xref: /llvm-project/llvm/lib/Target/ARM/ARMFrameLowering.cpp (revision c16a58b36caebbc34dfa0f788a019d041e5484df)
1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the ARM implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 //
13 // This file contains the ARM implementation of TargetFrameLowering class.
14 //
15 // On ARM, stack frames are structured as follows:
16 //
17 // The stack grows downward.
18 //
19 // All of the individual frame areas on the frame below are optional, i.e. it's
20 // possible to create a function so that the particular area isn't present
21 // in the frame.
22 //
23 // At function entry, the "frame" looks as follows:
24 //
25 // |                                   | Higher address
26 // |-----------------------------------|
27 // |                                   |
28 // | arguments passed on the stack     |
29 // |                                   |
30 // |-----------------------------------| <- sp
31 // |                                   | Lower address
32 //
33 //
34 // After the prologue has run, the frame has the following general structure.
35 // Technically the last frame area (VLAs) doesn't get created until in the
36 // main function body, after the prologue is run. However, it's depicted here
37 // for completeness.
38 //
39 // |                                   | Higher address
40 // |-----------------------------------|
41 // |                                   |
42 // | arguments passed on the stack     |
43 // |                                   |
44 // |-----------------------------------| <- (sp at function entry)
45 // |                                   |
46 // | varargs from registers            |
47 // |                                   |
48 // |-----------------------------------|
49 // |                                   |
50 // | prev_lr                           |
51 // | prev_fp                           |
52 // | (a.k.a. "frame record")           |
53 // |                                   |
54 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11)
55 // |                                   |
56 // | callee-saved gpr registers        |
57 // |                                   |
58 // |-----------------------------------|
59 // |                                   |
60 // | callee-saved fp/simd regs         |
61 // |                                   |
62 // |-----------------------------------|
63 // |.empty.space.to.make.part.below....|
64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
65 // |.the.standard.8-byte.alignment.....|  compile time; if present)
66 // |-----------------------------------|
67 // |                                   |
68 // | local variables of fixed size     |
69 // | including spill slots             |
70 // |-----------------------------------| <- base pointer (not defined by ABI,
71 // |.variable-sized.local.variables....|       LLVM chooses r6)
72 // |.(VLAs)............................| (size of this area is unknown at
73 // |...................................|  compile time)
74 // |-----------------------------------| <- sp
75 // |                                   | Lower address
76 //
77 //
78 // To access the data in a frame, at-compile time, a constant offset must be
79 // computable from one of the pointers (fp, bp, sp) to access it. The size
80 // of the areas with a dotted background cannot be computed at compile-time
81 // if they are present, making it required to have all three of fp, bp and
82 // sp to be set up to be able to access all contents in the frame areas,
83 // assuming all of the frame areas are non-empty.
84 //
85 // For most functions, some of the frame areas are empty. For those functions,
86 // it may not be necessary to set up fp or bp:
87 // * A base pointer is definitely needed when there are both VLAs and local
88 //   variables with more-than-default alignment requirements.
89 // * A frame pointer is definitely needed when there are local variables with
90 //   more-than-default alignment requirements.
91 //
92 // In some cases when a base pointer is not strictly needed, it is generated
93 // anyway when offsets from the frame pointer to access local variables become
94 // so large that the offset can't be encoded in the immediate fields of loads
95 // or stores.
96 //
97 // The frame pointer might be chosen to be r7 or r11, depending on the target
98 // architecture and operating system. See ARMSubtarget::getFramePointerReg for
99 // details.
100 //
101 // Outgoing function arguments must be at the bottom of the stack frame when
102 // calling another function. If we do not have variable-sized stack objects, we
103 // can allocate a "reserved call frame" area at the bottom of the local
104 // variable area, large enough for all outgoing calls. If we do have VLAs, then
105 // the stack pointer must be decremented and incremented around each call to
106 // make space for the arguments below the VLAs.
107 //
108 //===----------------------------------------------------------------------===//
109 
110 #include "ARMFrameLowering.h"
111 #include "ARMBaseInstrInfo.h"
112 #include "ARMBaseRegisterInfo.h"
113 #include "ARMConstantPoolValue.h"
114 #include "ARMMachineFunctionInfo.h"
115 #include "ARMSubtarget.h"
116 #include "MCTargetDesc/ARMAddressingModes.h"
117 #include "MCTargetDesc/ARMBaseInfo.h"
118 #include "Utils/ARMBaseInfo.h"
119 #include "llvm/ADT/BitVector.h"
120 #include "llvm/ADT/STLExtras.h"
121 #include "llvm/ADT/SmallPtrSet.h"
122 #include "llvm/ADT/SmallVector.h"
123 #include "llvm/CodeGen/MachineBasicBlock.h"
124 #include "llvm/CodeGen/MachineConstantPool.h"
125 #include "llvm/CodeGen/MachineFrameInfo.h"
126 #include "llvm/CodeGen/MachineFunction.h"
127 #include "llvm/CodeGen/MachineInstr.h"
128 #include "llvm/CodeGen/MachineInstrBuilder.h"
129 #include "llvm/CodeGen/MachineJumpTableInfo.h"
130 #include "llvm/CodeGen/MachineModuleInfo.h"
131 #include "llvm/CodeGen/MachineOperand.h"
132 #include "llvm/CodeGen/MachineRegisterInfo.h"
133 #include "llvm/CodeGen/RegisterScavenging.h"
134 #include "llvm/CodeGen/TargetInstrInfo.h"
135 #include "llvm/CodeGen/TargetOpcodes.h"
136 #include "llvm/CodeGen/TargetRegisterInfo.h"
137 #include "llvm/CodeGen/TargetSubtargetInfo.h"
138 #include "llvm/IR/Attributes.h"
139 #include "llvm/IR/CallingConv.h"
140 #include "llvm/IR/DebugLoc.h"
141 #include "llvm/IR/Function.h"
142 #include "llvm/MC/MCAsmInfo.h"
143 #include "llvm/MC/MCContext.h"
144 #include "llvm/MC/MCDwarf.h"
145 #include "llvm/MC/MCInstrDesc.h"
146 #include "llvm/MC/MCRegisterInfo.h"
147 #include "llvm/Support/CodeGen.h"
148 #include "llvm/Support/CommandLine.h"
149 #include "llvm/Support/Compiler.h"
150 #include "llvm/Support/Debug.h"
151 #include "llvm/Support/ErrorHandling.h"
152 #include "llvm/Support/MathExtras.h"
153 #include "llvm/Support/raw_ostream.h"
154 #include "llvm/Target/TargetMachine.h"
155 #include "llvm/Target/TargetOptions.h"
156 #include <algorithm>
157 #include <cassert>
158 #include <cstddef>
159 #include <cstdint>
160 #include <iterator>
161 #include <utility>
162 #include <vector>
163 
164 #define DEBUG_TYPE "arm-frame-lowering"
165 
166 using namespace llvm;
167 
168 static cl::opt<bool>
169 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
170                      cl::desc("Align ARM NEON spills in prolog and epilog"));
171 
172 static MachineBasicBlock::iterator
173 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
174                         unsigned NumAlignedDPRCS2Regs);
175 
176 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
177     : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)),
178       STI(sti) {}
179 
180 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const {
181   // iOS always has a FP for backtracking, force other targets to keep their FP
182   // when doing FastISel. The emitted code is currently superior, and in cases
183   // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
184   return MF.getSubtarget<ARMSubtarget>().useFastISel();
185 }
186 
187 /// Returns true if the target can safely skip saving callee-saved registers
188 /// for noreturn nounwind functions.
189 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
190   assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
191          MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
192          !MF.getFunction().hasFnAttribute(Attribute::UWTable));
193 
194   // Frame pointer and link register are not treated as normal CSR, thus we
195   // can always skip CSR saves for nonreturning functions.
196   return true;
197 }
198 
199 /// hasFP - Return true if the specified function should have a dedicated frame
200 /// pointer register.  This is true if the function has variable sized allocas
201 /// or if frame pointer elimination is disabled.
202 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
203   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
204   const MachineFrameInfo &MFI = MF.getFrameInfo();
205 
206   // ABI-required frame pointer.
207   if (MF.getTarget().Options.DisableFramePointerElim(MF))
208     return true;
209 
210   // Frame pointer required for use within this function.
211   return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
212           MFI.isFrameAddressTaken());
213 }
214 
215 /// isFPReserved - Return true if the frame pointer register should be
216 /// considered a reserved register on the scope of the specified function.
217 bool ARMFrameLowering::isFPReserved(const MachineFunction &MF) const {
218   return hasFP(MF) || MF.getSubtarget<ARMSubtarget>().createAAPCSFrameChain();
219 }
220 
221 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
222 /// not required, we reserve argument space for call sites in the function
223 /// immediately on entry to the current function.  This eliminates the need for
224 /// add/sub sp brackets around call sites.  Returns true if the call frame is
225 /// included as part of the stack frame.
226 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
227   const MachineFrameInfo &MFI = MF.getFrameInfo();
228   unsigned CFSize = MFI.getMaxCallFrameSize();
229   // It's not always a good idea to include the call frame as part of the
230   // stack frame. ARM (especially Thumb) has small immediate offset to
231   // address the stack frame. So a large call frame can cause poor codegen
232   // and may even makes it impossible to scavenge a register.
233   if (CFSize >= ((1 << 12) - 1) / 2)  // Half of imm12
234     return false;
235 
236   return !MFI.hasVarSizedObjects();
237 }
238 
239 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
240 /// call frame pseudos can be simplified.  Unlike most targets, having a FP
241 /// is not sufficient here since we still may reference some objects via SP
242 /// even when FP is available in Thumb2 mode.
243 bool
244 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
245   return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
246 }
247 
248 // Returns how much of the incoming argument stack area we should clean up in an
249 // epilogue. For the C calling convention this will be 0, for guaranteed tail
250 // call conventions it can be positive (a normal return or a tail call to a
251 // function that uses less stack space for arguments) or negative (for a tail
252 // call to a function that needs more stack space than us for arguments).
253 static int getArgumentStackToRestore(MachineFunction &MF,
254                                      MachineBasicBlock &MBB) {
255   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
256   bool IsTailCallReturn = false;
257   if (MBB.end() != MBBI) {
258     unsigned RetOpcode = MBBI->getOpcode();
259     IsTailCallReturn = RetOpcode == ARM::TCRETURNdi ||
260                        RetOpcode == ARM::TCRETURNri;
261   }
262   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
263 
264   int ArgumentPopSize = 0;
265   if (IsTailCallReturn) {
266     MachineOperand &StackAdjust = MBBI->getOperand(1);
267 
268     // For a tail-call in a callee-pops-arguments environment, some or all of
269     // the stack may actually be in use for the call's arguments, this is
270     // calculated during LowerCall and consumed here...
271     ArgumentPopSize = StackAdjust.getImm();
272   } else {
273     // ... otherwise the amount to pop is *all* of the argument space,
274     // conveniently stored in the MachineFunctionInfo by
275     // LowerFormalArguments. This will, of course, be zero for the C calling
276     // convention.
277     ArgumentPopSize = AFI->getArgumentStackToRestore();
278   }
279 
280   return ArgumentPopSize;
281 }
282 
283 static bool needsWinCFI(const MachineFunction &MF) {
284   const Function &F = MF.getFunction();
285   return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
286          F.needsUnwindTableEntry();
287 }
288 
289 // Given a load or a store instruction, generate an appropriate unwinding SEH
290 // code on Windows.
291 static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI,
292                                              const TargetInstrInfo &TII,
293                                              unsigned Flags) {
294   unsigned Opc = MBBI->getOpcode();
295   MachineBasicBlock *MBB = MBBI->getParent();
296   MachineFunction &MF = *MBB->getParent();
297   DebugLoc DL = MBBI->getDebugLoc();
298   MachineInstrBuilder MIB;
299   const ARMSubtarget &Subtarget = MF.getSubtarget<ARMSubtarget>();
300   const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
301 
302   Flags |= MachineInstr::NoMerge;
303 
304   switch (Opc) {
305   default:
306     report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc));
307     break;
308   case ARM::t2ADDri:   // add.w r11, sp, #xx
309   case ARM::t2ADDri12: // add.w r11, sp, #xx
310   case ARM::t2MOVTi16: // movt  r4, #xx
311   case ARM::tBL:       // bl __chkstk
312     // These are harmless if used for just setting up a frame pointer,
313     // but that frame pointer can't be relied upon for unwinding, unless
314     // set up with SEH_SaveSP.
315     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
316               .addImm(/*Wide=*/1)
317               .setMIFlags(Flags);
318     break;
319 
320   case ARM::t2MOVi16: { // mov(w) r4, #xx
321     bool Wide = MBBI->getOperand(1).getImm() >= 256;
322     if (!Wide) {
323       MachineInstrBuilder NewInstr =
324           BuildMI(MF, DL, TII.get(ARM::tMOVi8)).setMIFlags(MBBI->getFlags());
325       NewInstr.add(MBBI->getOperand(0));
326       NewInstr.add(t1CondCodeOp(/*isDead=*/true));
327       for (unsigned i = 1, NumOps = MBBI->getNumOperands(); i != NumOps; ++i)
328         NewInstr.add(MBBI->getOperand(i));
329       MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr);
330       MBB->erase(MBBI);
331       MBBI = NewMBBI;
332     }
333     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)).addImm(Wide).setMIFlags(Flags);
334     break;
335   }
336 
337   case ARM::tBLXr: // blx r12 (__chkstk)
338     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
339               .addImm(/*Wide=*/0)
340               .setMIFlags(Flags);
341     break;
342 
343   case ARM::t2MOVi32imm: // movw+movt
344     // This pseudo instruction expands into two mov instructions. If the
345     // second operand is a symbol reference, this will stay as two wide
346     // instructions, movw+movt. If they're immediates, the first one can
347     // end up as a narrow mov though.
348     // As two SEH instructions are appended here, they won't get interleaved
349     // between the two final movw/movt instructions, but it doesn't make any
350     // practical difference.
351     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
352               .addImm(/*Wide=*/1)
353               .setMIFlags(Flags);
354     MBB->insertAfter(MBBI, MIB);
355     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
356               .addImm(/*Wide=*/1)
357               .setMIFlags(Flags);
358     break;
359 
360   case ARM::t2LDMIA_RET:
361   case ARM::t2LDMIA_UPD:
362   case ARM::t2STMDB_UPD: {
363     unsigned Mask = 0;
364     bool Wide = false;
365     for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) {
366       const MachineOperand &MO = MBBI->getOperand(i);
367       if (!MO.isReg() || MO.isImplicit())
368         continue;
369       unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
370       if (Reg == 15)
371         Reg = 14;
372       if (Reg >= 8 && Reg <= 13)
373         Wide = true;
374       else if (Opc == ARM::t2LDMIA_UPD && Reg == 14)
375         Wide = true;
376       Mask |= 1 << Reg;
377     }
378     if (!Wide) {
379       unsigned NewOpc;
380       switch (Opc) {
381       case ARM::t2LDMIA_RET:
382         NewOpc = ARM::tPOP_RET;
383         break;
384       case ARM::t2LDMIA_UPD:
385         NewOpc = ARM::tPOP;
386         break;
387       case ARM::t2STMDB_UPD:
388         NewOpc = ARM::tPUSH;
389         break;
390       default:
391         llvm_unreachable("");
392       }
393       MachineInstrBuilder NewInstr =
394           BuildMI(MF, DL, TII.get(NewOpc)).setMIFlags(MBBI->getFlags());
395       for (unsigned i = 2, NumOps = MBBI->getNumOperands(); i != NumOps; ++i)
396         NewInstr.add(MBBI->getOperand(i));
397       MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr);
398       MBB->erase(MBBI);
399       MBBI = NewMBBI;
400     }
401     unsigned SEHOpc =
402         (Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs;
403     MIB = BuildMI(MF, DL, TII.get(SEHOpc))
404               .addImm(Mask)
405               .addImm(Wide ? 1 : 0)
406               .setMIFlags(Flags);
407     break;
408   }
409   case ARM::VSTMDDB_UPD:
410   case ARM::VLDMDIA_UPD: {
411     int First = -1, Last = 0;
412     for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) {
413       const MachineOperand &MO = MBBI->getOperand(i);
414       unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
415       if (First == -1)
416         First = Reg;
417       Last = Reg;
418     }
419     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs))
420               .addImm(First)
421               .addImm(Last)
422               .setMIFlags(Flags);
423     break;
424   }
425   case ARM::tSUBspi:
426   case ARM::tADDspi:
427     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
428               .addImm(MBBI->getOperand(2).getImm() * 4)
429               .addImm(/*Wide=*/0)
430               .setMIFlags(Flags);
431     break;
432   case ARM::t2SUBspImm:
433   case ARM::t2SUBspImm12:
434   case ARM::t2ADDspImm:
435   case ARM::t2ADDspImm12:
436     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
437               .addImm(MBBI->getOperand(2).getImm())
438               .addImm(/*Wide=*/1)
439               .setMIFlags(Flags);
440     break;
441 
442   case ARM::tMOVr:
443     if (MBBI->getOperand(1).getReg() == ARM::SP &&
444         (Flags & MachineInstr::FrameSetup)) {
445       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
446       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
447                 .addImm(Reg)
448                 .setMIFlags(Flags);
449     } else if (MBBI->getOperand(0).getReg() == ARM::SP &&
450                (Flags & MachineInstr::FrameDestroy)) {
451       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
452       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
453                 .addImm(Reg)
454                 .setMIFlags(Flags);
455     } else {
456       report_fatal_error("No SEH Opcode for MOV");
457     }
458     break;
459 
460   case ARM::tBX_RET:
461   case ARM::TCRETURNri:
462     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
463               .addImm(/*Wide=*/0)
464               .setMIFlags(Flags);
465     break;
466 
467   case ARM::TCRETURNdi:
468     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
469               .addImm(/*Wide=*/1)
470               .setMIFlags(Flags);
471     break;
472   }
473   return MBB->insertAfter(MBBI, MIB);
474 }
475 
476 static MachineBasicBlock::iterator
477 initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) {
478   if (MBBI == MBB.begin())
479     return MachineBasicBlock::iterator();
480   return std::prev(MBBI);
481 }
482 
483 static void insertSEHRange(MachineBasicBlock &MBB,
484                            MachineBasicBlock::iterator Start,
485                            const MachineBasicBlock::iterator &End,
486                            const ARMBaseInstrInfo &TII, unsigned MIFlags) {
487   if (Start.isValid())
488     Start = std::next(Start);
489   else
490     Start = MBB.begin();
491 
492   for (auto MI = Start; MI != End;) {
493     auto Next = std::next(MI);
494     // Check if this instruction already has got a SEH opcode added. In that
495     // case, don't do this generic mapping.
496     if (Next != End && isSEHInstruction(*Next)) {
497       MI = std::next(Next);
498       while (MI != End && isSEHInstruction(*MI))
499         ++MI;
500       continue;
501     }
502     insertSEH(MI, TII, MIFlags);
503     MI = Next;
504   }
505 }
506 
507 static void emitRegPlusImmediate(
508     bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
509     const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
510     unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
511     ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
512   if (isARM)
513     emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
514                             Pred, PredReg, TII, MIFlags);
515   else
516     emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
517                            Pred, PredReg, TII, MIFlags);
518 }
519 
520 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
521                          MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
522                          const ARMBaseInstrInfo &TII, int NumBytes,
523                          unsigned MIFlags = MachineInstr::NoFlags,
524                          ARMCC::CondCodes Pred = ARMCC::AL,
525                          unsigned PredReg = 0) {
526   emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
527                        MIFlags, Pred, PredReg);
528 }
529 
530 static int sizeOfSPAdjustment(const MachineInstr &MI) {
531   int RegSize;
532   switch (MI.getOpcode()) {
533   case ARM::VSTMDDB_UPD:
534     RegSize = 8;
535     break;
536   case ARM::STMDB_UPD:
537   case ARM::t2STMDB_UPD:
538     RegSize = 4;
539     break;
540   case ARM::t2STR_PRE:
541   case ARM::STR_PRE_IMM:
542     return 4;
543   default:
544     llvm_unreachable("Unknown push or pop like instruction");
545   }
546 
547   int count = 0;
548   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
549   // pred) so the list starts at 4.
550   for (int i = MI.getNumOperands() - 1; i >= 4; --i)
551     count += RegSize;
552   return count;
553 }
554 
555 static bool WindowsRequiresStackProbe(const MachineFunction &MF,
556                                       size_t StackSizeInBytes) {
557   const MachineFrameInfo &MFI = MF.getFrameInfo();
558   const Function &F = MF.getFunction();
559   unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
560 
561   StackProbeSize =
562       F.getFnAttributeAsParsedInteger("stack-probe-size", StackProbeSize);
563   return (StackSizeInBytes >= StackProbeSize) &&
564          !F.hasFnAttribute("no-stack-arg-probe");
565 }
566 
567 namespace {
568 
569 struct StackAdjustingInsts {
570   struct InstInfo {
571     MachineBasicBlock::iterator I;
572     unsigned SPAdjust;
573     bool BeforeFPSet;
574   };
575 
576   SmallVector<InstInfo, 4> Insts;
577 
578   void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
579                bool BeforeFPSet = false) {
580     InstInfo Info = {I, SPAdjust, BeforeFPSet};
581     Insts.push_back(Info);
582   }
583 
584   void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
585     auto Info =
586         llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
587     assert(Info != Insts.end() && "invalid sp adjusting instruction");
588     Info->SPAdjust += ExtraBytes;
589   }
590 
591   void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
592                          const ARMBaseInstrInfo &TII, bool HasFP) {
593     MachineFunction &MF = *MBB.getParent();
594     unsigned CFAOffset = 0;
595     for (auto &Info : Insts) {
596       if (HasFP && !Info.BeforeFPSet)
597         return;
598 
599       CFAOffset += Info.SPAdjust;
600       unsigned CFIIndex = MF.addFrameInst(
601           MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset));
602       BuildMI(MBB, std::next(Info.I), dl,
603               TII.get(TargetOpcode::CFI_INSTRUCTION))
604               .addCFIIndex(CFIIndex)
605               .setMIFlags(MachineInstr::FrameSetup);
606     }
607   }
608 };
609 
610 } // end anonymous namespace
611 
612 /// Emit an instruction sequence that will align the address in
613 /// register Reg by zero-ing out the lower bits.  For versions of the
614 /// architecture that support Neon, this must be done in a single
615 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
616 /// single instruction. That function only gets called when optimizing
617 /// spilling of D registers on a core with the Neon instruction set
618 /// present.
619 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
620                                      const TargetInstrInfo &TII,
621                                      MachineBasicBlock &MBB,
622                                      MachineBasicBlock::iterator MBBI,
623                                      const DebugLoc &DL, const unsigned Reg,
624                                      const Align Alignment,
625                                      const bool MustBeSingleInstruction) {
626   const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>();
627   const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
628   const unsigned AlignMask = Alignment.value() - 1U;
629   const unsigned NrBitsToZero = Log2(Alignment);
630   assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
631   if (!AFI->isThumbFunction()) {
632     // if the BFC instruction is available, use that to zero the lower
633     // bits:
634     //   bfc Reg, #0, log2(Alignment)
635     // otherwise use BIC, if the mask to zero the required number of bits
636     // can be encoded in the bic immediate field
637     //   bic Reg, Reg, Alignment-1
638     // otherwise, emit
639     //   lsr Reg, Reg, log2(Alignment)
640     //   lsl Reg, Reg, log2(Alignment)
641     if (CanUseBFC) {
642       BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
643           .addReg(Reg, RegState::Kill)
644           .addImm(~AlignMask)
645           .add(predOps(ARMCC::AL));
646     } else if (AlignMask <= 255) {
647       BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
648           .addReg(Reg, RegState::Kill)
649           .addImm(AlignMask)
650           .add(predOps(ARMCC::AL))
651           .add(condCodeOp());
652     } else {
653       assert(!MustBeSingleInstruction &&
654              "Shouldn't call emitAligningInstructions demanding a single "
655              "instruction to be emitted for large stack alignment for a target "
656              "without BFC.");
657       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
658           .addReg(Reg, RegState::Kill)
659           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
660           .add(predOps(ARMCC::AL))
661           .add(condCodeOp());
662       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
663           .addReg(Reg, RegState::Kill)
664           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
665           .add(predOps(ARMCC::AL))
666           .add(condCodeOp());
667     }
668   } else {
669     // Since this is only reached for Thumb-2 targets, the BFC instruction
670     // should always be available.
671     assert(CanUseBFC);
672     BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
673         .addReg(Reg, RegState::Kill)
674         .addImm(~AlignMask)
675         .add(predOps(ARMCC::AL));
676   }
677 }
678 
679 /// We need the offset of the frame pointer relative to other MachineFrameInfo
680 /// offsets which are encoded relative to SP at function begin.
681 /// See also emitPrologue() for how the FP is set up.
682 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet
683 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
684 /// this to produce a conservative estimate that we check in an assert() later.
685 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI,
686                           const MachineFunction &MF) {
687   // For Thumb1, push.w isn't available, so the first push will always push
688   // r7 and lr onto the stack first.
689   if (AFI.isThumb1OnlyFunction())
690     return -AFI.getArgRegsSaveSize() - (2 * 4);
691   // This is a conservative estimation: Assume the frame pointer being r7 and
692   // pc("r15") up to r8 getting spilled before (= 8 registers).
693   int MaxRegBytes = 8 * 4;
694   if (STI.splitFramePointerPush(MF)) {
695     // Here, r11 can be stored below all of r4-r15 (3 registers more than
696     // above), plus d8-d15.
697     MaxRegBytes = 11 * 4 + 8 * 8;
698   }
699   int FPCXTSaveSize =
700       (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0;
701   return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes;
702 }
703 
704 void ARMFrameLowering::emitPrologue(MachineFunction &MF,
705                                     MachineBasicBlock &MBB) const {
706   MachineBasicBlock::iterator MBBI = MBB.begin();
707   MachineFrameInfo  &MFI = MF.getFrameInfo();
708   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
709   MachineModuleInfo &MMI = MF.getMMI();
710   MCContext &Context = MMI.getContext();
711   const TargetMachine &TM = MF.getTarget();
712   const MCRegisterInfo *MRI = Context.getRegisterInfo();
713   const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
714   const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
715   assert(!AFI->isThumb1OnlyFunction() &&
716          "This emitPrologue does not support Thumb1!");
717   bool isARM = !AFI->isThumbFunction();
718   Align Alignment = STI.getFrameLowering()->getStackAlign();
719   unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
720   unsigned NumBytes = MFI.getStackSize();
721   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
722   int FPCXTSaveSize = 0;
723   bool NeedsWinCFI = needsWinCFI(MF);
724 
725   // Debug location must be unknown since the first debug location is used
726   // to determine the end of the prologue.
727   DebugLoc dl;
728 
729   Register FramePtr = RegInfo->getFrameRegister(MF);
730 
731   // Determine the sizes of each callee-save spill areas and record which frame
732   // belongs to which callee-save spill areas.
733   unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
734   int FramePtrSpillFI = 0;
735   int D8SpillFI = 0;
736 
737   // All calls are tail calls in GHC calling conv, and functions have no
738   // prologue/epilogue.
739   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
740     return;
741 
742   StackAdjustingInsts DefCFAOffsetCandidates;
743   bool HasFP = hasFP(MF);
744 
745   if (!AFI->hasStackFrame() &&
746       (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
747     if (NumBytes != 0) {
748       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
749                    MachineInstr::FrameSetup);
750       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true);
751     }
752     if (!NeedsWinCFI)
753       DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
754     if (NeedsWinCFI && MBBI != MBB.begin()) {
755       insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup);
756       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd))
757           .setMIFlag(MachineInstr::FrameSetup);
758       MF.setHasWinCFI(true);
759     }
760     return;
761   }
762 
763   // Determine spill area sizes.
764   if (STI.splitFramePointerPush(MF)) {
765     for (const CalleeSavedInfo &I : CSI) {
766       Register Reg = I.getReg();
767       int FI = I.getFrameIdx();
768       switch (Reg) {
769       case ARM::R11:
770       case ARM::LR:
771         if (Reg == FramePtr)
772           FramePtrSpillFI = FI;
773         GPRCS2Size += 4;
774         break;
775       case ARM::R0:
776       case ARM::R1:
777       case ARM::R2:
778       case ARM::R3:
779       case ARM::R4:
780       case ARM::R5:
781       case ARM::R6:
782       case ARM::R7:
783       case ARM::R8:
784       case ARM::R9:
785       case ARM::R10:
786       case ARM::R12:
787         GPRCS1Size += 4;
788         break;
789       case ARM::FPCXTNS:
790         FPCXTSaveSize = 4;
791         break;
792       default:
793         // This is a DPR. Exclude the aligned DPRCS2 spills.
794         if (Reg == ARM::D8)
795           D8SpillFI = FI;
796         if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
797           DPRCSSize += 8;
798       }
799     }
800   } else {
801     for (const CalleeSavedInfo &I : CSI) {
802       Register Reg = I.getReg();
803       int FI = I.getFrameIdx();
804       switch (Reg) {
805       case ARM::R8:
806       case ARM::R9:
807       case ARM::R10:
808       case ARM::R11:
809       case ARM::R12:
810         if (STI.splitFramePushPop(MF)) {
811           GPRCS2Size += 4;
812           break;
813         }
814         [[fallthrough]];
815       case ARM::R0:
816       case ARM::R1:
817       case ARM::R2:
818       case ARM::R3:
819       case ARM::R4:
820       case ARM::R5:
821       case ARM::R6:
822       case ARM::R7:
823       case ARM::LR:
824         if (Reg == FramePtr)
825           FramePtrSpillFI = FI;
826         GPRCS1Size += 4;
827         break;
828       case ARM::FPCXTNS:
829         FPCXTSaveSize = 4;
830         break;
831       default:
832         // This is a DPR. Exclude the aligned DPRCS2 spills.
833         if (Reg == ARM::D8)
834           D8SpillFI = FI;
835         if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
836           DPRCSSize += 8;
837       }
838     }
839   }
840 
841   MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
842 
843   // Move past the PAC computation.
844   if (AFI->shouldSignReturnAddress())
845     LastPush = MBBI++;
846 
847   // Move past FPCXT area.
848   if (FPCXTSaveSize > 0) {
849     LastPush = MBBI++;
850     DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true);
851   }
852 
853   // Allocate the vararg register save area.
854   if (ArgRegsSaveSize) {
855     emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
856                  MachineInstr::FrameSetup);
857     LastPush = std::prev(MBBI);
858     DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, true);
859   }
860 
861   // Move past area 1.
862   if (GPRCS1Size > 0) {
863     GPRCS1Push = LastPush = MBBI++;
864     DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
865   }
866 
867   // Determine starting offsets of spill areas.
868   unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize;
869   unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size;
870   unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
871   Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4);
872   unsigned DPRGapSize = GPRCS1Size + FPCXTSaveSize + ArgRegsSaveSize;
873   if (!STI.splitFramePointerPush(MF)) {
874     DPRGapSize += GPRCS2Size;
875   }
876   DPRGapSize %= DPRAlign.value();
877 
878   unsigned DPRCSOffset;
879   if (STI.splitFramePointerPush(MF)) {
880     DPRCSOffset = GPRCS1Offset - DPRGapSize - DPRCSSize;
881     GPRCS2Offset = DPRCSOffset - GPRCS2Size;
882   } else {
883     DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
884   }
885   int FramePtrOffsetInPush = 0;
886   if (HasFP) {
887     int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
888     assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset &&
889            "Max FP estimation is wrong");
890     FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize;
891     AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
892                                 NumBytes);
893   }
894   AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
895   AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
896   AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
897 
898   // Move past area 2.
899   if (GPRCS2Size > 0 && !STI.splitFramePointerPush(MF)) {
900     GPRCS2Push = LastPush = MBBI++;
901     DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
902   }
903 
904   // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
905   // .cfi_offset operations will reflect that.
906   if (DPRGapSize) {
907     assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
908     if (LastPush != MBB.end() &&
909         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
910       DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
911     else {
912       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
913                    MachineInstr::FrameSetup);
914       DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
915     }
916   }
917 
918   // Move past area 3.
919   if (DPRCSSize > 0) {
920     // Since vpush register list cannot have gaps, there may be multiple vpush
921     // instructions in the prologue.
922     while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
923       DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
924       LastPush = MBBI++;
925     }
926   }
927 
928   // Move past the aligned DPRCS2 area.
929   if (AFI->getNumAlignedDPRCS2Regs() > 0) {
930     MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
931     // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
932     // leaves the stack pointer pointing to the DPRCS2 area.
933     //
934     // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
935     NumBytes += MFI.getObjectOffset(D8SpillFI);
936   } else
937     NumBytes = DPRCSOffset;
938 
939   if (GPRCS2Size > 0 && STI.splitFramePointerPush(MF)) {
940     GPRCS2Push = LastPush = MBBI++;
941     DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
942   }
943 
944   bool NeedsWinCFIStackAlloc = NeedsWinCFI;
945   if (STI.splitFramePointerPush(MF) && HasFP)
946     NeedsWinCFIStackAlloc = false;
947 
948   if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
949     uint32_t NumWords = NumBytes >> 2;
950 
951     if (NumWords < 65536) {
952       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
953           .addImm(NumWords)
954           .setMIFlags(MachineInstr::FrameSetup)
955           .add(predOps(ARMCC::AL));
956     } else {
957       // Split into two instructions here, instead of using t2MOVi32imm,
958       // to allow inserting accurate SEH instructions (including accurate
959       // instruction size for each of them).
960       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
961           .addImm(NumWords & 0xffff)
962           .setMIFlags(MachineInstr::FrameSetup)
963           .add(predOps(ARMCC::AL));
964       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4)
965           .addReg(ARM::R4)
966           .addImm(NumWords >> 16)
967           .setMIFlags(MachineInstr::FrameSetup)
968           .add(predOps(ARMCC::AL));
969     }
970 
971     switch (TM.getCodeModel()) {
972     case CodeModel::Tiny:
973       llvm_unreachable("Tiny code model not available on ARM.");
974     case CodeModel::Small:
975     case CodeModel::Medium:
976     case CodeModel::Kernel:
977       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
978           .add(predOps(ARMCC::AL))
979           .addExternalSymbol("__chkstk")
980           .addReg(ARM::R4, RegState::Implicit)
981           .setMIFlags(MachineInstr::FrameSetup);
982       break;
983     case CodeModel::Large:
984       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
985         .addExternalSymbol("__chkstk")
986         .setMIFlags(MachineInstr::FrameSetup);
987 
988       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
989           .add(predOps(ARMCC::AL))
990           .addReg(ARM::R12, RegState::Kill)
991           .addReg(ARM::R4, RegState::Implicit)
992           .setMIFlags(MachineInstr::FrameSetup);
993       break;
994     }
995 
996     MachineInstrBuilder Instr, SEH;
997     Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
998                 .addReg(ARM::SP, RegState::Kill)
999                 .addReg(ARM::R4, RegState::Kill)
1000                 .setMIFlags(MachineInstr::FrameSetup)
1001                 .add(predOps(ARMCC::AL))
1002                 .add(condCodeOp());
1003     if (NeedsWinCFIStackAlloc) {
1004       SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc))
1005                 .addImm(NumBytes)
1006                 .addImm(/*Wide=*/1)
1007                 .setMIFlags(MachineInstr::FrameSetup);
1008       MBB.insertAfter(Instr, SEH);
1009     }
1010     NumBytes = 0;
1011   }
1012 
1013   if (NumBytes) {
1014     // Adjust SP after all the callee-save spills.
1015     if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
1016         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
1017       DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
1018     else {
1019       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
1020                    MachineInstr::FrameSetup);
1021       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
1022     }
1023 
1024     if (HasFP && isARM)
1025       // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
1026       // Note it's not safe to do this in Thumb2 mode because it would have
1027       // taken two instructions:
1028       // mov sp, r7
1029       // sub sp, #24
1030       // If an interrupt is taken between the two instructions, then sp is in
1031       // an inconsistent state (pointing to the middle of callee-saved area).
1032       // The interrupt handler can end up clobbering the registers.
1033       AFI->setShouldRestoreSPFromFP(true);
1034   }
1035 
1036   // Set FP to point to the stack slot that contains the previous FP.
1037   // For iOS, FP is R7, which has now been stored in spill area 1.
1038   // Otherwise, if this is not iOS, all the callee-saved registers go
1039   // into spill area 1, including the FP in R11.  In either case, it
1040   // is in area one and the adjustment needs to take place just after
1041   // that push.
1042   // FIXME: The above is not necessary true when PACBTI is enabled.
1043   // AAPCS requires use of R11, and PACBTI gets in the way of regular pushes,
1044   // so FP ends up on area two.
1045   MachineBasicBlock::iterator AfterPush;
1046   if (HasFP) {
1047     AfterPush = std::next(GPRCS1Push);
1048     unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
1049     int FPOffset = PushSize + FramePtrOffsetInPush;
1050     if (STI.splitFramePointerPush(MF)) {
1051       AfterPush = std::next(GPRCS2Push);
1052       emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII,
1053                            FramePtr, ARM::SP, 0, MachineInstr::FrameSetup);
1054     } else {
1055       emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII,
1056                            FramePtr, ARM::SP, FPOffset,
1057                            MachineInstr::FrameSetup);
1058     }
1059     if (!NeedsWinCFI) {
1060       if (FramePtrOffsetInPush + PushSize != 0) {
1061         unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
1062             nullptr, MRI->getDwarfRegNum(FramePtr, true),
1063             FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush));
1064         BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1065             .addCFIIndex(CFIIndex)
1066             .setMIFlags(MachineInstr::FrameSetup);
1067       } else {
1068         unsigned CFIIndex =
1069             MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
1070                 nullptr, MRI->getDwarfRegNum(FramePtr, true)));
1071         BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1072             .addCFIIndex(CFIIndex)
1073             .setMIFlags(MachineInstr::FrameSetup);
1074       }
1075     }
1076   }
1077 
1078   // Emit a SEH opcode indicating the prologue end. The rest of the prologue
1079   // instructions below don't need to be replayed to unwind the stack.
1080   if (NeedsWinCFI && MBBI != MBB.begin()) {
1081     MachineBasicBlock::iterator End = MBBI;
1082     if (HasFP && STI.splitFramePointerPush(MF))
1083       End = AfterPush;
1084     insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup);
1085     BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd))
1086         .setMIFlag(MachineInstr::FrameSetup);
1087     MF.setHasWinCFI(true);
1088   }
1089 
1090   // Now that the prologue's actual instructions are finalised, we can insert
1091   // the necessary DWARF cf instructions to describe the situation. Start by
1092   // recording where each register ended up:
1093   if (GPRCS1Size > 0 && !NeedsWinCFI) {
1094     MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
1095     int CFIIndex;
1096     for (const auto &Entry : CSI) {
1097       Register Reg = Entry.getReg();
1098       int FI = Entry.getFrameIdx();
1099       switch (Reg) {
1100       case ARM::R8:
1101       case ARM::R9:
1102       case ARM::R10:
1103       case ARM::R11:
1104       case ARM::R12:
1105         if (STI.splitFramePushPop(MF))
1106           break;
1107         [[fallthrough]];
1108       case ARM::R0:
1109       case ARM::R1:
1110       case ARM::R2:
1111       case ARM::R3:
1112       case ARM::R4:
1113       case ARM::R5:
1114       case ARM::R6:
1115       case ARM::R7:
1116       case ARM::LR:
1117         CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1118             nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
1119         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1120             .addCFIIndex(CFIIndex)
1121             .setMIFlags(MachineInstr::FrameSetup);
1122         break;
1123       }
1124     }
1125   }
1126 
1127   if (GPRCS2Size > 0 && !NeedsWinCFI) {
1128     MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
1129     for (const auto &Entry : CSI) {
1130       Register Reg = Entry.getReg();
1131       int FI = Entry.getFrameIdx();
1132       switch (Reg) {
1133       case ARM::R8:
1134       case ARM::R9:
1135       case ARM::R10:
1136       case ARM::R11:
1137       case ARM::R12:
1138         if (STI.splitFramePushPop(MF)) {
1139           unsigned DwarfReg = MRI->getDwarfRegNum(
1140               Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, true);
1141           unsigned Offset = MFI.getObjectOffset(FI);
1142           unsigned CFIIndex = MF.addFrameInst(
1143               MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
1144           BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1145               .addCFIIndex(CFIIndex)
1146               .setMIFlags(MachineInstr::FrameSetup);
1147         }
1148         break;
1149       }
1150     }
1151   }
1152 
1153   if (DPRCSSize > 0 && !NeedsWinCFI) {
1154     // Since vpush register list cannot have gaps, there may be multiple vpush
1155     // instructions in the prologue.
1156     MachineBasicBlock::iterator Pos = std::next(LastPush);
1157     for (const auto &Entry : CSI) {
1158       Register Reg = Entry.getReg();
1159       int FI = Entry.getFrameIdx();
1160       if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
1161           (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
1162         unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
1163         unsigned Offset = MFI.getObjectOffset(FI);
1164         unsigned CFIIndex = MF.addFrameInst(
1165             MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
1166         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1167             .addCFIIndex(CFIIndex)
1168             .setMIFlags(MachineInstr::FrameSetup);
1169       }
1170     }
1171   }
1172 
1173   // Now we can emit descriptions of where the canonical frame address was
1174   // throughout the process. If we have a frame pointer, it takes over the job
1175   // half-way through, so only the first few .cfi_def_cfa_offset instructions
1176   // actually get emitted.
1177   if (!NeedsWinCFI)
1178     DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
1179 
1180   if (STI.isTargetELF() && hasFP(MF))
1181     MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
1182                             AFI->getFramePtrSpillOffset());
1183 
1184   AFI->setFPCXTSaveAreaSize(FPCXTSaveSize);
1185   AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
1186   AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
1187   AFI->setDPRCalleeSavedGapSize(DPRGapSize);
1188   AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
1189 
1190   // If we need dynamic stack realignment, do it here. Be paranoid and make
1191   // sure if we also have VLAs, we have a base pointer for frame access.
1192   // If aligned NEON registers were spilled, the stack has already been
1193   // realigned.
1194   if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) {
1195     Align MaxAlign = MFI.getMaxAlign();
1196     assert(!AFI->isThumb1OnlyFunction());
1197     if (!AFI->isThumbFunction()) {
1198       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
1199                                false);
1200     } else {
1201       // We cannot use sp as source/dest register here, thus we're using r4 to
1202       // perform the calculations. We're emitting the following sequence:
1203       // mov r4, sp
1204       // -- use emitAligningInstructions to produce best sequence to zero
1205       // -- out lower bits in r4
1206       // mov sp, r4
1207       // FIXME: It will be better just to find spare register here.
1208       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
1209           .addReg(ARM::SP, RegState::Kill)
1210           .add(predOps(ARMCC::AL));
1211       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
1212                                false);
1213       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1214           .addReg(ARM::R4, RegState::Kill)
1215           .add(predOps(ARMCC::AL));
1216     }
1217 
1218     AFI->setShouldRestoreSPFromFP(true);
1219   }
1220 
1221   // If we need a base pointer, set it up here. It's whatever the value
1222   // of the stack pointer is at this point. Any variable size objects
1223   // will be allocated after this, so we can still use the base pointer
1224   // to reference locals.
1225   // FIXME: Clarify FrameSetup flags here.
1226   if (RegInfo->hasBasePointer(MF)) {
1227     if (isARM)
1228       BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
1229           .addReg(ARM::SP)
1230           .add(predOps(ARMCC::AL))
1231           .add(condCodeOp());
1232     else
1233       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
1234           .addReg(ARM::SP)
1235           .add(predOps(ARMCC::AL));
1236   }
1237 
1238   // If the frame has variable sized objects then the epilogue must restore
1239   // the sp from fp. We can assume there's an FP here since hasFP already
1240   // checks for hasVarSizedObjects.
1241   if (MFI.hasVarSizedObjects())
1242     AFI->setShouldRestoreSPFromFP(true);
1243 }
1244 
1245 void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
1246                                     MachineBasicBlock &MBB) const {
1247   MachineFrameInfo &MFI = MF.getFrameInfo();
1248   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1249   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
1250   const ARMBaseInstrInfo &TII =
1251       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1252   assert(!AFI->isThumb1OnlyFunction() &&
1253          "This emitEpilogue does not support Thumb1!");
1254   bool isARM = !AFI->isThumbFunction();
1255 
1256   // Amount of stack space we reserved next to incoming args for either
1257   // varargs registers or stack arguments in tail calls made by this function.
1258   unsigned ReservedArgStack = AFI->getArgRegsSaveSize();
1259 
1260   // How much of the stack used by incoming arguments this function is expected
1261   // to restore in this particular epilogue.
1262   int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB);
1263   int NumBytes = (int)MFI.getStackSize();
1264   Register FramePtr = RegInfo->getFrameRegister(MF);
1265 
1266   // All calls are tail calls in GHC calling conv, and functions have no
1267   // prologue/epilogue.
1268   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1269     return;
1270 
1271   // First put ourselves on the first (from top) terminator instructions.
1272   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1273   DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1274 
1275   MachineBasicBlock::iterator RangeStart;
1276   if (!AFI->hasStackFrame()) {
1277     if (MF.hasWinCFI()) {
1278       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
1279           .setMIFlag(MachineInstr::FrameDestroy);
1280       RangeStart = initMBBRange(MBB, MBBI);
1281     }
1282 
1283     if (NumBytes + IncomingArgStackToRestore != 0)
1284       emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1285                    NumBytes + IncomingArgStackToRestore,
1286                    MachineInstr::FrameDestroy);
1287   } else {
1288     // Unwind MBBI to point to first LDR / VLDRD.
1289     if (MBBI != MBB.begin()) {
1290       do {
1291         --MBBI;
1292       } while (MBBI != MBB.begin() &&
1293                MBBI->getFlag(MachineInstr::FrameDestroy));
1294       if (!MBBI->getFlag(MachineInstr::FrameDestroy))
1295         ++MBBI;
1296     }
1297 
1298     if (MF.hasWinCFI()) {
1299       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
1300           .setMIFlag(MachineInstr::FrameDestroy);
1301       RangeStart = initMBBRange(MBB, MBBI);
1302     }
1303 
1304     // Move SP to start of FP callee save spill area.
1305     NumBytes -= (ReservedArgStack +
1306                  AFI->getFPCXTSaveAreaSize() +
1307                  AFI->getGPRCalleeSavedArea1Size() +
1308                  AFI->getGPRCalleeSavedArea2Size() +
1309                  AFI->getDPRCalleeSavedGapSize() +
1310                  AFI->getDPRCalleeSavedAreaSize());
1311 
1312     // Reset SP based on frame pointer only if the stack frame extends beyond
1313     // frame pointer stack slot or target is ELF and the function has FP.
1314     if (AFI->shouldRestoreSPFromFP()) {
1315       NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
1316       if (NumBytes) {
1317         if (isARM)
1318           emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
1319                                   ARMCC::AL, 0, TII,
1320                                   MachineInstr::FrameDestroy);
1321         else {
1322           // It's not possible to restore SP from FP in a single instruction.
1323           // For iOS, this looks like:
1324           // mov sp, r7
1325           // sub sp, #24
1326           // This is bad, if an interrupt is taken after the mov, sp is in an
1327           // inconsistent state.
1328           // Use the first callee-saved register as a scratch register.
1329           assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
1330                  "No scratch register to restore SP from FP!");
1331           emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
1332                                  ARMCC::AL, 0, TII, MachineInstr::FrameDestroy);
1333           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1334               .addReg(ARM::R4)
1335               .add(predOps(ARMCC::AL))
1336               .setMIFlag(MachineInstr::FrameDestroy);
1337         }
1338       } else {
1339         // Thumb2 or ARM.
1340         if (isARM)
1341           BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
1342               .addReg(FramePtr)
1343               .add(predOps(ARMCC::AL))
1344               .add(condCodeOp())
1345               .setMIFlag(MachineInstr::FrameDestroy);
1346         else
1347           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1348               .addReg(FramePtr)
1349               .add(predOps(ARMCC::AL))
1350               .setMIFlag(MachineInstr::FrameDestroy);
1351       }
1352     } else if (NumBytes &&
1353                !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
1354       emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes,
1355                    MachineInstr::FrameDestroy);
1356 
1357     // Increment past our save areas.
1358     if (AFI->getGPRCalleeSavedArea2Size() && STI.splitFramePointerPush(MF))
1359       MBBI++;
1360 
1361     if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
1362       MBBI++;
1363       // Since vpop register list cannot have gaps, there may be multiple vpop
1364       // instructions in the epilogue.
1365       while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
1366         MBBI++;
1367     }
1368     if (AFI->getDPRCalleeSavedGapSize()) {
1369       assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
1370              "unexpected DPR alignment gap");
1371       emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(),
1372                    MachineInstr::FrameDestroy);
1373     }
1374 
1375     if (AFI->getGPRCalleeSavedArea2Size() && !STI.splitFramePointerPush(MF))
1376       MBBI++;
1377     if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
1378 
1379     if (ReservedArgStack || IncomingArgStackToRestore) {
1380       assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 &&
1381              "attempting to restore negative stack amount");
1382       emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1383                    ReservedArgStack + IncomingArgStackToRestore,
1384                    MachineInstr::FrameDestroy);
1385     }
1386 
1387     // Validate PAC, It should have been already popped into R12. For CMSE entry
1388     // function, the validation instruction is emitted during expansion of the
1389     // tBXNS_RET, since the validation must use the value of SP at function
1390     // entry, before saving, resp. after restoring, FPCXTNS.
1391     if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction())
1392       BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT));
1393   }
1394 
1395   if (MF.hasWinCFI()) {
1396     insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy);
1397     BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd))
1398         .setMIFlag(MachineInstr::FrameDestroy);
1399   }
1400 }
1401 
1402 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1403 /// debug info.  It's the same as what we use for resolving the code-gen
1404 /// references for now.  FIXME: This can go wrong when references are
1405 /// SP-relative and simple call frames aren't used.
1406 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF,
1407                                                      int FI,
1408                                                      Register &FrameReg) const {
1409   return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0));
1410 }
1411 
1412 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
1413                                                  int FI, Register &FrameReg,
1414                                                  int SPAdj) const {
1415   const MachineFrameInfo &MFI = MF.getFrameInfo();
1416   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1417       MF.getSubtarget().getRegisterInfo());
1418   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1419   int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
1420   int FPOffset = Offset - AFI->getFramePtrSpillOffset();
1421   bool isFixed = MFI.isFixedObjectIndex(FI);
1422 
1423   FrameReg = ARM::SP;
1424   Offset += SPAdj;
1425 
1426   // SP can move around if there are allocas.  We may also lose track of SP
1427   // when emergency spilling inside a non-reserved call frame setup.
1428   bool hasMovingSP = !hasReservedCallFrame(MF);
1429 
1430   // When dynamically realigning the stack, use the frame pointer for
1431   // parameters, and the stack/base pointer for locals.
1432   if (RegInfo->hasStackRealignment(MF)) {
1433     assert(hasFP(MF) && "dynamic stack realignment without a FP!");
1434     if (isFixed) {
1435       FrameReg = RegInfo->getFrameRegister(MF);
1436       Offset = FPOffset;
1437     } else if (hasMovingSP) {
1438       assert(RegInfo->hasBasePointer(MF) &&
1439              "VLAs and dynamic stack alignment, but missing base pointer!");
1440       FrameReg = RegInfo->getBaseRegister();
1441       Offset -= SPAdj;
1442     }
1443     return Offset;
1444   }
1445 
1446   // If there is a frame pointer, use it when we can.
1447   if (hasFP(MF) && AFI->hasStackFrame()) {
1448     // Use frame pointer to reference fixed objects. Use it for locals if
1449     // there are VLAs (and thus the SP isn't reliable as a base).
1450     if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
1451       FrameReg = RegInfo->getFrameRegister(MF);
1452       return FPOffset;
1453     } else if (hasMovingSP) {
1454       assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
1455       if (AFI->isThumb2Function()) {
1456         // Try to use the frame pointer if we can, else use the base pointer
1457         // since it's available. This is handy for the emergency spill slot, in
1458         // particular.
1459         if (FPOffset >= -255 && FPOffset < 0) {
1460           FrameReg = RegInfo->getFrameRegister(MF);
1461           return FPOffset;
1462         }
1463       }
1464     } else if (AFI->isThumbFunction()) {
1465       // Prefer SP to base pointer, if the offset is suitably aligned and in
1466       // range as the effective range of the immediate offset is bigger when
1467       // basing off SP.
1468       // Use  add <rd>, sp, #<imm8>
1469       //      ldr <rd>, [sp, #<imm8>]
1470       if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
1471         return Offset;
1472       // In Thumb2 mode, the negative offset is very limited. Try to avoid
1473       // out of range references. ldr <rt>,[<rn>, #-<imm8>]
1474       if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
1475         FrameReg = RegInfo->getFrameRegister(MF);
1476         return FPOffset;
1477       }
1478     } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
1479       // Otherwise, use SP or FP, whichever is closer to the stack slot.
1480       FrameReg = RegInfo->getFrameRegister(MF);
1481       return FPOffset;
1482     }
1483   }
1484   // Use the base pointer if we have one.
1485   // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper?
1486   // That can happen if we forced a base pointer for a large call frame.
1487   if (RegInfo->hasBasePointer(MF)) {
1488     FrameReg = RegInfo->getBaseRegister();
1489     Offset -= SPAdj;
1490   }
1491   return Offset;
1492 }
1493 
1494 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
1495                                     MachineBasicBlock::iterator MI,
1496                                     ArrayRef<CalleeSavedInfo> CSI,
1497                                     unsigned StmOpc, unsigned StrOpc,
1498                                     bool NoGap, bool (*Func)(unsigned, bool),
1499                                     unsigned NumAlignedDPRCS2Regs,
1500                                     unsigned MIFlags) const {
1501   MachineFunction &MF = *MBB.getParent();
1502   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1503   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1504 
1505   DebugLoc DL;
1506 
1507   using RegAndKill = std::pair<unsigned, bool>;
1508 
1509   SmallVector<RegAndKill, 4> Regs;
1510   unsigned i = CSI.size();
1511   while (i != 0) {
1512     unsigned LastReg = 0;
1513     for (; i != 0; --i) {
1514       Register Reg = CSI[i-1].getReg();
1515       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1516 
1517       // D-registers in the aligned area DPRCS2 are NOT spilled here.
1518       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1519         continue;
1520 
1521       const MachineRegisterInfo &MRI = MF.getRegInfo();
1522       bool isLiveIn = MRI.isLiveIn(Reg);
1523       if (!isLiveIn && !MRI.isReserved(Reg))
1524         MBB.addLiveIn(Reg);
1525       // If NoGap is true, push consecutive registers and then leave the rest
1526       // for other instructions. e.g.
1527       // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
1528       if (NoGap && LastReg && LastReg != Reg-1)
1529         break;
1530       LastReg = Reg;
1531       // Do not set a kill flag on values that are also marked as live-in. This
1532       // happens with the @llvm-returnaddress intrinsic and with arguments
1533       // passed in callee saved registers.
1534       // Omitting the kill flags is conservatively correct even if the live-in
1535       // is not used after all.
1536       Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
1537     }
1538 
1539     if (Regs.empty())
1540       continue;
1541 
1542     llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) {
1543       return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
1544     });
1545 
1546     if (Regs.size() > 1 || StrOpc== 0) {
1547       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
1548                                     .addReg(ARM::SP)
1549                                     .setMIFlags(MIFlags)
1550                                     .add(predOps(ARMCC::AL));
1551       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1552         MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
1553     } else if (Regs.size() == 1) {
1554       BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
1555           .addReg(Regs[0].first, getKillRegState(Regs[0].second))
1556           .addReg(ARM::SP)
1557           .setMIFlags(MIFlags)
1558           .addImm(-4)
1559           .add(predOps(ARMCC::AL));
1560     }
1561     Regs.clear();
1562 
1563     // Put any subsequent vpush instructions before this one: they will refer to
1564     // higher register numbers so need to be pushed first in order to preserve
1565     // monotonicity.
1566     if (MI != MBB.begin())
1567       --MI;
1568   }
1569 }
1570 
1571 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
1572                                    MachineBasicBlock::iterator MI,
1573                                    MutableArrayRef<CalleeSavedInfo> CSI,
1574                                    unsigned LdmOpc, unsigned LdrOpc,
1575                                    bool isVarArg, bool NoGap,
1576                                    bool (*Func)(unsigned, bool),
1577                                    unsigned NumAlignedDPRCS2Regs) const {
1578   MachineFunction &MF = *MBB.getParent();
1579   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1580   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1581   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1582   bool hasPAC = AFI->shouldSignReturnAddress();
1583   DebugLoc DL;
1584   bool isTailCall = false;
1585   bool isInterrupt = false;
1586   bool isTrap = false;
1587   bool isCmseEntry = false;
1588   if (MBB.end() != MI) {
1589     DL = MI->getDebugLoc();
1590     unsigned RetOpcode = MI->getOpcode();
1591     isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri);
1592     isInterrupt =
1593         RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
1594     isTrap =
1595         RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
1596         RetOpcode == ARM::tTRAP;
1597     isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET);
1598   }
1599 
1600   SmallVector<unsigned, 4> Regs;
1601   unsigned i = CSI.size();
1602   while (i != 0) {
1603     unsigned LastReg = 0;
1604     bool DeleteRet = false;
1605     for (; i != 0; --i) {
1606       CalleeSavedInfo &Info = CSI[i-1];
1607       Register Reg = Info.getReg();
1608       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1609 
1610       // The aligned reloads from area DPRCS2 are not inserted here.
1611       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1612         continue;
1613       if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
1614           !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 &&
1615           STI.hasV5TOps() && MBB.succ_empty() && !hasPAC &&
1616           !STI.splitFramePointerPush(MF)) {
1617         Reg = ARM::PC;
1618         // Fold the return instruction into the LDM.
1619         DeleteRet = true;
1620         LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
1621         // We 'restore' LR into PC so it is not live out of the return block:
1622         // Clear Restored bit.
1623         Info.setRestored(false);
1624       }
1625 
1626       // If NoGap is true, pop consecutive registers and then leave the rest
1627       // for other instructions. e.g.
1628       // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1629       if (NoGap && LastReg && LastReg != Reg-1)
1630         break;
1631 
1632       LastReg = Reg;
1633       Regs.push_back(Reg);
1634     }
1635 
1636     if (Regs.empty())
1637       continue;
1638 
1639     llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) {
1640       return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
1641     });
1642 
1643     if (Regs.size() > 1 || LdrOpc == 0) {
1644       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
1645                                     .addReg(ARM::SP)
1646                                     .add(predOps(ARMCC::AL))
1647                                     .setMIFlags(MachineInstr::FrameDestroy);
1648       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1649         MIB.addReg(Regs[i], getDefRegState(true));
1650       if (DeleteRet) {
1651         if (MI != MBB.end()) {
1652           MIB.copyImplicitOps(*MI);
1653           MI->eraseFromParent();
1654         }
1655       }
1656       MI = MIB;
1657     } else if (Regs.size() == 1) {
1658       // If we adjusted the reg to PC from LR above, switch it back here. We
1659       // only do that for LDM.
1660       if (Regs[0] == ARM::PC)
1661         Regs[0] = ARM::LR;
1662       MachineInstrBuilder MIB =
1663         BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
1664           .addReg(ARM::SP, RegState::Define)
1665           .addReg(ARM::SP)
1666           .setMIFlags(MachineInstr::FrameDestroy);
1667       // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1668       // that refactoring is complete (eventually).
1669       if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
1670         MIB.addReg(0);
1671         MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
1672       } else
1673         MIB.addImm(4);
1674       MIB.add(predOps(ARMCC::AL));
1675     }
1676     Regs.clear();
1677 
1678     // Put any subsequent vpop instructions after this one: they will refer to
1679     // higher register numbers so need to be popped afterwards.
1680     if (MI != MBB.end())
1681       ++MI;
1682   }
1683 }
1684 
1685 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1686 /// starting from d8.  Also insert stack realignment code and leave the stack
1687 /// pointer pointing to the d8 spill slot.
1688 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
1689                                     MachineBasicBlock::iterator MI,
1690                                     unsigned NumAlignedDPRCS2Regs,
1691                                     ArrayRef<CalleeSavedInfo> CSI,
1692                                     const TargetRegisterInfo *TRI) {
1693   MachineFunction &MF = *MBB.getParent();
1694   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1695   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1696   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1697   MachineFrameInfo &MFI = MF.getFrameInfo();
1698 
1699   // Mark the D-register spill slots as properly aligned.  Since MFI computes
1700   // stack slot layout backwards, this can actually mean that the d-reg stack
1701   // slot offsets can be wrong. The offset for d8 will always be correct.
1702   for (const CalleeSavedInfo &I : CSI) {
1703     unsigned DNum = I.getReg() - ARM::D8;
1704     if (DNum > NumAlignedDPRCS2Regs - 1)
1705       continue;
1706     int FI = I.getFrameIdx();
1707     // The even-numbered registers will be 16-byte aligned, the odd-numbered
1708     // registers will be 8-byte aligned.
1709     MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16));
1710 
1711     // The stack slot for D8 needs to be maximally aligned because this is
1712     // actually the point where we align the stack pointer.  MachineFrameInfo
1713     // computes all offsets relative to the incoming stack pointer which is a
1714     // bit weird when realigning the stack.  Any extra padding for this
1715     // over-alignment is not realized because the code inserted below adjusts
1716     // the stack pointer by numregs * 8 before aligning the stack pointer.
1717     if (DNum == 0)
1718       MFI.setObjectAlignment(FI, MFI.getMaxAlign());
1719   }
1720 
1721   // Move the stack pointer to the d8 spill slot, and align it at the same
1722   // time. Leave the stack slot address in the scratch register r4.
1723   //
1724   //   sub r4, sp, #numregs * 8
1725   //   bic r4, r4, #align - 1
1726   //   mov sp, r4
1727   //
1728   bool isThumb = AFI->isThumbFunction();
1729   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1730   AFI->setShouldRestoreSPFromFP(true);
1731 
1732   // sub r4, sp, #numregs * 8
1733   // The immediate is <= 64, so it doesn't need any special encoding.
1734   unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
1735   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1736       .addReg(ARM::SP)
1737       .addImm(8 * NumAlignedDPRCS2Regs)
1738       .add(predOps(ARMCC::AL))
1739       .add(condCodeOp());
1740 
1741   Align MaxAlign = MF.getFrameInfo().getMaxAlign();
1742   // We must set parameter MustBeSingleInstruction to true, since
1743   // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1744   // stack alignment.  Luckily, this can always be done since all ARM
1745   // architecture versions that support Neon also support the BFC
1746   // instruction.
1747   emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
1748 
1749   // mov sp, r4
1750   // The stack pointer must be adjusted before spilling anything, otherwise
1751   // the stack slots could be clobbered by an interrupt handler.
1752   // Leave r4 live, it is used below.
1753   Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
1754   MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
1755                                 .addReg(ARM::R4)
1756                                 .add(predOps(ARMCC::AL));
1757   if (!isThumb)
1758     MIB.add(condCodeOp());
1759 
1760   // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1761   // r4 holds the stack slot address.
1762   unsigned NextReg = ARM::D8;
1763 
1764   // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1765   // The writeback is only needed when emitting two vst1.64 instructions.
1766   if (NumAlignedDPRCS2Regs >= 6) {
1767     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1768                                                &ARM::QQPRRegClass);
1769     MBB.addLiveIn(SupReg);
1770     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
1771         .addReg(ARM::R4, RegState::Kill)
1772         .addImm(16)
1773         .addReg(NextReg)
1774         .addReg(SupReg, RegState::ImplicitKill)
1775         .add(predOps(ARMCC::AL));
1776     NextReg += 4;
1777     NumAlignedDPRCS2Regs -= 4;
1778   }
1779 
1780   // We won't modify r4 beyond this point.  It currently points to the next
1781   // register to be spilled.
1782   unsigned R4BaseReg = NextReg;
1783 
1784   // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1785   if (NumAlignedDPRCS2Regs >= 4) {
1786     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1787                                                &ARM::QQPRRegClass);
1788     MBB.addLiveIn(SupReg);
1789     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
1790         .addReg(ARM::R4)
1791         .addImm(16)
1792         .addReg(NextReg)
1793         .addReg(SupReg, RegState::ImplicitKill)
1794         .add(predOps(ARMCC::AL));
1795     NextReg += 4;
1796     NumAlignedDPRCS2Regs -= 4;
1797   }
1798 
1799   // 16-byte aligned vst1.64 with 2 d-regs.
1800   if (NumAlignedDPRCS2Regs >= 2) {
1801     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1802                                                &ARM::QPRRegClass);
1803     MBB.addLiveIn(SupReg);
1804     BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
1805         .addReg(ARM::R4)
1806         .addImm(16)
1807         .addReg(SupReg)
1808         .add(predOps(ARMCC::AL));
1809     NextReg += 2;
1810     NumAlignedDPRCS2Regs -= 2;
1811   }
1812 
1813   // Finally, use a vanilla vstr.64 for the odd last register.
1814   if (NumAlignedDPRCS2Regs) {
1815     MBB.addLiveIn(NextReg);
1816     // vstr.64 uses addrmode5 which has an offset scale of 4.
1817     BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
1818         .addReg(NextReg)
1819         .addReg(ARM::R4)
1820         .addImm((NextReg - R4BaseReg) * 2)
1821         .add(predOps(ARMCC::AL));
1822   }
1823 
1824   // The last spill instruction inserted should kill the scratch register r4.
1825   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1826 }
1827 
1828 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1829 /// iterator to the following instruction.
1830 static MachineBasicBlock::iterator
1831 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
1832                         unsigned NumAlignedDPRCS2Regs) {
1833   //   sub r4, sp, #numregs * 8
1834   //   bic r4, r4, #align - 1
1835   //   mov sp, r4
1836   ++MI; ++MI; ++MI;
1837   assert(MI->mayStore() && "Expecting spill instruction");
1838 
1839   // These switches all fall through.
1840   switch(NumAlignedDPRCS2Regs) {
1841   case 7:
1842     ++MI;
1843     assert(MI->mayStore() && "Expecting spill instruction");
1844     [[fallthrough]];
1845   default:
1846     ++MI;
1847     assert(MI->mayStore() && "Expecting spill instruction");
1848     [[fallthrough]];
1849   case 1:
1850   case 2:
1851   case 4:
1852     assert(MI->killsRegister(ARM::R4) && "Missed kill flag");
1853     ++MI;
1854   }
1855   return MI;
1856 }
1857 
1858 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1859 /// starting from d8.  These instructions are assumed to execute while the
1860 /// stack is still aligned, unlike the code inserted by emitPopInst.
1861 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
1862                                       MachineBasicBlock::iterator MI,
1863                                       unsigned NumAlignedDPRCS2Regs,
1864                                       ArrayRef<CalleeSavedInfo> CSI,
1865                                       const TargetRegisterInfo *TRI) {
1866   MachineFunction &MF = *MBB.getParent();
1867   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1868   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1869   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1870 
1871   // Find the frame index assigned to d8.
1872   int D8SpillFI = 0;
1873   for (const CalleeSavedInfo &I : CSI)
1874     if (I.getReg() == ARM::D8) {
1875       D8SpillFI = I.getFrameIdx();
1876       break;
1877     }
1878 
1879   // Materialize the address of the d8 spill slot into the scratch register r4.
1880   // This can be fairly complicated if the stack frame is large, so just use
1881   // the normal frame index elimination mechanism to do it.  This code runs as
1882   // the initial part of the epilog where the stack and base pointers haven't
1883   // been changed yet.
1884   bool isThumb = AFI->isThumbFunction();
1885   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1886 
1887   unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
1888   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1889       .addFrameIndex(D8SpillFI)
1890       .addImm(0)
1891       .add(predOps(ARMCC::AL))
1892       .add(condCodeOp());
1893 
1894   // Now restore NumAlignedDPRCS2Regs registers starting from d8.
1895   unsigned NextReg = ARM::D8;
1896 
1897   // 16-byte aligned vld1.64 with 4 d-regs and writeback.
1898   if (NumAlignedDPRCS2Regs >= 6) {
1899     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1900                                                &ARM::QQPRRegClass);
1901     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
1902         .addReg(ARM::R4, RegState::Define)
1903         .addReg(ARM::R4, RegState::Kill)
1904         .addImm(16)
1905         .addReg(SupReg, RegState::ImplicitDefine)
1906         .add(predOps(ARMCC::AL));
1907     NextReg += 4;
1908     NumAlignedDPRCS2Regs -= 4;
1909   }
1910 
1911   // We won't modify r4 beyond this point.  It currently points to the next
1912   // register to be spilled.
1913   unsigned R4BaseReg = NextReg;
1914 
1915   // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
1916   if (NumAlignedDPRCS2Regs >= 4) {
1917     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1918                                                &ARM::QQPRRegClass);
1919     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
1920         .addReg(ARM::R4)
1921         .addImm(16)
1922         .addReg(SupReg, RegState::ImplicitDefine)
1923         .add(predOps(ARMCC::AL));
1924     NextReg += 4;
1925     NumAlignedDPRCS2Regs -= 4;
1926   }
1927 
1928   // 16-byte aligned vld1.64 with 2 d-regs.
1929   if (NumAlignedDPRCS2Regs >= 2) {
1930     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1931                                                &ARM::QPRRegClass);
1932     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
1933         .addReg(ARM::R4)
1934         .addImm(16)
1935         .add(predOps(ARMCC::AL));
1936     NextReg += 2;
1937     NumAlignedDPRCS2Regs -= 2;
1938   }
1939 
1940   // Finally, use a vanilla vldr.64 for the remaining odd register.
1941   if (NumAlignedDPRCS2Regs)
1942     BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
1943         .addReg(ARM::R4)
1944         .addImm(2 * (NextReg - R4BaseReg))
1945         .add(predOps(ARMCC::AL));
1946 
1947   // Last store kills r4.
1948   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1949 }
1950 
1951 bool ARMFrameLowering::spillCalleeSavedRegisters(
1952     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1953     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
1954   if (CSI.empty())
1955     return false;
1956 
1957   MachineFunction &MF = *MBB.getParent();
1958   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1959 
1960   unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
1961   unsigned PushOneOpc = AFI->isThumbFunction() ?
1962     ARM::t2STR_PRE : ARM::STR_PRE_IMM;
1963   unsigned FltOpc = ARM::VSTMDDB_UPD;
1964   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1965   // Compute PAC in R12.
1966   if (AFI->shouldSignReturnAddress()) {
1967     BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC))
1968         .setMIFlags(MachineInstr::FrameSetup);
1969   }
1970   // Save the non-secure floating point context.
1971   if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) {
1972         return C.getReg() == ARM::FPCXTNS;
1973       })) {
1974     BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre),
1975             ARM::SP)
1976         .addReg(ARM::SP)
1977         .addImm(-4)
1978         .add(predOps(ARMCC::AL));
1979   }
1980   if (STI.splitFramePointerPush(MF)) {
1981     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false,
1982                  &isSplitFPArea1Register, 0, MachineInstr::FrameSetup);
1983     emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
1984                  NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
1985     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false,
1986                  &isSplitFPArea2Register, 0, MachineInstr::FrameSetup);
1987   } else {
1988     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register,
1989                  0, MachineInstr::FrameSetup);
1990     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register,
1991                  0, MachineInstr::FrameSetup);
1992     emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
1993                  NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
1994   }
1995 
1996   // The code above does not insert spill code for the aligned DPRCS2 registers.
1997   // The stack realignment code will be inserted between the push instructions
1998   // and these spills.
1999   if (NumAlignedDPRCS2Regs)
2000     emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
2001 
2002   return true;
2003 }
2004 
2005 bool ARMFrameLowering::restoreCalleeSavedRegisters(
2006     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2007     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2008   if (CSI.empty())
2009     return false;
2010 
2011   MachineFunction &MF = *MBB.getParent();
2012   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2013   bool isVarArg = AFI->getArgRegsSaveSize() > 0;
2014   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
2015 
2016   // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
2017   // registers. Do that here instead.
2018   if (NumAlignedDPRCS2Regs)
2019     emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
2020 
2021   unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
2022   unsigned LdrOpc =
2023       AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
2024   unsigned FltOpc = ARM::VLDMDIA_UPD;
2025   if (STI.splitFramePointerPush(MF)) {
2026     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2027                 &isSplitFPArea2Register, 0);
2028     emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
2029                 NumAlignedDPRCS2Regs);
2030     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2031                 &isSplitFPArea1Register, 0);
2032   } else {
2033     emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
2034                 NumAlignedDPRCS2Regs);
2035     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2036                 &isARMArea2Register, 0);
2037     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2038                 &isARMArea1Register, 0);
2039   }
2040 
2041   return true;
2042 }
2043 
2044 // FIXME: Make generic?
2045 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF,
2046                                             const ARMBaseInstrInfo &TII) {
2047   unsigned FnSize = 0;
2048   for (auto &MBB : MF) {
2049     for (auto &MI : MBB)
2050       FnSize += TII.getInstSizeInBytes(MI);
2051   }
2052   if (MF.getJumpTableInfo())
2053     for (auto &Table: MF.getJumpTableInfo()->getJumpTables())
2054       FnSize += Table.MBBs.size() * 4;
2055   FnSize += MF.getConstantPool()->getConstants().size() * 4;
2056   return FnSize;
2057 }
2058 
2059 /// estimateRSStackSizeLimit - Look at each instruction that references stack
2060 /// frames and return the stack size limit beyond which some of these
2061 /// instructions will require a scratch register during their expansion later.
2062 // FIXME: Move to TII?
2063 static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
2064                                          const TargetFrameLowering *TFI,
2065                                          bool &HasNonSPFrameIndex) {
2066   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2067   const ARMBaseInstrInfo &TII =
2068       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2069   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2070   unsigned Limit = (1 << 12) - 1;
2071   for (auto &MBB : MF) {
2072     for (auto &MI : MBB) {
2073       if (MI.isDebugInstr())
2074         continue;
2075       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2076         if (!MI.getOperand(i).isFI())
2077           continue;
2078 
2079         // When using ADDri to get the address of a stack object, 255 is the
2080         // largest offset guaranteed to fit in the immediate offset.
2081         if (MI.getOpcode() == ARM::ADDri) {
2082           Limit = std::min(Limit, (1U << 8) - 1);
2083           break;
2084         }
2085         // t2ADDri will not require an extra register, it can reuse the
2086         // destination.
2087         if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12)
2088           break;
2089 
2090         const MCInstrDesc &MCID = MI.getDesc();
2091         const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF);
2092         if (RegClass && !RegClass->contains(ARM::SP))
2093           HasNonSPFrameIndex = true;
2094 
2095         // Otherwise check the addressing mode.
2096         switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
2097         case ARMII::AddrMode_i12:
2098         case ARMII::AddrMode2:
2099           // Default 12 bit limit.
2100           break;
2101         case ARMII::AddrMode3:
2102         case ARMII::AddrModeT2_i8neg:
2103           Limit = std::min(Limit, (1U << 8) - 1);
2104           break;
2105         case ARMII::AddrMode5FP16:
2106           Limit = std::min(Limit, ((1U << 8) - 1) * 2);
2107           break;
2108         case ARMII::AddrMode5:
2109         case ARMII::AddrModeT2_i8s4:
2110         case ARMII::AddrModeT2_ldrex:
2111           Limit = std::min(Limit, ((1U << 8) - 1) * 4);
2112           break;
2113         case ARMII::AddrModeT2_i12:
2114           // i12 supports only positive offset so these will be converted to
2115           // i8 opcodes. See llvm::rewriteT2FrameIndex.
2116           if (TFI->hasFP(MF) && AFI->hasStackFrame())
2117             Limit = std::min(Limit, (1U << 8) - 1);
2118           break;
2119         case ARMII::AddrMode4:
2120         case ARMII::AddrMode6:
2121           // Addressing modes 4 & 6 (load/store) instructions can't encode an
2122           // immediate offset for stack references.
2123           return 0;
2124         case ARMII::AddrModeT2_i7:
2125           Limit = std::min(Limit, ((1U << 7) - 1) * 1);
2126           break;
2127         case ARMII::AddrModeT2_i7s2:
2128           Limit = std::min(Limit, ((1U << 7) - 1) * 2);
2129           break;
2130         case ARMII::AddrModeT2_i7s4:
2131           Limit = std::min(Limit, ((1U << 7) - 1) * 4);
2132           break;
2133         default:
2134           llvm_unreachable("Unhandled addressing mode in stack size limit calculation");
2135         }
2136         break; // At most one FI per instruction
2137       }
2138     }
2139   }
2140 
2141   return Limit;
2142 }
2143 
2144 // In functions that realign the stack, it can be an advantage to spill the
2145 // callee-saved vector registers after realigning the stack. The vst1 and vld1
2146 // instructions take alignment hints that can improve performance.
2147 static void
2148 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
2149   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
2150   if (!SpillAlignedNEONRegs)
2151     return;
2152 
2153   // Naked functions don't spill callee-saved registers.
2154   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
2155     return;
2156 
2157   // We are planning to use NEON instructions vst1 / vld1.
2158   if (!MF.getSubtarget<ARMSubtarget>().hasNEON())
2159     return;
2160 
2161   // Don't bother if the default stack alignment is sufficiently high.
2162   if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8))
2163     return;
2164 
2165   // Aligned spills require stack realignment.
2166   if (!static_cast<const ARMBaseRegisterInfo *>(
2167            MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
2168     return;
2169 
2170   // We always spill contiguous d-registers starting from d8. Count how many
2171   // needs spilling.  The register allocator will almost always use the
2172   // callee-saved registers in order, but it can happen that there are holes in
2173   // the range.  Registers above the hole will be spilled to the standard DPRCS
2174   // area.
2175   unsigned NumSpills = 0;
2176   for (; NumSpills < 8; ++NumSpills)
2177     if (!SavedRegs.test(ARM::D8 + NumSpills))
2178       break;
2179 
2180   // Don't do this for just one d-register. It's not worth it.
2181   if (NumSpills < 2)
2182     return;
2183 
2184   // Spill the first NumSpills D-registers after realigning the stack.
2185   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
2186 
2187   // A scratch register is required for the vst1 / vld1 instructions.
2188   SavedRegs.set(ARM::R4);
2189 }
2190 
2191 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2192   // For CMSE entry functions, we want to save the FPCXT_NS immediately
2193   // upon function entry (resp. restore it immmediately before return)
2194   if (STI.hasV8_1MMainlineOps() &&
2195       MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction())
2196     return false;
2197 
2198   // We are disabling shrinkwrapping for now when PAC is enabled, as
2199   // shrinkwrapping can cause clobbering of r12 when the PAC code is
2200   // generated. A follow-up patch will fix this in a more performant manner.
2201   if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress(
2202           true /* SpillsLR */))
2203     return false;
2204 
2205   return true;
2206 }
2207 
2208 static bool requiresAAPCSFrameRecord(const MachineFunction &MF) {
2209   const auto &Subtarget = MF.getSubtarget<ARMSubtarget>();
2210   return Subtarget.createAAPCSFrameChainLeaf() ||
2211          (Subtarget.createAAPCSFrameChain() && MF.getFrameInfo().hasCalls());
2212 }
2213 
2214 // Thumb1 may require a spill when storing to a frame index through FP, for
2215 // cases where FP is a high register (R11). This scans the function for cases
2216 // where this may happen.
2217 static bool canSpillOnFrameIndexAccess(const MachineFunction &MF,
2218                                        const TargetFrameLowering &TFI) {
2219   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2220   if (!AFI->isThumb1OnlyFunction())
2221     return false;
2222 
2223   for (const auto &MBB : MF)
2224     for (const auto &MI : MBB)
2225       if (MI.getOpcode() == ARM::tSTRspi || MI.getOpcode() == ARM::tSTRi)
2226         for (const auto &Op : MI.operands())
2227           if (Op.isFI()) {
2228             Register Reg;
2229             TFI.getFrameIndexReference(MF, Op.getIndex(), Reg);
2230             if (ARM::hGPRRegClass.contains(Reg) && Reg != ARM::SP)
2231               return true;
2232           }
2233   return false;
2234 }
2235 
2236 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
2237                                             BitVector &SavedRegs,
2238                                             RegScavenger *RS) const {
2239   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2240   // This tells PEI to spill the FP as if it is any other callee-save register
2241   // to take advantage the eliminateFrameIndex machinery. This also ensures it
2242   // is spilled in the order specified by getCalleeSavedRegs() to make it easier
2243   // to combine multiple loads / stores.
2244   bool CanEliminateFrame = !(requiresAAPCSFrameRecord(MF) && hasFP(MF));
2245   bool CS1Spilled = false;
2246   bool LRSpilled = false;
2247   unsigned NumGPRSpills = 0;
2248   unsigned NumFPRSpills = 0;
2249   SmallVector<unsigned, 4> UnspilledCS1GPRs;
2250   SmallVector<unsigned, 4> UnspilledCS2GPRs;
2251   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
2252       MF.getSubtarget().getRegisterInfo());
2253   const ARMBaseInstrInfo &TII =
2254       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2255   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2256   MachineFrameInfo &MFI = MF.getFrameInfo();
2257   MachineRegisterInfo &MRI = MF.getRegInfo();
2258   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2259   (void)TRI;  // Silence unused warning in non-assert builds.
2260   Register FramePtr = RegInfo->getFrameRegister(MF);
2261 
2262   // Spill R4 if Thumb2 function requires stack realignment - it will be used as
2263   // scratch register. Also spill R4 if Thumb2 function has varsized objects,
2264   // since it's not always possible to restore sp from fp in a single
2265   // instruction.
2266   // FIXME: It will be better just to find spare register here.
2267   if (AFI->isThumb2Function() &&
2268       (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF)))
2269     SavedRegs.set(ARM::R4);
2270 
2271   // If a stack probe will be emitted, spill R4 and LR, since they are
2272   // clobbered by the stack probe call.
2273   // This estimate should be a safe, conservative estimate. The actual
2274   // stack probe is enabled based on the size of the local objects;
2275   // this estimate also includes the varargs store size.
2276   if (STI.isTargetWindows() &&
2277       WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
2278     SavedRegs.set(ARM::R4);
2279     SavedRegs.set(ARM::LR);
2280   }
2281 
2282   if (AFI->isThumb1OnlyFunction()) {
2283     // Spill LR if Thumb1 function uses variable length argument lists.
2284     if (AFI->getArgRegsSaveSize() > 0)
2285       SavedRegs.set(ARM::LR);
2286 
2287     // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
2288     // requires stack alignment.  We don't know for sure what the stack size
2289     // will be, but for this, an estimate is good enough. If there anything
2290     // changes it, it'll be a spill, which implies we've used all the registers
2291     // and so R4 is already used, so not marking it here will be OK.
2292     // FIXME: It will be better just to find spare register here.
2293     if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) ||
2294         MFI.estimateStackSize(MF) > 508)
2295       SavedRegs.set(ARM::R4);
2296   }
2297 
2298   // See if we can spill vector registers to aligned stack.
2299   checkNumAlignedDPRCS2Regs(MF, SavedRegs);
2300 
2301   // Spill the BasePtr if it's used.
2302   if (RegInfo->hasBasePointer(MF))
2303     SavedRegs.set(RegInfo->getBaseRegister());
2304 
2305   // On v8.1-M.Main CMSE entry functions save/restore FPCXT.
2306   if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction())
2307     CanEliminateFrame = false;
2308 
2309   // Don't spill FP if the frame can be eliminated. This is determined
2310   // by scanning the callee-save registers to see if any is modified.
2311   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
2312   for (unsigned i = 0; CSRegs[i]; ++i) {
2313     unsigned Reg = CSRegs[i];
2314     bool Spilled = false;
2315     if (SavedRegs.test(Reg)) {
2316       Spilled = true;
2317       CanEliminateFrame = false;
2318     }
2319 
2320     if (!ARM::GPRRegClass.contains(Reg)) {
2321       if (Spilled) {
2322         if (ARM::SPRRegClass.contains(Reg))
2323           NumFPRSpills++;
2324         else if (ARM::DPRRegClass.contains(Reg))
2325           NumFPRSpills += 2;
2326         else if (ARM::QPRRegClass.contains(Reg))
2327           NumFPRSpills += 4;
2328       }
2329       continue;
2330     }
2331 
2332     if (Spilled) {
2333       NumGPRSpills++;
2334 
2335       if (!STI.splitFramePushPop(MF)) {
2336         if (Reg == ARM::LR)
2337           LRSpilled = true;
2338         CS1Spilled = true;
2339         continue;
2340       }
2341 
2342       // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
2343       switch (Reg) {
2344       case ARM::LR:
2345         LRSpilled = true;
2346         [[fallthrough]];
2347       case ARM::R0: case ARM::R1:
2348       case ARM::R2: case ARM::R3:
2349       case ARM::R4: case ARM::R5:
2350       case ARM::R6: case ARM::R7:
2351         CS1Spilled = true;
2352         break;
2353       default:
2354         break;
2355       }
2356     } else {
2357       if (!STI.splitFramePushPop(MF)) {
2358         UnspilledCS1GPRs.push_back(Reg);
2359         continue;
2360       }
2361 
2362       switch (Reg) {
2363       case ARM::R0: case ARM::R1:
2364       case ARM::R2: case ARM::R3:
2365       case ARM::R4: case ARM::R5:
2366       case ARM::R6: case ARM::R7:
2367       case ARM::LR:
2368         UnspilledCS1GPRs.push_back(Reg);
2369         break;
2370       default:
2371         UnspilledCS2GPRs.push_back(Reg);
2372         break;
2373       }
2374     }
2375   }
2376 
2377   bool ForceLRSpill = false;
2378   if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
2379     unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII);
2380     // Force LR to be spilled if the Thumb function size is > 2048. This enables
2381     // use of BL to implement far jump.
2382     if (FnSize >= (1 << 11)) {
2383       CanEliminateFrame = false;
2384       ForceLRSpill = true;
2385     }
2386   }
2387 
2388   // If any of the stack slot references may be out of range of an immediate
2389   // offset, make sure a register (or a spill slot) is available for the
2390   // register scavenger. Note that if we're indexing off the frame pointer, the
2391   // effective stack size is 4 bytes larger since the FP points to the stack
2392   // slot of the previous FP. Also, if we have variable sized objects in the
2393   // function, stack slot references will often be negative, and some of
2394   // our instructions are positive-offset only, so conservatively consider
2395   // that case to want a spill slot (or register) as well. Similarly, if
2396   // the function adjusts the stack pointer during execution and the
2397   // adjustments aren't already part of our stack size estimate, our offset
2398   // calculations may be off, so be conservative.
2399   // FIXME: We could add logic to be more precise about negative offsets
2400   //        and which instructions will need a scratch register for them. Is it
2401   //        worth the effort and added fragility?
2402   unsigned EstimatedStackSize =
2403       MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
2404 
2405   // Determine biggest (positive) SP offset in MachineFrameInfo.
2406   int MaxFixedOffset = 0;
2407   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
2408     int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
2409     MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
2410   }
2411 
2412   bool HasFP = hasFP(MF);
2413   if (HasFP) {
2414     if (AFI->hasStackFrame())
2415       EstimatedStackSize += 4;
2416   } else {
2417     // If FP is not used, SP will be used to access arguments, so count the
2418     // size of arguments into the estimation.
2419     EstimatedStackSize += MaxFixedOffset;
2420   }
2421   EstimatedStackSize += 16; // For possible paddings.
2422 
2423   unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit;
2424   bool HasNonSPFrameIndex = false;
2425   if (AFI->isThumb1OnlyFunction()) {
2426     // For Thumb1, don't bother to iterate over the function. The only
2427     // instruction that requires an emergency spill slot is a store to a
2428     // frame index.
2429     //
2430     // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned
2431     // immediate. tSTRi, which is used for bp- and fp-relative accesses, has
2432     // a 5-bit unsigned immediate.
2433     //
2434     // We could try to check if the function actually contains a tSTRspi
2435     // that might need the spill slot, but it's not really important.
2436     // Functions with VLAs or extremely large call frames are rare, and
2437     // if a function is allocating more than 1KB of stack, an extra 4-byte
2438     // slot probably isn't relevant.
2439     //
2440     // A special case is the scenario where r11 is used as FP, where accesses
2441     // to a frame index will require its value to be moved into a low reg.
2442     // This is handled later on, once we are able to determine if we have any
2443     // fp-relative accesses.
2444     if (RegInfo->hasBasePointer(MF))
2445       EstimatedRSStackSizeLimit = (1U << 5) * 4;
2446     else
2447       EstimatedRSStackSizeLimit = (1U << 8) * 4;
2448     EstimatedRSFixedSizeLimit = (1U << 5) * 4;
2449   } else {
2450     EstimatedRSStackSizeLimit =
2451         estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex);
2452     EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit;
2453   }
2454   // Final estimate of whether sp or bp-relative accesses might require
2455   // scavenging.
2456   bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit;
2457 
2458   // If the stack pointer moves and we don't have a base pointer, the
2459   // estimate logic doesn't work. The actual offsets might be larger when
2460   // we're constructing a call frame, or we might need to use negative
2461   // offsets from fp.
2462   bool HasMovingSP = MFI.hasVarSizedObjects() ||
2463     (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF));
2464   bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP;
2465 
2466   // If we have a frame pointer, we assume arguments will be accessed
2467   // relative to the frame pointer. Check whether fp-relative accesses to
2468   // arguments require scavenging.
2469   //
2470   // We could do slightly better on Thumb1; in some cases, an sp-relative
2471   // offset would be legal even though an fp-relative offset is not.
2472   int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF);
2473   bool HasLargeArgumentList =
2474       HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit;
2475 
2476   bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP ||
2477                          HasLargeArgumentList || HasNonSPFrameIndex;
2478   LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit
2479                     << "; EstimatedStack: " << EstimatedStackSize
2480                     << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset
2481                     << "; BigFrameOffsets: " << BigFrameOffsets << "\n");
2482   if (BigFrameOffsets ||
2483       !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
2484     AFI->setHasStackFrame(true);
2485 
2486     if (HasFP) {
2487       SavedRegs.set(FramePtr);
2488       // If the frame pointer is required by the ABI, also spill LR so that we
2489       // emit a complete frame record.
2490       if ((requiresAAPCSFrameRecord(MF) ||
2491            MF.getTarget().Options.DisableFramePointerElim(MF)) &&
2492           !LRSpilled) {
2493         SavedRegs.set(ARM::LR);
2494         LRSpilled = true;
2495         NumGPRSpills++;
2496         auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
2497         if (LRPos != UnspilledCS1GPRs.end())
2498           UnspilledCS1GPRs.erase(LRPos);
2499       }
2500       auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
2501       if (FPPos != UnspilledCS1GPRs.end())
2502         UnspilledCS1GPRs.erase(FPPos);
2503       NumGPRSpills++;
2504       if (FramePtr == ARM::R7)
2505         CS1Spilled = true;
2506     }
2507 
2508     // This is true when we inserted a spill for a callee-save GPR which is
2509     // not otherwise used by the function. This guaranteees it is possible
2510     // to scavenge a register to hold the address of a stack slot. On Thumb1,
2511     // the register must be a valid operand to tSTRi, i.e. r4-r7. For other
2512     // subtargets, this is any GPR, i.e. r4-r11 or lr.
2513     //
2514     // If we don't insert a spill, we instead allocate an emergency spill
2515     // slot, which can be used by scavenging to spill an arbitrary register.
2516     //
2517     // We currently don't try to figure out whether any specific instruction
2518     // requires scavening an additional register.
2519     bool ExtraCSSpill = false;
2520 
2521     if (AFI->isThumb1OnlyFunction()) {
2522       // For Thumb1-only targets, we need some low registers when we save and
2523       // restore the high registers (which aren't allocatable, but could be
2524       // used by inline assembly) because the push/pop instructions can not
2525       // access high registers. If necessary, we might need to push more low
2526       // registers to ensure that there is at least one free that can be used
2527       // for the saving & restoring, and preferably we should ensure that as
2528       // many as are needed are available so that fewer push/pop instructions
2529       // are required.
2530 
2531       // Low registers which are not currently pushed, but could be (r4-r7).
2532       SmallVector<unsigned, 4> AvailableRegs;
2533 
2534       // Unused argument registers (r0-r3) can be clobbered in the prologue for
2535       // free.
2536       int EntryRegDeficit = 0;
2537       for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
2538         if (!MF.getRegInfo().isLiveIn(Reg)) {
2539           --EntryRegDeficit;
2540           LLVM_DEBUG(dbgs()
2541                      << printReg(Reg, TRI)
2542                      << " is unused argument register, EntryRegDeficit = "
2543                      << EntryRegDeficit << "\n");
2544         }
2545       }
2546 
2547       // Unused return registers can be clobbered in the epilogue for free.
2548       int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
2549       LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
2550                         << " return regs used, ExitRegDeficit = "
2551                         << ExitRegDeficit << "\n");
2552 
2553       int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
2554       LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
2555 
2556       // r4-r6 can be used in the prologue if they are pushed by the first push
2557       // instruction.
2558       for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
2559         if (SavedRegs.test(Reg)) {
2560           --RegDeficit;
2561           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2562                             << " is saved low register, RegDeficit = "
2563                             << RegDeficit << "\n");
2564         } else {
2565           AvailableRegs.push_back(Reg);
2566           LLVM_DEBUG(
2567               dbgs()
2568               << printReg(Reg, TRI)
2569               << " is non-saved low register, adding to AvailableRegs\n");
2570         }
2571       }
2572 
2573       // r7 can be used if it is not being used as the frame pointer.
2574       if (!HasFP || FramePtr != ARM::R7) {
2575         if (SavedRegs.test(ARM::R7)) {
2576           --RegDeficit;
2577           LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
2578                             << RegDeficit << "\n");
2579         } else {
2580           AvailableRegs.push_back(ARM::R7);
2581           LLVM_DEBUG(
2582               dbgs()
2583               << "%r7 is non-saved low register, adding to AvailableRegs\n");
2584         }
2585       }
2586 
2587       // Each of r8-r11 needs to be copied to a low register, then pushed.
2588       for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
2589         if (SavedRegs.test(Reg)) {
2590           ++RegDeficit;
2591           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2592                             << " is saved high register, RegDeficit = "
2593                             << RegDeficit << "\n");
2594         }
2595       }
2596 
2597       // LR can only be used by PUSH, not POP, and can't be used at all if the
2598       // llvm.returnaddress intrinsic is used. This is only worth doing if we
2599       // are more limited at function entry than exit.
2600       if ((EntryRegDeficit > ExitRegDeficit) &&
2601           !(MF.getRegInfo().isLiveIn(ARM::LR) &&
2602             MF.getFrameInfo().isReturnAddressTaken())) {
2603         if (SavedRegs.test(ARM::LR)) {
2604           --RegDeficit;
2605           LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
2606                             << RegDeficit << "\n");
2607         } else {
2608           AvailableRegs.push_back(ARM::LR);
2609           LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
2610         }
2611       }
2612 
2613       // If there are more high registers that need pushing than low registers
2614       // available, push some more low registers so that we can use fewer push
2615       // instructions. This might not reduce RegDeficit all the way to zero,
2616       // because we can only guarantee that r4-r6 are available, but r8-r11 may
2617       // need saving.
2618       LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
2619       for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
2620         unsigned Reg = AvailableRegs.pop_back_val();
2621         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2622                           << " to make up reg deficit\n");
2623         SavedRegs.set(Reg);
2624         NumGPRSpills++;
2625         CS1Spilled = true;
2626         assert(!MRI.isReserved(Reg) && "Should not be reserved");
2627         if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg))
2628           ExtraCSSpill = true;
2629         UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
2630         if (Reg == ARM::LR)
2631           LRSpilled = true;
2632       }
2633       LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
2634                         << "\n");
2635     }
2636 
2637     // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
2638     // restore LR in that case.
2639     bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall();
2640 
2641     // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
2642     // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
2643     if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) {
2644       SavedRegs.set(ARM::LR);
2645       NumGPRSpills++;
2646       SmallVectorImpl<unsigned>::iterator LRPos;
2647       LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
2648       if (LRPos != UnspilledCS1GPRs.end())
2649         UnspilledCS1GPRs.erase(LRPos);
2650 
2651       ForceLRSpill = false;
2652       if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) &&
2653           !AFI->isThumb1OnlyFunction())
2654         ExtraCSSpill = true;
2655     }
2656 
2657     // If stack and double are 8-byte aligned and we are spilling an odd number
2658     // of GPRs, spill one extra callee save GPR so we won't have to pad between
2659     // the integer and double callee save areas.
2660     LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
2661     const Align TargetAlign = getStackAlign();
2662     if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) {
2663       if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
2664         for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
2665           unsigned Reg = UnspilledCS1GPRs[i];
2666           // Don't spill high register if the function is thumb.  In the case of
2667           // Windows on ARM, accept R11 (frame pointer)
2668           if (!AFI->isThumbFunction() ||
2669               (STI.isTargetWindows() && Reg == ARM::R11) ||
2670               isARMLowRegister(Reg) ||
2671               (Reg == ARM::LR && !ExpensiveLRRestore)) {
2672             SavedRegs.set(Reg);
2673             LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2674                               << " to make up alignment\n");
2675             if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) &&
2676                 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction()))
2677               ExtraCSSpill = true;
2678             break;
2679           }
2680         }
2681       } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
2682         unsigned Reg = UnspilledCS2GPRs.front();
2683         SavedRegs.set(Reg);
2684         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2685                           << " to make up alignment\n");
2686         if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
2687           ExtraCSSpill = true;
2688       }
2689     }
2690 
2691     // Estimate if we might need to scavenge a register at some point in order
2692     // to materialize a stack offset. If so, either spill one additional
2693     // callee-saved register or reserve a special spill slot to facilitate
2694     // register scavenging. Thumb1 needs a spill slot for stack pointer
2695     // adjustments and for frame index accesses when FP is high register,
2696     // even when the frame itself is small.
2697     if (!ExtraCSSpill &&
2698         (BigFrameOffsets || canSpillOnFrameIndexAccess(MF, *this))) {
2699       // If any non-reserved CS register isn't spilled, just spill one or two
2700       // extra. That should take care of it!
2701       unsigned NumExtras = TargetAlign.value() / 4;
2702       SmallVector<unsigned, 2> Extras;
2703       while (NumExtras && !UnspilledCS1GPRs.empty()) {
2704         unsigned Reg = UnspilledCS1GPRs.pop_back_val();
2705         if (!MRI.isReserved(Reg) &&
2706             (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) {
2707           Extras.push_back(Reg);
2708           NumExtras--;
2709         }
2710       }
2711       // For non-Thumb1 functions, also check for hi-reg CS registers
2712       if (!AFI->isThumb1OnlyFunction()) {
2713         while (NumExtras && !UnspilledCS2GPRs.empty()) {
2714           unsigned Reg = UnspilledCS2GPRs.pop_back_val();
2715           if (!MRI.isReserved(Reg)) {
2716             Extras.push_back(Reg);
2717             NumExtras--;
2718           }
2719         }
2720       }
2721       if (NumExtras == 0) {
2722         for (unsigned Reg : Extras) {
2723           SavedRegs.set(Reg);
2724           if (!MRI.isPhysRegUsed(Reg))
2725             ExtraCSSpill = true;
2726         }
2727       }
2728       if (!ExtraCSSpill && RS) {
2729         // Reserve a slot closest to SP or frame pointer.
2730         LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n");
2731         const TargetRegisterClass &RC = ARM::GPRRegClass;
2732         unsigned Size = TRI->getSpillSize(RC);
2733         Align Alignment = TRI->getSpillAlign(RC);
2734         RS->addScavengingFrameIndex(
2735             MFI.CreateStackObject(Size, Alignment, false));
2736       }
2737     }
2738   }
2739 
2740   if (ForceLRSpill)
2741     SavedRegs.set(ARM::LR);
2742   AFI->setLRIsSpilled(SavedRegs.test(ARM::LR));
2743 }
2744 
2745 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF,
2746                                       BitVector &SavedRegs) const {
2747   TargetFrameLowering::getCalleeSaves(MF, SavedRegs);
2748 
2749   // If we have the "returned" parameter attribute which guarantees that we
2750   // return the value which was passed in r0 unmodified (e.g. C++ 'structors),
2751   // record that fact for IPRA.
2752   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2753   if (AFI->getPreservesR0())
2754     SavedRegs.set(ARM::R0);
2755 }
2756 
2757 bool ARMFrameLowering::assignCalleeSavedSpillSlots(
2758     MachineFunction &MF, const TargetRegisterInfo *TRI,
2759     std::vector<CalleeSavedInfo> &CSI) const {
2760   // For CMSE entry functions, handle floating-point context as if it was a
2761   // callee-saved register.
2762   if (STI.hasV8_1MMainlineOps() &&
2763       MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) {
2764     CSI.emplace_back(ARM::FPCXTNS);
2765     CSI.back().setRestored(false);
2766   }
2767 
2768   // For functions, which sign their return address, upon function entry, the
2769   // return address PAC is computed in R12. Treat R12 as a callee-saved register
2770   // in this case.
2771   const auto &AFI = *MF.getInfo<ARMFunctionInfo>();
2772   if (AFI.shouldSignReturnAddress()) {
2773     // The order of register must match the order we push them, because the
2774     // PEI assigns frame indices in that order. When compiling for return
2775     // address sign and authenication, we use split push, therefore the orders
2776     // we want are:
2777     // LR, R7, R6, R5, R4, <R12>, R11, R10,  R9,  R8, D15-D8
2778     CSI.insert(find_if(CSI,
2779                        [=](const auto &CS) {
2780                          Register Reg = CS.getReg();
2781                          return Reg == ARM::R10 || Reg == ARM::R11 ||
2782                                 Reg == ARM::R8 || Reg == ARM::R9 ||
2783                                 ARM::DPRRegClass.contains(Reg);
2784                        }),
2785                CalleeSavedInfo(ARM::R12));
2786   }
2787 
2788   return false;
2789 }
2790 
2791 const TargetFrameLowering::SpillSlot *
2792 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const {
2793   static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}};
2794   NumEntries = std::size(FixedSpillOffsets);
2795   return FixedSpillOffsets;
2796 }
2797 
2798 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
2799     MachineFunction &MF, MachineBasicBlock &MBB,
2800     MachineBasicBlock::iterator I) const {
2801   const ARMBaseInstrInfo &TII =
2802       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2803   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2804   bool isARM = !AFI->isThumbFunction();
2805   DebugLoc dl = I->getDebugLoc();
2806   unsigned Opc = I->getOpcode();
2807   bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode();
2808   unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
2809 
2810   assert(!AFI->isThumb1OnlyFunction() &&
2811          "This eliminateCallFramePseudoInstr does not support Thumb1!");
2812 
2813   int PIdx = I->findFirstPredOperandIdx();
2814   ARMCC::CondCodes Pred = (PIdx == -1)
2815                               ? ARMCC::AL
2816                               : (ARMCC::CondCodes)I->getOperand(PIdx).getImm();
2817   unsigned PredReg = TII.getFramePred(*I);
2818 
2819   if (!hasReservedCallFrame(MF)) {
2820     // Bail early if the callee is expected to do the adjustment.
2821     if (IsDestroy && CalleePopAmount != -1U)
2822       return MBB.erase(I);
2823 
2824     // If we have alloca, convert as follows:
2825     // ADJCALLSTACKDOWN -> sub, sp, sp, amount
2826     // ADJCALLSTACKUP   -> add, sp, sp, amount
2827     unsigned Amount = TII.getFrameSize(*I);
2828     if (Amount != 0) {
2829       // We need to keep the stack aligned properly.  To do this, we round the
2830       // amount of space needed for the outgoing arguments up to the next
2831       // alignment boundary.
2832       Amount = alignSPAdjust(Amount);
2833 
2834       if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
2835         emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
2836                      Pred, PredReg);
2837       } else {
2838         assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
2839         emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
2840                      Pred, PredReg);
2841       }
2842     }
2843   } else if (CalleePopAmount != -1U) {
2844     // If the calling convention demands that the callee pops arguments from the
2845     // stack, we want to add it back if we have a reserved call frame.
2846     emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount,
2847                  MachineInstr::NoFlags, Pred, PredReg);
2848   }
2849   return MBB.erase(I);
2850 }
2851 
2852 /// Get the minimum constant for ARM that is greater than or equal to the
2853 /// argument. In ARM, constants can have any value that can be produced by
2854 /// rotating an 8-bit value to the right by an even number of bits within a
2855 /// 32-bit word.
2856 static uint32_t alignToARMConstant(uint32_t Value) {
2857   unsigned Shifted = 0;
2858 
2859   if (Value == 0)
2860       return 0;
2861 
2862   while (!(Value & 0xC0000000)) {
2863       Value = Value << 2;
2864       Shifted += 2;
2865   }
2866 
2867   bool Carry = (Value & 0x00FFFFFF);
2868   Value = ((Value & 0xFF000000) >> 24) + Carry;
2869 
2870   if (Value & 0x0000100)
2871       Value = Value & 0x000001FC;
2872 
2873   if (Shifted > 24)
2874       Value = Value >> (Shifted - 24);
2875   else
2876       Value = Value << (24 - Shifted);
2877 
2878   return Value;
2879 }
2880 
2881 // The stack limit in the TCB is set to this many bytes above the actual
2882 // stack limit.
2883 static const uint64_t kSplitStackAvailable = 256;
2884 
2885 // Adjust the function prologue to enable split stacks. This currently only
2886 // supports android and linux.
2887 //
2888 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but
2889 // must be well defined in order to allow for consistent implementations of the
2890 // __morestack helper function. The ABI is also not a normal ABI in that it
2891 // doesn't follow the normal calling conventions because this allows the
2892 // prologue of each function to be optimized further.
2893 //
2894 // Currently, the ABI looks like (when calling __morestack)
2895 //
2896 //  * r4 holds the minimum stack size requested for this function call
2897 //  * r5 holds the stack size of the arguments to the function
2898 //  * the beginning of the function is 3 instructions after the call to
2899 //    __morestack
2900 //
2901 // Implementations of __morestack should use r4 to allocate a new stack, r5 to
2902 // place the arguments on to the new stack, and the 3-instruction knowledge to
2903 // jump directly to the body of the function when working on the new stack.
2904 //
2905 // An old (and possibly no longer compatible) implementation of __morestack for
2906 // ARM can be found at [1].
2907 //
2908 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
2909 void ARMFrameLowering::adjustForSegmentedStacks(
2910     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2911   unsigned Opcode;
2912   unsigned CFIIndex;
2913   const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
2914   bool Thumb = ST->isThumb();
2915   bool Thumb2 = ST->isThumb2();
2916 
2917   // Sadly, this currently doesn't support varargs, platforms other than
2918   // android/linux. Note that thumb1/thumb2 are support for android/linux.
2919   if (MF.getFunction().isVarArg())
2920     report_fatal_error("Segmented stacks do not support vararg functions.");
2921   if (!ST->isTargetAndroid() && !ST->isTargetLinux())
2922     report_fatal_error("Segmented stacks not supported on this platform.");
2923 
2924   MachineFrameInfo &MFI = MF.getFrameInfo();
2925   MachineModuleInfo &MMI = MF.getMMI();
2926   MCContext &Context = MMI.getContext();
2927   const MCRegisterInfo *MRI = Context.getRegisterInfo();
2928   const ARMBaseInstrInfo &TII =
2929       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2930   ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
2931   DebugLoc DL;
2932 
2933   if (!MFI.needsSplitStackProlog())
2934     return;
2935 
2936   uint64_t StackSize = MFI.getStackSize();
2937 
2938   // Use R4 and R5 as scratch registers.
2939   // We save R4 and R5 before use and restore them before leaving the function.
2940   unsigned ScratchReg0 = ARM::R4;
2941   unsigned ScratchReg1 = ARM::R5;
2942   uint64_t AlignedStackSize;
2943 
2944   MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
2945   MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
2946   MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
2947   MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
2948   MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
2949 
2950   // Grab everything that reaches PrologueMBB to update there liveness as well.
2951   SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
2952   SmallVector<MachineBasicBlock *, 2> WalkList;
2953   WalkList.push_back(&PrologueMBB);
2954 
2955   do {
2956     MachineBasicBlock *CurMBB = WalkList.pop_back_val();
2957     for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
2958       if (BeforePrologueRegion.insert(PredBB).second)
2959         WalkList.push_back(PredBB);
2960     }
2961   } while (!WalkList.empty());
2962 
2963   // The order in that list is important.
2964   // The blocks will all be inserted before PrologueMBB using that order.
2965   // Therefore the block that should appear first in the CFG should appear
2966   // first in the list.
2967   MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
2968                                       PostStackMBB};
2969 
2970   for (MachineBasicBlock *B : AddedBlocks)
2971     BeforePrologueRegion.insert(B);
2972 
2973   for (const auto &LI : PrologueMBB.liveins()) {
2974     for (MachineBasicBlock *PredBB : BeforePrologueRegion)
2975       PredBB->addLiveIn(LI);
2976   }
2977 
2978   // Remove the newly added blocks from the list, since we know
2979   // we do not have to do the following updates for them.
2980   for (MachineBasicBlock *B : AddedBlocks) {
2981     BeforePrologueRegion.erase(B);
2982     MF.insert(PrologueMBB.getIterator(), B);
2983   }
2984 
2985   for (MachineBasicBlock *MBB : BeforePrologueRegion) {
2986     // Make sure the LiveIns are still sorted and unique.
2987     MBB->sortUniqueLiveIns();
2988     // Replace the edges to PrologueMBB by edges to the sequences
2989     // we are about to add, but only update for immediate predecessors.
2990     if (MBB->isSuccessor(&PrologueMBB))
2991       MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
2992   }
2993 
2994   // The required stack size that is aligned to ARM constant criterion.
2995   AlignedStackSize = alignToARMConstant(StackSize);
2996 
2997   // When the frame size is less than 256 we just compare the stack
2998   // boundary directly to the value of the stack pointer, per gcc.
2999   bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
3000 
3001   // We will use two of the callee save registers as scratch registers so we
3002   // need to save those registers onto the stack.
3003   // We will use SR0 to hold stack limit and SR1 to hold the stack size
3004   // requested and arguments for __morestack().
3005   // SR0: Scratch Register #0
3006   // SR1: Scratch Register #1
3007   // push {SR0, SR1}
3008   if (Thumb) {
3009     BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
3010         .add(predOps(ARMCC::AL))
3011         .addReg(ScratchReg0)
3012         .addReg(ScratchReg1);
3013   } else {
3014     BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
3015         .addReg(ARM::SP, RegState::Define)
3016         .addReg(ARM::SP)
3017         .add(predOps(ARMCC::AL))
3018         .addReg(ScratchReg0)
3019         .addReg(ScratchReg1);
3020   }
3021 
3022   // Emit the relevant DWARF information about the change in stack pointer as
3023   // well as where to find both r4 and r5 (the callee-save registers)
3024   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3025     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8));
3026     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3027         .addCFIIndex(CFIIndex);
3028     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3029         nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
3030     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3031         .addCFIIndex(CFIIndex);
3032     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3033         nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
3034     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3035         .addCFIIndex(CFIIndex);
3036   }
3037 
3038   // mov SR1, sp
3039   if (Thumb) {
3040     BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
3041         .addReg(ARM::SP)
3042         .add(predOps(ARMCC::AL));
3043   } else if (CompareStackPointer) {
3044     BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
3045         .addReg(ARM::SP)
3046         .add(predOps(ARMCC::AL))
3047         .add(condCodeOp());
3048   }
3049 
3050   // sub SR1, sp, #StackSize
3051   if (!CompareStackPointer && Thumb) {
3052     if (AlignedStackSize < 256) {
3053       BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
3054           .add(condCodeOp())
3055           .addReg(ScratchReg1)
3056           .addImm(AlignedStackSize)
3057           .add(predOps(ARMCC::AL));
3058     } else {
3059       if (Thumb2) {
3060         BuildMI(McrMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg0)
3061             .addImm(AlignedStackSize);
3062       } else {
3063         auto MBBI = McrMBB->end();
3064         auto RegInfo = STI.getRegisterInfo();
3065         RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
3066                                    AlignedStackSize);
3067       }
3068       BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1)
3069           .add(condCodeOp())
3070           .addReg(ScratchReg1)
3071           .addReg(ScratchReg0)
3072           .add(predOps(ARMCC::AL));
3073     }
3074   } else if (!CompareStackPointer) {
3075     if (AlignedStackSize < 256) {
3076       BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
3077           .addReg(ARM::SP)
3078           .addImm(AlignedStackSize)
3079           .add(predOps(ARMCC::AL))
3080           .add(condCodeOp());
3081     } else {
3082       auto MBBI = McrMBB->end();
3083       auto RegInfo = STI.getRegisterInfo();
3084       RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
3085                                  AlignedStackSize);
3086       BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1)
3087           .addReg(ARM::SP)
3088           .addReg(ScratchReg0)
3089           .add(predOps(ARMCC::AL))
3090           .add(condCodeOp());
3091     }
3092   }
3093 
3094   if (Thumb && ST->isThumb1Only()) {
3095     unsigned PCLabelId = ARMFI->createPICLabelUId();
3096     ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
3097         MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
3098     MachineConstantPool *MCP = MF.getConstantPool();
3099     unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4));
3100 
3101     // ldr SR0, [pc, offset(STACK_LIMIT)]
3102     BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
3103         .addConstantPoolIndex(CPI)
3104         .add(predOps(ARMCC::AL));
3105 
3106     // ldr SR0, [SR0]
3107     BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
3108         .addReg(ScratchReg0)
3109         .addImm(0)
3110         .add(predOps(ARMCC::AL));
3111   } else {
3112     // Get TLS base address from the coprocessor
3113     // mrc p15, #0, SR0, c13, c0, #3
3114     BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC),
3115             ScratchReg0)
3116         .addImm(15)
3117         .addImm(0)
3118         .addImm(13)
3119         .addImm(0)
3120         .addImm(3)
3121         .add(predOps(ARMCC::AL));
3122 
3123     // Use the last tls slot on android and a private field of the TCP on linux.
3124     assert(ST->isTargetAndroid() || ST->isTargetLinux());
3125     unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
3126 
3127     // Get the stack limit from the right offset
3128     // ldr SR0, [sr0, #4 * TlsOffset]
3129     BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12),
3130             ScratchReg0)
3131         .addReg(ScratchReg0)
3132         .addImm(4 * TlsOffset)
3133         .add(predOps(ARMCC::AL));
3134   }
3135 
3136   // Compare stack limit with stack size requested.
3137   // cmp SR0, SR1
3138   Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
3139   BuildMI(GetMBB, DL, TII.get(Opcode))
3140       .addReg(ScratchReg0)
3141       .addReg(ScratchReg1)
3142       .add(predOps(ARMCC::AL));
3143 
3144   // This jump is taken if StackLimit < SP - stack required.
3145   Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
3146   BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB)
3147        .addImm(ARMCC::LO)
3148        .addReg(ARM::CPSR);
3149 
3150 
3151   // Calling __morestack(StackSize, Size of stack arguments).
3152   // __morestack knows that the stack size requested is in SR0(r4)
3153   // and amount size of stack arguments is in SR1(r5).
3154 
3155   // Pass first argument for the __morestack by Scratch Register #0.
3156   //   The amount size of stack required
3157   if (Thumb) {
3158     if (AlignedStackSize < 256) {
3159       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
3160           .add(condCodeOp())
3161           .addImm(AlignedStackSize)
3162           .add(predOps(ARMCC::AL));
3163     } else {
3164       if (Thumb2) {
3165         BuildMI(AllocMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg0)
3166             .addImm(AlignedStackSize);
3167       } else {
3168         auto MBBI = AllocMBB->end();
3169         auto RegInfo = STI.getRegisterInfo();
3170         RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
3171                                    AlignedStackSize);
3172       }
3173     }
3174   } else {
3175     if (AlignedStackSize < 256) {
3176       BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
3177           .addImm(AlignedStackSize)
3178           .add(predOps(ARMCC::AL))
3179           .add(condCodeOp());
3180     } else {
3181       auto MBBI = AllocMBB->end();
3182       auto RegInfo = STI.getRegisterInfo();
3183       RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
3184                                  AlignedStackSize);
3185     }
3186   }
3187 
3188   // Pass second argument for the __morestack by Scratch Register #1.
3189   //   The amount size of stack consumed to save function arguments.
3190   if (Thumb) {
3191     if (ARMFI->getArgumentStackSize() < 256) {
3192       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
3193           .add(condCodeOp())
3194           .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
3195           .add(predOps(ARMCC::AL));
3196     } else {
3197       if (Thumb2) {
3198         BuildMI(AllocMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg1)
3199             .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()));
3200       } else {
3201         auto MBBI = AllocMBB->end();
3202         auto RegInfo = STI.getRegisterInfo();
3203         RegInfo->emitLoadConstPool(
3204             *AllocMBB, MBBI, DL, ScratchReg1, 0,
3205             alignToARMConstant(ARMFI->getArgumentStackSize()));
3206       }
3207     }
3208   } else {
3209     if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) {
3210       BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
3211           .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
3212           .add(predOps(ARMCC::AL))
3213           .add(condCodeOp());
3214     } else {
3215       auto MBBI = AllocMBB->end();
3216       auto RegInfo = STI.getRegisterInfo();
3217       RegInfo->emitLoadConstPool(
3218           *AllocMBB, MBBI, DL, ScratchReg1, 0,
3219           alignToARMConstant(ARMFI->getArgumentStackSize()));
3220     }
3221   }
3222 
3223   // push {lr} - Save return address of this function.
3224   if (Thumb) {
3225     BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
3226         .add(predOps(ARMCC::AL))
3227         .addReg(ARM::LR);
3228   } else {
3229     BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
3230         .addReg(ARM::SP, RegState::Define)
3231         .addReg(ARM::SP)
3232         .add(predOps(ARMCC::AL))
3233         .addReg(ARM::LR);
3234   }
3235 
3236   // Emit the DWARF info about the change in stack as well as where to find the
3237   // previous link register
3238   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3239     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12));
3240     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3241         .addCFIIndex(CFIIndex);
3242     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3243         nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
3244     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3245         .addCFIIndex(CFIIndex);
3246   }
3247 
3248   // Call __morestack().
3249   if (Thumb) {
3250     BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
3251         .add(predOps(ARMCC::AL))
3252         .addExternalSymbol("__morestack");
3253   } else {
3254     BuildMI(AllocMBB, DL, TII.get(ARM::BL))
3255         .addExternalSymbol("__morestack");
3256   }
3257 
3258   // pop {lr} - Restore return address of this original function.
3259   if (Thumb) {
3260     if (ST->isThumb1Only()) {
3261       BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
3262           .add(predOps(ARMCC::AL))
3263           .addReg(ScratchReg0);
3264       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
3265           .addReg(ScratchReg0)
3266           .add(predOps(ARMCC::AL));
3267     } else {
3268       BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
3269           .addReg(ARM::LR, RegState::Define)
3270           .addReg(ARM::SP, RegState::Define)
3271           .addReg(ARM::SP)
3272           .addImm(4)
3273           .add(predOps(ARMCC::AL));
3274     }
3275   } else {
3276     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
3277         .addReg(ARM::SP, RegState::Define)
3278         .addReg(ARM::SP)
3279         .add(predOps(ARMCC::AL))
3280         .addReg(ARM::LR);
3281   }
3282 
3283   // Restore SR0 and SR1 in case of __morestack() was called.
3284   // __morestack() will skip PostStackMBB block so we need to restore
3285   // scratch registers from here.
3286   // pop {SR0, SR1}
3287   if (Thumb) {
3288     BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
3289         .add(predOps(ARMCC::AL))
3290         .addReg(ScratchReg0)
3291         .addReg(ScratchReg1);
3292   } else {
3293     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
3294         .addReg(ARM::SP, RegState::Define)
3295         .addReg(ARM::SP)
3296         .add(predOps(ARMCC::AL))
3297         .addReg(ScratchReg0)
3298         .addReg(ScratchReg1);
3299   }
3300 
3301   // Update the CFA offset now that we've popped
3302   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3303     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
3304     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3305         .addCFIIndex(CFIIndex);
3306   }
3307 
3308   // Return from this function.
3309   BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
3310 
3311   // Restore SR0 and SR1 in case of __morestack() was not called.
3312   // pop {SR0, SR1}
3313   if (Thumb) {
3314     BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
3315         .add(predOps(ARMCC::AL))
3316         .addReg(ScratchReg0)
3317         .addReg(ScratchReg1);
3318   } else {
3319     BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
3320         .addReg(ARM::SP, RegState::Define)
3321         .addReg(ARM::SP)
3322         .add(predOps(ARMCC::AL))
3323         .addReg(ScratchReg0)
3324         .addReg(ScratchReg1);
3325   }
3326 
3327   // Update the CFA offset now that we've popped
3328   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3329     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
3330     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3331         .addCFIIndex(CFIIndex);
3332 
3333     // Tell debuggers that r4 and r5 are now the same as they were in the
3334     // previous function, that they're the "Same Value".
3335     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
3336         nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
3337     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3338         .addCFIIndex(CFIIndex);
3339     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
3340         nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
3341     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3342         .addCFIIndex(CFIIndex);
3343   }
3344 
3345   // Organizing MBB lists
3346   PostStackMBB->addSuccessor(&PrologueMBB);
3347 
3348   AllocMBB->addSuccessor(PostStackMBB);
3349 
3350   GetMBB->addSuccessor(PostStackMBB);
3351   GetMBB->addSuccessor(AllocMBB);
3352 
3353   McrMBB->addSuccessor(GetMBB);
3354 
3355   PrevStackMBB->addSuccessor(McrMBB);
3356 
3357 #ifdef EXPENSIVE_CHECKS
3358   MF.verify();
3359 #endif
3360 }
3361