1 //===-- ARMFrameLowering.cpp - ARM Frame Information ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the ARM implementation of TargetFrameLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMFrameLowering.h" 15 #include "ARMBaseInstrInfo.h" 16 #include "ARMBaseRegisterInfo.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "llvm/ADT/BitVector.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/RegisterScavenging.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/MC/MCContext.h" 41 #include "llvm/MC/MCDwarf.h" 42 #include "llvm/MC/MCRegisterInfo.h" 43 #include "llvm/Support/CodeGen.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/MathExtras.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetInstrInfo.h" 51 #include "llvm/Target/TargetMachine.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Target/TargetRegisterInfo.h" 54 #include "llvm/Target/TargetSubtargetInfo.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstddef> 58 #include <cstdint> 59 #include <iterator> 60 #include <utility> 61 #include <vector> 62 63 #define DEBUG_TYPE "arm-frame-lowering" 64 65 using namespace llvm; 66 67 static cl::opt<bool> 68 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 69 cl::desc("Align ARM NEON spills in prolog and epilog")); 70 71 static MachineBasicBlock::iterator 72 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 73 unsigned NumAlignedDPRCS2Regs); 74 75 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 76 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, 4), 77 STI(sti) {} 78 79 bool ARMFrameLowering::noFramePointerElim(const MachineFunction &MF) const { 80 // iOS always has a FP for backtracking, force other targets to keep their FP 81 // when doing FastISel. The emitted code is currently superior, and in cases 82 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 83 return TargetFrameLowering::noFramePointerElim(MF) || 84 MF.getSubtarget<ARMSubtarget>().useFastISel(); 85 } 86 87 /// hasFP - Return true if the specified function should have a dedicated frame 88 /// pointer register. This is true if the function has variable sized allocas 89 /// or if frame pointer elimination is disabled. 90 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { 91 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 92 const MachineFrameInfo &MFI = MF.getFrameInfo(); 93 94 // ABI-required frame pointer. 95 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 96 return true; 97 98 // Frame pointer required for use within this function. 99 return (RegInfo->needsStackRealignment(MF) || 100 MFI.hasVarSizedObjects() || 101 MFI.isFrameAddressTaken()); 102 } 103 104 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 105 /// not required, we reserve argument space for call sites in the function 106 /// immediately on entry to the current function. This eliminates the need for 107 /// add/sub sp brackets around call sites. Returns true if the call frame is 108 /// included as part of the stack frame. 109 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 110 const MachineFrameInfo &MFI = MF.getFrameInfo(); 111 unsigned CFSize = MFI.getMaxCallFrameSize(); 112 // It's not always a good idea to include the call frame as part of the 113 // stack frame. ARM (especially Thumb) has small immediate offset to 114 // address the stack frame. So a large call frame can cause poor codegen 115 // and may even makes it impossible to scavenge a register. 116 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 117 return false; 118 119 return !MFI.hasVarSizedObjects(); 120 } 121 122 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 123 /// call frame pseudos can be simplified. Unlike most targets, having a FP 124 /// is not sufficient here since we still may reference some objects via SP 125 /// even when FP is available in Thumb2 mode. 126 bool 127 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 128 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 129 } 130 131 static bool isCSRestore(MachineInstr &MI, const ARMBaseInstrInfo &TII, 132 const MCPhysReg *CSRegs) { 133 // Integer spill area is handled with "pop". 134 if (isPopOpcode(MI.getOpcode())) { 135 // The first two operands are predicates. The last two are 136 // imp-def and imp-use of SP. Check everything in between. 137 for (int i = 5, e = MI.getNumOperands(); i != e; ++i) 138 if (!isCalleeSavedRegister(MI.getOperand(i).getReg(), CSRegs)) 139 return false; 140 return true; 141 } 142 if ((MI.getOpcode() == ARM::LDR_POST_IMM || 143 MI.getOpcode() == ARM::LDR_POST_REG || 144 MI.getOpcode() == ARM::t2LDR_POST) && 145 isCalleeSavedRegister(MI.getOperand(0).getReg(), CSRegs) && 146 MI.getOperand(1).getReg() == ARM::SP) 147 return true; 148 149 return false; 150 } 151 152 static void emitRegPlusImmediate( 153 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 154 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 155 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 156 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 157 if (isARM) 158 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 159 Pred, PredReg, TII, MIFlags); 160 else 161 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 162 Pred, PredReg, TII, MIFlags); 163 } 164 165 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 166 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 167 const ARMBaseInstrInfo &TII, int NumBytes, 168 unsigned MIFlags = MachineInstr::NoFlags, 169 ARMCC::CondCodes Pred = ARMCC::AL, 170 unsigned PredReg = 0) { 171 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 172 MIFlags, Pred, PredReg); 173 } 174 175 static int sizeOfSPAdjustment(const MachineInstr &MI) { 176 int RegSize; 177 switch (MI.getOpcode()) { 178 case ARM::VSTMDDB_UPD: 179 RegSize = 8; 180 break; 181 case ARM::STMDB_UPD: 182 case ARM::t2STMDB_UPD: 183 RegSize = 4; 184 break; 185 case ARM::t2STR_PRE: 186 case ARM::STR_PRE_IMM: 187 return 4; 188 default: 189 llvm_unreachable("Unknown push or pop like instruction"); 190 } 191 192 int count = 0; 193 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 194 // pred) so the list starts at 4. 195 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 196 count += RegSize; 197 return count; 198 } 199 200 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 201 size_t StackSizeInBytes) { 202 const MachineFrameInfo &MFI = MF.getFrameInfo(); 203 const Function *F = MF.getFunction(); 204 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 205 if (F->hasFnAttribute("stack-probe-size")) 206 F->getFnAttribute("stack-probe-size") 207 .getValueAsString() 208 .getAsInteger(0, StackProbeSize); 209 return StackSizeInBytes >= StackProbeSize; 210 } 211 212 namespace { 213 214 struct StackAdjustingInsts { 215 struct InstInfo { 216 MachineBasicBlock::iterator I; 217 unsigned SPAdjust; 218 bool BeforeFPSet; 219 }; 220 221 SmallVector<InstInfo, 4> Insts; 222 223 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 224 bool BeforeFPSet = false) { 225 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 226 Insts.push_back(Info); 227 } 228 229 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 230 auto Info = 231 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 232 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 233 Info->SPAdjust += ExtraBytes; 234 } 235 236 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 237 const ARMBaseInstrInfo &TII, bool HasFP) { 238 MachineFunction &MF = *MBB.getParent(); 239 unsigned CFAOffset = 0; 240 for (auto &Info : Insts) { 241 if (HasFP && !Info.BeforeFPSet) 242 return; 243 244 CFAOffset -= Info.SPAdjust; 245 unsigned CFIIndex = MF.addFrameInst( 246 MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset)); 247 BuildMI(MBB, std::next(Info.I), dl, 248 TII.get(TargetOpcode::CFI_INSTRUCTION)) 249 .addCFIIndex(CFIIndex) 250 .setMIFlags(MachineInstr::FrameSetup); 251 } 252 } 253 }; 254 255 } // end anonymous namespace 256 257 /// Emit an instruction sequence that will align the address in 258 /// register Reg by zero-ing out the lower bits. For versions of the 259 /// architecture that support Neon, this must be done in a single 260 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 261 /// single instruction. That function only gets called when optimizing 262 /// spilling of D registers on a core with the Neon instruction set 263 /// present. 264 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 265 const TargetInstrInfo &TII, 266 MachineBasicBlock &MBB, 267 MachineBasicBlock::iterator MBBI, 268 const DebugLoc &DL, const unsigned Reg, 269 const unsigned Alignment, 270 const bool MustBeSingleInstruction) { 271 const ARMSubtarget &AST = 272 static_cast<const ARMSubtarget &>(MF.getSubtarget()); 273 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 274 const unsigned AlignMask = Alignment - 1; 275 const unsigned NrBitsToZero = countTrailingZeros(Alignment); 276 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 277 if (!AFI->isThumbFunction()) { 278 // if the BFC instruction is available, use that to zero the lower 279 // bits: 280 // bfc Reg, #0, log2(Alignment) 281 // otherwise use BIC, if the mask to zero the required number of bits 282 // can be encoded in the bic immediate field 283 // bic Reg, Reg, Alignment-1 284 // otherwise, emit 285 // lsr Reg, Reg, log2(Alignment) 286 // lsl Reg, Reg, log2(Alignment) 287 if (CanUseBFC) { 288 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 289 .addReg(Reg, RegState::Kill) 290 .addImm(~AlignMask) 291 .add(predOps(ARMCC::AL)); 292 } else if (AlignMask <= 255) { 293 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 294 .addReg(Reg, RegState::Kill) 295 .addImm(AlignMask) 296 .add(predOps(ARMCC::AL)) 297 .add(condCodeOp()); 298 } else { 299 assert(!MustBeSingleInstruction && 300 "Shouldn't call emitAligningInstructions demanding a single " 301 "instruction to be emitted for large stack alignment for a target " 302 "without BFC."); 303 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 304 .addReg(Reg, RegState::Kill) 305 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 306 .add(predOps(ARMCC::AL)) 307 .add(condCodeOp()); 308 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 309 .addReg(Reg, RegState::Kill) 310 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 311 .add(predOps(ARMCC::AL)) 312 .add(condCodeOp()); 313 } 314 } else { 315 // Since this is only reached for Thumb-2 targets, the BFC instruction 316 // should always be available. 317 assert(CanUseBFC); 318 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 319 .addReg(Reg, RegState::Kill) 320 .addImm(~AlignMask) 321 .add(predOps(ARMCC::AL)); 322 } 323 } 324 325 /// We need the offset of the frame pointer relative to other MachineFrameInfo 326 /// offsets which are encoded relative to SP at function begin. 327 /// See also emitPrologue() for how the FP is set up. 328 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet 329 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use 330 /// this to produce a conservative estimate that we check in an assert() later. 331 static int getMaxFPOffset(const Function &F, const ARMFunctionInfo &AFI) { 332 // This is a conservative estimation: Assume the frame pointer being r7 and 333 // pc("r15") up to r8 getting spilled before (= 8 registers). 334 return -AFI.getArgRegsSaveSize() - (8 * 4); 335 } 336 337 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 338 MachineBasicBlock &MBB) const { 339 MachineBasicBlock::iterator MBBI = MBB.begin(); 340 MachineFrameInfo &MFI = MF.getFrameInfo(); 341 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 342 MachineModuleInfo &MMI = MF.getMMI(); 343 MCContext &Context = MMI.getContext(); 344 const TargetMachine &TM = MF.getTarget(); 345 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 346 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 347 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 348 assert(!AFI->isThumb1OnlyFunction() && 349 "This emitPrologue does not support Thumb1!"); 350 bool isARM = !AFI->isThumbFunction(); 351 unsigned Align = STI.getFrameLowering()->getStackAlignment(); 352 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 353 unsigned NumBytes = MFI.getStackSize(); 354 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 355 356 // Debug location must be unknown since the first debug location is used 357 // to determine the end of the prologue. 358 DebugLoc dl; 359 360 unsigned FramePtr = RegInfo->getFrameRegister(MF); 361 362 // Determine the sizes of each callee-save spill areas and record which frame 363 // belongs to which callee-save spill areas. 364 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 365 int FramePtrSpillFI = 0; 366 int D8SpillFI = 0; 367 368 // All calls are tail calls in GHC calling conv, and functions have no 369 // prologue/epilogue. 370 if (MF.getFunction()->getCallingConv() == CallingConv::GHC) 371 return; 372 373 StackAdjustingInsts DefCFAOffsetCandidates; 374 bool HasFP = hasFP(MF); 375 376 // Allocate the vararg register save area. 377 if (ArgRegsSaveSize) { 378 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 379 MachineInstr::FrameSetup); 380 DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true); 381 } 382 383 if (!AFI->hasStackFrame() && 384 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 385 if (NumBytes - ArgRegsSaveSize != 0) { 386 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize), 387 MachineInstr::FrameSetup); 388 DefCFAOffsetCandidates.addInst(std::prev(MBBI), 389 NumBytes - ArgRegsSaveSize, true); 390 } 391 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 392 return; 393 } 394 395 // Determine spill area sizes. 396 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 397 unsigned Reg = CSI[i].getReg(); 398 int FI = CSI[i].getFrameIdx(); 399 switch (Reg) { 400 case ARM::R8: 401 case ARM::R9: 402 case ARM::R10: 403 case ARM::R11: 404 case ARM::R12: 405 if (STI.splitFramePushPop(MF)) { 406 GPRCS2Size += 4; 407 break; 408 } 409 LLVM_FALLTHROUGH; 410 case ARM::R0: 411 case ARM::R1: 412 case ARM::R2: 413 case ARM::R3: 414 case ARM::R4: 415 case ARM::R5: 416 case ARM::R6: 417 case ARM::R7: 418 case ARM::LR: 419 if (Reg == FramePtr) 420 FramePtrSpillFI = FI; 421 GPRCS1Size += 4; 422 break; 423 default: 424 // This is a DPR. Exclude the aligned DPRCS2 spills. 425 if (Reg == ARM::D8) 426 D8SpillFI = FI; 427 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) 428 DPRCSSize += 8; 429 } 430 } 431 432 // Move past area 1. 433 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 434 if (GPRCS1Size > 0) { 435 GPRCS1Push = LastPush = MBBI++; 436 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); 437 } 438 439 // Determine starting offsets of spill areas. 440 unsigned GPRCS1Offset = NumBytes - ArgRegsSaveSize - GPRCS1Size; 441 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 442 unsigned DPRAlign = DPRCSSize ? std::min(8U, Align) : 4U; 443 unsigned DPRGapSize = (GPRCS1Size + GPRCS2Size + ArgRegsSaveSize) % DPRAlign; 444 unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 445 int FramePtrOffsetInPush = 0; 446 if (HasFP) { 447 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); 448 assert(getMaxFPOffset(*MF.getFunction(), *AFI) <= FPOffset && 449 "Max FP estimation is wrong"); 450 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize; 451 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 452 NumBytes); 453 } 454 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 455 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 456 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 457 458 // Move past area 2. 459 if (GPRCS2Size > 0) { 460 GPRCS2Push = LastPush = MBBI++; 461 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 462 } 463 464 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 465 // .cfi_offset operations will reflect that. 466 if (DPRGapSize) { 467 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 468 if (LastPush != MBB.end() && 469 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 470 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 471 else { 472 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 473 MachineInstr::FrameSetup); 474 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); 475 } 476 } 477 478 // Move past area 3. 479 if (DPRCSSize > 0) { 480 // Since vpush register list cannot have gaps, there may be multiple vpush 481 // instructions in the prologue. 482 while (MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 483 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); 484 LastPush = MBBI++; 485 } 486 } 487 488 // Move past the aligned DPRCS2 area. 489 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 490 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 491 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 492 // leaves the stack pointer pointing to the DPRCS2 area. 493 // 494 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 495 NumBytes += MFI.getObjectOffset(D8SpillFI); 496 } else 497 NumBytes = DPRCSOffset; 498 499 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 500 uint32_t NumWords = NumBytes >> 2; 501 502 if (NumWords < 65536) 503 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 504 .addImm(NumWords) 505 .setMIFlags(MachineInstr::FrameSetup) 506 .add(predOps(ARMCC::AL)); 507 else 508 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4) 509 .addImm(NumWords) 510 .setMIFlags(MachineInstr::FrameSetup); 511 512 switch (TM.getCodeModel()) { 513 case CodeModel::Small: 514 case CodeModel::Medium: 515 case CodeModel::Default: 516 case CodeModel::Kernel: 517 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 518 .add(predOps(ARMCC::AL)) 519 .addExternalSymbol("__chkstk") 520 .addReg(ARM::R4, RegState::Implicit) 521 .setMIFlags(MachineInstr::FrameSetup); 522 break; 523 case CodeModel::Large: 524 case CodeModel::JITDefault: 525 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 526 .addExternalSymbol("__chkstk") 527 .setMIFlags(MachineInstr::FrameSetup); 528 529 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 530 .add(predOps(ARMCC::AL)) 531 .addReg(ARM::R12, RegState::Kill) 532 .addReg(ARM::R4, RegState::Implicit) 533 .setMIFlags(MachineInstr::FrameSetup); 534 break; 535 } 536 537 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 538 .addReg(ARM::SP, RegState::Kill) 539 .addReg(ARM::R4, RegState::Kill) 540 .setMIFlags(MachineInstr::FrameSetup) 541 .add(predOps(ARMCC::AL)) 542 .add(condCodeOp()); 543 NumBytes = 0; 544 } 545 546 if (NumBytes) { 547 // Adjust SP after all the callee-save spills. 548 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 549 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 550 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 551 else { 552 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 553 MachineInstr::FrameSetup); 554 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 555 } 556 557 if (HasFP && isARM) 558 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 559 // Note it's not safe to do this in Thumb2 mode because it would have 560 // taken two instructions: 561 // mov sp, r7 562 // sub sp, #24 563 // If an interrupt is taken between the two instructions, then sp is in 564 // an inconsistent state (pointing to the middle of callee-saved area). 565 // The interrupt handler can end up clobbering the registers. 566 AFI->setShouldRestoreSPFromFP(true); 567 } 568 569 // Set FP to point to the stack slot that contains the previous FP. 570 // For iOS, FP is R7, which has now been stored in spill area 1. 571 // Otherwise, if this is not iOS, all the callee-saved registers go 572 // into spill area 1, including the FP in R11. In either case, it 573 // is in area one and the adjustment needs to take place just after 574 // that push. 575 if (HasFP) { 576 MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push); 577 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); 578 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, 579 dl, TII, FramePtr, ARM::SP, 580 PushSize + FramePtrOffsetInPush, 581 MachineInstr::FrameSetup); 582 if (FramePtrOffsetInPush + PushSize != 0) { 583 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa( 584 nullptr, MRI->getDwarfRegNum(FramePtr, true), 585 -(ArgRegsSaveSize - FramePtrOffsetInPush))); 586 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 587 .addCFIIndex(CFIIndex) 588 .setMIFlags(MachineInstr::FrameSetup); 589 } else { 590 unsigned CFIIndex = 591 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 592 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 593 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 594 .addCFIIndex(CFIIndex) 595 .setMIFlags(MachineInstr::FrameSetup); 596 } 597 } 598 599 // Now that the prologue's actual instructions are finalised, we can insert 600 // the necessary DWARF cf instructions to describe the situation. Start by 601 // recording where each register ended up: 602 if (GPRCS1Size > 0) { 603 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push); 604 int CFIIndex; 605 for (const auto &Entry : CSI) { 606 unsigned Reg = Entry.getReg(); 607 int FI = Entry.getFrameIdx(); 608 switch (Reg) { 609 case ARM::R8: 610 case ARM::R9: 611 case ARM::R10: 612 case ARM::R11: 613 case ARM::R12: 614 if (STI.splitFramePushPop(MF)) 615 break; 616 LLVM_FALLTHROUGH; 617 case ARM::R0: 618 case ARM::R1: 619 case ARM::R2: 620 case ARM::R3: 621 case ARM::R4: 622 case ARM::R5: 623 case ARM::R6: 624 case ARM::R7: 625 case ARM::LR: 626 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 627 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI))); 628 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 629 .addCFIIndex(CFIIndex) 630 .setMIFlags(MachineInstr::FrameSetup); 631 break; 632 } 633 } 634 } 635 636 if (GPRCS2Size > 0) { 637 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push); 638 for (const auto &Entry : CSI) { 639 unsigned Reg = Entry.getReg(); 640 int FI = Entry.getFrameIdx(); 641 switch (Reg) { 642 case ARM::R8: 643 case ARM::R9: 644 case ARM::R10: 645 case ARM::R11: 646 case ARM::R12: 647 if (STI.splitFramePushPop(MF)) { 648 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 649 unsigned Offset = MFI.getObjectOffset(FI); 650 unsigned CFIIndex = MF.addFrameInst( 651 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 652 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 653 .addCFIIndex(CFIIndex) 654 .setMIFlags(MachineInstr::FrameSetup); 655 } 656 break; 657 } 658 } 659 } 660 661 if (DPRCSSize > 0) { 662 // Since vpush register list cannot have gaps, there may be multiple vpush 663 // instructions in the prologue. 664 MachineBasicBlock::iterator Pos = std::next(LastPush); 665 for (const auto &Entry : CSI) { 666 unsigned Reg = Entry.getReg(); 667 int FI = Entry.getFrameIdx(); 668 if ((Reg >= ARM::D0 && Reg <= ARM::D31) && 669 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) { 670 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 671 unsigned Offset = MFI.getObjectOffset(FI); 672 unsigned CFIIndex = MF.addFrameInst( 673 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 674 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 675 .addCFIIndex(CFIIndex) 676 .setMIFlags(MachineInstr::FrameSetup); 677 } 678 } 679 } 680 681 // Now we can emit descriptions of where the canonical frame address was 682 // throughout the process. If we have a frame pointer, it takes over the job 683 // half-way through, so only the first few .cfi_def_cfa_offset instructions 684 // actually get emitted. 685 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 686 687 if (STI.isTargetELF() && hasFP(MF)) 688 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 689 AFI->getFramePtrSpillOffset()); 690 691 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 692 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 693 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 694 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 695 696 // If we need dynamic stack realignment, do it here. Be paranoid and make 697 // sure if we also have VLAs, we have a base pointer for frame access. 698 // If aligned NEON registers were spilled, the stack has already been 699 // realigned. 700 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) { 701 unsigned MaxAlign = MFI.getMaxAlignment(); 702 assert(!AFI->isThumb1OnlyFunction()); 703 if (!AFI->isThumbFunction()) { 704 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 705 false); 706 } else { 707 // We cannot use sp as source/dest register here, thus we're using r4 to 708 // perform the calculations. We're emitting the following sequence: 709 // mov r4, sp 710 // -- use emitAligningInstructions to produce best sequence to zero 711 // -- out lower bits in r4 712 // mov sp, r4 713 // FIXME: It will be better just to find spare register here. 714 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 715 .addReg(ARM::SP, RegState::Kill) 716 .add(predOps(ARMCC::AL)); 717 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 718 false); 719 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 720 .addReg(ARM::R4, RegState::Kill) 721 .add(predOps(ARMCC::AL)); 722 } 723 724 AFI->setShouldRestoreSPFromFP(true); 725 } 726 727 // If we need a base pointer, set it up here. It's whatever the value 728 // of the stack pointer is at this point. Any variable size objects 729 // will be allocated after this, so we can still use the base pointer 730 // to reference locals. 731 // FIXME: Clarify FrameSetup flags here. 732 if (RegInfo->hasBasePointer(MF)) { 733 if (isARM) 734 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 735 .addReg(ARM::SP) 736 .add(predOps(ARMCC::AL)) 737 .add(condCodeOp()); 738 else 739 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 740 .addReg(ARM::SP) 741 .add(predOps(ARMCC::AL)); 742 } 743 744 // If the frame has variable sized objects then the epilogue must restore 745 // the sp from fp. We can assume there's an FP here since hasFP already 746 // checks for hasVarSizedObjects. 747 if (MFI.hasVarSizedObjects()) 748 AFI->setShouldRestoreSPFromFP(true); 749 } 750 751 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 752 MachineBasicBlock &MBB) const { 753 MachineFrameInfo &MFI = MF.getFrameInfo(); 754 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 755 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 756 const ARMBaseInstrInfo &TII = 757 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 758 assert(!AFI->isThumb1OnlyFunction() && 759 "This emitEpilogue does not support Thumb1!"); 760 bool isARM = !AFI->isThumbFunction(); 761 762 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 763 int NumBytes = (int)MFI.getStackSize(); 764 unsigned FramePtr = RegInfo->getFrameRegister(MF); 765 766 // All calls are tail calls in GHC calling conv, and functions have no 767 // prologue/epilogue. 768 if (MF.getFunction()->getCallingConv() == CallingConv::GHC) 769 return; 770 771 // First put ourselves on the first (from top) terminator instructions. 772 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 773 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 774 775 if (!AFI->hasStackFrame()) { 776 if (NumBytes - ArgRegsSaveSize != 0) 777 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize); 778 } else { 779 // Unwind MBBI to point to first LDR / VLDRD. 780 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 781 if (MBBI != MBB.begin()) { 782 do { 783 --MBBI; 784 } while (MBBI != MBB.begin() && isCSRestore(*MBBI, TII, CSRegs)); 785 if (!isCSRestore(*MBBI, TII, CSRegs)) 786 ++MBBI; 787 } 788 789 // Move SP to start of FP callee save spill area. 790 NumBytes -= (ArgRegsSaveSize + 791 AFI->getGPRCalleeSavedArea1Size() + 792 AFI->getGPRCalleeSavedArea2Size() + 793 AFI->getDPRCalleeSavedGapSize() + 794 AFI->getDPRCalleeSavedAreaSize()); 795 796 // Reset SP based on frame pointer only if the stack frame extends beyond 797 // frame pointer stack slot or target is ELF and the function has FP. 798 if (AFI->shouldRestoreSPFromFP()) { 799 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 800 if (NumBytes) { 801 if (isARM) 802 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 803 ARMCC::AL, 0, TII); 804 else { 805 // It's not possible to restore SP from FP in a single instruction. 806 // For iOS, this looks like: 807 // mov sp, r7 808 // sub sp, #24 809 // This is bad, if an interrupt is taken after the mov, sp is in an 810 // inconsistent state. 811 // Use the first callee-saved register as a scratch register. 812 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 813 "No scratch register to restore SP from FP!"); 814 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 815 ARMCC::AL, 0, TII); 816 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 817 .addReg(ARM::R4) 818 .add(predOps(ARMCC::AL)); 819 } 820 } else { 821 // Thumb2 or ARM. 822 if (isARM) 823 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 824 .addReg(FramePtr) 825 .add(predOps(ARMCC::AL)) 826 .add(condCodeOp()); 827 else 828 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 829 .addReg(FramePtr) 830 .add(predOps(ARMCC::AL)); 831 } 832 } else if (NumBytes && 833 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 834 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes); 835 836 // Increment past our save areas. 837 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { 838 MBBI++; 839 // Since vpop register list cannot have gaps, there may be multiple vpop 840 // instructions in the epilogue. 841 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 842 MBBI++; 843 } 844 if (AFI->getDPRCalleeSavedGapSize()) { 845 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 846 "unexpected DPR alignment gap"); 847 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize()); 848 } 849 850 if (AFI->getGPRCalleeSavedArea2Size()) MBBI++; 851 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 852 } 853 854 if (ArgRegsSaveSize) 855 emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize); 856 } 857 858 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 859 /// debug info. It's the same as what we use for resolving the code-gen 860 /// references for now. FIXME: This can go wrong when references are 861 /// SP-relative and simple call frames aren't used. 862 int 863 ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 864 unsigned &FrameReg) const { 865 return ResolveFrameIndexReference(MF, FI, FrameReg, 0); 866 } 867 868 int 869 ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 870 int FI, unsigned &FrameReg, 871 int SPAdj) const { 872 const MachineFrameInfo &MFI = MF.getFrameInfo(); 873 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 874 MF.getSubtarget().getRegisterInfo()); 875 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 876 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 877 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 878 bool isFixed = MFI.isFixedObjectIndex(FI); 879 880 FrameReg = ARM::SP; 881 Offset += SPAdj; 882 883 // SP can move around if there are allocas. We may also lose track of SP 884 // when emergency spilling inside a non-reserved call frame setup. 885 bool hasMovingSP = !hasReservedCallFrame(MF); 886 887 // When dynamically realigning the stack, use the frame pointer for 888 // parameters, and the stack/base pointer for locals. 889 if (RegInfo->needsStackRealignment(MF)) { 890 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 891 if (isFixed) { 892 FrameReg = RegInfo->getFrameRegister(MF); 893 Offset = FPOffset; 894 } else if (hasMovingSP) { 895 assert(RegInfo->hasBasePointer(MF) && 896 "VLAs and dynamic stack alignment, but missing base pointer!"); 897 FrameReg = RegInfo->getBaseRegister(); 898 } 899 return Offset; 900 } 901 902 // If there is a frame pointer, use it when we can. 903 if (hasFP(MF) && AFI->hasStackFrame()) { 904 // Use frame pointer to reference fixed objects. Use it for locals if 905 // there are VLAs (and thus the SP isn't reliable as a base). 906 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 907 FrameReg = RegInfo->getFrameRegister(MF); 908 return FPOffset; 909 } else if (hasMovingSP) { 910 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 911 if (AFI->isThumb2Function()) { 912 // Try to use the frame pointer if we can, else use the base pointer 913 // since it's available. This is handy for the emergency spill slot, in 914 // particular. 915 if (FPOffset >= -255 && FPOffset < 0) { 916 FrameReg = RegInfo->getFrameRegister(MF); 917 return FPOffset; 918 } 919 } 920 } else if (AFI->isThumb2Function()) { 921 // Use add <rd>, sp, #<imm8> 922 // ldr <rd>, [sp, #<imm8>] 923 // if at all possible to save space. 924 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 925 return Offset; 926 // In Thumb2 mode, the negative offset is very limited. Try to avoid 927 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 928 if (FPOffset >= -255 && FPOffset < 0) { 929 FrameReg = RegInfo->getFrameRegister(MF); 930 return FPOffset; 931 } 932 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 933 // Otherwise, use SP or FP, whichever is closer to the stack slot. 934 FrameReg = RegInfo->getFrameRegister(MF); 935 return FPOffset; 936 } 937 } 938 // Use the base pointer if we have one. 939 if (RegInfo->hasBasePointer(MF)) 940 FrameReg = RegInfo->getBaseRegister(); 941 return Offset; 942 } 943 944 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 945 MachineBasicBlock::iterator MI, 946 const std::vector<CalleeSavedInfo> &CSI, 947 unsigned StmOpc, unsigned StrOpc, 948 bool NoGap, 949 bool(*Func)(unsigned, bool), 950 unsigned NumAlignedDPRCS2Regs, 951 unsigned MIFlags) const { 952 MachineFunction &MF = *MBB.getParent(); 953 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 954 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 955 956 DebugLoc DL; 957 958 typedef std::pair<unsigned, bool> RegAndKill; 959 SmallVector<RegAndKill, 4> Regs; 960 unsigned i = CSI.size(); 961 while (i != 0) { 962 unsigned LastReg = 0; 963 for (; i != 0; --i) { 964 unsigned Reg = CSI[i-1].getReg(); 965 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 966 967 // D-registers in the aligned area DPRCS2 are NOT spilled here. 968 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 969 continue; 970 971 const MachineRegisterInfo &MRI = MF.getRegInfo(); 972 bool isLiveIn = MRI.isLiveIn(Reg); 973 if (!isLiveIn && !MRI.isReserved(Reg)) 974 MBB.addLiveIn(Reg); 975 // If NoGap is true, push consecutive registers and then leave the rest 976 // for other instructions. e.g. 977 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 978 if (NoGap && LastReg && LastReg != Reg-1) 979 break; 980 LastReg = Reg; 981 // Do not set a kill flag on values that are also marked as live-in. This 982 // happens with the @llvm-returnaddress intrinsic and with arguments 983 // passed in callee saved registers. 984 // Omitting the kill flags is conservatively correct even if the live-in 985 // is not used after all. 986 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 987 } 988 989 if (Regs.empty()) 990 continue; 991 992 std::sort(Regs.begin(), Regs.end(), [&](const RegAndKill &LHS, 993 const RegAndKill &RHS) { 994 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 995 }); 996 997 if (Regs.size() > 1 || StrOpc== 0) { 998 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 999 .addReg(ARM::SP) 1000 .setMIFlags(MIFlags) 1001 .add(predOps(ARMCC::AL)); 1002 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1003 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 1004 } else if (Regs.size() == 1) { 1005 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 1006 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 1007 .addReg(ARM::SP) 1008 .setMIFlags(MIFlags) 1009 .addImm(-4) 1010 .add(predOps(ARMCC::AL)); 1011 } 1012 Regs.clear(); 1013 1014 // Put any subsequent vpush instructions before this one: they will refer to 1015 // higher register numbers so need to be pushed first in order to preserve 1016 // monotonicity. 1017 if (MI != MBB.begin()) 1018 --MI; 1019 } 1020 } 1021 1022 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1023 MachineBasicBlock::iterator MI, 1024 const std::vector<CalleeSavedInfo> &CSI, 1025 unsigned LdmOpc, unsigned LdrOpc, 1026 bool isVarArg, bool NoGap, 1027 bool(*Func)(unsigned, bool), 1028 unsigned NumAlignedDPRCS2Regs) const { 1029 MachineFunction &MF = *MBB.getParent(); 1030 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1031 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1032 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1033 DebugLoc DL; 1034 bool isTailCall = false; 1035 bool isInterrupt = false; 1036 bool isTrap = false; 1037 if (MBB.end() != MI) { 1038 DL = MI->getDebugLoc(); 1039 unsigned RetOpcode = MI->getOpcode(); 1040 isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri); 1041 isInterrupt = 1042 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1043 isTrap = 1044 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1045 RetOpcode == ARM::tTRAP; 1046 } 1047 1048 SmallVector<unsigned, 4> Regs; 1049 unsigned i = CSI.size(); 1050 while (i != 0) { 1051 unsigned LastReg = 0; 1052 bool DeleteRet = false; 1053 for (; i != 0; --i) { 1054 unsigned Reg = CSI[i-1].getReg(); 1055 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1056 1057 // The aligned reloads from area DPRCS2 are not inserted here. 1058 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1059 continue; 1060 1061 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1062 !isTrap && STI.hasV5TOps()) { 1063 if (MBB.succ_empty()) { 1064 Reg = ARM::PC; 1065 DeleteRet = true; 1066 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1067 } else 1068 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1069 // Fold the return instruction into the LDM. 1070 } 1071 1072 // If NoGap is true, pop consecutive registers and then leave the rest 1073 // for other instructions. e.g. 1074 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1075 if (NoGap && LastReg && LastReg != Reg-1) 1076 break; 1077 1078 LastReg = Reg; 1079 Regs.push_back(Reg); 1080 } 1081 1082 if (Regs.empty()) 1083 continue; 1084 1085 std::sort(Regs.begin(), Regs.end(), [&](unsigned LHS, unsigned RHS) { 1086 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1087 }); 1088 1089 if (Regs.size() > 1 || LdrOpc == 0) { 1090 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1091 .addReg(ARM::SP) 1092 .add(predOps(ARMCC::AL)); 1093 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1094 MIB.addReg(Regs[i], getDefRegState(true)); 1095 if (DeleteRet && MI != MBB.end()) { 1096 MIB.copyImplicitOps(*MI); 1097 MI->eraseFromParent(); 1098 } 1099 MI = MIB; 1100 } else if (Regs.size() == 1) { 1101 // If we adjusted the reg to PC from LR above, switch it back here. We 1102 // only do that for LDM. 1103 if (Regs[0] == ARM::PC) 1104 Regs[0] = ARM::LR; 1105 MachineInstrBuilder MIB = 1106 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1107 .addReg(ARM::SP, RegState::Define) 1108 .addReg(ARM::SP); 1109 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1110 // that refactoring is complete (eventually). 1111 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1112 MIB.addReg(0); 1113 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1114 } else 1115 MIB.addImm(4); 1116 MIB.add(predOps(ARMCC::AL)); 1117 } 1118 Regs.clear(); 1119 1120 // Put any subsequent vpop instructions after this one: they will refer to 1121 // higher register numbers so need to be popped afterwards. 1122 if (MI != MBB.end()) 1123 ++MI; 1124 } 1125 } 1126 1127 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1128 /// starting from d8. Also insert stack realignment code and leave the stack 1129 /// pointer pointing to the d8 spill slot. 1130 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1131 MachineBasicBlock::iterator MI, 1132 unsigned NumAlignedDPRCS2Regs, 1133 const std::vector<CalleeSavedInfo> &CSI, 1134 const TargetRegisterInfo *TRI) { 1135 MachineFunction &MF = *MBB.getParent(); 1136 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1137 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1138 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1139 MachineFrameInfo &MFI = MF.getFrameInfo(); 1140 1141 // Mark the D-register spill slots as properly aligned. Since MFI computes 1142 // stack slot layout backwards, this can actually mean that the d-reg stack 1143 // slot offsets can be wrong. The offset for d8 will always be correct. 1144 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 1145 unsigned DNum = CSI[i].getReg() - ARM::D8; 1146 if (DNum > NumAlignedDPRCS2Regs - 1) 1147 continue; 1148 int FI = CSI[i].getFrameIdx(); 1149 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1150 // registers will be 8-byte aligned. 1151 MFI.setObjectAlignment(FI, DNum % 2 ? 8 : 16); 1152 1153 // The stack slot for D8 needs to be maximally aligned because this is 1154 // actually the point where we align the stack pointer. MachineFrameInfo 1155 // computes all offsets relative to the incoming stack pointer which is a 1156 // bit weird when realigning the stack. Any extra padding for this 1157 // over-alignment is not realized because the code inserted below adjusts 1158 // the stack pointer by numregs * 8 before aligning the stack pointer. 1159 if (DNum == 0) 1160 MFI.setObjectAlignment(FI, MFI.getMaxAlignment()); 1161 } 1162 1163 // Move the stack pointer to the d8 spill slot, and align it at the same 1164 // time. Leave the stack slot address in the scratch register r4. 1165 // 1166 // sub r4, sp, #numregs * 8 1167 // bic r4, r4, #align - 1 1168 // mov sp, r4 1169 // 1170 bool isThumb = AFI->isThumbFunction(); 1171 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1172 AFI->setShouldRestoreSPFromFP(true); 1173 1174 // sub r4, sp, #numregs * 8 1175 // The immediate is <= 64, so it doesn't need any special encoding. 1176 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1177 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1178 .addReg(ARM::SP) 1179 .addImm(8 * NumAlignedDPRCS2Regs) 1180 .add(predOps(ARMCC::AL)) 1181 .add(condCodeOp()); 1182 1183 unsigned MaxAlign = MF.getFrameInfo().getMaxAlignment(); 1184 // We must set parameter MustBeSingleInstruction to true, since 1185 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1186 // stack alignment. Luckily, this can always be done since all ARM 1187 // architecture versions that support Neon also support the BFC 1188 // instruction. 1189 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1190 1191 // mov sp, r4 1192 // The stack pointer must be adjusted before spilling anything, otherwise 1193 // the stack slots could be clobbered by an interrupt handler. 1194 // Leave r4 live, it is used below. 1195 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1196 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1197 .addReg(ARM::R4) 1198 .add(predOps(ARMCC::AL)); 1199 if (!isThumb) 1200 MIB.add(condCodeOp()); 1201 1202 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1203 // r4 holds the stack slot address. 1204 unsigned NextReg = ARM::D8; 1205 1206 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1207 // The writeback is only needed when emitting two vst1.64 instructions. 1208 if (NumAlignedDPRCS2Regs >= 6) { 1209 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1210 &ARM::QQPRRegClass); 1211 MBB.addLiveIn(SupReg); 1212 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1213 .addReg(ARM::R4, RegState::Kill) 1214 .addImm(16) 1215 .addReg(NextReg) 1216 .addReg(SupReg, RegState::ImplicitKill) 1217 .add(predOps(ARMCC::AL)); 1218 NextReg += 4; 1219 NumAlignedDPRCS2Regs -= 4; 1220 } 1221 1222 // We won't modify r4 beyond this point. It currently points to the next 1223 // register to be spilled. 1224 unsigned R4BaseReg = NextReg; 1225 1226 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1227 if (NumAlignedDPRCS2Regs >= 4) { 1228 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1229 &ARM::QQPRRegClass); 1230 MBB.addLiveIn(SupReg); 1231 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1232 .addReg(ARM::R4) 1233 .addImm(16) 1234 .addReg(NextReg) 1235 .addReg(SupReg, RegState::ImplicitKill) 1236 .add(predOps(ARMCC::AL)); 1237 NextReg += 4; 1238 NumAlignedDPRCS2Regs -= 4; 1239 } 1240 1241 // 16-byte aligned vst1.64 with 2 d-regs. 1242 if (NumAlignedDPRCS2Regs >= 2) { 1243 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1244 &ARM::QPRRegClass); 1245 MBB.addLiveIn(SupReg); 1246 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1247 .addReg(ARM::R4) 1248 .addImm(16) 1249 .addReg(SupReg) 1250 .add(predOps(ARMCC::AL)); 1251 NextReg += 2; 1252 NumAlignedDPRCS2Regs -= 2; 1253 } 1254 1255 // Finally, use a vanilla vstr.64 for the odd last register. 1256 if (NumAlignedDPRCS2Regs) { 1257 MBB.addLiveIn(NextReg); 1258 // vstr.64 uses addrmode5 which has an offset scale of 4. 1259 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1260 .addReg(NextReg) 1261 .addReg(ARM::R4) 1262 .addImm((NextReg - R4BaseReg) * 2) 1263 .add(predOps(ARMCC::AL)); 1264 } 1265 1266 // The last spill instruction inserted should kill the scratch register r4. 1267 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1268 } 1269 1270 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1271 /// iterator to the following instruction. 1272 static MachineBasicBlock::iterator 1273 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1274 unsigned NumAlignedDPRCS2Regs) { 1275 // sub r4, sp, #numregs * 8 1276 // bic r4, r4, #align - 1 1277 // mov sp, r4 1278 ++MI; ++MI; ++MI; 1279 assert(MI->mayStore() && "Expecting spill instruction"); 1280 1281 // These switches all fall through. 1282 switch(NumAlignedDPRCS2Regs) { 1283 case 7: 1284 ++MI; 1285 assert(MI->mayStore() && "Expecting spill instruction"); 1286 LLVM_FALLTHROUGH; 1287 default: 1288 ++MI; 1289 assert(MI->mayStore() && "Expecting spill instruction"); 1290 LLVM_FALLTHROUGH; 1291 case 1: 1292 case 2: 1293 case 4: 1294 assert(MI->killsRegister(ARM::R4) && "Missed kill flag"); 1295 ++MI; 1296 } 1297 return MI; 1298 } 1299 1300 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1301 /// starting from d8. These instructions are assumed to execute while the 1302 /// stack is still aligned, unlike the code inserted by emitPopInst. 1303 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1304 MachineBasicBlock::iterator MI, 1305 unsigned NumAlignedDPRCS2Regs, 1306 const std::vector<CalleeSavedInfo> &CSI, 1307 const TargetRegisterInfo *TRI) { 1308 MachineFunction &MF = *MBB.getParent(); 1309 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1310 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1311 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1312 1313 // Find the frame index assigned to d8. 1314 int D8SpillFI = 0; 1315 for (unsigned i = 0, e = CSI.size(); i != e; ++i) 1316 if (CSI[i].getReg() == ARM::D8) { 1317 D8SpillFI = CSI[i].getFrameIdx(); 1318 break; 1319 } 1320 1321 // Materialize the address of the d8 spill slot into the scratch register r4. 1322 // This can be fairly complicated if the stack frame is large, so just use 1323 // the normal frame index elimination mechanism to do it. This code runs as 1324 // the initial part of the epilog where the stack and base pointers haven't 1325 // been changed yet. 1326 bool isThumb = AFI->isThumbFunction(); 1327 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1328 1329 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 1330 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1331 .addFrameIndex(D8SpillFI) 1332 .addImm(0) 1333 .add(predOps(ARMCC::AL)) 1334 .add(condCodeOp()); 1335 1336 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 1337 unsigned NextReg = ARM::D8; 1338 1339 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 1340 if (NumAlignedDPRCS2Regs >= 6) { 1341 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1342 &ARM::QQPRRegClass); 1343 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 1344 .addReg(ARM::R4, RegState::Define) 1345 .addReg(ARM::R4, RegState::Kill) 1346 .addImm(16) 1347 .addReg(SupReg, RegState::ImplicitDefine) 1348 .add(predOps(ARMCC::AL)); 1349 NextReg += 4; 1350 NumAlignedDPRCS2Regs -= 4; 1351 } 1352 1353 // We won't modify r4 beyond this point. It currently points to the next 1354 // register to be spilled. 1355 unsigned R4BaseReg = NextReg; 1356 1357 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 1358 if (NumAlignedDPRCS2Regs >= 4) { 1359 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1360 &ARM::QQPRRegClass); 1361 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 1362 .addReg(ARM::R4) 1363 .addImm(16) 1364 .addReg(SupReg, RegState::ImplicitDefine) 1365 .add(predOps(ARMCC::AL)); 1366 NextReg += 4; 1367 NumAlignedDPRCS2Regs -= 4; 1368 } 1369 1370 // 16-byte aligned vld1.64 with 2 d-regs. 1371 if (NumAlignedDPRCS2Regs >= 2) { 1372 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1373 &ARM::QPRRegClass); 1374 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 1375 .addReg(ARM::R4) 1376 .addImm(16) 1377 .add(predOps(ARMCC::AL)); 1378 NextReg += 2; 1379 NumAlignedDPRCS2Regs -= 2; 1380 } 1381 1382 // Finally, use a vanilla vldr.64 for the remaining odd register. 1383 if (NumAlignedDPRCS2Regs) 1384 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 1385 .addReg(ARM::R4) 1386 .addImm(2 * (NextReg - R4BaseReg)) 1387 .add(predOps(ARMCC::AL)); 1388 1389 // Last store kills r4. 1390 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1391 } 1392 1393 bool ARMFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB, 1394 MachineBasicBlock::iterator MI, 1395 const std::vector<CalleeSavedInfo> &CSI, 1396 const TargetRegisterInfo *TRI) const { 1397 if (CSI.empty()) 1398 return false; 1399 1400 MachineFunction &MF = *MBB.getParent(); 1401 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1402 1403 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 1404 unsigned PushOneOpc = AFI->isThumbFunction() ? 1405 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 1406 unsigned FltOpc = ARM::VSTMDDB_UPD; 1407 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1408 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0, 1409 MachineInstr::FrameSetup); 1410 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0, 1411 MachineInstr::FrameSetup); 1412 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 1413 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 1414 1415 // The code above does not insert spill code for the aligned DPRCS2 registers. 1416 // The stack realignment code will be inserted between the push instructions 1417 // and these spills. 1418 if (NumAlignedDPRCS2Regs) 1419 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1420 1421 return true; 1422 } 1423 1424 bool ARMFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, 1425 MachineBasicBlock::iterator MI, 1426 const std::vector<CalleeSavedInfo> &CSI, 1427 const TargetRegisterInfo *TRI) const { 1428 if (CSI.empty()) 1429 return false; 1430 1431 MachineFunction &MF = *MBB.getParent(); 1432 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1433 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 1434 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1435 1436 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 1437 // registers. Do that here instead. 1438 if (NumAlignedDPRCS2Regs) 1439 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1440 1441 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1442 unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM; 1443 unsigned FltOpc = ARM::VLDMDIA_UPD; 1444 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 1445 NumAlignedDPRCS2Regs); 1446 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1447 &isARMArea2Register, 0); 1448 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1449 &isARMArea1Register, 0); 1450 1451 return true; 1452 } 1453 1454 // FIXME: Make generic? 1455 static unsigned GetFunctionSizeInBytes(const MachineFunction &MF, 1456 const ARMBaseInstrInfo &TII) { 1457 unsigned FnSize = 0; 1458 for (auto &MBB : MF) { 1459 for (auto &MI : MBB) 1460 FnSize += TII.getInstSizeInBytes(MI); 1461 } 1462 return FnSize; 1463 } 1464 1465 /// estimateRSStackSizeLimit - Look at each instruction that references stack 1466 /// frames and return the stack size limit beyond which some of these 1467 /// instructions will require a scratch register during their expansion later. 1468 // FIXME: Move to TII? 1469 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 1470 const TargetFrameLowering *TFI) { 1471 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1472 unsigned Limit = (1 << 12) - 1; 1473 for (auto &MBB : MF) { 1474 for (auto &MI : MBB) { 1475 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1476 if (!MI.getOperand(i).isFI()) 1477 continue; 1478 1479 // When using ADDri to get the address of a stack object, 255 is the 1480 // largest offset guaranteed to fit in the immediate offset. 1481 if (MI.getOpcode() == ARM::ADDri) { 1482 Limit = std::min(Limit, (1U << 8) - 1); 1483 break; 1484 } 1485 1486 // Otherwise check the addressing mode. 1487 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 1488 case ARMII::AddrMode3: 1489 case ARMII::AddrModeT2_i8: 1490 Limit = std::min(Limit, (1U << 8) - 1); 1491 break; 1492 case ARMII::AddrMode5: 1493 case ARMII::AddrModeT2_i8s4: 1494 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 1495 break; 1496 case ARMII::AddrModeT2_i12: 1497 // i12 supports only positive offset so these will be converted to 1498 // i8 opcodes. See llvm::rewriteT2FrameIndex. 1499 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 1500 Limit = std::min(Limit, (1U << 8) - 1); 1501 break; 1502 case ARMII::AddrMode4: 1503 case ARMII::AddrMode6: 1504 // Addressing modes 4 & 6 (load/store) instructions can't encode an 1505 // immediate offset for stack references. 1506 return 0; 1507 default: 1508 break; 1509 } 1510 break; // At most one FI per instruction 1511 } 1512 } 1513 } 1514 1515 return Limit; 1516 } 1517 1518 // In functions that realign the stack, it can be an advantage to spill the 1519 // callee-saved vector registers after realigning the stack. The vst1 and vld1 1520 // instructions take alignment hints that can improve performance. 1521 // 1522 static void 1523 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 1524 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 1525 if (!SpillAlignedNEONRegs) 1526 return; 1527 1528 // Naked functions don't spill callee-saved registers. 1529 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 1530 return; 1531 1532 // We are planning to use NEON instructions vst1 / vld1. 1533 if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON()) 1534 return; 1535 1536 // Don't bother if the default stack alignment is sufficiently high. 1537 if (MF.getSubtarget().getFrameLowering()->getStackAlignment() >= 8) 1538 return; 1539 1540 // Aligned spills require stack realignment. 1541 if (!static_cast<const ARMBaseRegisterInfo *>( 1542 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 1543 return; 1544 1545 // We always spill contiguous d-registers starting from d8. Count how many 1546 // needs spilling. The register allocator will almost always use the 1547 // callee-saved registers in order, but it can happen that there are holes in 1548 // the range. Registers above the hole will be spilled to the standard DPRCS 1549 // area. 1550 unsigned NumSpills = 0; 1551 for (; NumSpills < 8; ++NumSpills) 1552 if (!SavedRegs.test(ARM::D8 + NumSpills)) 1553 break; 1554 1555 // Don't do this for just one d-register. It's not worth it. 1556 if (NumSpills < 2) 1557 return; 1558 1559 // Spill the first NumSpills D-registers after realigning the stack. 1560 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 1561 1562 // A scratch register is required for the vst1 / vld1 instructions. 1563 SavedRegs.set(ARM::R4); 1564 } 1565 1566 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 1567 BitVector &SavedRegs, 1568 RegScavenger *RS) const { 1569 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1570 // This tells PEI to spill the FP as if it is any other callee-save register 1571 // to take advantage the eliminateFrameIndex machinery. This also ensures it 1572 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 1573 // to combine multiple loads / stores. 1574 bool CanEliminateFrame = true; 1575 bool CS1Spilled = false; 1576 bool LRSpilled = false; 1577 unsigned NumGPRSpills = 0; 1578 unsigned NumFPRSpills = 0; 1579 SmallVector<unsigned, 4> UnspilledCS1GPRs; 1580 SmallVector<unsigned, 4> UnspilledCS2GPRs; 1581 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1582 MF.getSubtarget().getRegisterInfo()); 1583 const ARMBaseInstrInfo &TII = 1584 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1585 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1586 MachineFrameInfo &MFI = MF.getFrameInfo(); 1587 MachineRegisterInfo &MRI = MF.getRegInfo(); 1588 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1589 (void)TRI; // Silence unused warning in non-assert builds. 1590 unsigned FramePtr = RegInfo->getFrameRegister(MF); 1591 1592 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 1593 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 1594 // since it's not always possible to restore sp from fp in a single 1595 // instruction. 1596 // FIXME: It will be better just to find spare register here. 1597 if (AFI->isThumb2Function() && 1598 (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF))) 1599 SavedRegs.set(ARM::R4); 1600 1601 if (AFI->isThumb1OnlyFunction()) { 1602 // Spill LR if Thumb1 function uses variable length argument lists. 1603 if (AFI->getArgRegsSaveSize() > 0) 1604 SavedRegs.set(ARM::LR); 1605 1606 // Spill R4 if Thumb1 epilogue has to restore SP from FP. We don't know 1607 // for sure what the stack size will be, but for this, an estimate is good 1608 // enough. If there anything changes it, it'll be a spill, which implies 1609 // we've used all the registers and so R4 is already used, so not marking 1610 // it here will be OK. 1611 // FIXME: It will be better just to find spare register here. 1612 unsigned StackSize = MFI.estimateStackSize(MF); 1613 if (MFI.hasVarSizedObjects() || StackSize > 508) 1614 SavedRegs.set(ARM::R4); 1615 } 1616 1617 // See if we can spill vector registers to aligned stack. 1618 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 1619 1620 // Spill the BasePtr if it's used. 1621 if (RegInfo->hasBasePointer(MF)) 1622 SavedRegs.set(RegInfo->getBaseRegister()); 1623 1624 // Don't spill FP if the frame can be eliminated. This is determined 1625 // by scanning the callee-save registers to see if any is modified. 1626 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 1627 for (unsigned i = 0; CSRegs[i]; ++i) { 1628 unsigned Reg = CSRegs[i]; 1629 bool Spilled = false; 1630 if (SavedRegs.test(Reg)) { 1631 Spilled = true; 1632 CanEliminateFrame = false; 1633 } 1634 1635 if (!ARM::GPRRegClass.contains(Reg)) { 1636 if (Spilled) { 1637 if (ARM::SPRRegClass.contains(Reg)) 1638 NumFPRSpills++; 1639 else if (ARM::DPRRegClass.contains(Reg)) 1640 NumFPRSpills += 2; 1641 else if (ARM::QPRRegClass.contains(Reg)) 1642 NumFPRSpills += 4; 1643 } 1644 continue; 1645 } 1646 1647 if (Spilled) { 1648 NumGPRSpills++; 1649 1650 if (!STI.splitFramePushPop(MF)) { 1651 if (Reg == ARM::LR) 1652 LRSpilled = true; 1653 CS1Spilled = true; 1654 continue; 1655 } 1656 1657 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 1658 switch (Reg) { 1659 case ARM::LR: 1660 LRSpilled = true; 1661 LLVM_FALLTHROUGH; 1662 case ARM::R0: case ARM::R1: 1663 case ARM::R2: case ARM::R3: 1664 case ARM::R4: case ARM::R5: 1665 case ARM::R6: case ARM::R7: 1666 CS1Spilled = true; 1667 break; 1668 default: 1669 break; 1670 } 1671 } else { 1672 if (!STI.splitFramePushPop(MF)) { 1673 UnspilledCS1GPRs.push_back(Reg); 1674 continue; 1675 } 1676 1677 switch (Reg) { 1678 case ARM::R0: case ARM::R1: 1679 case ARM::R2: case ARM::R3: 1680 case ARM::R4: case ARM::R5: 1681 case ARM::R6: case ARM::R7: 1682 case ARM::LR: 1683 UnspilledCS1GPRs.push_back(Reg); 1684 break; 1685 default: 1686 UnspilledCS2GPRs.push_back(Reg); 1687 break; 1688 } 1689 } 1690 } 1691 1692 bool ForceLRSpill = false; 1693 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 1694 unsigned FnSize = GetFunctionSizeInBytes(MF, TII); 1695 // Force LR to be spilled if the Thumb function size is > 2048. This enables 1696 // use of BL to implement far jump. If it turns out that it's not needed 1697 // then the branch fix up path will undo it. 1698 if (FnSize >= (1 << 11)) { 1699 CanEliminateFrame = false; 1700 ForceLRSpill = true; 1701 } 1702 } 1703 1704 // If any of the stack slot references may be out of range of an immediate 1705 // offset, make sure a register (or a spill slot) is available for the 1706 // register scavenger. Note that if we're indexing off the frame pointer, the 1707 // effective stack size is 4 bytes larger since the FP points to the stack 1708 // slot of the previous FP. Also, if we have variable sized objects in the 1709 // function, stack slot references will often be negative, and some of 1710 // our instructions are positive-offset only, so conservatively consider 1711 // that case to want a spill slot (or register) as well. Similarly, if 1712 // the function adjusts the stack pointer during execution and the 1713 // adjustments aren't already part of our stack size estimate, our offset 1714 // calculations may be off, so be conservative. 1715 // FIXME: We could add logic to be more precise about negative offsets 1716 // and which instructions will need a scratch register for them. Is it 1717 // worth the effort and added fragility? 1718 unsigned EstimatedStackSize = 1719 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 1720 1721 // Determine biggest (positive) SP offset in MachineFrameInfo. 1722 int MaxFixedOffset = 0; 1723 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 1724 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); 1725 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); 1726 } 1727 1728 bool HasFP = hasFP(MF); 1729 if (HasFP) { 1730 if (AFI->hasStackFrame()) 1731 EstimatedStackSize += 4; 1732 } else { 1733 // If FP is not used, SP will be used to access arguments, so count the 1734 // size of arguments into the estimation. 1735 EstimatedStackSize += MaxFixedOffset; 1736 } 1737 EstimatedStackSize += 16; // For possible paddings. 1738 1739 unsigned EstimatedRSStackSizeLimit = estimateRSStackSizeLimit(MF, this); 1740 int MaxFPOffset = getMaxFPOffset(*MF.getFunction(), *AFI); 1741 bool BigFrameOffsets = EstimatedStackSize >= EstimatedRSStackSizeLimit || 1742 MFI.hasVarSizedObjects() || 1743 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)) || 1744 // For large argument stacks fp relative addressed may overflow. 1745 (HasFP && (MaxFixedOffset - MaxFPOffset) >= (int)EstimatedRSStackSizeLimit); 1746 bool ExtraCSSpill = false; 1747 if (BigFrameOffsets || 1748 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 1749 AFI->setHasStackFrame(true); 1750 1751 if (HasFP) { 1752 SavedRegs.set(FramePtr); 1753 // If the frame pointer is required by the ABI, also spill LR so that we 1754 // emit a complete frame record. 1755 if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) { 1756 SavedRegs.set(ARM::LR); 1757 LRSpilled = true; 1758 NumGPRSpills++; 1759 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 1760 if (LRPos != UnspilledCS1GPRs.end()) 1761 UnspilledCS1GPRs.erase(LRPos); 1762 } 1763 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 1764 if (FPPos != UnspilledCS1GPRs.end()) 1765 UnspilledCS1GPRs.erase(FPPos); 1766 NumGPRSpills++; 1767 if (FramePtr == ARM::R7) 1768 CS1Spilled = true; 1769 } 1770 1771 if (AFI->isThumb1OnlyFunction()) { 1772 // For Thumb1-only targets, we need some low registers when we save and 1773 // restore the high registers (which aren't allocatable, but could be 1774 // used by inline assembly) because the push/pop instructions can not 1775 // access high registers. If necessary, we might need to push more low 1776 // registers to ensure that there is at least one free that can be used 1777 // for the saving & restoring, and preferably we should ensure that as 1778 // many as are needed are available so that fewer push/pop instructions 1779 // are required. 1780 1781 // Low registers which are not currently pushed, but could be (r4-r7). 1782 SmallVector<unsigned, 4> AvailableRegs; 1783 1784 // Unused argument registers (r0-r3) can be clobbered in the prologue for 1785 // free. 1786 int EntryRegDeficit = 0; 1787 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 1788 if (!MF.getRegInfo().isLiveIn(Reg)) { 1789 --EntryRegDeficit; 1790 DEBUG(dbgs() << PrintReg(Reg, TRI) 1791 << " is unused argument register, EntryRegDeficit = " 1792 << EntryRegDeficit << "\n"); 1793 } 1794 } 1795 1796 // Unused return registers can be clobbered in the epilogue for free. 1797 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 1798 DEBUG(dbgs() << AFI->getReturnRegsCount() 1799 << " return regs used, ExitRegDeficit = " << ExitRegDeficit 1800 << "\n"); 1801 1802 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 1803 DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 1804 1805 // r4-r6 can be used in the prologue if they are pushed by the first push 1806 // instruction. 1807 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 1808 if (SavedRegs.test(Reg)) { 1809 --RegDeficit; 1810 DEBUG(dbgs() << PrintReg(Reg, TRI) 1811 << " is saved low register, RegDeficit = " << RegDeficit 1812 << "\n"); 1813 } else { 1814 AvailableRegs.push_back(Reg); 1815 DEBUG(dbgs() 1816 << PrintReg(Reg, TRI) 1817 << " is non-saved low register, adding to AvailableRegs\n"); 1818 } 1819 } 1820 1821 // r7 can be used if it is not being used as the frame pointer. 1822 if (!HasFP) { 1823 if (SavedRegs.test(ARM::R7)) { 1824 --RegDeficit; 1825 DEBUG(dbgs() << "%R7 is saved low register, RegDeficit = " 1826 << RegDeficit << "\n"); 1827 } else { 1828 AvailableRegs.push_back(ARM::R7); 1829 DEBUG(dbgs() 1830 << "%R7 is non-saved low register, adding to AvailableRegs\n"); 1831 } 1832 } 1833 1834 // Each of r8-r11 needs to be copied to a low register, then pushed. 1835 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 1836 if (SavedRegs.test(Reg)) { 1837 ++RegDeficit; 1838 DEBUG(dbgs() << PrintReg(Reg, TRI) 1839 << " is saved high register, RegDeficit = " << RegDeficit 1840 << "\n"); 1841 } 1842 } 1843 1844 // LR can only be used by PUSH, not POP, and can't be used at all if the 1845 // llvm.returnaddress intrinsic is used. This is only worth doing if we 1846 // are more limited at function entry than exit. 1847 if ((EntryRegDeficit > ExitRegDeficit) && 1848 !(MF.getRegInfo().isLiveIn(ARM::LR) && 1849 MF.getFrameInfo().isReturnAddressTaken())) { 1850 if (SavedRegs.test(ARM::LR)) { 1851 --RegDeficit; 1852 DEBUG(dbgs() << "%LR is saved register, RegDeficit = " << RegDeficit 1853 << "\n"); 1854 } else { 1855 AvailableRegs.push_back(ARM::LR); 1856 DEBUG(dbgs() << "%LR is not saved, adding to AvailableRegs\n"); 1857 } 1858 } 1859 1860 // If there are more high registers that need pushing than low registers 1861 // available, push some more low registers so that we can use fewer push 1862 // instructions. This might not reduce RegDeficit all the way to zero, 1863 // because we can only guarantee that r4-r6 are available, but r8-r11 may 1864 // need saving. 1865 DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 1866 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 1867 unsigned Reg = AvailableRegs.pop_back_val(); 1868 DEBUG(dbgs() << "Spilling " << PrintReg(Reg, TRI) 1869 << " to make up reg deficit\n"); 1870 SavedRegs.set(Reg); 1871 NumGPRSpills++; 1872 CS1Spilled = true; 1873 ExtraCSSpill = true; 1874 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 1875 if (Reg == ARM::LR) 1876 LRSpilled = true; 1877 } 1878 DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit << "\n"); 1879 } 1880 1881 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 1882 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 1883 if (!LRSpilled && CS1Spilled) { 1884 SavedRegs.set(ARM::LR); 1885 NumGPRSpills++; 1886 SmallVectorImpl<unsigned>::iterator LRPos; 1887 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 1888 if (LRPos != UnspilledCS1GPRs.end()) 1889 UnspilledCS1GPRs.erase(LRPos); 1890 1891 ForceLRSpill = false; 1892 ExtraCSSpill = true; 1893 } 1894 1895 // If stack and double are 8-byte aligned and we are spilling an odd number 1896 // of GPRs, spill one extra callee save GPR so we won't have to pad between 1897 // the integer and double callee save areas. 1898 DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 1899 unsigned TargetAlign = getStackAlignment(); 1900 if (TargetAlign >= 8 && (NumGPRSpills & 1)) { 1901 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 1902 for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) { 1903 unsigned Reg = UnspilledCS1GPRs[i]; 1904 // Don't spill high register if the function is thumb. In the case of 1905 // Windows on ARM, accept R11 (frame pointer) 1906 if (!AFI->isThumbFunction() || 1907 (STI.isTargetWindows() && Reg == ARM::R11) || 1908 isARMLowRegister(Reg) || Reg == ARM::LR) { 1909 SavedRegs.set(Reg); 1910 DEBUG(dbgs() << "Spilling " << PrintReg(Reg, TRI) 1911 << " to make up alignment\n"); 1912 if (!MRI.isReserved(Reg)) 1913 ExtraCSSpill = true; 1914 break; 1915 } 1916 } 1917 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 1918 unsigned Reg = UnspilledCS2GPRs.front(); 1919 SavedRegs.set(Reg); 1920 DEBUG(dbgs() << "Spilling " << PrintReg(Reg, TRI) 1921 << " to make up alignment\n"); 1922 if (!MRI.isReserved(Reg)) 1923 ExtraCSSpill = true; 1924 } 1925 } 1926 1927 // Estimate if we might need to scavenge a register at some point in order 1928 // to materialize a stack offset. If so, either spill one additional 1929 // callee-saved register or reserve a special spill slot to facilitate 1930 // register scavenging. Thumb1 needs a spill slot for stack pointer 1931 // adjustments also, even when the frame itself is small. 1932 if (BigFrameOffsets && !ExtraCSSpill) { 1933 // If any non-reserved CS register isn't spilled, just spill one or two 1934 // extra. That should take care of it! 1935 unsigned NumExtras = TargetAlign / 4; 1936 SmallVector<unsigned, 2> Extras; 1937 while (NumExtras && !UnspilledCS1GPRs.empty()) { 1938 unsigned Reg = UnspilledCS1GPRs.back(); 1939 UnspilledCS1GPRs.pop_back(); 1940 if (!MRI.isReserved(Reg) && 1941 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg) || 1942 Reg == ARM::LR)) { 1943 Extras.push_back(Reg); 1944 NumExtras--; 1945 } 1946 } 1947 // For non-Thumb1 functions, also check for hi-reg CS registers 1948 if (!AFI->isThumb1OnlyFunction()) { 1949 while (NumExtras && !UnspilledCS2GPRs.empty()) { 1950 unsigned Reg = UnspilledCS2GPRs.back(); 1951 UnspilledCS2GPRs.pop_back(); 1952 if (!MRI.isReserved(Reg)) { 1953 Extras.push_back(Reg); 1954 NumExtras--; 1955 } 1956 } 1957 } 1958 if (Extras.size() && NumExtras == 0) { 1959 for (unsigned i = 0, e = Extras.size(); i != e; ++i) { 1960 SavedRegs.set(Extras[i]); 1961 } 1962 } else if (!AFI->isThumb1OnlyFunction()) { 1963 // note: Thumb1 functions spill to R12, not the stack. Reserve a slot 1964 // closest to SP or frame pointer. 1965 assert(RS && "Register scavenging not provided"); 1966 const TargetRegisterClass &RC = ARM::GPRRegClass; 1967 unsigned Size = TRI->getSpillSize(RC); 1968 unsigned Align = TRI->getSpillAlignment(RC); 1969 RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Align, false)); 1970 } 1971 } 1972 } 1973 1974 if (ForceLRSpill) { 1975 SavedRegs.set(ARM::LR); 1976 AFI->setLRIsSpilledForFarJump(true); 1977 } 1978 } 1979 1980 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 1981 MachineFunction &MF, MachineBasicBlock &MBB, 1982 MachineBasicBlock::iterator I) const { 1983 const ARMBaseInstrInfo &TII = 1984 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1985 if (!hasReservedCallFrame(MF)) { 1986 // If we have alloca, convert as follows: 1987 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 1988 // ADJCALLSTACKUP -> add, sp, sp, amount 1989 MachineInstr &Old = *I; 1990 DebugLoc dl = Old.getDebugLoc(); 1991 unsigned Amount = TII.getFrameSize(Old); 1992 if (Amount != 0) { 1993 // We need to keep the stack aligned properly. To do this, we round the 1994 // amount of space needed for the outgoing arguments up to the next 1995 // alignment boundary. 1996 Amount = alignSPAdjust(Amount); 1997 1998 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1999 assert(!AFI->isThumb1OnlyFunction() && 2000 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 2001 bool isARM = !AFI->isThumbFunction(); 2002 2003 // Replace the pseudo instruction with a new instruction... 2004 unsigned Opc = Old.getOpcode(); 2005 int PIdx = Old.findFirstPredOperandIdx(); 2006 ARMCC::CondCodes Pred = 2007 (PIdx == -1) ? ARMCC::AL 2008 : (ARMCC::CondCodes)Old.getOperand(PIdx).getImm(); 2009 unsigned PredReg = TII.getFramePred(Old); 2010 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 2011 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 2012 Pred, PredReg); 2013 } else { 2014 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 2015 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 2016 Pred, PredReg); 2017 } 2018 } 2019 } 2020 return MBB.erase(I); 2021 } 2022 2023 /// Get the minimum constant for ARM that is greater than or equal to the 2024 /// argument. In ARM, constants can have any value that can be produced by 2025 /// rotating an 8-bit value to the right by an even number of bits within a 2026 /// 32-bit word. 2027 static uint32_t alignToARMConstant(uint32_t Value) { 2028 unsigned Shifted = 0; 2029 2030 if (Value == 0) 2031 return 0; 2032 2033 while (!(Value & 0xC0000000)) { 2034 Value = Value << 2; 2035 Shifted += 2; 2036 } 2037 2038 bool Carry = (Value & 0x00FFFFFF); 2039 Value = ((Value & 0xFF000000) >> 24) + Carry; 2040 2041 if (Value & 0x0000100) 2042 Value = Value & 0x000001FC; 2043 2044 if (Shifted > 24) 2045 Value = Value >> (Shifted - 24); 2046 else 2047 Value = Value << (24 - Shifted); 2048 2049 return Value; 2050 } 2051 2052 // The stack limit in the TCB is set to this many bytes above the actual 2053 // stack limit. 2054 static const uint64_t kSplitStackAvailable = 256; 2055 2056 // Adjust the function prologue to enable split stacks. This currently only 2057 // supports android and linux. 2058 // 2059 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 2060 // must be well defined in order to allow for consistent implementations of the 2061 // __morestack helper function. The ABI is also not a normal ABI in that it 2062 // doesn't follow the normal calling conventions because this allows the 2063 // prologue of each function to be optimized further. 2064 // 2065 // Currently, the ABI looks like (when calling __morestack) 2066 // 2067 // * r4 holds the minimum stack size requested for this function call 2068 // * r5 holds the stack size of the arguments to the function 2069 // * the beginning of the function is 3 instructions after the call to 2070 // __morestack 2071 // 2072 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 2073 // place the arguments on to the new stack, and the 3-instruction knowledge to 2074 // jump directly to the body of the function when working on the new stack. 2075 // 2076 // An old (and possibly no longer compatible) implementation of __morestack for 2077 // ARM can be found at [1]. 2078 // 2079 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 2080 void ARMFrameLowering::adjustForSegmentedStacks( 2081 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2082 unsigned Opcode; 2083 unsigned CFIIndex; 2084 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 2085 bool Thumb = ST->isThumb(); 2086 2087 // Sadly, this currently doesn't support varargs, platforms other than 2088 // android/linux. Note that thumb1/thumb2 are support for android/linux. 2089 if (MF.getFunction()->isVarArg()) 2090 report_fatal_error("Segmented stacks do not support vararg functions."); 2091 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 2092 report_fatal_error("Segmented stacks not supported on this platform."); 2093 2094 MachineFrameInfo &MFI = MF.getFrameInfo(); 2095 MachineModuleInfo &MMI = MF.getMMI(); 2096 MCContext &Context = MMI.getContext(); 2097 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 2098 const ARMBaseInstrInfo &TII = 2099 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2100 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 2101 DebugLoc DL; 2102 2103 uint64_t StackSize = MFI.getStackSize(); 2104 2105 // Do not generate a prologue for functions with a stack of size zero 2106 if (StackSize == 0) 2107 return; 2108 2109 // Use R4 and R5 as scratch registers. 2110 // We save R4 and R5 before use and restore them before leaving the function. 2111 unsigned ScratchReg0 = ARM::R4; 2112 unsigned ScratchReg1 = ARM::R5; 2113 uint64_t AlignedStackSize; 2114 2115 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 2116 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 2117 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 2118 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 2119 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 2120 2121 // Grab everything that reaches PrologueMBB to update there liveness as well. 2122 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 2123 SmallVector<MachineBasicBlock *, 2> WalkList; 2124 WalkList.push_back(&PrologueMBB); 2125 2126 do { 2127 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 2128 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 2129 if (BeforePrologueRegion.insert(PredBB).second) 2130 WalkList.push_back(PredBB); 2131 } 2132 } while (!WalkList.empty()); 2133 2134 // The order in that list is important. 2135 // The blocks will all be inserted before PrologueMBB using that order. 2136 // Therefore the block that should appear first in the CFG should appear 2137 // first in the list. 2138 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 2139 PostStackMBB}; 2140 2141 for (MachineBasicBlock *B : AddedBlocks) 2142 BeforePrologueRegion.insert(B); 2143 2144 for (const auto &LI : PrologueMBB.liveins()) { 2145 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 2146 PredBB->addLiveIn(LI); 2147 } 2148 2149 // Remove the newly added blocks from the list, since we know 2150 // we do not have to do the following updates for them. 2151 for (MachineBasicBlock *B : AddedBlocks) { 2152 BeforePrologueRegion.erase(B); 2153 MF.insert(PrologueMBB.getIterator(), B); 2154 } 2155 2156 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 2157 // Make sure the LiveIns are still sorted and unique. 2158 MBB->sortUniqueLiveIns(); 2159 // Replace the edges to PrologueMBB by edges to the sequences 2160 // we are about to add. 2161 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 2162 } 2163 2164 // The required stack size that is aligned to ARM constant criterion. 2165 AlignedStackSize = alignToARMConstant(StackSize); 2166 2167 // When the frame size is less than 256 we just compare the stack 2168 // boundary directly to the value of the stack pointer, per gcc. 2169 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 2170 2171 // We will use two of the callee save registers as scratch registers so we 2172 // need to save those registers onto the stack. 2173 // We will use SR0 to hold stack limit and SR1 to hold the stack size 2174 // requested and arguments for __morestack(). 2175 // SR0: Scratch Register #0 2176 // SR1: Scratch Register #1 2177 // push {SR0, SR1} 2178 if (Thumb) { 2179 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 2180 .add(predOps(ARMCC::AL)) 2181 .addReg(ScratchReg0) 2182 .addReg(ScratchReg1); 2183 } else { 2184 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 2185 .addReg(ARM::SP, RegState::Define) 2186 .addReg(ARM::SP) 2187 .add(predOps(ARMCC::AL)) 2188 .addReg(ScratchReg0) 2189 .addReg(ScratchReg1); 2190 } 2191 2192 // Emit the relevant DWARF information about the change in stack pointer as 2193 // well as where to find both r4 and r5 (the callee-save registers) 2194 CFIIndex = 2195 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -8)); 2196 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2197 .addCFIIndex(CFIIndex); 2198 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2199 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 2200 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2201 .addCFIIndex(CFIIndex); 2202 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2203 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 2204 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2205 .addCFIIndex(CFIIndex); 2206 2207 // mov SR1, sp 2208 if (Thumb) { 2209 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 2210 .addReg(ARM::SP) 2211 .add(predOps(ARMCC::AL)); 2212 } else if (CompareStackPointer) { 2213 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 2214 .addReg(ARM::SP) 2215 .add(predOps(ARMCC::AL)) 2216 .add(condCodeOp()); 2217 } 2218 2219 // sub SR1, sp, #StackSize 2220 if (!CompareStackPointer && Thumb) { 2221 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 2222 .add(condCodeOp()) 2223 .addReg(ScratchReg1) 2224 .addImm(AlignedStackSize) 2225 .add(predOps(ARMCC::AL)); 2226 } else if (!CompareStackPointer) { 2227 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 2228 .addReg(ARM::SP) 2229 .addImm(AlignedStackSize) 2230 .add(predOps(ARMCC::AL)) 2231 .add(condCodeOp()); 2232 } 2233 2234 if (Thumb && ST->isThumb1Only()) { 2235 unsigned PCLabelId = ARMFI->createPICLabelUId(); 2236 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 2237 MF.getFunction()->getContext(), "__STACK_LIMIT", PCLabelId, 0); 2238 MachineConstantPool *MCP = MF.getConstantPool(); 2239 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, 4); 2240 2241 // ldr SR0, [pc, offset(STACK_LIMIT)] 2242 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 2243 .addConstantPoolIndex(CPI) 2244 .add(predOps(ARMCC::AL)); 2245 2246 // ldr SR0, [SR0] 2247 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 2248 .addReg(ScratchReg0) 2249 .addImm(0) 2250 .add(predOps(ARMCC::AL)); 2251 } else { 2252 // Get TLS base address from the coprocessor 2253 // mrc p15, #0, SR0, c13, c0, #3 2254 BuildMI(McrMBB, DL, TII.get(ARM::MRC), ScratchReg0) 2255 .addImm(15) 2256 .addImm(0) 2257 .addImm(13) 2258 .addImm(0) 2259 .addImm(3) 2260 .add(predOps(ARMCC::AL)); 2261 2262 // Use the last tls slot on android and a private field of the TCP on linux. 2263 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 2264 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 2265 2266 // Get the stack limit from the right offset 2267 // ldr SR0, [sr0, #4 * TlsOffset] 2268 BuildMI(GetMBB, DL, TII.get(ARM::LDRi12), ScratchReg0) 2269 .addReg(ScratchReg0) 2270 .addImm(4 * TlsOffset) 2271 .add(predOps(ARMCC::AL)); 2272 } 2273 2274 // Compare stack limit with stack size requested. 2275 // cmp SR0, SR1 2276 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 2277 BuildMI(GetMBB, DL, TII.get(Opcode)) 2278 .addReg(ScratchReg0) 2279 .addReg(ScratchReg1) 2280 .add(predOps(ARMCC::AL)); 2281 2282 // This jump is taken if StackLimit < SP - stack required. 2283 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 2284 BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB) 2285 .addImm(ARMCC::LO) 2286 .addReg(ARM::CPSR); 2287 2288 2289 // Calling __morestack(StackSize, Size of stack arguments). 2290 // __morestack knows that the stack size requested is in SR0(r4) 2291 // and amount size of stack arguments is in SR1(r5). 2292 2293 // Pass first argument for the __morestack by Scratch Register #0. 2294 // The amount size of stack required 2295 if (Thumb) { 2296 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 2297 .add(condCodeOp()) 2298 .addImm(AlignedStackSize) 2299 .add(predOps(ARMCC::AL)); 2300 } else { 2301 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 2302 .addImm(AlignedStackSize) 2303 .add(predOps(ARMCC::AL)) 2304 .add(condCodeOp()); 2305 } 2306 // Pass second argument for the __morestack by Scratch Register #1. 2307 // The amount size of stack consumed to save function arguments. 2308 if (Thumb) { 2309 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 2310 .add(condCodeOp()) 2311 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2312 .add(predOps(ARMCC::AL)); 2313 } else { 2314 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 2315 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2316 .add(predOps(ARMCC::AL)) 2317 .add(condCodeOp()); 2318 } 2319 2320 // push {lr} - Save return address of this function. 2321 if (Thumb) { 2322 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 2323 .add(predOps(ARMCC::AL)) 2324 .addReg(ARM::LR); 2325 } else { 2326 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 2327 .addReg(ARM::SP, RegState::Define) 2328 .addReg(ARM::SP) 2329 .add(predOps(ARMCC::AL)) 2330 .addReg(ARM::LR); 2331 } 2332 2333 // Emit the DWARF info about the change in stack as well as where to find the 2334 // previous link register 2335 CFIIndex = 2336 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -12)); 2337 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2338 .addCFIIndex(CFIIndex); 2339 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2340 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 2341 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2342 .addCFIIndex(CFIIndex); 2343 2344 // Call __morestack(). 2345 if (Thumb) { 2346 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 2347 .add(predOps(ARMCC::AL)) 2348 .addExternalSymbol("__morestack"); 2349 } else { 2350 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 2351 .addExternalSymbol("__morestack"); 2352 } 2353 2354 // pop {lr} - Restore return address of this original function. 2355 if (Thumb) { 2356 if (ST->isThumb1Only()) { 2357 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2358 .add(predOps(ARMCC::AL)) 2359 .addReg(ScratchReg0); 2360 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 2361 .addReg(ScratchReg0) 2362 .add(predOps(ARMCC::AL)); 2363 } else { 2364 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 2365 .addReg(ARM::LR, RegState::Define) 2366 .addReg(ARM::SP, RegState::Define) 2367 .addReg(ARM::SP) 2368 .addImm(4) 2369 .add(predOps(ARMCC::AL)); 2370 } 2371 } else { 2372 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2373 .addReg(ARM::SP, RegState::Define) 2374 .addReg(ARM::SP) 2375 .add(predOps(ARMCC::AL)) 2376 .addReg(ARM::LR); 2377 } 2378 2379 // Restore SR0 and SR1 in case of __morestack() was called. 2380 // __morestack() will skip PostStackMBB block so we need to restore 2381 // scratch registers from here. 2382 // pop {SR0, SR1} 2383 if (Thumb) { 2384 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2385 .add(predOps(ARMCC::AL)) 2386 .addReg(ScratchReg0) 2387 .addReg(ScratchReg1); 2388 } else { 2389 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2390 .addReg(ARM::SP, RegState::Define) 2391 .addReg(ARM::SP) 2392 .add(predOps(ARMCC::AL)) 2393 .addReg(ScratchReg0) 2394 .addReg(ScratchReg1); 2395 } 2396 2397 // Update the CFA offset now that we've popped 2398 CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); 2399 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2400 .addCFIIndex(CFIIndex); 2401 2402 // bx lr - Return from this function. 2403 Opcode = Thumb ? ARM::tBX_RET : ARM::BX_RET; 2404 BuildMI(AllocMBB, DL, TII.get(Opcode)).add(predOps(ARMCC::AL)); 2405 2406 // Restore SR0 and SR1 in case of __morestack() was not called. 2407 // pop {SR0, SR1} 2408 if (Thumb) { 2409 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 2410 .add(predOps(ARMCC::AL)) 2411 .addReg(ScratchReg0) 2412 .addReg(ScratchReg1); 2413 } else { 2414 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 2415 .addReg(ARM::SP, RegState::Define) 2416 .addReg(ARM::SP) 2417 .add(predOps(ARMCC::AL)) 2418 .addReg(ScratchReg0) 2419 .addReg(ScratchReg1); 2420 } 2421 2422 // Update the CFA offset now that we've popped 2423 CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); 2424 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2425 .addCFIIndex(CFIIndex); 2426 2427 // Tell debuggers that r4 and r5 are now the same as they were in the 2428 // previous function, that they're the "Same Value". 2429 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2430 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 2431 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2432 .addCFIIndex(CFIIndex); 2433 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2434 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 2435 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2436 .addCFIIndex(CFIIndex); 2437 2438 // Organizing MBB lists 2439 PostStackMBB->addSuccessor(&PrologueMBB); 2440 2441 AllocMBB->addSuccessor(PostStackMBB); 2442 2443 GetMBB->addSuccessor(PostStackMBB); 2444 GetMBB->addSuccessor(AllocMBB); 2445 2446 McrMBB->addSuccessor(GetMBB); 2447 2448 PrevStackMBB->addSuccessor(McrMBB); 2449 2450 #ifdef EXPENSIVE_CHECKS 2451 MF.verify(); 2452 #endif 2453 } 2454