = MFI.getStackSize(); 2076 2077 // Do not generate a prologue for functions with a stack of size zero 2078 if (StackSize == 0) 2079 return; 2080 2081 // Use R4 and R5 as scratch registers. 2082 // We save R4 and R5 before use and restore them before leaving the function. 2083 unsigned ScratchReg0 = ARM::R4; 2084 unsigned ScratchReg1 = ARM::R5; 2085 uint64_t AlignedStackSize; 2086 2087 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 2088 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 2089 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 2090 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 2091 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 2092 2093 // Grab everything that reaches PrologueMBB to update there liveness as well. 2094 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 2095 SmallVector<MachineBasicBlock *, 2> WalkList; 2096 WalkList.push_back(&PrologueMBB); 2097 2098 do { 2099 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 2100 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 2101 if (BeforePrologueRegion.insert(PredBB).second) 2102 WalkList.push_back(PredBB); 2103 } 2104 } while (!WalkList.empty()); 2105 2106 // The order in that list is important. 2107 // The blocks will all be inserted before PrologueMBB using that order. 2108 // Therefore the block that should appear first in the CFG should appear 2109 // first in the list. 2110 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 2111 PostStackMBB}; 2112 2113 for (MachineBasicBlock *B : AddedBlocks) 2114 BeforePrologueRegion.insert(B); 2115 2116 for (const auto &LI : PrologueMBB.liveins()) { 2117 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 2118 PredBB->addLiveIn(LI); 2119 } 2120 2121 // Remove the newly added blocks from the list, since we know 2122 // we do not have to do the following updates for them. 2123 for (MachineBasicBlock *B : AddedBlocks) { 2124 BeforePrologueRegion.erase(B); 2125 MF.insert(PrologueMBB.getIterator(), B); 2126 } 2127 2128 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 2129 // Make sure the LiveIns are still sorted and unique. 2130 MBB->sortUniqueLiveIns(); 2131 // Replace the edges to PrologueMBB by edges to the sequences 2132 // we are about to add. 2133 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 2134 } 2135 2136 // The required stack size that is aligned to ARM constant criterion. 2137 AlignedStackSize = alignToARMConstant(StackSize); 2138 2139 // When the frame size is less than 256 we just compare the stack 2140 // boundary directly to the value of the stack pointer, per gcc. 2141 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 2142 2143 // We will use two of the callee save registers as scratch registers so we 2144 // need to save those registers onto the stack. 2145 // We will use SR0 to hold stack limit and SR1 to hold the stack size 2146 // requested and arguments for __morestack(). 2147 // SR0: Scratch Register #0 2148 // SR1: Scratch Register #1 2149 // push {SR0, SR1} 2150 if (Thumb) { 2151 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 2152 .add(predOps(ARMCC::AL)) 2153 .addReg(ScratchReg0) 2154 .addReg(ScratchReg1); 2155 } else { 2156 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 2157 .addReg(ARM::SP, RegState::Define) 2158 .addReg(ARM::SP) 2159 .add(predOps(ARMCC::AL)) 2160 .addReg(ScratchReg0) 2161 .addReg(ScratchReg1); 2162 } 2163 2164 // Emit the relevant DWARF information about the change in stack pointer as 2165 // well as where to find both r4 and r5 (the callee-save registers) 2166 CFIIndex = 2167 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -8)); 2168 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2169 .addCFIIndex(CFIIndex); 2170 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2171 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 2172 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2173 .addCFIIndex(CFIIndex); 2174 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2175 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 2176 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2177 .addCFIIndex(CFIIndex); 2178 2179 // mov SR1, sp 2180 if (Thumb) { 2181 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 2182 .addReg(ARM::SP) 2183 .add(predOps(ARMCC::AL)); 2184 } else if (CompareStackPointer) { 2185 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 2186 .addReg(ARM::SP) 2187 .add(predOps(ARMCC::AL)) 2188 .add(condCodeOp()); 2189 } 2190 2191 // sub SR1, sp, #StackSize 2192 if (!CompareStackPointer && Thumb) { 2193 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 2194 .add(condCodeOp()) 2195 .addReg(ScratchReg1) 2196 .addImm(AlignedStackSize) 2197 .add(predOps(ARMCC::AL)); 2198 } else if (!CompareStackPointer) { 2199 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 2200 .addReg(ARM::SP) 2201 .addImm(AlignedStackSize) 2202 .add(predOps(ARMCC::AL)) 2203 .add(condCodeOp()); 2204 } 2205 2206 if (Thumb && ST->isThumb1Only()) { 2207 unsigned PCLabelId = ARMFI->createPICLabelUId(); 2208 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 2209 MF.getFunction()->getContext(), "__STACK_LIMIT", PCLabelId, 0); 2210 MachineConstantPool *MCP = MF.getConstantPool(); 2211 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, 4); 2212 2213 // ldr SR0, [pc, offset(STACK_LIMIT)] 2214 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 2215 .addConstantPoolIndex(CPI) 2216 .add(predOps(ARMCC::AL)); 2217 2218 // ldr SR0, [SR0] 2219 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 2220 .addReg(ScratchReg0) 2221 .addImm(0) 2222 .add(predOps(ARMCC::AL)); 2223 } else { 2224 // Get TLS base address from the coprocessor 2225 // mrc p15, #0, SR0, c13, c0, #3 2226 BuildMI(McrMBB, DL, TII.get(ARM::MRC), ScratchReg0) 2227 .addImm(15) 2228 .addImm(0) 2229 .addImm(13) 2230 .addImm(0) 2231 .addImm(3) 2232 .add(predOps(ARMCC::AL)); 2233 2234 // Use the last tls slot on android and a private field of the TCP on linux. 2235 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 2236 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 2237 2238 // Get the stack limit from the right offset 2239 // ldr SR0, [sr0, #4 * TlsOffset] 2240 BuildMI(GetMBB, DL, TII.get(ARM::LDRi12), ScratchReg0) 2241 .addReg(ScratchReg0) 2242 .addImm(4 * TlsOffset) 2243 .add(predOps(ARMCC::AL)); 2244 } 2245 2246 // Compare stack limit with stack size requested. 2247 // cmp SR0, SR1 2248 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 2249 BuildMI(GetMBB, DL, TII.get(Opcode)) 2250 .addReg(ScratchReg0) 2251 .addReg(ScratchReg1) 2252 .add(predOps(ARMCC::AL)); 2253 2254 // This jump is taken if StackLimit < SP - stack required. 2255 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 2256 BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB) 2257 .addImm(ARMCC::LO) 2258 .addReg(ARM::CPSR); 2259 2260 2261 // Calling __morestack(StackSize, Size of stack arguments). 2262 // __morestack knows that the stack size requested is in SR0(r4) 2263 // and amount size of stack arguments is in SR1(r5). 2264 2265 // Pass first argument for the __morestack by Scratch Register #0. 2266 // The amount size of stack required 2267 if (Thumb) { 2268 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 2269 .add(condCodeOp()) 2270 .addImm(AlignedStackSize) 2271 .add(predOps(ARMCC::AL)); 2272 } else { 2273 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 2274 .addImm(AlignedStackSize) 2275 .add(predOps(ARMCC::AL)) 2276 .add(condCodeOp()); 2277 } 2278 // Pass second argument for the __morestack by Scratch Register #1. 2279 // The amount size of stack consumed to save function arguments. 2280 if (Thumb) { 2281 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 2282 .add(condCodeOp()) 2283 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2284 .add(predOps(ARMCC::AL)); 2285 } else { 2286 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 2287 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2288 .add(predOps(ARMCC::AL)) 2289 .add(condCodeOp()); 2290 } 2291 2292 // push {lr} - Save return address of this function. 2293 if (Thumb) { 2294 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 2295 .add(predOps(ARMCC::AL)) 2296 .addReg(ARM::LR); 2297 } else { 2298 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 2299 .addReg(ARM::SP, RegState::Define) 2300 .addReg(ARM::SP) 2301 .add(predOps(ARMCC::AL)) 2302 .addReg(ARM::LR); 2303 } 2304 2305 // Emit the DWARF info about the change in stack as well as where to find the 2306 // previous link register 2307 CFIIndex = 2308 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -12)); 2309 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2310 .addCFIIndex(CFIIndex); 2311 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2312 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 2313 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2314 .addCFIIndex(CFIIndex); 2315 2316 // Call __morestack(). 2317 if (Thumb) { 2318 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 2319 .add(predOps(ARMCC::AL)) 2320 .addExternalSymbol("__morestack"); 2321 } else { 2322 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 2323 .addExternalSymbol("__morestack"); 2324 } 2325 2326 // pop {lr} - Restore return address of this original function. 2327 if (Thumb) { 2328 if (ST->isThumb1Only()) { 2329 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2330 .add(predOps(ARMCC::AL)) 2331 .addReg(ScratchReg0); 2332 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 2333 .addReg(ScratchReg0) 2334 .add(predOps(ARMCC::AL)); 2335 } else { 2336 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 2337 .addReg(ARM::LR, RegState::Define) 2338 .addReg(ARM::SP, RegState::Define) 2339 .addReg(ARM::SP) 2340 .addImm(4) 2341 .add(predOps(ARMCC::AL)); 2342 } 2343 } else { 2344 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2345 .addReg(ARM::SP, RegState::Define) 2346 .addReg(ARM::SP) 2347 .add(predOps(ARMCC::AL)) 2348 .addReg(ARM::LR); 2349 } 2350 2351 // Restore SR0 and SR1 in case of __morestack() was called. 2352 // __morestack() will skip PostStackMBB block so we need to restore 2353 // scratch registers from here. 2354 // pop {SR0, SR1} 2355 if (Thumb) { 2356 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2357 .add(predOps(ARMCC::AL)) 2358 .addReg(ScratchReg0) 2359 .addReg(ScratchReg1); 2360 } else { 2361 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2362 .addReg(ARM::SP, RegState::Define) 2363 .addReg(ARM::SP) 2364 .add(predOps(ARMCC::AL)) 2365 .addReg(ScratchReg0) 2366 .addReg(ScratchReg1); 2367 } 2368 2369 // Update the CFA offset now that we've popped 2370 CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); 2371 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2372 .addCFIIndex(CFIIndex); 2373 2374 // bx lr - Return from this function. 2375 Opcode = Thumb ? ARM::tBX_RET : ARM::BX_RET; 2376 BuildMI(AllocMBB, DL, TII.get(Opcode)).add(predOps(ARMCC::AL)); 2377 2378 // Restore SR0 and SR1 in case of __morestack() was not called. 2379 // pop {SR0, SR1} 2380 if (Thumb) { 2381 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 2382 .add(predOps(ARMCC::AL)) 2383 .addReg(ScratchReg0) 2384 .addReg(ScratchReg1); 2385 } else { 2386 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 2387 .addReg(ARM::SP, RegState::Define) 2388 .addReg(ARM::SP) 2389 .add(predOps(ARMCC::AL)) 2390 .addReg(ScratchReg0) 2391 .addReg(ScratchReg1); 2392 } 2393 2394 // Update the CFA offset now that we've popped 2395 CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); 2396 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2397 .addCFIIndex(CFIIndex); 2398 2399 // Tell debuggers that r4 and r5 are now the same as they were in the 2400 // previous function, that they're the "Same Value". 2401 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2402 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 2403 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2404 .addCFIIndex(CFIIndex); 2405 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2406 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 2407 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2408 .addCFIIndex(CFIIndex); 2409 2410 // Organizing MBB lists 2411 PostStackMBB->addSuccessor(&PrologueMBB); 2412 2413 AllocMBB->addSuccessor(PostStackMBB); 2414 2415 GetMBB->addSuccessor(PostStackMBB); 2416 GetMBB->addSuccessor(AllocMBB); 2417 2418 McrMBB->addSuccessor(GetMBB); 2419 2420 PrevStackMBB->addSuccessor(McrMBB); 2421 2422 #ifdef EXPENSIVE_CHECKS 2423 MF.verify(); 2424 #endif 2425 } 2426