1 //===-- ARMFrameLowering.cpp - ARM Frame Information ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the ARM implementation of TargetFrameLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMFrameLowering.h" 15 #include "ARMBaseInstrInfo.h" 16 #include "ARMBaseRegisterInfo.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "llvm/ADT/BitVector.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/RegisterScavenging.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/MC/MCContext.h" 41 #include "llvm/MC/MCDwarf.h" 42 #include "llvm/MC/MCRegisterInfo.h" 43 #include "llvm/Support/CodeGen.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/MathExtras.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetInstrInfo.h" 51 #include "llvm/Target/TargetMachine.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Target/TargetRegisterInfo.h" 54 #include "llvm/Target/TargetSubtargetInfo.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstddef> 58 #include <cstdint> 59 #include <iterator> 60 #include <utility> 61 #include <vector> 62 63 #define DEBUG_TYPE "arm-frame-lowering" 64 65 using namespace llvm; 66 67 static cl::opt<bool> 68 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 69 cl::desc("Align ARM NEON spills in prolog and epilog")); 70 71 static MachineBasicBlock::iterator 72 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 73 unsigned NumAlignedDPRCS2Regs); 74 75 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 76 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, 4), 77 STI(sti) {} 78 79 bool ARMFrameLowering::noFramePointerElim(const MachineFunction &MF) const { 80 // iOS always has a FP for backtracking, force other targets to keep their FP 81 // when doing FastISel. The emitted code is currently superior, and in cases 82 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 83 return TargetFrameLowering::noFramePointerElim(MF) || 84 MF.getSubtarget<ARMSubtarget>().useFastISel(); 85 } 86 87 /// hasFP - Return true if the specified function should have a dedicated frame 88 /// pointer register. This is true if the function has variable sized allocas 89 /// or if frame pointer elimination is disabled. 90 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { 91 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 92 const MachineFrameInfo &MFI = MF.getFrameInfo(); 93 94 // ABI-required frame pointer. 95 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 96 return true; 97 98 // Frame pointer required for use within this function. 99 return (RegInfo->needsStackRealignment(MF) || 100 MFI.hasVarSizedObjects() || 101 MFI.isFrameAddressTaken()); 102 } 103 104 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 105 /// not required, we reserve argument space for call sites in the function 106 /// immediately on entry to the current function. This eliminates the need for 107 /// add/sub sp brackets around call sites. Returns true if the call frame is 108 /// included as part of the stack frame. 109 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 110 const MachineFrameInfo &MFI = MF.getFrameInfo(); 111 unsigned CFSize = MFI.getMaxCallFrameSize(); 112 // It's not always a good idea to include the call frame as part of the 113 // stack frame. ARM (especially Thumb) has small immediate offset to 114 // address the stack frame. So a large call frame can cause poor codegen 115 // and may even makes it impossible to scavenge a register. 116 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 117 return false; 118 119 return !MFI.hasVarSizedObjects(); 120 } 121 122 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 123 /// call frame pseudos can be simplified. Unlike most targets, having a FP 124 /// is not sufficient here since we still may reference some objects via SP 125 /// even when FP is available in Thumb2 mode. 126 bool 127 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 128 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 129 } 130 131 static bool isCSRestore(MachineInstr &MI, const ARMBaseInstrInfo &TII, 132 const MCPhysReg *CSRegs) { 133 // Integer spill area is handled with "pop". 134 if (isPopOpcode(MI.getOpcode())) { 135 // The first two operands are predicates. The last two are 136 // imp-def and imp-use of SP. Check everything in between. 137 for (int i = 5, e = MI.getNumOperands(); i != e; ++i) 138 if (!isCalleeSavedRegister(MI.getOperand(i).getReg(), CSRegs)) 139 return false; 140 return true; 141 } 142 if ((MI.getOpcode() == ARM::LDR_POST_IMM || 143 MI.getOpcode() == ARM::LDR_POST_REG || 144 MI.getOpcode() == ARM::t2LDR_POST) && 145 isCalleeSavedRegister(MI.getOperand(0).getReg(), CSRegs) && 146 MI.getOperand(1).getReg() == ARM::SP) 147 return true; 148 149 return false; 150 } 151 152 static void emitRegPlusImmediate( 153 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 154 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 155 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 156 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 157 if (isARM) 158 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 159 Pred, PredReg, TII, MIFlags); 160 else 161 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 162 Pred, PredReg, TII, MIFlags); 163 } 164 165 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 166 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 167 const ARMBaseInstrInfo &TII, int NumBytes, 168 unsigned MIFlags = MachineInstr::NoFlags, 169 ARMCC::CondCodes Pred = ARMCC::AL, 170 unsigned PredReg = 0) { 171 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 172 MIFlags, Pred, PredReg); 173 } 174 175 static int sizeOfSPAdjustment(const MachineInstr &MI) { 176 int RegSize; 177 switch (MI.getOpcode()) { 178 case ARM::VSTMDDB_UPD: 179 RegSize = 8; 180 break; 181 case ARM::STMDB_UPD: 182 case ARM::t2STMDB_UPD: 183 RegSize = 4; 184 break; 185 case ARM::t2STR_PRE: 186 case ARM::STR_PRE_IMM: 187 return 4; 188 default: 189 llvm_unreachable("Unknown push or pop like instruction"); 190 } 191 192 int count = 0; 193 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 194 // pred) so the list starts at 4. 195 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 196 count += RegSize; 197 return count; 198 } 199 200 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 201 size_t StackSizeInBytes) { 202 const MachineFrameInfo &MFI = MF.getFrameInfo(); 203 const Function *F = MF.getFunction(); 204 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 205 if (F->hasFnAttribute("stack-probe-size")) 206 F->getFnAttribute("stack-probe-size") 207 .getValueAsString() 208 .getAsInteger(0, StackProbeSize); 209 return StackSizeInBytes >= StackProbeSize; 210 } 211 212 namespace { 213 214 struct StackAdjustingInsts { 215 struct InstInfo { 216 MachineBasicBlock::iterator I; 217 unsigned SPAdjust; 218 bool BeforeFPSet; 219 }; 220 221 SmallVector<InstInfo, 4> Insts; 222 223 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 224 bool BeforeFPSet = false) { 225 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 226 Insts.push_back(Info); 227 } 228 229 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 230 auto Info = 231 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 232 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 233 Info->SPAdjust += ExtraBytes; 234 } 235 236 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 237 const ARMBaseInstrInfo &TII, bool HasFP) { 238 MachineFunction &MF = *MBB.getParent(); 239 unsigned CFAOffset = 0; 240 for (auto &Info : Insts) { 241 if (HasFP && !Info.BeforeFPSet) 242 return; 243 244 CFAOffset -= Info.SPAdjust; 245 unsigned CFIIndex = MF.addFrameInst( 246 MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset)); 247 BuildMI(MBB, std::next(Info.I), dl, 248 TII.get(TargetOpcode::CFI_INSTRUCTION)) 249 .addCFIIndex(CFIIndex) 250 .setMIFlags(MachineInstr::FrameSetup); 251 } 252 } 253 }; 254 255 } // end anonymous namespace 256 257 /// Emit an instruction sequence that will align the address in 258 /// register Reg by zero-ing out the lower bits. For versions of the 259 /// architecture that support Neon, this must be done in a single 260 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 261 /// single instruction. That function only gets called when optimizing 262 /// spilling of D registers on a core with the Neon instruction set 263 /// present. 264 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 265 const TargetInstrInfo &TII, 266 MachineBasicBlock &MBB, 267 MachineBasicBlock::iterator MBBI, 268 const DebugLoc &DL, const unsigned Reg, 269 const unsigned Alignment, 270 const bool MustBeSingleInstruction) { 271 const ARMSubtarget &AST = 272 static_cast<const ARMSubtarget &>(MF.getSubtarget()); 273 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 274 const unsigned AlignMask = Alignment - 1; 275 const unsigned NrBitsToZero = countTrailingZeros(Alignment); 276 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 277 if (!AFI->isThumbFunction()) { 278 // if the BFC instruction is available, use that to zero the lower 279 // bits: 280 // bfc Reg, #0, log2(Alignment) 281 // otherwise use BIC, if the mask to zero the required number of bits 282 // can be encoded in the bic immediate field 283 // bic Reg, Reg, Alignment-1 284 // otherwise, emit 285 // lsr Reg, Reg, log2(Alignment) 286 // lsl Reg, Reg, log2(Alignment) 287 if (CanUseBFC) { 288 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 289 .addReg(Reg, RegState::Kill) 290 .addImm(~AlignMask) 291 .add(predOps(ARMCC::AL)); 292 } else if (AlignMask <= 255) { 293 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 294 .addReg(Reg, RegState::Kill) 295 .addImm(AlignMask) 296 .add(predOps(ARMCC::AL)) 297 .add(condCodeOp()); 298 } else { 299 assert(!MustBeSingleInstruction && 300 "Shouldn't call emitAligningInstructions demanding a single " 301 "instruction to be emitted for large stack alignment for a target " 302 "without BFC."); 303 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 304 .addReg(Reg, RegState::Kill) 305 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 306 .add(predOps(ARMCC::AL)) 307 .add(condCodeOp()); 308 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 309 .addReg(Reg, RegState::Kill) 310 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 311 .add(predOps(ARMCC::AL)) 312 .add(condCodeOp()); 313 } 314 } else { 315 // Since this is only reached for Thumb-2 targets, the BFC instruction 316 // should always be available. 317 assert(CanUseBFC); 318 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 319 .addReg(Reg, RegState::Kill) 320 .addImm(~AlignMask) 321 .add(predOps(ARMCC::AL)); 322 } 323 } 324 325 /// We need the offset of the frame pointer relative to other MachineFrameInfo 326 /// offsets which are encoded relative to SP at function begin. 327 /// See also emitPrologue() for how the FP is set up. 328 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet 329 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use 330 /// this to produce a conservative estimate that we check in an assert() later. 331 static int getMaxFPOffset(const Function &F, const ARMFunctionInfo &AFI) { 332 // This is a conservative estimation: Assume the frame pointer being r7 and 333 // pc("r15") up to r8 getting spilled before (= 8 registers). 334 return -AFI.getArgRegsSaveSize() - (8 * 4); 335 } 336 337 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 338 MachineBasicBlock &MBB) const { 339 MachineBasicBlock::iterator MBBI = MBB.begin(); 340 MachineFrameInfo &MFI = MF.getFrameInfo(); 341 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 342 MachineModuleInfo &MMI = MF.getMMI(); 343 MCContext &Context = MMI.getContext(); 344 const TargetMachine &TM = MF.getTarget(); 345 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 346 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 347 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 348 assert(!AFI->isThumb1OnlyFunction() && 349 "This emitPrologue does not support Thumb1!"); 350 bool isARM = !AFI->isThumbFunction(); 351 unsigned Align = STI.getFrameLowering()->getStackAlignment(); 352 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 353 unsigned NumBytes = MFI.getStackSize(); 354 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 355 356 // Debug location must be unknown since the first debug location is used 357 // to determine the end of the prologue. 358 DebugLoc dl; 359 360 unsigned FramePtr = RegInfo->getFrameRegister(MF); 361 362 // Determine the sizes of each callee-save spill areas and record which frame 363 // belongs to which callee-save spill areas. 364 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 365 int FramePtrSpillFI = 0; 366 int D8SpillFI = 0; 367 368 // All calls are tail calls in GHC calling conv, and functions have no 369 // prologue/epilogue. 370 if (MF.getFunction()->getCallingConv() == CallingConv::GHC) 371 return; 372 373 StackAdjustingInsts DefCFAOffsetCandidates; 374 bool HasFP = hasFP(MF); 375 376 // Allocate the vararg register save area. 377 if (ArgRegsSaveSize) { 378 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 379 MachineInstr::FrameSetup); 380 DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true); 381 } 382 383 if (!AFI->hasStackFrame() && 384 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 385 if (NumBytes - ArgRegsSaveSize != 0) { 386 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize), 387 MachineInstr::FrameSetup); 388 DefCFAOffsetCandidates.addInst(std::prev(MBBI), 389 NumBytes - ArgRegsSaveSize, true); 390 } 391 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 392 return; 393 } 394 395 // Determine spill area sizes. 396 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 397 unsigned Reg = CSI[i].getReg(); 398 int FI = CSI[i].getFrameIdx(); 399 switch (Reg) { 400 case ARM::R8: 401 case ARM::R9: 402 case ARM::R10: 403 case ARM::R11: 404 case ARM::R12: 405 if (STI.splitFramePushPop(MF)) { 406 GPRCS2Size += 4; 407 break; 408 } 409 LLVM_FALLTHROUGH; 410 case ARM::R0: 411 case ARM::R1: 412 case ARM::R2: 413 case ARM::R3: 414 case ARM::R4: 415 case ARM::R5: 416 case ARM::R6: 417 case ARM::R7: 418 case ARM::LR: 419 if (Reg == FramePtr) 420 FramePtrSpillFI = FI; 421 GPRCS1Size += 4; 422 break; 423 default: 424 // This is a DPR. Exclude the aligned DPRCS2 spills. 425 if (Reg == ARM::D8) 426 D8SpillFI = FI; 427 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) 428 DPRCSSize += 8; 429 } 430 } 431 432 // Move past area 1. 433 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 434 if (GPRCS1Size > 0) { 435 GPRCS1Push = LastPush = MBBI++; 436 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); 437 } 438 439 // Determine starting offsets of spill areas. 440 unsigned GPRCS1Offset = NumBytes - ArgRegsSaveSize - GPRCS1Size; 441 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 442 unsigned DPRAlign = DPRCSSize ? std::min(8U, Align) : 4U; 443 unsigned DPRGapSize = (GPRCS1Size + GPRCS2Size + ArgRegsSaveSize) % DPRAlign; 444 unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 445 int FramePtrOffsetInPush = 0; 446 if (HasFP) { 447 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); 448 assert(getMaxFPOffset(*MF.getFunction(), *AFI) <= FPOffset && 449 "Max FP estimation is wrong"); 450 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize; 451 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 452 NumBytes); 453 } 454 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 455 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 456 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 457 458 // Move past area 2. 459 if (GPRCS2Size > 0) { 460 GPRCS2Push = LastPush = MBBI++; 461 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 462 } 463 464 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 465 // .cfi_offset operations will reflect that. 466 if (DPRGapSize) { 467 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 468 if (LastPush != MBB.end() && 469 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 470 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 471 else { 472 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 473 MachineInstr::FrameSetup); 474 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); 475 } 476 } 477 478 // Move past area 3. 479 if (DPRCSSize > 0) { 480 // Since vpush register list cannot have gaps, there may be multiple vpush 481 // instructions in the prologue. 482 while (MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 483 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); 484 LastPush = MBBI++; 485 } 486 } 487 488 // Move past the aligned DPRCS2 area. 489 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 490 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 491 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 492 // leaves the stack pointer pointing to the DPRCS2 area. 493 // 494 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 495 NumBytes += MFI.getObjectOffset(D8SpillFI); 496 } else 497 NumBytes = DPRCSOffset; 498 499 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 500 uint32_t NumWords = NumBytes >> 2; 501 502 if (NumWords < 65536) 503 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 504 .addImm(NumWords) 505 .setMIFlags(MachineInstr::FrameSetup) 506 .add(predOps(ARMCC::AL)); 507 else 508 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4) 509 .addImm(NumWords) 510 .setMIFlags(MachineInstr::FrameSetup); 511 512 switch (TM.getCodeModel()) { 513 case CodeModel::Small: 514 case CodeModel::Medium: 515 case CodeModel::Kernel: 516 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 517 .add(predOps(ARMCC::AL)) 518 .addExternalSymbol("__chkstk") 519 .addReg(ARM::R4, RegState::Implicit) 520 .setMIFlags(MachineInstr::FrameSetup); 521 break; 522 case CodeModel::Large: 523 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 524 .addExternalSymbol("__chkstk") 525 .setMIFlags(MachineInstr::FrameSetup); 526 527 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 528 .add(predOps(ARMCC::AL)) 529 .addReg(ARM::R12, RegState::Kill) 530 .addReg(ARM::R4, RegState::Implicit) 531 .setMIFlags(MachineInstr::FrameSetup); 532 break; 533 } 534 535 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 536 .addReg(ARM::SP, RegState::Kill) 537 .addReg(ARM::R4, RegState::Kill) 538 .setMIFlags(MachineInstr::FrameSetup) 539 .add(predOps(ARMCC::AL)) 540 .add(condCodeOp()); 541 NumBytes = 0; 542 } 543 544 if (NumBytes) { 545 // Adjust SP after all the callee-save spills. 546 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 547 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 548 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 549 else { 550 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 551 MachineInstr::FrameSetup); 552 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 553 } 554 555 if (HasFP && isARM) 556 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 557 // Note it's not safe to do this in Thumb2 mode because it would have 558 // taken two instructions: 559 // mov sp, r7 560 // sub sp, #24 561 // If an interrupt is taken between the two instructions, then sp is in 562 // an inconsistent state (pointing to the middle of callee-saved area). 563 // The interrupt handler can end up clobbering the registers. 564 AFI->setShouldRestoreSPFromFP(true); 565 } 566 567 // Set FP to point to the stack slot that contains the previous FP. 568 // For iOS, FP is R7, which has now been stored in spill area 1. 569 // Otherwise, if this is not iOS, all the callee-saved registers go 570 // into spill area 1, including the FP in R11. In either case, it 571 // is in area one and the adjustment needs to take place just after 572 // that push. 573 if (HasFP) { 574 MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push); 575 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); 576 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, 577 dl, TII, FramePtr, ARM::SP, 578 PushSize + FramePtrOffsetInPush, 579 MachineInstr::FrameSetup); 580 if (FramePtrOffsetInPush + PushSize != 0) { 581 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa( 582 nullptr, MRI->getDwarfRegNum(FramePtr, true), 583 -(ArgRegsSaveSize - FramePtrOffsetInPush))); 584 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 585 .addCFIIndex(CFIIndex) 586 .setMIFlags(MachineInstr::FrameSetup); 587 } else { 588 unsigned CFIIndex = 589 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 590 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 591 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 592 .addCFIIndex(CFIIndex) 593 .setMIFlags(MachineInstr::FrameSetup); 594 } 595 } 596 597 // Now that the prologue's actual instructions are finalised, we can insert 598 // the necessary DWARF cf instructions to describe the situation. Start by 599 // recording where each register ended up: 600 if (GPRCS1Size > 0) { 601 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push); 602 int CFIIndex; 603 for (const auto &Entry : CSI) { 604 unsigned Reg = Entry.getReg(); 605 int FI = Entry.getFrameIdx(); 606 switch (Reg) { 607 case ARM::R8: 608 case ARM::R9: 609 case ARM::R10: 610 case ARM::R11: 611 case ARM::R12: 612 if (STI.splitFramePushPop(MF)) 613 break; 614 LLVM_FALLTHROUGH; 615 case ARM::R0: 616 case ARM::R1: 617 case ARM::R2: 618 case ARM::R3: 619 case ARM::R4: 620 case ARM::R5: 621 case ARM::R6: 622 case ARM::R7: 623 case ARM::LR: 624 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 625 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI))); 626 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 627 .addCFIIndex(CFIIndex) 628 .setMIFlags(MachineInstr::FrameSetup); 629 break; 630 } 631 } 632 } 633 634 if (GPRCS2Size > 0) { 635 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push); 636 for (const auto &Entry : CSI) { 637 unsigned Reg = Entry.getReg(); 638 int FI = Entry.getFrameIdx(); 639 switch (Reg) { 640 case ARM::R8: 641 case ARM::R9: 642 case ARM::R10: 643 case ARM::R11: 644 case ARM::R12: 645 if (STI.splitFramePushPop(MF)) { 646 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 647 unsigned Offset = MFI.getObjectOffset(FI); 648 unsigned CFIIndex = MF.addFrameInst( 649 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 650 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 651 .addCFIIndex(CFIIndex) 652 .setMIFlags(MachineInstr::FrameSetup); 653 } 654 break; 655 } 656 } 657 } 658 659 if (DPRCSSize > 0) { 660 // Since vpush register list cannot have gaps, there may be multiple vpush 661 // instructions in the prologue. 662 MachineBasicBlock::iterator Pos = std::next(LastPush); 663 for (const auto &Entry : CSI) { 664 unsigned Reg = Entry.getReg(); 665 int FI = Entry.getFrameIdx(); 666 if ((Reg >= ARM::D0 && Reg <= ARM::D31) && 667 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) { 668 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 669 unsigned Offset = MFI.getObjectOffset(FI); 670 unsigned CFIIndex = MF.addFrameInst( 671 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 672 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 673 .addCFIIndex(CFIIndex) 674 .setMIFlags(MachineInstr::FrameSetup); 675 } 676 } 677 } 678 679 // Now we can emit descriptions of where the canonical frame address was 680 // throughout the process. If we have a frame pointer, it takes over the job 681 // half-way through, so only the first few .cfi_def_cfa_offset instructions 682 // actually get emitted. 683 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 684 685 if (STI.isTargetELF() && hasFP(MF)) 686 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 687 AFI->getFramePtrSpillOffset()); 688 689 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 690 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 691 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 692 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 693 694 // If we need dynamic stack realignment, do it here. Be paranoid and make 695 // sure if we also have VLAs, we have a base pointer for frame access. 696 // If aligned NEON registers were spilled, the stack has already been 697 // realigned. 698 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) { 699 unsigned MaxAlign = MFI.getMaxAlignment(); 700 assert(!AFI->isThumb1OnlyFunction()); 701 if (!AFI->isThumbFunction()) { 702 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 703 false); 704 } else { 705 // We cannot use sp as source/dest register here, thus we're using r4 to 706 // perform the calculations. We're emitting the following sequence: 707 // mov r4, sp 708 // -- use emitAligningInstructions to produce best sequence to zero 709 // -- out lower bits in r4 710 // mov sp, r4 711 // FIXME: It will be better just to find spare register here. 712 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 713 .addReg(ARM::SP, RegState::Kill) 714 .add(predOps(ARMCC::AL)); 715 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 716 false); 717 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 718 .addReg(ARM::R4, RegState::Kill) 719 .add(predOps(ARMCC::AL)); 720 } 721 722 AFI->setShouldRestoreSPFromFP(true); 723 } 724 725 // If we need a base pointer, set it up here. It's whatever the value 726 // of the stack pointer is at this point. Any variable size objects 727 // will be allocated after this, so we can still use the base pointer 728 // to reference locals. 729 // FIXME: Clarify FrameSetup flags here. 730 if (RegInfo->hasBasePointer(MF)) { 731 if (isARM) 732 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 733 .addReg(ARM::SP) 734 .add(predOps(ARMCC::AL)) 735 .add(condCodeOp()); 736 else 737 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 738 .addReg(ARM::SP) 739 .add(predOps(ARMCC::AL)); 740 } 741 742 // If the frame has variable sized objects then the epilogue must restore 743 // the sp from fp. We can assume there's an FP here since hasFP already 744 // checks for hasVarSizedObjects. 745 if (MFI.hasVarSizedObjects()) 746 AFI->setShouldRestoreSPFromFP(true); 747 } 748 749 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 750 MachineBasicBlock &MBB) const { 751 MachineFrameInfo &MFI = MF.getFrameInfo(); 752 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 753 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 754 const ARMBaseInstrInfo &TII = 755 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 756 assert(!AFI->isThumb1OnlyFunction() && 757 "This emitEpilogue does not support Thumb1!"); 758 bool isARM = !AFI->isThumbFunction(); 759 760 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 761 int NumBytes = (int)MFI.getStackSize(); 762 unsigned FramePtr = RegInfo->getFrameRegister(MF); 763 764 // All calls are tail calls in GHC calling conv, and functions have no 765 // prologue/epilogue. 766 if (MF.getFunction()->getCallingConv() == CallingConv::GHC) 767 return; 768 769 // First put ourselves on the first (from top) terminator instructions. 770 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 771 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 772 773 if (!AFI->hasStackFrame()) { 774 if (NumBytes - ArgRegsSaveSize != 0) 775 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize); 776 } else { 777 // Unwind MBBI to point to first LDR / VLDRD. 778 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 779 if (MBBI != MBB.begin()) { 780 do { 781 --MBBI; 782 } while (MBBI != MBB.begin() && isCSRestore(*MBBI, TII, CSRegs)); 783 if (!isCSRestore(*MBBI, TII, CSRegs)) 784 ++MBBI; 785 } 786 787 // Move SP to start of FP callee save spill area. 788 NumBytes -= (ArgRegsSaveSize + 789 AFI->getGPRCalleeSavedArea1Size() + 790 AFI->getGPRCalleeSavedArea2Size() + 791 AFI->getDPRCalleeSavedGapSize() + 792 AFI->getDPRCalleeSavedAreaSize()); 793 794 // Reset SP based on frame pointer only if the stack frame extends beyond 795 // frame pointer stack slot or target is ELF and the function has FP. 796 if (AFI->shouldRestoreSPFromFP()) { 797 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 798 if (NumBytes) { 799 if (isARM) 800 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 801 ARMCC::AL, 0, TII); 802 else { 803 // It's not possible to restore SP from FP in a single instruction. 804 // For iOS, this looks like: 805 // mov sp, r7 806 // sub sp, #24 807 // This is bad, if an interrupt is taken after the mov, sp is in an 808 // inconsistent state. 809 // Use the first callee-saved register as a scratch register. 810 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 811 "No scratch register to restore SP from FP!"); 812 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 813 ARMCC::AL, 0, TII); 814 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 815 .addReg(ARM::R4) 816 .add(predOps(ARMCC::AL)); 817 } 818 } else { 819 // Thumb2 or ARM. 820 if (isARM) 821 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 822 .addReg(FramePtr) 823 .add(predOps(ARMCC::AL)) 824 .add(condCodeOp()); 825 else 826 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 827 .addReg(FramePtr) 828 .add(predOps(ARMCC::AL)); 829 } 830 } else if (NumBytes && 831 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 832 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes); 833 834 // Increment past our save areas. 835 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { 836 MBBI++; 837 // Since vpop register list cannot have gaps, there may be multiple vpop 838 // instructions in the epilogue. 839 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 840 MBBI++; 841 } 842 if (AFI->getDPRCalleeSavedGapSize()) { 843 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 844 "unexpected DPR alignment gap"); 845 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize()); 846 } 847 848 if (AFI->getGPRCalleeSavedArea2Size()) MBBI++; 849 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 850 } 851 852 if (ArgRegsSaveSize) 853 emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize); 854 } 855 856 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 857 /// debug info. It's the same as what we use for resolving the code-gen 858 /// references for now. FIXME: This can go wrong when references are 859 /// SP-relative and simple call frames aren't used. 860 int 861 ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 862 unsigned &FrameReg) const { 863 return ResolveFrameIndexReference(MF, FI, FrameReg, 0); 864 } 865 866 int 867 ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 868 int FI, unsigned &FrameReg, 869 int SPAdj) const { 870 const MachineFrameInfo &MFI = MF.getFrameInfo(); 871 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 872 MF.getSubtarget().getRegisterInfo()); 873 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 874 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 875 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 876 bool isFixed = MFI.isFixedObjectIndex(FI); 877 878 FrameReg = ARM::SP; 879 Offset += SPAdj; 880 881 // SP can move around if there are allocas. We may also lose track of SP 882 // when emergency spilling inside a non-reserved call frame setup. 883 bool hasMovingSP = !hasReservedCallFrame(MF); 884 885 // When dynamically realigning the stack, use the frame pointer for 886 // parameters, and the stack/base pointer for locals. 887 if (RegInfo->needsStackRealignment(MF)) { 888 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 889 if (isFixed) { 890 FrameReg = RegInfo->getFrameRegister(MF); 891 Offset = FPOffset; 892 } else if (hasMovingSP) { 893 assert(RegInfo->hasBasePointer(MF) && 894 "VLAs and dynamic stack alignment, but missing base pointer!"); 895 FrameReg = RegInfo->getBaseRegister(); 896 } 897 return Offset; 898 } 899 900 // If there is a frame pointer, use it when we can. 901 if (hasFP(MF) && AFI->hasStackFrame()) { 902 // Use frame pointer to reference fixed objects. Use it for locals if 903 // there are VLAs (and thus the SP isn't reliable as a base). 904 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 905 FrameReg = RegInfo->getFrameRegister(MF); 906 return FPOffset; 907 } else if (hasMovingSP) { 908 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 909 if (AFI->isThumb2Function()) { 910 // Try to use the frame pointer if we can, else use the base pointer 911 // since it's available. This is handy for the emergency spill slot, in 912 // particular. 913 if (FPOffset >= -255 && FPOffset < 0) { 914 FrameReg = RegInfo->getFrameRegister(MF); 915 return FPOffset; 916 } 917 } 918 } else if (AFI->isThumb2Function()) { 919 // Use add <rd>, sp, #<imm8> 920 // ldr <rd>, [sp, #<imm8>] 921 // if at all possible to save space. 922 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 923 return Offset; 924 // In Thumb2 mode, the negative offset is very limited. Try to avoid 925 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 926 if (FPOffset >= -255 && FPOffset < 0) { 927 FrameReg = RegInfo->getFrameRegister(MF); 928 return FPOffset; 929 } 930 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 931 // Otherwise, use SP or FP, whichever is closer to the stack slot. 932 FrameReg = RegInfo->getFrameRegister(MF); 933 return FPOffset; 934 } 935 } 936 // Use the base pointer if we have one. 937 if (RegInfo->hasBasePointer(MF)) 938 FrameReg = RegInfo->getBaseRegister(); 939 return Offset; 940 } 941 942 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 943 MachineBasicBlock::iterator MI, 944 const std::vector<CalleeSavedInfo> &CSI, 945 unsigned StmOpc, unsigned StrOpc, 946 bool NoGap, 947 bool(*Func)(unsigned, bool), 948 unsigned NumAlignedDPRCS2Regs, 949 unsigned MIFlags) const { 950 MachineFunction &MF = *MBB.getParent(); 951 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 952 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 953 954 DebugLoc DL; 955 956 typedef std::pair<unsigned, bool> RegAndKill; 957 SmallVector<RegAndKill, 4> Regs; 958 unsigned i = CSI.size(); 959 while (i != 0) { 960 unsigned LastReg = 0; 961 for (; i != 0; --i) { 962 unsigned Reg = CSI[i-1].getReg(); 963 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 964 965 // D-registers in the aligned area DPRCS2 are NOT spilled here. 966 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 967 continue; 968 969 const MachineRegisterInfo &MRI = MF.getRegInfo(); 970 bool isLiveIn = MRI.isLiveIn(Reg); 971 if (!isLiveIn && !MRI.isReserved(Reg)) 972 MBB.addLiveIn(Reg); 973 // If NoGap is true, push consecutive registers and then leave the rest 974 // for other instructions. e.g. 975 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 976 if (NoGap && LastReg && LastReg != Reg-1) 977 break; 978 LastReg = Reg; 979 // Do not set a kill flag on values that are also marked as live-in. This 980 // happens with the @llvm-returnaddress intrinsic and with arguments 981 // passed in callee saved registers. 982 // Omitting the kill flags is conservatively correct even if the live-in 983 // is not used after all. 984 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 985 } 986 987 if (Regs.empty()) 988 continue; 989 990 std::sort(Regs.begin(), Regs.end(), [&](const RegAndKill &LHS, 991 const RegAndKill &RHS) { 992 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 993 }); 994 995 if (Regs.size() > 1 || StrOpc== 0) { 996 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 997 .addReg(ARM::SP) 998 .setMIFlags(MIFlags) 999 .add(predOps(ARMCC::AL)); 1000 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1001 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 1002 } else if (Regs.size() == 1) { 1003 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 1004 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 1005 .addReg(ARM::SP) 1006 .setMIFlags(MIFlags) 1007 .addImm(-4) 1008 .add(predOps(ARMCC::AL)); 1009 } 1010 Regs.clear(); 1011 1012 // Put any subsequent vpush instructions before this one: they will refer to 1013 // higher register numbers so need to be pushed first in order to preserve 1014 // monotonicity. 1015 if (MI != MBB.begin()) 1016 --MI; 1017 } 1018 } 1019 1020 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1021 MachineBasicBlock::iterator MI, 1022 std::vector<CalleeSavedInfo> &CSI, 1023 unsigned LdmOpc, unsigned LdrOpc, 1024 bool isVarArg, bool NoGap, 1025 bool(*Func)(unsigned, bool), 1026 unsigned NumAlignedDPRCS2Regs) const { 1027 MachineFunction &MF = *MBB.getParent(); 1028 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1029 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1030 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1031 DebugLoc DL; 1032 bool isTailCall = false; 1033 bool isInterrupt = false; 1034 bool isTrap = false; 1035 if (MBB.end() != MI) { 1036 DL = MI->getDebugLoc(); 1037 unsigned RetOpcode = MI->getOpcode(); 1038 isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri); 1039 isInterrupt = 1040 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1041 isTrap = 1042 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1043 RetOpcode == ARM::tTRAP; 1044 } 1045 1046 SmallVector<unsigned, 4> Regs; 1047 unsigned i = CSI.size(); 1048 while (i != 0) { 1049 unsigned LastReg = 0; 1050 bool DeleteRet = false; 1051 for (; i != 0; --i) { 1052 unsigned Reg = CSI[i-1].getReg(); 1053 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1054 1055 // The aligned reloads from area DPRCS2 are not inserted here. 1056 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1057 continue; 1058 1059 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1060 !isTrap && STI.hasV5TOps()) { 1061 if (MBB.succ_empty()) { 1062 Reg = ARM::PC; 1063 DeleteRet = true; 1064 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1065 } else 1066 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1067 // Fold the return instruction into the LDM. 1068 } 1069 1070 // If NoGap is true, pop consecutive registers and then leave the rest 1071 // for other instructions. e.g. 1072 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1073 if (NoGap && LastReg && LastReg != Reg-1) 1074 break; 1075 1076 LastReg = Reg; 1077 Regs.push_back(Reg); 1078 } 1079 1080 if (Regs.empty()) 1081 continue; 1082 1083 std::sort(Regs.begin(), Regs.end(), [&](unsigned LHS, unsigned RHS) { 1084 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1085 }); 1086 1087 if (Regs.size() > 1 || LdrOpc == 0) { 1088 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1089 .addReg(ARM::SP) 1090 .add(predOps(ARMCC::AL)); 1091 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1092 MIB.addReg(Regs[i], getDefRegState(true)); 1093 if (DeleteRet) { 1094 if (MI != MBB.end()) { 1095 MIB.copyImplicitOps(*MI); 1096 MI->eraseFromParent(); 1097 } 1098 // If LR is not restored, mark it in CSI. 1099 for (CalleeSavedInfo &I : CSI) { 1100 if (I.getReg() != ARM::LR) 1101 continue; 1102 I.setRestored(false); 1103 break; 1104 } 1105 } 1106 MI = MIB; 1107 } else if (Regs.size() == 1) { 1108 // If we adjusted the reg to PC from LR above, switch it back here. We 1109 // only do that for LDM. 1110 if (Regs[0] == ARM::PC) 1111 Regs[0] = ARM::LR; 1112 MachineInstrBuilder MIB = 1113 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1114 .addReg(ARM::SP, RegState::Define) 1115 .addReg(ARM::SP); 1116 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1117 // that refactoring is complete (eventually). 1118 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1119 MIB.addReg(0); 1120 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1121 } else 1122 MIB.addImm(4); 1123 MIB.add(predOps(ARMCC::AL)); 1124 } 1125 Regs.clear(); 1126 1127 // Put any subsequent vpop instructions after this one: they will refer to 1128 // higher register numbers so need to be popped afterwards. 1129 if (MI != MBB.end()) 1130 ++MI; 1131 } 1132 } 1133 1134 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1135 /// starting from d8. Also insert stack realignment code and leave the stack 1136 /// pointer pointing to the d8 spill slot. 1137 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1138 MachineBasicBlock::iterator MI, 1139 unsigned NumAlignedDPRCS2Regs, 1140 const std::vector<CalleeSavedInfo> &CSI, 1141 const TargetRegisterInfo *TRI) { 1142 MachineFunction &MF = *MBB.getParent(); 1143 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1144 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1145 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1146 MachineFrameInfo &MFI = MF.getFrameInfo(); 1147 1148 // Mark the D-register spill slots as properly aligned. Since MFI computes 1149 // stack slot layout backwards, this can actually mean that the d-reg stack 1150 // slot offsets can be wrong. The offset for d8 will always be correct. 1151 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 1152 unsigned DNum = CSI[i].getReg() - ARM::D8; 1153 if (DNum > NumAlignedDPRCS2Regs - 1) 1154 continue; 1155 int FI = CSI[i].getFrameIdx(); 1156 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1157 // registers will be 8-byte aligned. 1158 MFI.setObjectAlignment(FI, DNum % 2 ? 8 : 16); 1159 1160 // The stack slot for D8 needs to be maximally aligned because this is 1161 // actually the point where we align the stack pointer. MachineFrameInfo 1162 // computes all offsets relative to the incoming stack pointer which is a 1163 // bit weird when realigning the stack. Any extra padding for this 1164 // over-alignment is not realized because the code inserted below adjusts 1165 // the stack pointer by numregs * 8 before aligning the stack pointer. 1166 if (DNum == 0) 1167 MFI.setObjectAlignment(FI, MFI.getMaxAlignment()); 1168 } 1169 1170 // Move the stack pointer to the d8 spill slot, and align it at the same 1171 // time. Leave the stack slot address in the scratch register r4. 1172 // 1173 // sub r4, sp, #numregs * 8 1174 // bic r4, r4, #align - 1 1175 // mov sp, r4 1176 // 1177 bool isThumb = AFI->isThumbFunction(); 1178 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1179 AFI->setShouldRestoreSPFromFP(true); 1180 1181 // sub r4, sp, #numregs * 8 1182 // The immediate is <= 64, so it doesn't need any special encoding. 1183 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1184 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1185 .addReg(ARM::SP) 1186 .addImm(8 * NumAlignedDPRCS2Regs) 1187 .add(predOps(ARMCC::AL)) 1188 .add(condCodeOp()); 1189 1190 unsigned MaxAlign = MF.getFrameInfo().getMaxAlignment(); 1191 // We must set parameter MustBeSingleInstruction to true, since 1192 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1193 // stack alignment. Luckily, this can always be done since all ARM 1194 // architecture versions that support Neon also support the BFC 1195 // instruction. 1196 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1197 1198 // mov sp, r4 1199 // The stack pointer must be adjusted before spilling anything, otherwise 1200 // the stack slots could be clobbered by an interrupt handler. 1201 // Leave r4 live, it is used below. 1202 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1203 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1204 .addReg(ARM::R4) 1205 .add(predOps(ARMCC::AL)); 1206 if (!isThumb) 1207 MIB.add(condCodeOp()); 1208 1209 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1210 // r4 holds the stack slot address. 1211 unsigned NextReg = ARM::D8; 1212 1213 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1214 // The writeback is only needed when emitting two vst1.64 instructions. 1215 if (NumAlignedDPRCS2Regs >= 6) { 1216 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1217 &ARM::QQPRRegClass); 1218 MBB.addLiveIn(SupReg); 1219 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1220 .addReg(ARM::R4, RegState::Kill) 1221 .addImm(16) 1222 .addReg(NextReg) 1223 .addReg(SupReg, RegState::ImplicitKill) 1224 .add(predOps(ARMCC::AL)); 1225 NextReg += 4; 1226 NumAlignedDPRCS2Regs -= 4; 1227 } 1228 1229 // We won't modify r4 beyond this point. It currently points to the next 1230 // register to be spilled. 1231 unsigned R4BaseReg = NextReg; 1232 1233 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1234 if (NumAlignedDPRCS2Regs >= 4) { 1235 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1236 &ARM::QQPRRegClass); 1237 MBB.addLiveIn(SupReg); 1238 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1239 .addReg(ARM::R4) 1240 .addImm(16) 1241 .addReg(NextReg) 1242 .addReg(SupReg, RegState::ImplicitKill) 1243 .add(predOps(ARMCC::AL)); 1244 NextReg += 4; 1245 NumAlignedDPRCS2Regs -= 4; 1246 } 1247 1248 // 16-byte aligned vst1.64 with 2 d-regs. 1249 if (NumAlignedDPRCS2Regs >= 2) { 1250 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1251 &ARM::QPRRegClass); 1252 MBB.addLiveIn(SupReg); 1253 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1254 .addReg(ARM::R4) 1255 .addImm(16) 1256 .addReg(SupReg) 1257 .add(predOps(ARMCC::AL)); 1258 NextReg += 2; 1259 NumAlignedDPRCS2Regs -= 2; 1260 } 1261 1262 // Finally, use a vanilla vstr.64 for the odd last register. 1263 if (NumAlignedDPRCS2Regs) { 1264 MBB.addLiveIn(NextReg); 1265 // vstr.64 uses addrmode5 which has an offset scale of 4. 1266 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1267 .addReg(NextReg) 1268 .addReg(ARM::R4) 1269 .addImm((NextReg - R4BaseReg) * 2) 1270 .add(predOps(ARMCC::AL)); 1271 } 1272 1273 // The last spill instruction inserted should kill the scratch register r4. 1274 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1275 } 1276 1277 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1278 /// iterator to the following instruction. 1279 static MachineBasicBlock::iterator 1280 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1281 unsigned NumAlignedDPRCS2Regs) { 1282 // sub r4, sp, #numregs * 8 1283 // bic r4, r4, #align - 1 1284 // mov sp, r4 1285 ++MI; ++MI; ++MI; 1286 assert(MI->mayStore() && "Expecting spill instruction"); 1287 1288 // These switches all fall through. 1289 switch(NumAlignedDPRCS2Regs) { 1290 case 7: 1291 ++MI; 1292 assert(MI->mayStore() && "Expecting spill instruction"); 1293 LLVM_FALLTHROUGH; 1294 default: 1295 ++MI; 1296 assert(MI->mayStore() && "Expecting spill instruction"); 1297 LLVM_FALLTHROUGH; 1298 case 1: 1299 case 2: 1300 case 4: 1301 assert(MI->killsRegister(ARM::R4) && "Missed kill flag"); 1302 ++MI; 1303 } 1304 return MI; 1305 } 1306 1307 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1308 /// starting from d8. These instructions are assumed to execute while the 1309 /// stack is still aligned, unlike the code inserted by emitPopInst. 1310 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1311 MachineBasicBlock::iterator MI, 1312 unsigned NumAlignedDPRCS2Regs, 1313 const std::vector<CalleeSavedInfo> &CSI, 1314 const TargetRegisterInfo *TRI) { 1315 MachineFunction &MF = *MBB.getParent(); 1316 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1317 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1318 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1319 1320 // Find the frame index assigned to d8. 1321 int D8SpillFI = 0; 1322 for (unsigned i = 0, e = CSI.size(); i != e; ++i) 1323 if (CSI[i].getReg() == ARM::D8) { 1324 D8SpillFI = CSI[i].getFrameIdx(); 1325 break; 1326 } 1327 1328 // Materialize the address of the d8 spill slot into the scratch register r4. 1329 // This can be fairly complicated if the stack frame is large, so just use 1330 // the normal frame index elimination mechanism to do it. This code runs as 1331 // the initial part of the epilog where the stack and base pointers haven't 1332 // been changed yet. 1333 bool isThumb = AFI->isThumbFunction(); 1334 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1335 1336 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 1337 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1338 .addFrameIndex(D8SpillFI) 1339 .addImm(0) 1340 .add(predOps(ARMCC::AL)) 1341 .add(condCodeOp()); 1342 1343 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 1344 unsigned NextReg = ARM::D8; 1345 1346 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 1347 if (NumAlignedDPRCS2Regs >= 6) { 1348 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1349 &ARM::QQPRRegClass); 1350 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 1351 .addReg(ARM::R4, RegState::Define) 1352 .addReg(ARM::R4, RegState::Kill) 1353 .addImm(16) 1354 .addReg(SupReg, RegState::ImplicitDefine) 1355 .add(predOps(ARMCC::AL)); 1356 NextReg += 4; 1357 NumAlignedDPRCS2Regs -= 4; 1358 } 1359 1360 // We won't modify r4 beyond this point. It currently points to the next 1361 // register to be spilled. 1362 unsigned R4BaseReg = NextReg; 1363 1364 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 1365 if (NumAlignedDPRCS2Regs >= 4) { 1366 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1367 &ARM::QQPRRegClass); 1368 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 1369 .addReg(ARM::R4) 1370 .addImm(16) 1371 .addReg(SupReg, RegState::ImplicitDefine) 1372 .add(predOps(ARMCC::AL)); 1373 NextReg += 4; 1374 NumAlignedDPRCS2Regs -= 4; 1375 } 1376 1377 // 16-byte aligned vld1.64 with 2 d-regs. 1378 if (NumAlignedDPRCS2Regs >= 2) { 1379 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1380 &ARM::QPRRegClass); 1381 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 1382 .addReg(ARM::R4) 1383 .addImm(16) 1384 .add(predOps(ARMCC::AL)); 1385 NextReg += 2; 1386 NumAlignedDPRCS2Regs -= 2; 1387 } 1388 1389 // Finally, use a vanilla vldr.64 for the remaining odd register. 1390 if (NumAlignedDPRCS2Regs) 1391 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 1392 .addReg(ARM::R4) 1393 .addImm(2 * (NextReg - R4BaseReg)) 1394 .add(predOps(ARMCC::AL)); 1395 1396 // Last store kills r4. 1397 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1398 } 1399 1400 bool ARMFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB, 1401 MachineBasicBlock::iterator MI, 1402 const std::vector<CalleeSavedInfo> &CSI, 1403 const TargetRegisterInfo *TRI) const { 1404 if (CSI.empty()) 1405 return false; 1406 1407 MachineFunction &MF = *MBB.getParent(); 1408 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1409 1410 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 1411 unsigned PushOneOpc = AFI->isThumbFunction() ? 1412 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 1413 unsigned FltOpc = ARM::VSTMDDB_UPD; 1414 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1415 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0, 1416 MachineInstr::FrameSetup); 1417 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0, 1418 MachineInstr::FrameSetup); 1419 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 1420 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 1421 1422 // The code above does not insert spill code for the aligned DPRCS2 registers. 1423 // The stack realignment code will be inserted between the push instructions 1424 // and these spills. 1425 if (NumAlignedDPRCS2Regs) 1426 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1427 1428 return true; 1429 } 1430 1431 bool ARMFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, 1432 MachineBasicBlock::iterator MI, 1433 std::vector<CalleeSavedInfo> &CSI, 1434 const TargetRegisterInfo *TRI) const { 1435 if (CSI.empty()) 1436 return false; 1437 1438 MachineFunction &MF = *MBB.getParent(); 1439 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1440 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 1441 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1442 1443 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 1444 // registers. Do that here instead. 1445 if (NumAlignedDPRCS2Regs) 1446 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1447 1448 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1449 unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM; 1450 unsigned FltOpc = ARM::VLDMDIA_UPD; 1451 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 1452 NumAlignedDPRCS2Regs); 1453 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1454 &isARMArea2Register, 0); 1455 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1456 &isARMArea1Register, 0); 1457 1458 return true; 1459 } 1460 1461 // FIXME: Make generic? 1462 static unsigned GetFunctionSizeInBytes(const MachineFunction &MF, 1463 const ARMBaseInstrInfo &TII) { 1464 unsigned FnSize = 0; 1465 for (auto &MBB : MF) { 1466 for (auto &MI : MBB) 1467 FnSize += TII.getInstSizeInBytes(MI); 1468 } 1469 return FnSize; 1470 } 1471 1472 /// estimateRSStackSizeLimit - Look at each instruction that references stack 1473 /// frames and return the stack size limit beyond which some of these 1474 /// instructions will require a scratch register during their expansion later. 1475 // FIXME: Move to TII? 1476 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 1477 const TargetFrameLowering *TFI) { 1478 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1479 unsigned Limit = (1 << 12) - 1; 1480 for (auto &MBB : MF) { 1481 for (auto &MI : MBB) { 1482 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1483 if (!MI.getOperand(i).isFI()) 1484 continue; 1485 1486 // When using ADDri to get the address of a stack object, 255 is the 1487 // largest offset guaranteed to fit in the immediate offset. 1488 if (MI.getOpcode() == ARM::ADDri) { 1489 Limit = std::min(Limit, (1U << 8) - 1); 1490 break; 1491 } 1492 1493 // Otherwise check the addressing mode. 1494 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 1495 case ARMII::AddrMode3: 1496 case ARMII::AddrModeT2_i8: 1497 Limit = std::min(Limit, (1U << 8) - 1); 1498 break; 1499 case ARMII::AddrMode5: 1500 case ARMII::AddrModeT2_i8s4: 1501 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 1502 break; 1503 case ARMII::AddrModeT2_i12: 1504 // i12 supports only positive offset so these will be converted to 1505 // i8 opcodes. See llvm::rewriteT2FrameIndex. 1506 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 1507 Limit = std::min(Limit, (1U << 8) - 1); 1508 break; 1509 case ARMII::AddrMode4: 1510 case ARMII::AddrMode6: 1511 // Addressing modes 4 & 6 (load/store) instructions can't encode an 1512 // immediate offset for stack references. 1513 return 0; 1514 default: 1515 break; 1516 } 1517 break; // At most one FI per instruction 1518 } 1519 } 1520 } 1521 1522 return Limit; 1523 } 1524 1525 // In functions that realign the stack, it can be an advantage to spill the 1526 // callee-saved vector registers after realigning the stack. The vst1 and vld1 1527 // instructions take alignment hints that can improve performance. 1528 // 1529 static void 1530 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 1531 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 1532 if (!SpillAlignedNEONRegs) 1533 return; 1534 1535 // Naked functions don't spill callee-saved registers. 1536 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 1537 return; 1538 1539 // We are planning to use NEON instructions vst1 / vld1. 1540 if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON()) 1541 return; 1542 1543 // Don't bother if the default stack alignment is sufficiently high. 1544 if (MF.getSubtarget().getFrameLowering()->getStackAlignment() >= 8) 1545 return; 1546 1547 // Aligned spills require stack realignment. 1548 if (!static_cast<const ARMBaseRegisterInfo *>( 1549 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 1550 return; 1551 1552 // We always spill contiguous d-registers starting from d8. Count how many 1553 // needs spilling. The register allocator will almost always use the 1554 // callee-saved registers in order, but it can happen that there are holes in 1555 // the range. Registers above the hole will be spilled to the standard DPRCS 1556 // area. 1557 unsigned NumSpills = 0; 1558 for (; NumSpills < 8; ++NumSpills) 1559 if (!SavedRegs.test(ARM::D8 + NumSpills)) 1560 break; 1561 1562 // Don't do this for just one d-register. It's not worth it. 1563 if (NumSpills < 2) 1564 return; 1565 1566 // Spill the first NumSpills D-registers after realigning the stack. 1567 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 1568 1569 // A scratch register is required for the vst1 / vld1 instructions. 1570 SavedRegs.set(ARM::R4); 1571 } 1572 1573 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 1574 BitVector &SavedRegs, 1575 RegScavenger *RS) const { 1576 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1577 // This tells PEI to spill the FP as if it is any other callee-save register 1578 // to take advantage the eliminateFrameIndex machinery. This also ensures it 1579 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 1580 // to combine multiple loads / stores. 1581 bool CanEliminateFrame = true; 1582 bool CS1Spilled = false; 1583 bool LRSpilled = false; 1584 unsigned NumGPRSpills = 0; 1585 unsigned NumFPRSpills = 0; 1586 SmallVector<unsigned, 4> UnspilledCS1GPRs; 1587 SmallVector<unsigned, 4> UnspilledCS2GPRs; 1588 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1589 MF.getSubtarget().getRegisterInfo()); 1590 const ARMBaseInstrInfo &TII = 1591 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1592 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1593 MachineFrameInfo &MFI = MF.getFrameInfo(); 1594 MachineRegisterInfo &MRI = MF.getRegInfo(); 1595 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1596 (void)TRI; // Silence unused warning in non-assert builds. 1597 unsigned FramePtr = RegInfo->getFrameRegister(MF); 1598 1599 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 1600 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 1601 // since it's not always possible to restore sp from fp in a single 1602 // instruction. 1603 // FIXME: It will be better just to find spare register here. 1604 if (AFI->isThumb2Function() && 1605 (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF))) 1606 SavedRegs.set(ARM::R4); 1607 1608 if (AFI->isThumb1OnlyFunction()) { 1609 // Spill LR if Thumb1 function uses variable length argument lists. 1610 if (AFI->getArgRegsSaveSize() > 0) 1611 SavedRegs.set(ARM::LR); 1612 1613 // Spill R4 if Thumb1 epilogue has to restore SP from FP. We don't know 1614 // for sure what the stack size will be, but for this, an estimate is good 1615 // enough. If there anything changes it, it'll be a spill, which implies 1616 // we've used all the registers and so R4 is already used, so not marking 1617 // it here will be OK. 1618 // FIXME: It will be better just to find spare register here. 1619 unsigned StackSize = MFI.estimateStackSize(MF); 1620 if (MFI.hasVarSizedObjects() || StackSize > 508) 1621 SavedRegs.set(ARM::R4); 1622 } 1623 1624 // See if we can spill vector registers to aligned stack. 1625 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 1626 1627 // Spill the BasePtr if it's used. 1628 if (RegInfo->hasBasePointer(MF)) 1629 SavedRegs.set(RegInfo->getBaseRegister()); 1630 1631 // Don't spill FP if the frame can be eliminated. This is determined 1632 // by scanning the callee-save registers to see if any is modified. 1633 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 1634 for (unsigned i = 0; CSRegs[i]; ++i) { 1635 unsigned Reg = CSRegs[i]; 1636 bool Spilled = false; 1637 if (SavedRegs.test(Reg)) { 1638 Spilled = true; 1639 CanEliminateFrame = false; 1640 } 1641 1642 if (!ARM::GPRRegClass.contains(Reg)) { 1643 if (Spilled) { 1644 if (ARM::SPRRegClass.contains(Reg)) 1645 NumFPRSpills++; 1646 else if (ARM::DPRRegClass.contains(Reg)) 1647 NumFPRSpills += 2; 1648 else if (ARM::QPRRegClass.contains(Reg)) 1649 NumFPRSpills += 4; 1650 } 1651 continue; 1652 } 1653 1654 if (Spilled) { 1655 NumGPRSpills++; 1656 1657 if (!STI.splitFramePushPop(MF)) { 1658 if (Reg == ARM::LR) 1659 LRSpilled = true; 1660 CS1Spilled = true; 1661 continue; 1662 } 1663 1664 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 1665 switch (Reg) { 1666 case ARM::LR: 1667 LRSpilled = true; 1668 LLVM_FALLTHROUGH; 1669 case ARM::R0: case ARM::R1: 1670 case ARM::R2: case ARM::R3: 1671 case ARM::R4: case ARM::R5: 1672 case ARM::R6: case ARM::R7: 1673 CS1Spilled = true; 1674 break; 1675 default: 1676 break; 1677 } 1678 } else { 1679 if (!STI.splitFramePushPop(MF)) { 1680 UnspilledCS1GPRs.push_back(Reg); 1681 continue; 1682 } 1683 1684 switch (Reg) { 1685 case ARM::R0: case ARM::R1: 1686 case ARM::R2: case ARM::R3: 1687 case ARM::R4: case ARM::R5: 1688 case ARM::R6: case ARM::R7: 1689 case ARM::LR: 1690 UnspilledCS1GPRs.push_back(Reg); 1691 break; 1692 default: 1693 UnspilledCS2GPRs.push_back(Reg); 1694 break; 1695 } 1696 } 1697 } 1698 1699 bool ForceLRSpill = false; 1700 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 1701 unsigned FnSize = GetFunctionSizeInBytes(MF, TII); 1702 // Force LR to be spilled if the Thumb function size is > 2048. This enables 1703 // use of BL to implement far jump. If it turns out that it's not needed 1704 // then the branch fix up path will undo it. 1705 if (FnSize >= (1 << 11)) { 1706 CanEliminateFrame = false; 1707 ForceLRSpill = true; 1708 } 1709 } 1710 1711 // If any of the stack slot references may be out of range of an immediate 1712 // offset, make sure a register (or a spill slot) is available for the 1713 // register scavenger. Note that if we're indexing off the frame pointer, the 1714 // effective stack size is 4 bytes larger since the FP points to the stack 1715 // slot of the previous FP. Also, if we have variable sized objects in the 1716 // function, stack slot references will often be negative, and some of 1717 // our instructions are positive-offset only, so conservatively consider 1718 // that case to want a spill slot (or register) as well. Similarly, if 1719 // the function adjusts the stack pointer during execution and the 1720 // adjustments aren't already part of our stack size estimate, our offset 1721 // calculations may be off, so be conservative. 1722 // FIXME: We could add logic to be more precise about negative offsets 1723 // and which instructions will need a scratch register for them. Is it 1724 // worth the effort and added fragility? 1725 unsigned EstimatedStackSize = 1726 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 1727 1728 // Determine biggest (positive) SP offset in MachineFrameInfo. 1729 int MaxFixedOffset = 0; 1730 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 1731 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); 1732 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); 1733 } 1734 1735 bool HasFP = hasFP(MF); 1736 if (HasFP) { 1737 if (AFI->hasStackFrame()) 1738 EstimatedStackSize += 4; 1739 } else { 1740 // If FP is not used, SP will be used to access arguments, so count the 1741 // size of arguments into the estimation. 1742 EstimatedStackSize += MaxFixedOffset; 1743 } 1744 EstimatedStackSize += 16; // For possible paddings. 1745 1746 unsigned EstimatedRSStackSizeLimit = estimateRSStackSizeLimit(MF, this); 1747 int MaxFPOffset = getMaxFPOffset(*MF.getFunction(), *AFI); 1748 bool BigFrameOffsets = EstimatedStackSize >= EstimatedRSStackSizeLimit || 1749 MFI.hasVarSizedObjects() || 1750 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)) || 1751 // For large argument stacks fp relative addressed may overflow. 1752 (HasFP && (MaxFixedOffset - MaxFPOffset) >= (int)EstimatedRSStackSizeLimit); 1753 if (BigFrameOffsets || 1754 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 1755 AFI->setHasStackFrame(true); 1756 1757 if (HasFP) { 1758 SavedRegs.set(FramePtr); 1759 // If the frame pointer is required by the ABI, also spill LR so that we 1760 // emit a complete frame record. 1761 if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) { 1762 SavedRegs.set(ARM::LR); 1763 LRSpilled = true; 1764 NumGPRSpills++; 1765 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 1766 if (LRPos != UnspilledCS1GPRs.end()) 1767 UnspilledCS1GPRs.erase(LRPos); 1768 } 1769 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 1770 if (FPPos != UnspilledCS1GPRs.end()) 1771 UnspilledCS1GPRs.erase(FPPos); 1772 NumGPRSpills++; 1773 if (FramePtr == ARM::R7) 1774 CS1Spilled = true; 1775 } 1776 1777 // This is true when we inserted a spill for an unused register that can now 1778 // be used for register scavenging. 1779 bool ExtraCSSpill = false; 1780 1781 if (AFI->isThumb1OnlyFunction()) { 1782 // For Thumb1-only targets, we need some low registers when we save and 1783 // restore the high registers (which aren't allocatable, but could be 1784 // used by inline assembly) because the push/pop instructions can not 1785 // access high registers. If necessary, we might need to push more low 1786 // registers to ensure that there is at least one free that can be used 1787 // for the saving & restoring, and preferably we should ensure that as 1788 // many as are needed are available so that fewer push/pop instructions 1789 // are required. 1790 1791 // Low registers which are not currently pushed, but could be (r4-r7). 1792 SmallVector<unsigned, 4> AvailableRegs; 1793 1794 // Unused argument registers (r0-r3) can be clobbered in the prologue for 1795 // free. 1796 int EntryRegDeficit = 0; 1797 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 1798 if (!MF.getRegInfo().isLiveIn(Reg)) { 1799 --EntryRegDeficit; 1800 DEBUG(dbgs() << PrintReg(Reg, TRI) 1801 << " is unused argument register, EntryRegDeficit = " 1802 << EntryRegDeficit << "\n"); 1803 } 1804 } 1805 1806 // Unused return registers can be clobbered in the epilogue for free. 1807 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 1808 DEBUG(dbgs() << AFI->getReturnRegsCount() 1809 << " return regs used, ExitRegDeficit = " << ExitRegDeficit 1810 << "\n"); 1811 1812 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 1813 DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 1814 1815 // r4-r6 can be used in the prologue if they are pushed by the first push 1816 // instruction. 1817 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 1818 if (SavedRegs.test(Reg)) { 1819 --RegDeficit; 1820 DEBUG(dbgs() << PrintReg(Reg, TRI) 1821 << " is saved low register, RegDeficit = " << RegDeficit 1822 << "\n"); 1823 } else { 1824 AvailableRegs.push_back(Reg); 1825 DEBUG(dbgs() 1826 << PrintReg(Reg, TRI) 1827 << " is non-saved low register, adding to AvailableRegs\n"); 1828 } 1829 } 1830 1831 // r7 can be used if it is not being used as the frame pointer. 1832 if (!HasFP) { 1833 if (SavedRegs.test(ARM::R7)) { 1834 --RegDeficit; 1835 DEBUG(dbgs() << "%R7 is saved low register, RegDeficit = " 1836 << RegDeficit << "\n"); 1837 } else { 1838 AvailableRegs.push_back(ARM::R7); 1839 DEBUG(dbgs() 1840 << "%R7 is non-saved low register, adding to AvailableRegs\n"); 1841 } 1842 } 1843 1844 // Each of r8-r11 needs to be copied to a low register, then pushed. 1845 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 1846 if (SavedRegs.test(Reg)) { 1847 ++RegDeficit; 1848 DEBUG(dbgs() << PrintReg(Reg, TRI) 1849 << " is saved high register, RegDeficit = " << RegDeficit 1850 << "\n"); 1851 } 1852 } 1853 1854 // LR can only be used by PUSH, not POP, and can't be used at all if the 1855 // llvm.returnaddress intrinsic is used. This is only worth doing if we 1856 // are more limited at function entry than exit. 1857 if ((EntryRegDeficit > ExitRegDeficit) && 1858 !(MF.getRegInfo().isLiveIn(ARM::LR) && 1859 MF.getFrameInfo().isReturnAddressTaken())) { 1860 if (SavedRegs.test(ARM::LR)) { 1861 --RegDeficit; 1862 DEBUG(dbgs() << "%LR is saved register, RegDeficit = " << RegDeficit 1863 << "\n"); 1864 } else { 1865 AvailableRegs.push_back(ARM::LR); 1866 DEBUG(dbgs() << "%LR is not saved, adding to AvailableRegs\n"); 1867 } 1868 } 1869 1870 // If there are more high registers that need pushing than low registers 1871 // available, push some more low registers so that we can use fewer push 1872 // instructions. This might not reduce RegDeficit all the way to zero, 1873 // because we can only guarantee that r4-r6 are available, but r8-r11 may 1874 // need saving. 1875 DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 1876 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 1877 unsigned Reg = AvailableRegs.pop_back_val(); 1878 DEBUG(dbgs() << "Spilling " << PrintReg(Reg, TRI) 1879 << " to make up reg deficit\n"); 1880 SavedRegs.set(Reg); 1881 NumGPRSpills++; 1882 CS1Spilled = true; 1883 assert(!MRI.isReserved(Reg) && "Should not be reserved"); 1884 if (!MRI.isPhysRegUsed(Reg)) 1885 ExtraCSSpill = true; 1886 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 1887 if (Reg == ARM::LR) 1888 LRSpilled = true; 1889 } 1890 DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit << "\n"); 1891 } 1892 1893 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 1894 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 1895 if (!LRSpilled && CS1Spilled) { 1896 SavedRegs.set(ARM::LR); 1897 NumGPRSpills++; 1898 SmallVectorImpl<unsigned>::iterator LRPos; 1899 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 1900 if (LRPos != UnspilledCS1GPRs.end()) 1901 UnspilledCS1GPRs.erase(LRPos); 1902 1903 ForceLRSpill = false; 1904 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR)) 1905 ExtraCSSpill = true; 1906 } 1907 1908 // If stack and double are 8-byte aligned and we are spilling an odd number 1909 // of GPRs, spill one extra callee save GPR so we won't have to pad between 1910 // the integer and double callee save areas. 1911 DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 1912 unsigned TargetAlign = getStackAlignment(); 1913 if (TargetAlign >= 8 && (NumGPRSpills & 1)) { 1914 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 1915 for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) { 1916 unsigned Reg = UnspilledCS1GPRs[i]; 1917 // Don't spill high register if the function is thumb. In the case of 1918 // Windows on ARM, accept R11 (frame pointer) 1919 if (!AFI->isThumbFunction() || 1920 (STI.isTargetWindows() && Reg == ARM::R11) || 1921 isARMLowRegister(Reg) || Reg == ARM::LR) { 1922 SavedRegs.set(Reg); 1923 DEBUG(dbgs() << "Spilling " << PrintReg(Reg, TRI) 1924 << " to make up alignment\n"); 1925 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 1926 ExtraCSSpill = true; 1927 break; 1928 } 1929 } 1930 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 1931 unsigned Reg = UnspilledCS2GPRs.front(); 1932 SavedRegs.set(Reg); 1933 DEBUG(dbgs() << "Spilling " << PrintReg(Reg, TRI) 1934 << " to make up alignment\n"); 1935 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 1936 ExtraCSSpill = true; 1937 } 1938 } 1939 1940 // Estimate if we might need to scavenge a register at some point in order 1941 // to materialize a stack offset. If so, either spill one additional 1942 // callee-saved register or reserve a special spill slot to facilitate 1943 // register scavenging. Thumb1 needs a spill slot for stack pointer 1944 // adjustments also, even when the frame itself is small. 1945 if (BigFrameOffsets && !ExtraCSSpill) { 1946 // If any non-reserved CS register isn't spilled, just spill one or two 1947 // extra. That should take care of it! 1948 unsigned NumExtras = TargetAlign / 4; 1949 SmallVector<unsigned, 2> Extras; 1950 while (NumExtras && !UnspilledCS1GPRs.empty()) { 1951 unsigned Reg = UnspilledCS1GPRs.back(); 1952 UnspilledCS1GPRs.pop_back(); 1953 if (!MRI.isReserved(Reg) && 1954 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg) || 1955 Reg == ARM::LR)) { 1956 Extras.push_back(Reg); 1957 NumExtras--; 1958 } 1959 } 1960 // For non-Thumb1 functions, also check for hi-reg CS registers 1961 if (!AFI->isThumb1OnlyFunction()) { 1962 while (NumExtras && !UnspilledCS2GPRs.empty()) { 1963 unsigned Reg = UnspilledCS2GPRs.back(); 1964 UnspilledCS2GPRs.pop_back(); 1965 if (!MRI.isReserved(Reg)) { 1966 Extras.push_back(Reg); 1967 NumExtras--; 1968 } 1969 } 1970 } 1971 if (NumExtras == 0) { 1972 for (unsigned Reg : Extras) { 1973 SavedRegs.set(Reg); 1974 if (!MRI.isPhysRegUsed(Reg)) 1975 ExtraCSSpill = true; 1976 } 1977 } 1978 if (!ExtraCSSpill && !AFI->isThumb1OnlyFunction()) { 1979 // note: Thumb1 functions spill to R12, not the stack. Reserve a slot 1980 // closest to SP or frame pointer. 1981 assert(RS && "Register scavenging not provided"); 1982 const TargetRegisterClass &RC = ARM::GPRRegClass; 1983 unsigned Size = TRI->getSpillSize(RC); 1984 unsigned Align = TRI->getSpillAlignment(RC); 1985 RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Align, false)); 1986 } 1987 } 1988 } 1989 1990 if (ForceLRSpill) { 1991 SavedRegs.set(ARM::LR); 1992 AFI->setLRIsSpilledForFarJump(true); 1993 } 1994 } 1995 1996 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 1997 MachineFunction &MF, MachineBasicBlock &MBB, 1998 MachineBasicBlock::iterator I) const { 1999 const ARMBaseInstrInfo &TII = 2000 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2001 if (!hasReservedCallFrame(MF)) { 2002 // If we have alloca, convert as follows: 2003 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 2004 // ADJCALLSTACKUP -> add, sp, sp, amount 2005 MachineInstr &Old = *I; 2006 DebugLoc dl = Old.getDebugLoc(); 2007 unsigned Amount = TII.getFrameSize(Old); 2008 if (Amount != 0) { 2009 // We need to keep the stack aligned properly. To do this, we round the 2010 // amount of space needed for the outgoing arguments up to the next 2011 // alignment boundary. 2012 Amount = alignSPAdjust(Amount); 2013 2014 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2015 assert(!AFI->isThumb1OnlyFunction() && 2016 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 2017 bool isARM = !AFI->isThumbFunction(); 2018 2019 // Replace the pseudo instruction with a new instruction... 2020 unsigned Opc = Old.getOpcode(); 2021 int PIdx = Old.findFirstPredOperandIdx(); 2022 ARMCC::CondCodes Pred = 2023 (PIdx == -1) ? ARMCC::AL 2024 : (ARMCC::CondCodes)Old.getOperand(PIdx).getImm(); 2025 unsigned PredReg = TII.getFramePred(Old); 2026 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 2027 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 2028 Pred, PredReg); 2029 } else { 2030 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 2031 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 2032 Pred, PredReg); 2033 } 2034 } 2035 } 2036 return MBB.erase(I); 2037 } 2038 2039 /// Get the minimum constant for ARM that is greater than or equal to the 2040 /// argument. In ARM, constants can have any value that can be produced by 2041 /// rotating an 8-bit value to the right by an even number of bits within a 2042 /// 32-bit word. 2043 static uint32_t alignToARMConstant(uint32_t Value) { 2044 unsigned Shifted = 0; 2045 2046 if (Value == 0) 2047 return 0; 2048 2049 while (!(Value & 0xC0000000)) { 2050 Value = Value << 2; 2051 Shifted += 2; 2052 } 2053 2054 bool Carry = (Value & 0x00FFFFFF); 2055 Value = ((Value & 0xFF000000) >> 24) + Carry; 2056 2057 if (Value & 0x0000100) 2058 Value = Value & 0x000001FC; 2059 2060 if (Shifted > 24) 2061 Value = Value >> (Shifted - 24); 2062 else 2063 Value = Value << (24 - Shifted); 2064 2065 return Value; 2066 } 2067 2068 // The stack limit in the TCB is set to this many bytes above the actual 2069 // stack limit. 2070 static const uint64_t kSplitStackAvailable = 256; 2071 2072 // Adjust the function prologue to enable split stacks. This currently only 2073 // supports android and linux. 2074 // 2075 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 2076 // must be well defined in order to allow for consistent implementations of the 2077 // __morestack helper function. The ABI is also not a normal ABI in that it 2078 // doesn't follow the normal calling conventions because this allows the 2079 // prologue of each function to be optimized further. 2080 // 2081 // Currently, the ABI looks like (when calling __morestack) 2082 // 2083 // * r4 holds the minimum stack size requested for this function call 2084 // * r5 holds the stack size of the arguments to the function 2085 // * the beginning of the function is 3 instructions after the call to 2086 // __morestack 2087 // 2088 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 2089 // place the arguments on to the new stack, and the 3-instruction knowledge to 2090 // jump directly to the body of the function when working on the new stack. 2091 // 2092 // An old (and possibly no longer compatible) implementation of __morestack for 2093 // ARM can be found at [1]. 2094 // 2095 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 2096 void ARMFrameLowering::adjustForSegmentedStacks( 2097 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2098 unsigned Opcode; 2099 unsigned CFIIndex; 2100 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 2101 bool Thumb = ST->isThumb(); 2102 2103 // Sadly, this currently doesn't support varargs, platforms other than 2104 // android/linux. Note that thumb1/thumb2 are support for android/linux. 2105 if (MF.getFunction()->isVarArg()) 2106 report_fatal_error("Segmented stacks do not support vararg functions."); 2107 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 2108 report_fatal_error("Segmented stacks not supported on this platform."); 2109 2110 MachineFrameInfo &MFI = MF.getFrameInfo(); 2111 MachineModuleInfo &MMI = MF.getMMI(); 2112 MCContext &Context = MMI.getContext(); 2113 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 2114 const ARMBaseInstrInfo &TII = 2115 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2116 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 2117 DebugLoc DL; 2118 2119 uint64_t StackSize = MFI.getStackSize(); 2120 2121 // Do not generate a prologue for functions with a stack of size zero 2122 if (StackSize == 0) 2123 return; 2124 2125 // Use R4 and R5 as scratch registers. 2126 // We save R4 and R5 before use and restore them before leaving the function. 2127 unsigned ScratchReg0 = ARM::R4; 2128 unsigned ScratchReg1 = ARM::R5; 2129 uint64_t AlignedStackSize; 2130 2131 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 2132 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 2133 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 2134 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 2135 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 2136 2137 // Grab everything that reaches PrologueMBB to update there liveness as well. 2138 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 2139 SmallVector<MachineBasicBlock *, 2> WalkList; 2140 WalkList.push_back(&PrologueMBB); 2141 2142 do { 2143 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 2144 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 2145 if (BeforePrologueRegion.insert(PredBB).second) 2146 WalkList.push_back(PredBB); 2147 } 2148 } while (!WalkList.empty()); 2149 2150 // The order in that list is important. 2151 // The blocks will all be inserted before PrologueMBB using that order. 2152 // Therefore the block that should appear first in the CFG should appear 2153 // first in the list. 2154 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 2155 PostStackMBB}; 2156 2157 for (MachineBasicBlock *B : AddedBlocks) 2158 BeforePrologueRegion.insert(B); 2159 2160 for (const auto &LI : PrologueMBB.liveins()) { 2161 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 2162 PredBB->addLiveIn(LI); 2163 } 2164 2165 // Remove the newly added blocks from the list, since we know 2166 // we do not have to do the following updates for them. 2167 for (MachineBasicBlock *B : AddedBlocks) { 2168 BeforePrologueRegion.erase(B); 2169 MF.insert(PrologueMBB.getIterator(), B); 2170 } 2171 2172 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 2173 // Make sure the LiveIns are still sorted and unique. 2174 MBB->sortUniqueLiveIns(); 2175 // Replace the edges to PrologueMBB by edges to the sequences 2176 // we are about to add. 2177 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 2178 } 2179 2180 // The required stack size that is aligned to ARM constant criterion. 2181 AlignedStackSize = alignToARMConstant(StackSize); 2182 2183 // When the frame size is less than 256 we just compare the stack 2184 // boundary directly to the value of the stack pointer, per gcc. 2185 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 2186 2187 // We will use two of the callee save registers as scratch registers so we 2188 // need to save those registers onto the stack. 2189 // We will use SR0 to hold stack limit and SR1 to hold the stack size 2190 // requested and arguments for __morestack(). 2191 // SR0: Scratch Register #0 2192 // SR1: Scratch Register #1 2193 // push {SR0, SR1} 2194 if (Thumb) { 2195 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 2196 .add(predOps(ARMCC::AL)) 2197 .addReg(ScratchReg0) 2198 .addReg(ScratchReg1); 2199 } else { 2200 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 2201 .addReg(ARM::SP, RegState::Define) 2202 .addReg(ARM::SP) 2203 .add(predOps(ARMCC::AL)) 2204 .addReg(ScratchReg0) 2205 .addReg(ScratchReg1); 2206 } 2207 2208 // Emit the relevant DWARF information about the change in stack pointer as 2209 // well as where to find both r4 and r5 (the callee-save registers) 2210 CFIIndex = 2211 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -8)); 2212 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2213 .addCFIIndex(CFIIndex); 2214 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2215 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 2216 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2217 .addCFIIndex(CFIIndex); 2218 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2219 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 2220 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2221 .addCFIIndex(CFIIndex); 2222 2223 // mov SR1, sp 2224 if (Thumb) { 2225 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 2226 .addReg(ARM::SP) 2227 .add(predOps(ARMCC::AL)); 2228 } else if (CompareStackPointer) { 2229 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 2230 .addReg(ARM::SP) 2231 .add(predOps(ARMCC::AL)) 2232 .add(condCodeOp()); 2233 } 2234 2235 // sub SR1, sp, #StackSize 2236 if (!CompareStackPointer && Thumb) { 2237 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 2238 .add(condCodeOp()) 2239 .addReg(ScratchReg1) 2240 .addImm(AlignedStackSize) 2241 .add(predOps(ARMCC::AL)); 2242 } else if (!CompareStackPointer) { 2243 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 2244 .addReg(ARM::SP) 2245 .addImm(AlignedStackSize) 2246 .add(predOps(ARMCC::AL)) 2247 .add(condCodeOp()); 2248 } 2249 2250 if (Thumb && ST->isThumb1Only()) { 2251 unsigned PCLabelId = ARMFI->createPICLabelUId(); 2252 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 2253 MF.getFunction()->getContext(), "__STACK_LIMIT", PCLabelId, 0); 2254 MachineConstantPool *MCP = MF.getConstantPool(); 2255 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, 4); 2256 2257 // ldr SR0, [pc, offset(STACK_LIMIT)] 2258 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 2259 .addConstantPoolIndex(CPI) 2260 .add(predOps(ARMCC::AL)); 2261 2262 // ldr SR0, [SR0] 2263 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 2264 .addReg(ScratchReg0) 2265 .addImm(0) 2266 .add(predOps(ARMCC::AL)); 2267 } else { 2268 // Get TLS base address from the coprocessor 2269 // mrc p15, #0, SR0, c13, c0, #3 2270 BuildMI(McrMBB, DL, TII.get(ARM::MRC), ScratchReg0) 2271 .addImm(15) 2272 .addImm(0) 2273 .addImm(13) 2274 .addImm(0) 2275 .addImm(3) 2276 .add(predOps(ARMCC::AL)); 2277 2278 // Use the last tls slot on android and a private field of the TCP on linux. 2279 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 2280 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 2281 2282 // Get the stack limit from the right offset 2283 // ldr SR0, [sr0, #4 * TlsOffset] 2284 BuildMI(GetMBB, DL, TII.get(ARM::LDRi12), ScratchReg0) 2285 .addReg(ScratchReg0) 2286 .addImm(4 * TlsOffset) 2287 .add(predOps(ARMCC::AL)); 2288 } 2289 2290 // Compare stack limit with stack size requested. 2291 // cmp SR0, SR1 2292 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 2293 BuildMI(GetMBB, DL, TII.get(Opcode)) 2294 .addReg(ScratchReg0) 2295 .addReg(ScratchReg1) 2296 .add(predOps(ARMCC::AL)); 2297 2298 // This jump is taken if StackLimit < SP - stack required. 2299 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 2300 BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB) 2301 .addImm(ARMCC::LO) 2302 .addReg(ARM::CPSR); 2303 2304 2305 // Calling __morestack(StackSize, Size of stack arguments). 2306 // __morestack knows that the stack size requested is in SR0(r4) 2307 // and amount size of stack arguments is in SR1(r5). 2308 2309 // Pass first argument for the __morestack by Scratch Register #0. 2310 // The amount size of stack required 2311 if (Thumb) { 2312 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 2313 .add(condCodeOp()) 2314 .addImm(AlignedStackSize) 2315 .add(predOps(ARMCC::AL)); 2316 } else { 2317 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 2318 .addImm(AlignedStackSize) 2319 .add(predOps(ARMCC::AL)) 2320 .add(condCodeOp()); 2321 } 2322 // Pass second argument for the __morestack by Scratch Register #1. 2323 // The amount size of stack consumed to save function arguments. 2324 if (Thumb) { 2325 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 2326 .add(condCodeOp()) 2327 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2328 .add(predOps(ARMCC::AL)); 2329 } else { 2330 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 2331 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2332 .add(predOps(ARMCC::AL)) 2333 .add(condCodeOp()); 2334 } 2335 2336 // push {lr} - Save return address of this function. 2337 if (Thumb) { 2338 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 2339 .add(predOps(ARMCC::AL)) 2340 .addReg(ARM::LR); 2341 } else { 2342 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 2343 .addReg(ARM::SP, RegState::Define) 2344 .addReg(ARM::SP) 2345 .add(predOps(ARMCC::AL)) 2346 .addReg(ARM::LR); 2347 } 2348 2349 // Emit the DWARF info about the change in stack as well as where to find the 2350 // previous link register 2351 CFIIndex = 2352 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -12)); 2353 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2354 .addCFIIndex(CFIIndex); 2355 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2356 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 2357 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2358 .addCFIIndex(CFIIndex); 2359 2360 // Call __morestack(). 2361 if (Thumb) { 2362 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 2363 .add(predOps(ARMCC::AL)) 2364 .addExternalSymbol("__morestack"); 2365 } else { 2366 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 2367 .addExternalSymbol("__morestack"); 2368 } 2369 2370 // pop {lr} - Restore return address of this original function. 2371 if (Thumb) { 2372 if (ST->isThumb1Only()) { 2373 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2374 .add(predOps(ARMCC::AL)) 2375 .addReg(ScratchReg0); 2376 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 2377 .addReg(ScratchReg0) 2378 .add(predOps(ARMCC::AL)); 2379 } else { 2380 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 2381 .addReg(ARM::LR, RegState::Define) 2382 .addReg(ARM::SP, RegState::Define) 2383 .addReg(ARM::SP) 2384 .addImm(4) 2385 .add(predOps(ARMCC::AL)); 2386 } 2387 } else { 2388 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2389 .addReg(ARM::SP, RegState::Define) 2390 .addReg(ARM::SP) 2391 .add(predOps(ARMCC::AL)) 2392 .addReg(ARM::LR); 2393 } 2394 2395 // Restore SR0 and SR1 in case of __morestack() was called. 2396 // __morestack() will skip PostStackMBB block so we need to restore 2397 // scratch registers from here. 2398 // pop {SR0, SR1} 2399 if (Thumb) { 2400 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2401 .add(predOps(ARMCC::AL)) 2402 .addReg(ScratchReg0) 2403 .addReg(ScratchReg1); 2404 } else { 2405 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2406 .addReg(ARM::SP, RegState::Define) 2407 .addReg(ARM::SP) 2408 .add(predOps(ARMCC::AL)) 2409 .addReg(ScratchReg0) 2410 .addReg(ScratchReg1); 2411 } 2412 2413 // Update the CFA offset now that we've popped 2414 CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); 2415 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2416 .addCFIIndex(CFIIndex); 2417 2418 // bx lr - Return from this function. 2419 Opcode = Thumb ? ARM::tBX_RET : ARM::BX_RET; 2420 BuildMI(AllocMBB, DL, TII.get(Opcode)).add(predOps(ARMCC::AL)); 2421 2422 // Restore SR0 and SR1 in case of __morestack() was not called. 2423 // pop {SR0, SR1} 2424 if (Thumb) { 2425 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 2426 .add(predOps(ARMCC::AL)) 2427 .addReg(ScratchReg0) 2428 .addReg(ScratchReg1); 2429 } else { 2430 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 2431 .addReg(ARM::SP, RegState::Define) 2432 .addReg(ARM::SP) 2433 .add(predOps(ARMCC::AL)) 2434 .addReg(ScratchReg0) 2435 .addReg(ScratchReg1); 2436 } 2437 2438 // Update the CFA offset now that we've popped 2439 CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); 2440 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2441 .addCFIIndex(CFIIndex); 2442 2443 // Tell debuggers that r4 and r5 are now the same as they were in the 2444 // previous function, that they're the "Same Value". 2445 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2446 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 2447 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2448 .addCFIIndex(CFIIndex); 2449 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2450 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 2451 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2452 .addCFIIndex(CFIIndex); 2453 2454 // Organizing MBB lists 2455 PostStackMBB->addSuccessor(&PrologueMBB); 2456 2457 AllocMBB->addSuccessor(PostStackMBB); 2458 2459 GetMBB->addSuccessor(PostStackMBB); 2460 GetMBB->addSuccessor(AllocMBB); 2461 2462 McrMBB->addSuccessor(GetMBB); 2463 2464 PrevStackMBB->addSuccessor(McrMBB); 2465 2466 #ifdef EXPENSIVE_CHECKS 2467 MF.verify(); 2468 #endif 2469 } 2470