xref: /llvm-project/llvm/lib/Target/ARM/ARMFrameLowering.cpp (revision bd52506d24275733002da6f91c3715cde63fe2c0)
1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the ARM implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 //
13 // This file contains the ARM implementation of TargetFrameLowering class.
14 //
15 // On ARM, stack frames are structured as follows:
16 //
17 // The stack grows downward.
18 //
19 // All of the individual frame areas on the frame below are optional, i.e. it's
20 // possible to create a function so that the particular area isn't present
21 // in the frame.
22 //
23 // At function entry, the "frame" looks as follows:
24 //
25 // |                                   | Higher address
26 // |-----------------------------------|
27 // |                                   |
28 // | arguments passed on the stack     |
29 // |                                   |
30 // |-----------------------------------| <- sp
31 // |                                   | Lower address
32 //
33 //
34 // After the prologue has run, the frame has the following general structure.
35 // Technically the last frame area (VLAs) doesn't get created until in the
36 // main function body, after the prologue is run. However, it's depicted here
37 // for completeness.
38 //
39 // |                                   | Higher address
40 // |-----------------------------------|
41 // |                                   |
42 // | arguments passed on the stack     |
43 // |                                   |
44 // |-----------------------------------| <- (sp at function entry)
45 // |                                   |
46 // | varargs from registers            |
47 // |                                   |
48 // |-----------------------------------|
49 // |                                   |
50 // | prev_fp, prev_lr                  |
51 // | (a.k.a. "frame record")           |
52 // |                                   |
53 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11)
54 // |                                   |
55 // | callee-saved gpr registers        |
56 // |                                   |
57 // |-----------------------------------|
58 // |                                   |
59 // | callee-saved fp/simd regs         |
60 // |                                   |
61 // |-----------------------------------|
62 // |.empty.space.to.make.part.below....|
63 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
64 // |.the.standard.8-byte.alignment.....|  compile time; if present)
65 // |-----------------------------------|
66 // |                                   |
67 // | local variables of fixed size     |
68 // | including spill slots             |
69 // |-----------------------------------| <- base pointer (not defined by ABI,
70 // |.variable-sized.local.variables....|       LLVM chooses r6)
71 // |.(VLAs)............................| (size of this area is unknown at
72 // |...................................|  compile time)
73 // |-----------------------------------| <- sp
74 // |                                   | Lower address
75 //
76 //
77 // To access the data in a frame, at-compile time, a constant offset must be
78 // computable from one of the pointers (fp, bp, sp) to access it. The size
79 // of the areas with a dotted background cannot be computed at compile-time
80 // if they are present, making it required to have all three of fp, bp and
81 // sp to be set up to be able to access all contents in the frame areas,
82 // assuming all of the frame areas are non-empty.
83 //
84 // For most functions, some of the frame areas are empty. For those functions,
85 // it may not be necessary to set up fp or bp:
86 // * A base pointer is definitely needed when there are both VLAs and local
87 //   variables with more-than-default alignment requirements.
88 // * A frame pointer is definitely needed when there are local variables with
89 //   more-than-default alignment requirements.
90 //
91 // In some cases when a base pointer is not strictly needed, it is generated
92 // anyway when offsets from the frame pointer to access local variables become
93 // so large that the offset can't be encoded in the immediate fields of loads
94 // or stores.
95 //
96 // The frame pointer might be chosen to be r7 or r11, depending on the target
97 // architecture and operating system. See ARMSubtarget::getFramePointerReg for
98 // details.
99 //
100 // Outgoing function arguments must be at the bottom of the stack frame when
101 // calling another function. If we do not have variable-sized stack objects, we
102 // can allocate a "reserved call frame" area at the bottom of the local
103 // variable area, large enough for all outgoing calls. If we do have VLAs, then
104 // the stack pointer must be decremented and incremented around each call to
105 // make space for the arguments below the VLAs.
106 //
107 //===----------------------------------------------------------------------===//
108 
109 #include "ARMFrameLowering.h"
110 #include "ARMBaseInstrInfo.h"
111 #include "ARMBaseRegisterInfo.h"
112 #include "ARMConstantPoolValue.h"
113 #include "ARMMachineFunctionInfo.h"
114 #include "ARMSubtarget.h"
115 #include "MCTargetDesc/ARMAddressingModes.h"
116 #include "MCTargetDesc/ARMBaseInfo.h"
117 #include "Utils/ARMBaseInfo.h"
118 #include "llvm/ADT/BitVector.h"
119 #include "llvm/ADT/STLExtras.h"
120 #include "llvm/ADT/SmallPtrSet.h"
121 #include "llvm/ADT/SmallVector.h"
122 #include "llvm/CodeGen/MachineBasicBlock.h"
123 #include "llvm/CodeGen/MachineConstantPool.h"
124 #include "llvm/CodeGen/MachineFrameInfo.h"
125 #include "llvm/CodeGen/MachineFunction.h"
126 #include "llvm/CodeGen/MachineInstr.h"
127 #include "llvm/CodeGen/MachineInstrBuilder.h"
128 #include "llvm/CodeGen/MachineJumpTableInfo.h"
129 #include "llvm/CodeGen/MachineModuleInfo.h"
130 #include "llvm/CodeGen/MachineOperand.h"
131 #include "llvm/CodeGen/MachineRegisterInfo.h"
132 #include "llvm/CodeGen/RegisterScavenging.h"
133 #include "llvm/CodeGen/TargetInstrInfo.h"
134 #include "llvm/CodeGen/TargetOpcodes.h"
135 #include "llvm/CodeGen/TargetRegisterInfo.h"
136 #include "llvm/CodeGen/TargetSubtargetInfo.h"
137 #include "llvm/IR/Attributes.h"
138 #include "llvm/IR/CallingConv.h"
139 #include "llvm/IR/DebugLoc.h"
140 #include "llvm/IR/Function.h"
141 #include "llvm/MC/MCAsmInfo.h"
142 #include "llvm/MC/MCContext.h"
143 #include "llvm/MC/MCDwarf.h"
144 #include "llvm/MC/MCInstrDesc.h"
145 #include "llvm/MC/MCRegisterInfo.h"
146 #include "llvm/Support/CodeGen.h"
147 #include "llvm/Support/CommandLine.h"
148 #include "llvm/Support/Compiler.h"
149 #include "llvm/Support/Debug.h"
150 #include "llvm/Support/ErrorHandling.h"
151 #include "llvm/Support/MathExtras.h"
152 #include "llvm/Support/raw_ostream.h"
153 #include "llvm/Target/TargetMachine.h"
154 #include "llvm/Target/TargetOptions.h"
155 #include <algorithm>
156 #include <cassert>
157 #include <cstddef>
158 #include <cstdint>
159 #include <iterator>
160 #include <utility>
161 #include <vector>
162 
163 #define DEBUG_TYPE "arm-frame-lowering"
164 
165 using namespace llvm;
166 
167 static cl::opt<bool>
168 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
169                      cl::desc("Align ARM NEON spills in prolog and epilog"));
170 
171 static MachineBasicBlock::iterator
172 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
173                         unsigned NumAlignedDPRCS2Regs);
174 
175 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
176     : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)),
177       STI(sti) {}
178 
179 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const {
180   // iOS always has a FP for backtracking, force other targets to keep their FP
181   // when doing FastISel. The emitted code is currently superior, and in cases
182   // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
183   return MF.getSubtarget<ARMSubtarget>().useFastISel();
184 }
185 
186 /// Returns true if the target can safely skip saving callee-saved registers
187 /// for noreturn nounwind functions.
188 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
189   assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
190          MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
191          !MF.getFunction().hasFnAttribute(Attribute::UWTable));
192 
193   // Frame pointer and link register are not treated as normal CSR, thus we
194   // can always skip CSR saves for nonreturning functions.
195   return true;
196 }
197 
198 /// hasFP - Return true if the specified function should have a dedicated frame
199 /// pointer register.  This is true if the function has variable sized allocas
200 /// or if frame pointer elimination is disabled.
201 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
202   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
203   const MachineFrameInfo &MFI = MF.getFrameInfo();
204 
205   // ABI-required frame pointer.
206   if (MF.getTarget().Options.DisableFramePointerElim(MF))
207     return true;
208 
209   // Frame pointer required for use within this function.
210   return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
211           MFI.isFrameAddressTaken());
212 }
213 
214 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
215 /// not required, we reserve argument space for call sites in the function
216 /// immediately on entry to the current function.  This eliminates the need for
217 /// add/sub sp brackets around call sites.  Returns true if the call frame is
218 /// included as part of the stack frame.
219 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
220   const MachineFrameInfo &MFI = MF.getFrameInfo();
221   unsigned CFSize = MFI.getMaxCallFrameSize();
222   // It's not always a good idea to include the call frame as part of the
223   // stack frame. ARM (especially Thumb) has small immediate offset to
224   // address the stack frame. So a large call frame can cause poor codegen
225   // and may even makes it impossible to scavenge a register.
226   if (CFSize >= ((1 << 12) - 1) / 2)  // Half of imm12
227     return false;
228 
229   return !MFI.hasVarSizedObjects();
230 }
231 
232 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
233 /// call frame pseudos can be simplified.  Unlike most targets, having a FP
234 /// is not sufficient here since we still may reference some objects via SP
235 /// even when FP is available in Thumb2 mode.
236 bool
237 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
238   return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
239 }
240 
241 // Returns how much of the incoming argument stack area we should clean up in an
242 // epilogue. For the C calling convention this will be 0, for guaranteed tail
243 // call conventions it can be positive (a normal return or a tail call to a
244 // function that uses less stack space for arguments) or negative (for a tail
245 // call to a function that needs more stack space than us for arguments).
246 static int getArgumentStackToRestore(MachineFunction &MF,
247                                      MachineBasicBlock &MBB) {
248   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
249   bool IsTailCallReturn = false;
250   if (MBB.end() != MBBI) {
251     unsigned RetOpcode = MBBI->getOpcode();
252     IsTailCallReturn = RetOpcode == ARM::TCRETURNdi ||
253                        RetOpcode == ARM::TCRETURNri;
254   }
255   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
256 
257   int ArgumentPopSize = 0;
258   if (IsTailCallReturn) {
259     MachineOperand &StackAdjust = MBBI->getOperand(1);
260 
261     // For a tail-call in a callee-pops-arguments environment, some or all of
262     // the stack may actually be in use for the call's arguments, this is
263     // calculated during LowerCall and consumed here...
264     ArgumentPopSize = StackAdjust.getImm();
265   } else {
266     // ... otherwise the amount to pop is *all* of the argument space,
267     // conveniently stored in the MachineFunctionInfo by
268     // LowerFormalArguments. This will, of course, be zero for the C calling
269     // convention.
270     ArgumentPopSize = AFI->getArgumentStackToRestore();
271   }
272 
273   return ArgumentPopSize;
274 }
275 
276 static bool needsWinCFI(const MachineFunction &MF) {
277   const Function &F = MF.getFunction();
278   return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
279          F.needsUnwindTableEntry();
280 }
281 
282 // Given a load or a store instruction, generate an appropriate unwinding SEH
283 // code on Windows.
284 static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI,
285                                              const TargetInstrInfo &TII,
286                                              unsigned Flags) {
287   unsigned Opc = MBBI->getOpcode();
288   MachineBasicBlock *MBB = MBBI->getParent();
289   MachineFunction &MF = *MBB->getParent();
290   DebugLoc DL = MBBI->getDebugLoc();
291   MachineInstrBuilder MIB;
292   const ARMSubtarget &Subtarget = MF.getSubtarget<ARMSubtarget>();
293   const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
294 
295   Flags |= MachineInstr::NoMerge;
296 
297   switch (Opc) {
298   default:
299     report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc));
300     break;
301   case ARM::t2ADDri:   // add.w r11, sp, #xx
302   case ARM::t2ADDri12: // add.w r11, sp, #xx
303   case ARM::t2MOVTi16: // movt  r4, #xx
304   case ARM::t2MOVi16:  // movw  r4, #xx
305   case ARM::tBL:       // bl __chkstk
306     // These are harmless if used for just setting up a frame pointer,
307     // but that frame pointer can't be relied upon for unwinding, unless
308     // set up with SEH_SaveSP.
309     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
310               .addImm(/*Wide=*/1)
311               .setMIFlags(Flags);
312     break;
313 
314   case ARM::tBLXr: // blx r12 (__chkstk)
315     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
316               .addImm(/*Wide=*/0)
317               .setMIFlags(Flags);
318     break;
319 
320   case ARM::t2MOVi32imm: // movw+movt
321     // This pseudo instruction expands into two mov instructions. If the
322     // second operand is a symbol reference, this will stay as two wide
323     // instructions, movw+movt. If they're immediates, the first one can
324     // end up as a narrow mov though.
325     // As two SEH instructions are appended here, they won't get interleaved
326     // between the two final movw/movt instructions, but it doesn't make any
327     // practical difference.
328     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
329               .addImm(/*Wide=*/1)
330               .setMIFlags(Flags);
331     MBB->insertAfter(MBBI, MIB);
332     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
333               .addImm(/*Wide=*/1)
334               .setMIFlags(Flags);
335     break;
336 
337   case ARM::t2LDMIA_RET:
338   case ARM::t2LDMIA_UPD:
339   case ARM::t2STMDB_UPD: {
340     unsigned Mask = 0;
341     bool Wide = false;
342     for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) {
343       const MachineOperand &MO = MBBI->getOperand(i);
344       if (!MO.isReg() || MO.isImplicit())
345         continue;
346       unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
347       if (Reg == 15)
348         Reg = 14;
349       if (Reg >= 8 && Reg <= 13)
350         Wide = true;
351       else if (Opc == ARM::t2LDMIA_UPD && Reg == 14)
352         Wide = true;
353       Mask |= 1 << Reg;
354     }
355     if (!Wide) {
356       unsigned NewOpc;
357       switch (Opc) {
358       case ARM::t2LDMIA_RET:
359         NewOpc = ARM::tPOP_RET;
360         break;
361       case ARM::t2LDMIA_UPD:
362         NewOpc = ARM::tPOP;
363         break;
364       case ARM::t2STMDB_UPD:
365         NewOpc = ARM::tPUSH;
366         break;
367       default:
368         llvm_unreachable("");
369       }
370       MachineInstrBuilder NewInstr =
371           BuildMI(MF, DL, TII.get(NewOpc)).setMIFlags(MBBI->getFlags());
372       for (unsigned i = 2, NumOps = MBBI->getNumOperands(); i != NumOps; ++i)
373         NewInstr.add(MBBI->getOperand(i));
374       MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr);
375       MBB->erase(MBBI);
376       MBBI = NewMBBI;
377     }
378     unsigned SEHOpc =
379         (Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs;
380     MIB = BuildMI(MF, DL, TII.get(SEHOpc))
381               .addImm(Mask)
382               .addImm(Wide ? 1 : 0)
383               .setMIFlags(Flags);
384     break;
385   }
386   case ARM::VSTMDDB_UPD:
387   case ARM::VLDMDIA_UPD: {
388     int First = -1, Last = 0;
389     for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) {
390       const MachineOperand &MO = MBBI->getOperand(i);
391       unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
392       if (First == -1)
393         First = Reg;
394       Last = Reg;
395     }
396     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs))
397               .addImm(First)
398               .addImm(Last)
399               .setMIFlags(Flags);
400     break;
401   }
402   case ARM::tSUBspi:
403   case ARM::tADDspi:
404     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
405               .addImm(MBBI->getOperand(2).getImm() * 4)
406               .addImm(/*Wide=*/0)
407               .setMIFlags(Flags);
408     break;
409   case ARM::t2SUBspImm:
410   case ARM::t2SUBspImm12:
411   case ARM::t2ADDspImm:
412   case ARM::t2ADDspImm12:
413     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
414               .addImm(MBBI->getOperand(2).getImm())
415               .addImm(/*Wide=*/1)
416               .setMIFlags(Flags);
417     break;
418 
419   case ARM::tMOVr:
420     if (MBBI->getOperand(1).getReg() == ARM::SP &&
421         (Flags & MachineInstr::FrameSetup)) {
422       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
423       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
424                 .addImm(Reg)
425                 .setMIFlags(Flags);
426     } else if (MBBI->getOperand(0).getReg() == ARM::SP &&
427                (Flags & MachineInstr::FrameDestroy)) {
428       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
429       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
430                 .addImm(Reg)
431                 .setMIFlags(Flags);
432     } else {
433       report_fatal_error("No SEH Opcode for MOV");
434     }
435     break;
436 
437   case ARM::tBX_RET:
438   case ARM::TCRETURNri:
439     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
440               .addImm(/*Wide=*/0)
441               .setMIFlags(Flags);
442     break;
443 
444   case ARM::TCRETURNdi:
445     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
446               .addImm(/*Wide=*/1)
447               .setMIFlags(Flags);
448     break;
449   }
450   return MBB->insertAfter(MBBI, MIB);
451 }
452 
453 static MachineBasicBlock::iterator
454 initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) {
455   if (MBBI == MBB.begin())
456     return MachineBasicBlock::iterator();
457   return std::prev(MBBI);
458 }
459 
460 static void insertSEHRange(MachineBasicBlock &MBB,
461                            MachineBasicBlock::iterator Start,
462                            const MachineBasicBlock::iterator &End,
463                            const ARMBaseInstrInfo &TII, unsigned MIFlags) {
464   if (Start.isValid())
465     Start = std::next(Start);
466   else
467     Start = MBB.begin();
468 
469   for (auto MI = Start; MI != End;) {
470     auto Next = std::next(MI);
471     // Check if this instruction already has got a SEH opcode added. In that
472     // case, don't do this generic mapping.
473     if (Next != End && isSEHInstruction(*Next)) {
474       MI = std::next(Next);
475       while (MI != End && isSEHInstruction(*MI))
476         ++MI;
477       continue;
478     }
479     insertSEH(MI, TII, MIFlags);
480     MI = Next;
481   }
482 }
483 
484 static void emitRegPlusImmediate(
485     bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
486     const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
487     unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
488     ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
489   if (isARM)
490     emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
491                             Pred, PredReg, TII, MIFlags);
492   else
493     emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
494                            Pred, PredReg, TII, MIFlags);
495 }
496 
497 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
498                          MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
499                          const ARMBaseInstrInfo &TII, int NumBytes,
500                          unsigned MIFlags = MachineInstr::NoFlags,
501                          ARMCC::CondCodes Pred = ARMCC::AL,
502                          unsigned PredReg = 0) {
503   emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
504                        MIFlags, Pred, PredReg);
505 }
506 
507 static int sizeOfSPAdjustment(const MachineInstr &MI) {
508   int RegSize;
509   switch (MI.getOpcode()) {
510   case ARM::VSTMDDB_UPD:
511     RegSize = 8;
512     break;
513   case ARM::STMDB_UPD:
514   case ARM::t2STMDB_UPD:
515     RegSize = 4;
516     break;
517   case ARM::t2STR_PRE:
518   case ARM::STR_PRE_IMM:
519     return 4;
520   default:
521     llvm_unreachable("Unknown push or pop like instruction");
522   }
523 
524   int count = 0;
525   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
526   // pred) so the list starts at 4.
527   for (int i = MI.getNumOperands() - 1; i >= 4; --i)
528     count += RegSize;
529   return count;
530 }
531 
532 static bool WindowsRequiresStackProbe(const MachineFunction &MF,
533                                       size_t StackSizeInBytes) {
534   const MachineFrameInfo &MFI = MF.getFrameInfo();
535   const Function &F = MF.getFunction();
536   unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
537   if (F.hasFnAttribute("stack-probe-size"))
538     F.getFnAttribute("stack-probe-size")
539         .getValueAsString()
540         .getAsInteger(0, StackProbeSize);
541   return (StackSizeInBytes >= StackProbeSize) &&
542          !F.hasFnAttribute("no-stack-arg-probe");
543 }
544 
545 namespace {
546 
547 struct StackAdjustingInsts {
548   struct InstInfo {
549     MachineBasicBlock::iterator I;
550     unsigned SPAdjust;
551     bool BeforeFPSet;
552   };
553 
554   SmallVector<InstInfo, 4> Insts;
555 
556   void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
557                bool BeforeFPSet = false) {
558     InstInfo Info = {I, SPAdjust, BeforeFPSet};
559     Insts.push_back(Info);
560   }
561 
562   void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
563     auto Info =
564         llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
565     assert(Info != Insts.end() && "invalid sp adjusting instruction");
566     Info->SPAdjust += ExtraBytes;
567   }
568 
569   void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
570                          const ARMBaseInstrInfo &TII, bool HasFP) {
571     MachineFunction &MF = *MBB.getParent();
572     unsigned CFAOffset = 0;
573     for (auto &Info : Insts) {
574       if (HasFP && !Info.BeforeFPSet)
575         return;
576 
577       CFAOffset += Info.SPAdjust;
578       unsigned CFIIndex = MF.addFrameInst(
579           MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset));
580       BuildMI(MBB, std::next(Info.I), dl,
581               TII.get(TargetOpcode::CFI_INSTRUCTION))
582               .addCFIIndex(CFIIndex)
583               .setMIFlags(MachineInstr::FrameSetup);
584     }
585   }
586 };
587 
588 } // end anonymous namespace
589 
590 /// Emit an instruction sequence that will align the address in
591 /// register Reg by zero-ing out the lower bits.  For versions of the
592 /// architecture that support Neon, this must be done in a single
593 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
594 /// single instruction. That function only gets called when optimizing
595 /// spilling of D registers on a core with the Neon instruction set
596 /// present.
597 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
598                                      const TargetInstrInfo &TII,
599                                      MachineBasicBlock &MBB,
600                                      MachineBasicBlock::iterator MBBI,
601                                      const DebugLoc &DL, const unsigned Reg,
602                                      const Align Alignment,
603                                      const bool MustBeSingleInstruction) {
604   const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>();
605   const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
606   const unsigned AlignMask = Alignment.value() - 1U;
607   const unsigned NrBitsToZero = Log2(Alignment);
608   assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
609   if (!AFI->isThumbFunction()) {
610     // if the BFC instruction is available, use that to zero the lower
611     // bits:
612     //   bfc Reg, #0, log2(Alignment)
613     // otherwise use BIC, if the mask to zero the required number of bits
614     // can be encoded in the bic immediate field
615     //   bic Reg, Reg, Alignment-1
616     // otherwise, emit
617     //   lsr Reg, Reg, log2(Alignment)
618     //   lsl Reg, Reg, log2(Alignment)
619     if (CanUseBFC) {
620       BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
621           .addReg(Reg, RegState::Kill)
622           .addImm(~AlignMask)
623           .add(predOps(ARMCC::AL));
624     } else if (AlignMask <= 255) {
625       BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
626           .addReg(Reg, RegState::Kill)
627           .addImm(AlignMask)
628           .add(predOps(ARMCC::AL))
629           .add(condCodeOp());
630     } else {
631       assert(!MustBeSingleInstruction &&
632              "Shouldn't call emitAligningInstructions demanding a single "
633              "instruction to be emitted for large stack alignment for a target "
634              "without BFC.");
635       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
636           .addReg(Reg, RegState::Kill)
637           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
638           .add(predOps(ARMCC::AL))
639           .add(condCodeOp());
640       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
641           .addReg(Reg, RegState::Kill)
642           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
643           .add(predOps(ARMCC::AL))
644           .add(condCodeOp());
645     }
646   } else {
647     // Since this is only reached for Thumb-2 targets, the BFC instruction
648     // should always be available.
649     assert(CanUseBFC);
650     BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
651         .addReg(Reg, RegState::Kill)
652         .addImm(~AlignMask)
653         .add(predOps(ARMCC::AL));
654   }
655 }
656 
657 /// We need the offset of the frame pointer relative to other MachineFrameInfo
658 /// offsets which are encoded relative to SP at function begin.
659 /// See also emitPrologue() for how the FP is set up.
660 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet
661 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
662 /// this to produce a conservative estimate that we check in an assert() later.
663 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI,
664                           const MachineFunction &MF) {
665   // For Thumb1, push.w isn't available, so the first push will always push
666   // r7 and lr onto the stack first.
667   if (AFI.isThumb1OnlyFunction())
668     return -AFI.getArgRegsSaveSize() - (2 * 4);
669   // This is a conservative estimation: Assume the frame pointer being r7 and
670   // pc("r15") up to r8 getting spilled before (= 8 registers).
671   int MaxRegBytes = 8 * 4;
672   if (STI.splitFramePointerPush(MF)) {
673     // Here, r11 can be stored below all of r4-r15 (3 registers more than
674     // above), plus d8-d15.
675     MaxRegBytes = 11 * 4 + 8 * 8;
676   }
677   int FPCXTSaveSize =
678       (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0;
679   return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes;
680 }
681 
682 void ARMFrameLowering::emitPrologue(MachineFunction &MF,
683                                     MachineBasicBlock &MBB) const {
684   MachineBasicBlock::iterator MBBI = MBB.begin();
685   MachineFrameInfo  &MFI = MF.getFrameInfo();
686   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
687   MachineModuleInfo &MMI = MF.getMMI();
688   MCContext &Context = MMI.getContext();
689   const TargetMachine &TM = MF.getTarget();
690   const MCRegisterInfo *MRI = Context.getRegisterInfo();
691   const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
692   const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
693   assert(!AFI->isThumb1OnlyFunction() &&
694          "This emitPrologue does not support Thumb1!");
695   bool isARM = !AFI->isThumbFunction();
696   Align Alignment = STI.getFrameLowering()->getStackAlign();
697   unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
698   unsigned NumBytes = MFI.getStackSize();
699   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
700   int FPCXTSaveSize = 0;
701   bool NeedsWinCFI = needsWinCFI(MF);
702 
703   // Debug location must be unknown since the first debug location is used
704   // to determine the end of the prologue.
705   DebugLoc dl;
706 
707   Register FramePtr = RegInfo->getFrameRegister(MF);
708 
709   // Determine the sizes of each callee-save spill areas and record which frame
710   // belongs to which callee-save spill areas.
711   unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
712   int FramePtrSpillFI = 0;
713   int D8SpillFI = 0;
714 
715   // All calls are tail calls in GHC calling conv, and functions have no
716   // prologue/epilogue.
717   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
718     return;
719 
720   StackAdjustingInsts DefCFAOffsetCandidates;
721   bool HasFP = hasFP(MF);
722 
723   if (!AFI->hasStackFrame() &&
724       (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
725     if (NumBytes != 0) {
726       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
727                    MachineInstr::FrameSetup);
728       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true);
729     }
730     if (!NeedsWinCFI)
731       DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
732     if (NeedsWinCFI && MBBI != MBB.begin()) {
733       insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup);
734       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd))
735           .setMIFlag(MachineInstr::FrameSetup);
736       MF.setHasWinCFI(true);
737     }
738     return;
739   }
740 
741   // Determine spill area sizes.
742   if (STI.splitFramePointerPush(MF)) {
743     for (const CalleeSavedInfo &I : CSI) {
744       Register Reg = I.getReg();
745       int FI = I.getFrameIdx();
746       switch (Reg) {
747       case ARM::R11:
748       case ARM::LR:
749         if (Reg == FramePtr)
750           FramePtrSpillFI = FI;
751         GPRCS2Size += 4;
752         break;
753       case ARM::R0:
754       case ARM::R1:
755       case ARM::R2:
756       case ARM::R3:
757       case ARM::R4:
758       case ARM::R5:
759       case ARM::R6:
760       case ARM::R7:
761       case ARM::R8:
762       case ARM::R9:
763       case ARM::R10:
764       case ARM::R12:
765         GPRCS1Size += 4;
766         break;
767       case ARM::FPCXTNS:
768         FPCXTSaveSize = 4;
769         break;
770       default:
771         // This is a DPR. Exclude the aligned DPRCS2 spills.
772         if (Reg == ARM::D8)
773           D8SpillFI = FI;
774         if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
775           DPRCSSize += 8;
776       }
777     }
778   } else {
779     for (const CalleeSavedInfo &I : CSI) {
780       Register Reg = I.getReg();
781       int FI = I.getFrameIdx();
782       switch (Reg) {
783       case ARM::R8:
784       case ARM::R9:
785       case ARM::R10:
786       case ARM::R11:
787       case ARM::R12:
788         if (STI.splitFramePushPop(MF)) {
789           GPRCS2Size += 4;
790           break;
791         }
792         LLVM_FALLTHROUGH;
793       case ARM::R0:
794       case ARM::R1:
795       case ARM::R2:
796       case ARM::R3:
797       case ARM::R4:
798       case ARM::R5:
799       case ARM::R6:
800       case ARM::R7:
801       case ARM::LR:
802         if (Reg == FramePtr)
803           FramePtrSpillFI = FI;
804         GPRCS1Size += 4;
805         break;
806       case ARM::FPCXTNS:
807         FPCXTSaveSize = 4;
808         break;
809       default:
810         // This is a DPR. Exclude the aligned DPRCS2 spills.
811         if (Reg == ARM::D8)
812           D8SpillFI = FI;
813         if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
814           DPRCSSize += 8;
815       }
816     }
817   }
818 
819   MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
820 
821   // Move past the PAC computation.
822   if (AFI->shouldSignReturnAddress())
823     LastPush = MBBI++;
824 
825   // Move past FPCXT area.
826   if (FPCXTSaveSize > 0) {
827     LastPush = MBBI++;
828     DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true);
829   }
830 
831   // Allocate the vararg register save area.
832   if (ArgRegsSaveSize) {
833     emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
834                  MachineInstr::FrameSetup);
835     LastPush = std::prev(MBBI);
836     DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, true);
837   }
838 
839   // Move past area 1.
840   if (GPRCS1Size > 0) {
841     GPRCS1Push = LastPush = MBBI++;
842     DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
843   }
844 
845   // Determine starting offsets of spill areas.
846   unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize;
847   unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size;
848   unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
849   Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4);
850   unsigned DPRGapSize = GPRCS1Size + FPCXTSaveSize + ArgRegsSaveSize;
851   if (!STI.splitFramePointerPush(MF)) {
852     DPRGapSize += GPRCS2Size;
853   }
854   DPRGapSize %= DPRAlign.value();
855 
856   unsigned DPRCSOffset;
857   if (STI.splitFramePointerPush(MF)) {
858     DPRCSOffset = GPRCS1Offset - DPRGapSize - DPRCSSize;
859     GPRCS2Offset = DPRCSOffset - GPRCS2Size;
860   } else {
861     DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
862   }
863   int FramePtrOffsetInPush = 0;
864   if (HasFP) {
865     int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
866     assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset &&
867            "Max FP estimation is wrong");
868     FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize;
869     AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
870                                 NumBytes);
871   }
872   AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
873   AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
874   AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
875 
876   // Move past area 2.
877   if (GPRCS2Size > 0 && !STI.splitFramePointerPush(MF)) {
878     GPRCS2Push = LastPush = MBBI++;
879     DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
880   }
881 
882   // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
883   // .cfi_offset operations will reflect that.
884   if (DPRGapSize) {
885     assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
886     if (LastPush != MBB.end() &&
887         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
888       DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
889     else {
890       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
891                    MachineInstr::FrameSetup);
892       DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
893     }
894   }
895 
896   // Move past area 3.
897   if (DPRCSSize > 0) {
898     // Since vpush register list cannot have gaps, there may be multiple vpush
899     // instructions in the prologue.
900     while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
901       DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
902       LastPush = MBBI++;
903     }
904   }
905 
906   // Move past the aligned DPRCS2 area.
907   if (AFI->getNumAlignedDPRCS2Regs() > 0) {
908     MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
909     // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
910     // leaves the stack pointer pointing to the DPRCS2 area.
911     //
912     // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
913     NumBytes += MFI.getObjectOffset(D8SpillFI);
914   } else
915     NumBytes = DPRCSOffset;
916 
917   if (GPRCS2Size > 0 && STI.splitFramePointerPush(MF)) {
918     GPRCS2Push = LastPush = MBBI++;
919     DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
920   }
921 
922   bool NeedsWinCFIStackAlloc = NeedsWinCFI;
923   if (STI.splitFramePointerPush(MF) && HasFP)
924     NeedsWinCFIStackAlloc = false;
925 
926   if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
927     uint32_t NumWords = NumBytes >> 2;
928 
929     if (NumWords < 65536) {
930       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
931           .addImm(NumWords)
932           .setMIFlags(MachineInstr::FrameSetup)
933           .add(predOps(ARMCC::AL));
934     } else {
935       // Split into two instructions here, instead of using t2MOVi32imm,
936       // to allow inserting accurate SEH instructions (including accurate
937       // instruction size for each of them).
938       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
939           .addImm(NumWords & 0xffff)
940           .setMIFlags(MachineInstr::FrameSetup)
941           .add(predOps(ARMCC::AL));
942       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4)
943           .addReg(ARM::R4)
944           .addImm(NumWords >> 16)
945           .setMIFlags(MachineInstr::FrameSetup)
946           .add(predOps(ARMCC::AL));
947     }
948 
949     switch (TM.getCodeModel()) {
950     case CodeModel::Tiny:
951       llvm_unreachable("Tiny code model not available on ARM.");
952     case CodeModel::Small:
953     case CodeModel::Medium:
954     case CodeModel::Kernel:
955       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
956           .add(predOps(ARMCC::AL))
957           .addExternalSymbol("__chkstk")
958           .addReg(ARM::R4, RegState::Implicit)
959           .setMIFlags(MachineInstr::FrameSetup);
960       break;
961     case CodeModel::Large:
962       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
963         .addExternalSymbol("__chkstk")
964         .setMIFlags(MachineInstr::FrameSetup);
965 
966       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
967           .add(predOps(ARMCC::AL))
968           .addReg(ARM::R12, RegState::Kill)
969           .addReg(ARM::R4, RegState::Implicit)
970           .setMIFlags(MachineInstr::FrameSetup);
971       break;
972     }
973 
974     MachineInstrBuilder Instr, SEH;
975     Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
976                 .addReg(ARM::SP, RegState::Kill)
977                 .addReg(ARM::R4, RegState::Kill)
978                 .setMIFlags(MachineInstr::FrameSetup)
979                 .add(predOps(ARMCC::AL))
980                 .add(condCodeOp());
981     if (NeedsWinCFIStackAlloc) {
982       SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc))
983                 .addImm(NumBytes)
984                 .addImm(/*Wide=*/1)
985                 .setMIFlags(MachineInstr::FrameSetup);
986       MBB.insertAfter(Instr, SEH);
987     }
988     NumBytes = 0;
989   }
990 
991   if (NumBytes) {
992     // Adjust SP after all the callee-save spills.
993     if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
994         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
995       DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
996     else {
997       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
998                    MachineInstr::FrameSetup);
999       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
1000     }
1001 
1002     if (HasFP && isARM)
1003       // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
1004       // Note it's not safe to do this in Thumb2 mode because it would have
1005       // taken two instructions:
1006       // mov sp, r7
1007       // sub sp, #24
1008       // If an interrupt is taken between the two instructions, then sp is in
1009       // an inconsistent state (pointing to the middle of callee-saved area).
1010       // The interrupt handler can end up clobbering the registers.
1011       AFI->setShouldRestoreSPFromFP(true);
1012   }
1013 
1014   // Set FP to point to the stack slot that contains the previous FP.
1015   // For iOS, FP is R7, which has now been stored in spill area 1.
1016   // Otherwise, if this is not iOS, all the callee-saved registers go
1017   // into spill area 1, including the FP in R11.  In either case, it
1018   // is in area one and the adjustment needs to take place just after
1019   // that push.
1020   MachineBasicBlock::iterator AfterPush;
1021   if (HasFP) {
1022     AfterPush = std::next(GPRCS1Push);
1023     unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
1024     int FPOffset = PushSize + FramePtrOffsetInPush;
1025     if (STI.splitFramePointerPush(MF)) {
1026       AfterPush = std::next(GPRCS2Push);
1027       emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII,
1028                            FramePtr, ARM::SP, 0, MachineInstr::FrameSetup);
1029     } else {
1030       emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII,
1031                            FramePtr, ARM::SP, FPOffset,
1032                            MachineInstr::FrameSetup);
1033     }
1034     if (!NeedsWinCFI) {
1035       if (FramePtrOffsetInPush + PushSize != 0) {
1036         unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
1037             nullptr, MRI->getDwarfRegNum(FramePtr, true),
1038             FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush));
1039         BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1040             .addCFIIndex(CFIIndex)
1041             .setMIFlags(MachineInstr::FrameSetup);
1042       } else {
1043         unsigned CFIIndex =
1044             MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
1045                 nullptr, MRI->getDwarfRegNum(FramePtr, true)));
1046         BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1047             .addCFIIndex(CFIIndex)
1048             .setMIFlags(MachineInstr::FrameSetup);
1049       }
1050     }
1051   }
1052 
1053   // Emit a SEH opcode indicating the prologue end. The rest of the prologue
1054   // instructions below don't need to be replayed to unwind the stack.
1055   if (NeedsWinCFI && MBBI != MBB.begin()) {
1056     MachineBasicBlock::iterator End = MBBI;
1057     if (HasFP && STI.splitFramePointerPush(MF))
1058       End = AfterPush;
1059     insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup);
1060     BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd))
1061         .setMIFlag(MachineInstr::FrameSetup);
1062     MF.setHasWinCFI(true);
1063   }
1064 
1065   // Now that the prologue's actual instructions are finalised, we can insert
1066   // the necessary DWARF cf instructions to describe the situation. Start by
1067   // recording where each register ended up:
1068   if (GPRCS1Size > 0 && !NeedsWinCFI) {
1069     MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
1070     int CFIIndex;
1071     for (const auto &Entry : CSI) {
1072       Register Reg = Entry.getReg();
1073       int FI = Entry.getFrameIdx();
1074       switch (Reg) {
1075       case ARM::R8:
1076       case ARM::R9:
1077       case ARM::R10:
1078       case ARM::R11:
1079       case ARM::R12:
1080         if (STI.splitFramePushPop(MF))
1081           break;
1082         LLVM_FALLTHROUGH;
1083       case ARM::R0:
1084       case ARM::R1:
1085       case ARM::R2:
1086       case ARM::R3:
1087       case ARM::R4:
1088       case ARM::R5:
1089       case ARM::R6:
1090       case ARM::R7:
1091       case ARM::LR:
1092         CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1093             nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
1094         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1095             .addCFIIndex(CFIIndex)
1096             .setMIFlags(MachineInstr::FrameSetup);
1097         break;
1098       }
1099     }
1100   }
1101 
1102   if (GPRCS2Size > 0 && !NeedsWinCFI) {
1103     MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
1104     for (const auto &Entry : CSI) {
1105       Register Reg = Entry.getReg();
1106       int FI = Entry.getFrameIdx();
1107       switch (Reg) {
1108       case ARM::R8:
1109       case ARM::R9:
1110       case ARM::R10:
1111       case ARM::R11:
1112       case ARM::R12:
1113         if (STI.splitFramePushPop(MF)) {
1114           unsigned DwarfReg = MRI->getDwarfRegNum(
1115               Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, true);
1116           unsigned Offset = MFI.getObjectOffset(FI);
1117           unsigned CFIIndex = MF.addFrameInst(
1118               MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
1119           BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1120               .addCFIIndex(CFIIndex)
1121               .setMIFlags(MachineInstr::FrameSetup);
1122         }
1123         break;
1124       }
1125     }
1126   }
1127 
1128   if (DPRCSSize > 0 && !NeedsWinCFI) {
1129     // Since vpush register list cannot have gaps, there may be multiple vpush
1130     // instructions in the prologue.
1131     MachineBasicBlock::iterator Pos = std::next(LastPush);
1132     for (const auto &Entry : CSI) {
1133       Register Reg = Entry.getReg();
1134       int FI = Entry.getFrameIdx();
1135       if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
1136           (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
1137         unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
1138         unsigned Offset = MFI.getObjectOffset(FI);
1139         unsigned CFIIndex = MF.addFrameInst(
1140             MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
1141         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1142             .addCFIIndex(CFIIndex)
1143             .setMIFlags(MachineInstr::FrameSetup);
1144       }
1145     }
1146   }
1147 
1148   // Now we can emit descriptions of where the canonical frame address was
1149   // throughout the process. If we have a frame pointer, it takes over the job
1150   // half-way through, so only the first few .cfi_def_cfa_offset instructions
1151   // actually get emitted.
1152   if (!NeedsWinCFI)
1153     DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
1154 
1155   if (STI.isTargetELF() && hasFP(MF))
1156     MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
1157                             AFI->getFramePtrSpillOffset());
1158 
1159   AFI->setFPCXTSaveAreaSize(FPCXTSaveSize);
1160   AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
1161   AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
1162   AFI->setDPRCalleeSavedGapSize(DPRGapSize);
1163   AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
1164 
1165   // If we need dynamic stack realignment, do it here. Be paranoid and make
1166   // sure if we also have VLAs, we have a base pointer for frame access.
1167   // If aligned NEON registers were spilled, the stack has already been
1168   // realigned.
1169   if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) {
1170     Align MaxAlign = MFI.getMaxAlign();
1171     assert(!AFI->isThumb1OnlyFunction());
1172     if (!AFI->isThumbFunction()) {
1173       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
1174                                false);
1175     } else {
1176       // We cannot use sp as source/dest register here, thus we're using r4 to
1177       // perform the calculations. We're emitting the following sequence:
1178       // mov r4, sp
1179       // -- use emitAligningInstructions to produce best sequence to zero
1180       // -- out lower bits in r4
1181       // mov sp, r4
1182       // FIXME: It will be better just to find spare register here.
1183       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
1184           .addReg(ARM::SP, RegState::Kill)
1185           .add(predOps(ARMCC::AL));
1186       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
1187                                false);
1188       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1189           .addReg(ARM::R4, RegState::Kill)
1190           .add(predOps(ARMCC::AL));
1191     }
1192 
1193     AFI->setShouldRestoreSPFromFP(true);
1194   }
1195 
1196   // If we need a base pointer, set it up here. It's whatever the value
1197   // of the stack pointer is at this point. Any variable size objects
1198   // will be allocated after this, so we can still use the base pointer
1199   // to reference locals.
1200   // FIXME: Clarify FrameSetup flags here.
1201   if (RegInfo->hasBasePointer(MF)) {
1202     if (isARM)
1203       BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
1204           .addReg(ARM::SP)
1205           .add(predOps(ARMCC::AL))
1206           .add(condCodeOp());
1207     else
1208       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
1209           .addReg(ARM::SP)
1210           .add(predOps(ARMCC::AL));
1211   }
1212 
1213   // If the frame has variable sized objects then the epilogue must restore
1214   // the sp from fp. We can assume there's an FP here since hasFP already
1215   // checks for hasVarSizedObjects.
1216   if (MFI.hasVarSizedObjects())
1217     AFI->setShouldRestoreSPFromFP(true);
1218 }
1219 
1220 void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
1221                                     MachineBasicBlock &MBB) const {
1222   MachineFrameInfo &MFI = MF.getFrameInfo();
1223   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1224   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
1225   const ARMBaseInstrInfo &TII =
1226       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1227   assert(!AFI->isThumb1OnlyFunction() &&
1228          "This emitEpilogue does not support Thumb1!");
1229   bool isARM = !AFI->isThumbFunction();
1230 
1231   // Amount of stack space we reserved next to incoming args for either
1232   // varargs registers or stack arguments in tail calls made by this function.
1233   unsigned ReservedArgStack = AFI->getArgRegsSaveSize();
1234 
1235   // How much of the stack used by incoming arguments this function is expected
1236   // to restore in this particular epilogue.
1237   int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB);
1238   int NumBytes = (int)MFI.getStackSize();
1239   Register FramePtr = RegInfo->getFrameRegister(MF);
1240 
1241   // All calls are tail calls in GHC calling conv, and functions have no
1242   // prologue/epilogue.
1243   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1244     return;
1245 
1246   // First put ourselves on the first (from top) terminator instructions.
1247   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1248   DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1249 
1250   MachineBasicBlock::iterator RangeStart;
1251   if (!AFI->hasStackFrame()) {
1252     if (MF.hasWinCFI()) {
1253       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
1254           .setMIFlag(MachineInstr::FrameDestroy);
1255       RangeStart = initMBBRange(MBB, MBBI);
1256     }
1257 
1258     if (NumBytes + IncomingArgStackToRestore != 0)
1259       emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1260                    NumBytes + IncomingArgStackToRestore,
1261                    MachineInstr::FrameDestroy);
1262   } else {
1263     // Unwind MBBI to point to first LDR / VLDRD.
1264     if (MBBI != MBB.begin()) {
1265       do {
1266         --MBBI;
1267       } while (MBBI != MBB.begin() &&
1268                MBBI->getFlag(MachineInstr::FrameDestroy));
1269       if (!MBBI->getFlag(MachineInstr::FrameDestroy))
1270         ++MBBI;
1271     }
1272 
1273     if (MF.hasWinCFI()) {
1274       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
1275           .setMIFlag(MachineInstr::FrameDestroy);
1276       RangeStart = initMBBRange(MBB, MBBI);
1277     }
1278 
1279     // Move SP to start of FP callee save spill area.
1280     NumBytes -= (ReservedArgStack +
1281                  AFI->getFPCXTSaveAreaSize() +
1282                  AFI->getGPRCalleeSavedArea1Size() +
1283                  AFI->getGPRCalleeSavedArea2Size() +
1284                  AFI->getDPRCalleeSavedGapSize() +
1285                  AFI->getDPRCalleeSavedAreaSize());
1286 
1287     // Reset SP based on frame pointer only if the stack frame extends beyond
1288     // frame pointer stack slot or target is ELF and the function has FP.
1289     if (AFI->shouldRestoreSPFromFP()) {
1290       NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
1291       if (NumBytes) {
1292         if (isARM)
1293           emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
1294                                   ARMCC::AL, 0, TII,
1295                                   MachineInstr::FrameDestroy);
1296         else {
1297           // It's not possible to restore SP from FP in a single instruction.
1298           // For iOS, this looks like:
1299           // mov sp, r7
1300           // sub sp, #24
1301           // This is bad, if an interrupt is taken after the mov, sp is in an
1302           // inconsistent state.
1303           // Use the first callee-saved register as a scratch register.
1304           assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
1305                  "No scratch register to restore SP from FP!");
1306           emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
1307                                  ARMCC::AL, 0, TII, MachineInstr::FrameDestroy);
1308           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1309               .addReg(ARM::R4)
1310               .add(predOps(ARMCC::AL))
1311               .setMIFlag(MachineInstr::FrameDestroy);
1312         }
1313       } else {
1314         // Thumb2 or ARM.
1315         if (isARM)
1316           BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
1317               .addReg(FramePtr)
1318               .add(predOps(ARMCC::AL))
1319               .add(condCodeOp())
1320               .setMIFlag(MachineInstr::FrameDestroy);
1321         else
1322           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1323               .addReg(FramePtr)
1324               .add(predOps(ARMCC::AL))
1325               .setMIFlag(MachineInstr::FrameDestroy);
1326       }
1327     } else if (NumBytes &&
1328                !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
1329       emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes,
1330                    MachineInstr::FrameDestroy);
1331 
1332     // Increment past our save areas.
1333     if (AFI->getGPRCalleeSavedArea2Size() && STI.splitFramePointerPush(MF))
1334       MBBI++;
1335 
1336     if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
1337       MBBI++;
1338       // Since vpop register list cannot have gaps, there may be multiple vpop
1339       // instructions in the epilogue.
1340       while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
1341         MBBI++;
1342     }
1343     if (AFI->getDPRCalleeSavedGapSize()) {
1344       assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
1345              "unexpected DPR alignment gap");
1346       emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(),
1347                    MachineInstr::FrameDestroy);
1348     }
1349 
1350     if (AFI->getGPRCalleeSavedArea2Size() && !STI.splitFramePointerPush(MF))
1351       MBBI++;
1352     if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
1353 
1354     if (ReservedArgStack || IncomingArgStackToRestore) {
1355       assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 &&
1356              "attempting to restore negative stack amount");
1357       emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1358                    ReservedArgStack + IncomingArgStackToRestore,
1359                    MachineInstr::FrameDestroy);
1360     }
1361 
1362     // Validate PAC, It should have been already popped into R12. For CMSE entry
1363     // function, the validation instruction is emitted during expansion of the
1364     // tBXNS_RET, since the validation must use the value of SP at function
1365     // entry, before saving, resp. after restoring, FPCXTNS.
1366     if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction())
1367       BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT));
1368   }
1369 
1370   if (MF.hasWinCFI()) {
1371     insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy);
1372     BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd))
1373         .setMIFlag(MachineInstr::FrameDestroy);
1374   }
1375 }
1376 
1377 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1378 /// debug info.  It's the same as what we use for resolving the code-gen
1379 /// references for now.  FIXME: This can go wrong when references are
1380 /// SP-relative and simple call frames aren't used.
1381 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF,
1382                                                      int FI,
1383                                                      Register &FrameReg) const {
1384   return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0));
1385 }
1386 
1387 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
1388                                                  int FI, Register &FrameReg,
1389                                                  int SPAdj) const {
1390   const MachineFrameInfo &MFI = MF.getFrameInfo();
1391   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1392       MF.getSubtarget().getRegisterInfo());
1393   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1394   int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
1395   int FPOffset = Offset - AFI->getFramePtrSpillOffset();
1396   bool isFixed = MFI.isFixedObjectIndex(FI);
1397 
1398   FrameReg = ARM::SP;
1399   Offset += SPAdj;
1400 
1401   // SP can move around if there are allocas.  We may also lose track of SP
1402   // when emergency spilling inside a non-reserved call frame setup.
1403   bool hasMovingSP = !hasReservedCallFrame(MF);
1404 
1405   // When dynamically realigning the stack, use the frame pointer for
1406   // parameters, and the stack/base pointer for locals.
1407   if (RegInfo->hasStackRealignment(MF)) {
1408     assert(hasFP(MF) && "dynamic stack realignment without a FP!");
1409     if (isFixed) {
1410       FrameReg = RegInfo->getFrameRegister(MF);
1411       Offset = FPOffset;
1412     } else if (hasMovingSP) {
1413       assert(RegInfo->hasBasePointer(MF) &&
1414              "VLAs and dynamic stack alignment, but missing base pointer!");
1415       FrameReg = RegInfo->getBaseRegister();
1416       Offset -= SPAdj;
1417     }
1418     return Offset;
1419   }
1420 
1421   // If there is a frame pointer, use it when we can.
1422   if (hasFP(MF) && AFI->hasStackFrame()) {
1423     // Use frame pointer to reference fixed objects. Use it for locals if
1424     // there are VLAs (and thus the SP isn't reliable as a base).
1425     if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
1426       FrameReg = RegInfo->getFrameRegister(MF);
1427       return FPOffset;
1428     } else if (hasMovingSP) {
1429       assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
1430       if (AFI->isThumb2Function()) {
1431         // Try to use the frame pointer if we can, else use the base pointer
1432         // since it's available. This is handy for the emergency spill slot, in
1433         // particular.
1434         if (FPOffset >= -255 && FPOffset < 0) {
1435           FrameReg = RegInfo->getFrameRegister(MF);
1436           return FPOffset;
1437         }
1438       }
1439     } else if (AFI->isThumbFunction()) {
1440       // Prefer SP to base pointer, if the offset is suitably aligned and in
1441       // range as the effective range of the immediate offset is bigger when
1442       // basing off SP.
1443       // Use  add <rd>, sp, #<imm8>
1444       //      ldr <rd>, [sp, #<imm8>]
1445       if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
1446         return Offset;
1447       // In Thumb2 mode, the negative offset is very limited. Try to avoid
1448       // out of range references. ldr <rt>,[<rn>, #-<imm8>]
1449       if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
1450         FrameReg = RegInfo->getFrameRegister(MF);
1451         return FPOffset;
1452       }
1453     } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
1454       // Otherwise, use SP or FP, whichever is closer to the stack slot.
1455       FrameReg = RegInfo->getFrameRegister(MF);
1456       return FPOffset;
1457     }
1458   }
1459   // Use the base pointer if we have one.
1460   // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper?
1461   // That can happen if we forced a base pointer for a large call frame.
1462   if (RegInfo->hasBasePointer(MF)) {
1463     FrameReg = RegInfo->getBaseRegister();
1464     Offset -= SPAdj;
1465   }
1466   return Offset;
1467 }
1468 
1469 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
1470                                     MachineBasicBlock::iterator MI,
1471                                     ArrayRef<CalleeSavedInfo> CSI,
1472                                     unsigned StmOpc, unsigned StrOpc,
1473                                     bool NoGap, bool (*Func)(unsigned, bool),
1474                                     unsigned NumAlignedDPRCS2Regs,
1475                                     unsigned MIFlags) const {
1476   MachineFunction &MF = *MBB.getParent();
1477   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1478   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1479 
1480   DebugLoc DL;
1481 
1482   using RegAndKill = std::pair<unsigned, bool>;
1483 
1484   SmallVector<RegAndKill, 4> Regs;
1485   unsigned i = CSI.size();
1486   while (i != 0) {
1487     unsigned LastReg = 0;
1488     for (; i != 0; --i) {
1489       Register Reg = CSI[i-1].getReg();
1490       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1491 
1492       // D-registers in the aligned area DPRCS2 are NOT spilled here.
1493       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1494         continue;
1495 
1496       const MachineRegisterInfo &MRI = MF.getRegInfo();
1497       bool isLiveIn = MRI.isLiveIn(Reg);
1498       if (!isLiveIn && !MRI.isReserved(Reg))
1499         MBB.addLiveIn(Reg);
1500       // If NoGap is true, push consecutive registers and then leave the rest
1501       // for other instructions. e.g.
1502       // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
1503       if (NoGap && LastReg && LastReg != Reg-1)
1504         break;
1505       LastReg = Reg;
1506       // Do not set a kill flag on values that are also marked as live-in. This
1507       // happens with the @llvm-returnaddress intrinsic and with arguments
1508       // passed in callee saved registers.
1509       // Omitting the kill flags is conservatively correct even if the live-in
1510       // is not used after all.
1511       Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
1512     }
1513 
1514     if (Regs.empty())
1515       continue;
1516 
1517     llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) {
1518       return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
1519     });
1520 
1521     if (Regs.size() > 1 || StrOpc== 0) {
1522       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
1523                                     .addReg(ARM::SP)
1524                                     .setMIFlags(MIFlags)
1525                                     .add(predOps(ARMCC::AL));
1526       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1527         MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
1528     } else if (Regs.size() == 1) {
1529       BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
1530           .addReg(Regs[0].first, getKillRegState(Regs[0].second))
1531           .addReg(ARM::SP)
1532           .setMIFlags(MIFlags)
1533           .addImm(-4)
1534           .add(predOps(ARMCC::AL));
1535     }
1536     Regs.clear();
1537 
1538     // Put any subsequent vpush instructions before this one: they will refer to
1539     // higher register numbers so need to be pushed first in order to preserve
1540     // monotonicity.
1541     if (MI != MBB.begin())
1542       --MI;
1543   }
1544 }
1545 
1546 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
1547                                    MachineBasicBlock::iterator MI,
1548                                    MutableArrayRef<CalleeSavedInfo> CSI,
1549                                    unsigned LdmOpc, unsigned LdrOpc,
1550                                    bool isVarArg, bool NoGap,
1551                                    bool (*Func)(unsigned, bool),
1552                                    unsigned NumAlignedDPRCS2Regs) const {
1553   MachineFunction &MF = *MBB.getParent();
1554   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1555   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1556   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1557   bool hasPAC = AFI->shouldSignReturnAddress();
1558   DebugLoc DL;
1559   bool isTailCall = false;
1560   bool isInterrupt = false;
1561   bool isTrap = false;
1562   bool isCmseEntry = false;
1563   if (MBB.end() != MI) {
1564     DL = MI->getDebugLoc();
1565     unsigned RetOpcode = MI->getOpcode();
1566     isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri);
1567     isInterrupt =
1568         RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
1569     isTrap =
1570         RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
1571         RetOpcode == ARM::tTRAP;
1572     isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET);
1573   }
1574 
1575   SmallVector<unsigned, 4> Regs;
1576   unsigned i = CSI.size();
1577   while (i != 0) {
1578     unsigned LastReg = 0;
1579     bool DeleteRet = false;
1580     for (; i != 0; --i) {
1581       CalleeSavedInfo &Info = CSI[i-1];
1582       Register Reg = Info.getReg();
1583       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1584 
1585       // The aligned reloads from area DPRCS2 are not inserted here.
1586       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1587         continue;
1588       if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
1589           !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 &&
1590           STI.hasV5TOps() && MBB.succ_empty() && !hasPAC &&
1591           !STI.splitFramePointerPush(MF)) {
1592         Reg = ARM::PC;
1593         // Fold the return instruction into the LDM.
1594         DeleteRet = true;
1595         LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
1596         // We 'restore' LR into PC so it is not live out of the return block:
1597         // Clear Restored bit.
1598         Info.setRestored(false);
1599       }
1600 
1601       // If NoGap is true, pop consecutive registers and then leave the rest
1602       // for other instructions. e.g.
1603       // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1604       if (NoGap && LastReg && LastReg != Reg-1)
1605         break;
1606 
1607       LastReg = Reg;
1608       Regs.push_back(Reg);
1609     }
1610 
1611     if (Regs.empty())
1612       continue;
1613 
1614     llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) {
1615       return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
1616     });
1617 
1618     if (Regs.size() > 1 || LdrOpc == 0) {
1619       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
1620                                     .addReg(ARM::SP)
1621                                     .add(predOps(ARMCC::AL))
1622                                     .setMIFlags(MachineInstr::FrameDestroy);
1623       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1624         MIB.addReg(Regs[i], getDefRegState(true));
1625       if (DeleteRet) {
1626         if (MI != MBB.end()) {
1627           MIB.copyImplicitOps(*MI);
1628           MI->eraseFromParent();
1629         }
1630       }
1631       MI = MIB;
1632     } else if (Regs.size() == 1) {
1633       // If we adjusted the reg to PC from LR above, switch it back here. We
1634       // only do that for LDM.
1635       if (Regs[0] == ARM::PC)
1636         Regs[0] = ARM::LR;
1637       MachineInstrBuilder MIB =
1638         BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
1639           .addReg(ARM::SP, RegState::Define)
1640           .addReg(ARM::SP)
1641           .setMIFlags(MachineInstr::FrameDestroy);
1642       // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1643       // that refactoring is complete (eventually).
1644       if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
1645         MIB.addReg(0);
1646         MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
1647       } else
1648         MIB.addImm(4);
1649       MIB.add(predOps(ARMCC::AL));
1650     }
1651     Regs.clear();
1652 
1653     // Put any subsequent vpop instructions after this one: they will refer to
1654     // higher register numbers so need to be popped afterwards.
1655     if (MI != MBB.end())
1656       ++MI;
1657   }
1658 }
1659 
1660 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1661 /// starting from d8.  Also insert stack realignment code and leave the stack
1662 /// pointer pointing to the d8 spill slot.
1663 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
1664                                     MachineBasicBlock::iterator MI,
1665                                     unsigned NumAlignedDPRCS2Regs,
1666                                     ArrayRef<CalleeSavedInfo> CSI,
1667                                     const TargetRegisterInfo *TRI) {
1668   MachineFunction &MF = *MBB.getParent();
1669   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1670   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1671   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1672   MachineFrameInfo &MFI = MF.getFrameInfo();
1673 
1674   // Mark the D-register spill slots as properly aligned.  Since MFI computes
1675   // stack slot layout backwards, this can actually mean that the d-reg stack
1676   // slot offsets can be wrong. The offset for d8 will always be correct.
1677   for (const CalleeSavedInfo &I : CSI) {
1678     unsigned DNum = I.getReg() - ARM::D8;
1679     if (DNum > NumAlignedDPRCS2Regs - 1)
1680       continue;
1681     int FI = I.getFrameIdx();
1682     // The even-numbered registers will be 16-byte aligned, the odd-numbered
1683     // registers will be 8-byte aligned.
1684     MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16));
1685 
1686     // The stack slot for D8 needs to be maximally aligned because this is
1687     // actually the point where we align the stack pointer.  MachineFrameInfo
1688     // computes all offsets relative to the incoming stack pointer which is a
1689     // bit weird when realigning the stack.  Any extra padding for this
1690     // over-alignment is not realized because the code inserted below adjusts
1691     // the stack pointer by numregs * 8 before aligning the stack pointer.
1692     if (DNum == 0)
1693       MFI.setObjectAlignment(FI, MFI.getMaxAlign());
1694   }
1695 
1696   // Move the stack pointer to the d8 spill slot, and align it at the same
1697   // time. Leave the stack slot address in the scratch register r4.
1698   //
1699   //   sub r4, sp, #numregs * 8
1700   //   bic r4, r4, #align - 1
1701   //   mov sp, r4
1702   //
1703   bool isThumb = AFI->isThumbFunction();
1704   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1705   AFI->setShouldRestoreSPFromFP(true);
1706 
1707   // sub r4, sp, #numregs * 8
1708   // The immediate is <= 64, so it doesn't need any special encoding.
1709   unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
1710   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1711       .addReg(ARM::SP)
1712       .addImm(8 * NumAlignedDPRCS2Regs)
1713       .add(predOps(ARMCC::AL))
1714       .add(condCodeOp());
1715 
1716   Align MaxAlign = MF.getFrameInfo().getMaxAlign();
1717   // We must set parameter MustBeSingleInstruction to true, since
1718   // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1719   // stack alignment.  Luckily, this can always be done since all ARM
1720   // architecture versions that support Neon also support the BFC
1721   // instruction.
1722   emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
1723 
1724   // mov sp, r4
1725   // The stack pointer must be adjusted before spilling anything, otherwise
1726   // the stack slots could be clobbered by an interrupt handler.
1727   // Leave r4 live, it is used below.
1728   Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
1729   MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
1730                                 .addReg(ARM::R4)
1731                                 .add(predOps(ARMCC::AL));
1732   if (!isThumb)
1733     MIB.add(condCodeOp());
1734 
1735   // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1736   // r4 holds the stack slot address.
1737   unsigned NextReg = ARM::D8;
1738 
1739   // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1740   // The writeback is only needed when emitting two vst1.64 instructions.
1741   if (NumAlignedDPRCS2Regs >= 6) {
1742     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1743                                                &ARM::QQPRRegClass);
1744     MBB.addLiveIn(SupReg);
1745     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
1746         .addReg(ARM::R4, RegState::Kill)
1747         .addImm(16)
1748         .addReg(NextReg)
1749         .addReg(SupReg, RegState::ImplicitKill)
1750         .add(predOps(ARMCC::AL));
1751     NextReg += 4;
1752     NumAlignedDPRCS2Regs -= 4;
1753   }
1754 
1755   // We won't modify r4 beyond this point.  It currently points to the next
1756   // register to be spilled.
1757   unsigned R4BaseReg = NextReg;
1758 
1759   // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1760   if (NumAlignedDPRCS2Regs >= 4) {
1761     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1762                                                &ARM::QQPRRegClass);
1763     MBB.addLiveIn(SupReg);
1764     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
1765         .addReg(ARM::R4)
1766         .addImm(16)
1767         .addReg(NextReg)
1768         .addReg(SupReg, RegState::ImplicitKill)
1769         .add(predOps(ARMCC::AL));
1770     NextReg += 4;
1771     NumAlignedDPRCS2Regs -= 4;
1772   }
1773 
1774   // 16-byte aligned vst1.64 with 2 d-regs.
1775   if (NumAlignedDPRCS2Regs >= 2) {
1776     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1777                                                &ARM::QPRRegClass);
1778     MBB.addLiveIn(SupReg);
1779     BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
1780         .addReg(ARM::R4)
1781         .addImm(16)
1782         .addReg(SupReg)
1783         .add(predOps(ARMCC::AL));
1784     NextReg += 2;
1785     NumAlignedDPRCS2Regs -= 2;
1786   }
1787 
1788   // Finally, use a vanilla vstr.64 for the odd last register.
1789   if (NumAlignedDPRCS2Regs) {
1790     MBB.addLiveIn(NextReg);
1791     // vstr.64 uses addrmode5 which has an offset scale of 4.
1792     BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
1793         .addReg(NextReg)
1794         .addReg(ARM::R4)
1795         .addImm((NextReg - R4BaseReg) * 2)
1796         .add(predOps(ARMCC::AL));
1797   }
1798 
1799   // The last spill instruction inserted should kill the scratch register r4.
1800   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1801 }
1802 
1803 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1804 /// iterator to the following instruction.
1805 static MachineBasicBlock::iterator
1806 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
1807                         unsigned NumAlignedDPRCS2Regs) {
1808   //   sub r4, sp, #numregs * 8
1809   //   bic r4, r4, #align - 1
1810   //   mov sp, r4
1811   ++MI; ++MI; ++MI;
1812   assert(MI->mayStore() && "Expecting spill instruction");
1813 
1814   // These switches all fall through.
1815   switch(NumAlignedDPRCS2Regs) {
1816   case 7:
1817     ++MI;
1818     assert(MI->mayStore() && "Expecting spill instruction");
1819     LLVM_FALLTHROUGH;
1820   default:
1821     ++MI;
1822     assert(MI->mayStore() && "Expecting spill instruction");
1823     LLVM_FALLTHROUGH;
1824   case 1:
1825   case 2:
1826   case 4:
1827     assert(MI->killsRegister(ARM::R4) && "Missed kill flag");
1828     ++MI;
1829   }
1830   return MI;
1831 }
1832 
1833 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1834 /// starting from d8.  These instructions are assumed to execute while the
1835 /// stack is still aligned, unlike the code inserted by emitPopInst.
1836 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
1837                                       MachineBasicBlock::iterator MI,
1838                                       unsigned NumAlignedDPRCS2Regs,
1839                                       ArrayRef<CalleeSavedInfo> CSI,
1840                                       const TargetRegisterInfo *TRI) {
1841   MachineFunction &MF = *MBB.getParent();
1842   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1843   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1844   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1845 
1846   // Find the frame index assigned to d8.
1847   int D8SpillFI = 0;
1848   for (const CalleeSavedInfo &I : CSI)
1849     if (I.getReg() == ARM::D8) {
1850       D8SpillFI = I.getFrameIdx();
1851       break;
1852     }
1853 
1854   // Materialize the address of the d8 spill slot into the scratch register r4.
1855   // This can be fairly complicated if the stack frame is large, so just use
1856   // the normal frame index elimination mechanism to do it.  This code runs as
1857   // the initial part of the epilog where the stack and base pointers haven't
1858   // been changed yet.
1859   bool isThumb = AFI->isThumbFunction();
1860   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1861 
1862   unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
1863   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1864       .addFrameIndex(D8SpillFI)
1865       .addImm(0)
1866       .add(predOps(ARMCC::AL))
1867       .add(condCodeOp());
1868 
1869   // Now restore NumAlignedDPRCS2Regs registers starting from d8.
1870   unsigned NextReg = ARM::D8;
1871 
1872   // 16-byte aligned vld1.64 with 4 d-regs and writeback.
1873   if (NumAlignedDPRCS2Regs >= 6) {
1874     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1875                                                &ARM::QQPRRegClass);
1876     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
1877         .addReg(ARM::R4, RegState::Define)
1878         .addReg(ARM::R4, RegState::Kill)
1879         .addImm(16)
1880         .addReg(SupReg, RegState::ImplicitDefine)
1881         .add(predOps(ARMCC::AL));
1882     NextReg += 4;
1883     NumAlignedDPRCS2Regs -= 4;
1884   }
1885 
1886   // We won't modify r4 beyond this point.  It currently points to the next
1887   // register to be spilled.
1888   unsigned R4BaseReg = NextReg;
1889 
1890   // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
1891   if (NumAlignedDPRCS2Regs >= 4) {
1892     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1893                                                &ARM::QQPRRegClass);
1894     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
1895         .addReg(ARM::R4)
1896         .addImm(16)
1897         .addReg(SupReg, RegState::ImplicitDefine)
1898         .add(predOps(ARMCC::AL));
1899     NextReg += 4;
1900     NumAlignedDPRCS2Regs -= 4;
1901   }
1902 
1903   // 16-byte aligned vld1.64 with 2 d-regs.
1904   if (NumAlignedDPRCS2Regs >= 2) {
1905     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1906                                                &ARM::QPRRegClass);
1907     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
1908         .addReg(ARM::R4)
1909         .addImm(16)
1910         .add(predOps(ARMCC::AL));
1911     NextReg += 2;
1912     NumAlignedDPRCS2Regs -= 2;
1913   }
1914 
1915   // Finally, use a vanilla vldr.64 for the remaining odd register.
1916   if (NumAlignedDPRCS2Regs)
1917     BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
1918         .addReg(ARM::R4)
1919         .addImm(2 * (NextReg - R4BaseReg))
1920         .add(predOps(ARMCC::AL));
1921 
1922   // Last store kills r4.
1923   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1924 }
1925 
1926 bool ARMFrameLowering::spillCalleeSavedRegisters(
1927     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1928     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
1929   if (CSI.empty())
1930     return false;
1931 
1932   MachineFunction &MF = *MBB.getParent();
1933   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1934 
1935   unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
1936   unsigned PushOneOpc = AFI->isThumbFunction() ?
1937     ARM::t2STR_PRE : ARM::STR_PRE_IMM;
1938   unsigned FltOpc = ARM::VSTMDDB_UPD;
1939   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1940   // Compute PAC in R12.
1941   if (AFI->shouldSignReturnAddress()) {
1942     BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC))
1943         .setMIFlags(MachineInstr::FrameSetup);
1944   }
1945   // Save the non-secure floating point context.
1946   if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) {
1947         return C.getReg() == ARM::FPCXTNS;
1948       })) {
1949     BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre),
1950             ARM::SP)
1951         .addReg(ARM::SP)
1952         .addImm(-4)
1953         .add(predOps(ARMCC::AL));
1954   }
1955   if (STI.splitFramePointerPush(MF)) {
1956     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false,
1957                  &isSplitFPArea1Register, 0, MachineInstr::FrameSetup);
1958     emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
1959                  NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
1960     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false,
1961                  &isSplitFPArea2Register, 0, MachineInstr::FrameSetup);
1962   } else {
1963     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register,
1964                  0, MachineInstr::FrameSetup);
1965     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register,
1966                  0, MachineInstr::FrameSetup);
1967     emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
1968                  NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
1969   }
1970 
1971   // The code above does not insert spill code for the aligned DPRCS2 registers.
1972   // The stack realignment code will be inserted between the push instructions
1973   // and these spills.
1974   if (NumAlignedDPRCS2Regs)
1975     emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1976 
1977   return true;
1978 }
1979 
1980 bool ARMFrameLowering::restoreCalleeSavedRegisters(
1981     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1982     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
1983   if (CSI.empty())
1984     return false;
1985 
1986   MachineFunction &MF = *MBB.getParent();
1987   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1988   bool isVarArg = AFI->getArgRegsSaveSize() > 0;
1989   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1990 
1991   // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
1992   // registers. Do that here instead.
1993   if (NumAlignedDPRCS2Regs)
1994     emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1995 
1996   unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
1997   unsigned LdrOpc =
1998       AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
1999   unsigned FltOpc = ARM::VLDMDIA_UPD;
2000   if (STI.splitFramePointerPush(MF)) {
2001     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2002                 &isSplitFPArea2Register, 0);
2003     emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
2004                 NumAlignedDPRCS2Regs);
2005     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2006                 &isSplitFPArea1Register, 0);
2007   } else {
2008     emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
2009                 NumAlignedDPRCS2Regs);
2010     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2011                 &isARMArea2Register, 0);
2012     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2013                 &isARMArea1Register, 0);
2014   }
2015 
2016   return true;
2017 }
2018 
2019 // FIXME: Make generic?
2020 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF,
2021                                             const ARMBaseInstrInfo &TII) {
2022   unsigned FnSize = 0;
2023   for (auto &MBB : MF) {
2024     for (auto &MI : MBB)
2025       FnSize += TII.getInstSizeInBytes(MI);
2026   }
2027   if (MF.getJumpTableInfo())
2028     for (auto &Table: MF.getJumpTableInfo()->getJumpTables())
2029       FnSize += Table.MBBs.size() * 4;
2030   FnSize += MF.getConstantPool()->getConstants().size() * 4;
2031   return FnSize;
2032 }
2033 
2034 /// estimateRSStackSizeLimit - Look at each instruction that references stack
2035 /// frames and return the stack size limit beyond which some of these
2036 /// instructions will require a scratch register during their expansion later.
2037 // FIXME: Move to TII?
2038 static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
2039                                          const TargetFrameLowering *TFI,
2040                                          bool &HasNonSPFrameIndex) {
2041   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2042   const ARMBaseInstrInfo &TII =
2043       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2044   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2045   unsigned Limit = (1 << 12) - 1;
2046   for (auto &MBB : MF) {
2047     for (auto &MI : MBB) {
2048       if (MI.isDebugInstr())
2049         continue;
2050       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2051         if (!MI.getOperand(i).isFI())
2052           continue;
2053 
2054         // When using ADDri to get the address of a stack object, 255 is the
2055         // largest offset guaranteed to fit in the immediate offset.
2056         if (MI.getOpcode() == ARM::ADDri) {
2057           Limit = std::min(Limit, (1U << 8) - 1);
2058           break;
2059         }
2060         // t2ADDri will not require an extra register, it can reuse the
2061         // destination.
2062         if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12)
2063           break;
2064 
2065         const MCInstrDesc &MCID = MI.getDesc();
2066         const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF);
2067         if (RegClass && !RegClass->contains(ARM::SP))
2068           HasNonSPFrameIndex = true;
2069 
2070         // Otherwise check the addressing mode.
2071         switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
2072         case ARMII::AddrMode_i12:
2073         case ARMII::AddrMode2:
2074           // Default 12 bit limit.
2075           break;
2076         case ARMII::AddrMode3:
2077         case ARMII::AddrModeT2_i8neg:
2078           Limit = std::min(Limit, (1U << 8) - 1);
2079           break;
2080         case ARMII::AddrMode5FP16:
2081           Limit = std::min(Limit, ((1U << 8) - 1) * 2);
2082           break;
2083         case ARMII::AddrMode5:
2084         case ARMII::AddrModeT2_i8s4:
2085         case ARMII::AddrModeT2_ldrex:
2086           Limit = std::min(Limit, ((1U << 8) - 1) * 4);
2087           break;
2088         case ARMII::AddrModeT2_i12:
2089           // i12 supports only positive offset so these will be converted to
2090           // i8 opcodes. See llvm::rewriteT2FrameIndex.
2091           if (TFI->hasFP(MF) && AFI->hasStackFrame())
2092             Limit = std::min(Limit, (1U << 8) - 1);
2093           break;
2094         case ARMII::AddrMode4:
2095         case ARMII::AddrMode6:
2096           // Addressing modes 4 & 6 (load/store) instructions can't encode an
2097           // immediate offset for stack references.
2098           return 0;
2099         case ARMII::AddrModeT2_i7:
2100           Limit = std::min(Limit, ((1U << 7) - 1) * 1);
2101           break;
2102         case ARMII::AddrModeT2_i7s2:
2103           Limit = std::min(Limit, ((1U << 7) - 1) * 2);
2104           break;
2105         case ARMII::AddrModeT2_i7s4:
2106           Limit = std::min(Limit, ((1U << 7) - 1) * 4);
2107           break;
2108         default:
2109           llvm_unreachable("Unhandled addressing mode in stack size limit calculation");
2110         }
2111         break; // At most one FI per instruction
2112       }
2113     }
2114   }
2115 
2116   return Limit;
2117 }
2118 
2119 // In functions that realign the stack, it can be an advantage to spill the
2120 // callee-saved vector registers after realigning the stack. The vst1 and vld1
2121 // instructions take alignment hints that can improve performance.
2122 static void
2123 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
2124   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
2125   if (!SpillAlignedNEONRegs)
2126     return;
2127 
2128   // Naked functions don't spill callee-saved registers.
2129   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
2130     return;
2131 
2132   // We are planning to use NEON instructions vst1 / vld1.
2133   if (!MF.getSubtarget<ARMSubtarget>().hasNEON())
2134     return;
2135 
2136   // Don't bother if the default stack alignment is sufficiently high.
2137   if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8))
2138     return;
2139 
2140   // Aligned spills require stack realignment.
2141   if (!static_cast<const ARMBaseRegisterInfo *>(
2142            MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
2143     return;
2144 
2145   // We always spill contiguous d-registers starting from d8. Count how many
2146   // needs spilling.  The register allocator will almost always use the
2147   // callee-saved registers in order, but it can happen that there are holes in
2148   // the range.  Registers above the hole will be spilled to the standard DPRCS
2149   // area.
2150   unsigned NumSpills = 0;
2151   for (; NumSpills < 8; ++NumSpills)
2152     if (!SavedRegs.test(ARM::D8 + NumSpills))
2153       break;
2154 
2155   // Don't do this for just one d-register. It's not worth it.
2156   if (NumSpills < 2)
2157     return;
2158 
2159   // Spill the first NumSpills D-registers after realigning the stack.
2160   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
2161 
2162   // A scratch register is required for the vst1 / vld1 instructions.
2163   SavedRegs.set(ARM::R4);
2164 }
2165 
2166 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2167   // For CMSE entry functions, we want to save the FPCXT_NS immediately
2168   // upon function entry (resp. restore it immmediately before return)
2169   if (STI.hasV8_1MMainlineOps() &&
2170       MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction())
2171     return false;
2172 
2173   // We are disabling shrinkwrapping for now when PAC is enabled, as
2174   // shrinkwrapping can cause clobbering of r12 when the PAC code is
2175   // generated. A follow-up patch will fix this in a more performant manner.
2176   if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress(
2177           true /* SpillsLR */))
2178     return false;
2179 
2180   return true;
2181 }
2182 
2183 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
2184                                             BitVector &SavedRegs,
2185                                             RegScavenger *RS) const {
2186   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2187   // This tells PEI to spill the FP as if it is any other callee-save register
2188   // to take advantage the eliminateFrameIndex machinery. This also ensures it
2189   // is spilled in the order specified by getCalleeSavedRegs() to make it easier
2190   // to combine multiple loads / stores.
2191   bool CanEliminateFrame = true;
2192   bool CS1Spilled = false;
2193   bool LRSpilled = false;
2194   unsigned NumGPRSpills = 0;
2195   unsigned NumFPRSpills = 0;
2196   SmallVector<unsigned, 4> UnspilledCS1GPRs;
2197   SmallVector<unsigned, 4> UnspilledCS2GPRs;
2198   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
2199       MF.getSubtarget().getRegisterInfo());
2200   const ARMBaseInstrInfo &TII =
2201       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2202   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2203   MachineFrameInfo &MFI = MF.getFrameInfo();
2204   MachineRegisterInfo &MRI = MF.getRegInfo();
2205   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2206   (void)TRI;  // Silence unused warning in non-assert builds.
2207   Register FramePtr = RegInfo->getFrameRegister(MF);
2208 
2209   // Spill R4 if Thumb2 function requires stack realignment - it will be used as
2210   // scratch register. Also spill R4 if Thumb2 function has varsized objects,
2211   // since it's not always possible to restore sp from fp in a single
2212   // instruction.
2213   // FIXME: It will be better just to find spare register here.
2214   if (AFI->isThumb2Function() &&
2215       (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF)))
2216     SavedRegs.set(ARM::R4);
2217 
2218   // If a stack probe will be emitted, spill R4 and LR, since they are
2219   // clobbered by the stack probe call.
2220   // This estimate should be a safe, conservative estimate. The actual
2221   // stack probe is enabled based on the size of the local objects;
2222   // this estimate also includes the varargs store size.
2223   if (STI.isTargetWindows() &&
2224       WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
2225     SavedRegs.set(ARM::R4);
2226     SavedRegs.set(ARM::LR);
2227   }
2228 
2229   if (AFI->isThumb1OnlyFunction()) {
2230     // Spill LR if Thumb1 function uses variable length argument lists.
2231     if (AFI->getArgRegsSaveSize() > 0)
2232       SavedRegs.set(ARM::LR);
2233 
2234     // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
2235     // requires stack alignment.  We don't know for sure what the stack size
2236     // will be, but for this, an estimate is good enough. If there anything
2237     // changes it, it'll be a spill, which implies we've used all the registers
2238     // and so R4 is already used, so not marking it here will be OK.
2239     // FIXME: It will be better just to find spare register here.
2240     if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) ||
2241         MFI.estimateStackSize(MF) > 508)
2242       SavedRegs.set(ARM::R4);
2243   }
2244 
2245   // See if we can spill vector registers to aligned stack.
2246   checkNumAlignedDPRCS2Regs(MF, SavedRegs);
2247 
2248   // Spill the BasePtr if it's used.
2249   if (RegInfo->hasBasePointer(MF))
2250     SavedRegs.set(RegInfo->getBaseRegister());
2251 
2252   // On v8.1-M.Main CMSE entry functions save/restore FPCXT.
2253   if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction())
2254     CanEliminateFrame = false;
2255 
2256   // Don't spill FP if the frame can be eliminated. This is determined
2257   // by scanning the callee-save registers to see if any is modified.
2258   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
2259   for (unsigned i = 0; CSRegs[i]; ++i) {
2260     unsigned Reg = CSRegs[i];
2261     bool Spilled = false;
2262     if (SavedRegs.test(Reg)) {
2263       Spilled = true;
2264       CanEliminateFrame = false;
2265     }
2266 
2267     if (!ARM::GPRRegClass.contains(Reg)) {
2268       if (Spilled) {
2269         if (ARM::SPRRegClass.contains(Reg))
2270           NumFPRSpills++;
2271         else if (ARM::DPRRegClass.contains(Reg))
2272           NumFPRSpills += 2;
2273         else if (ARM::QPRRegClass.contains(Reg))
2274           NumFPRSpills += 4;
2275       }
2276       continue;
2277     }
2278 
2279     if (Spilled) {
2280       NumGPRSpills++;
2281 
2282       if (!STI.splitFramePushPop(MF)) {
2283         if (Reg == ARM::LR)
2284           LRSpilled = true;
2285         CS1Spilled = true;
2286         continue;
2287       }
2288 
2289       // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
2290       switch (Reg) {
2291       case ARM::LR:
2292         LRSpilled = true;
2293         LLVM_FALLTHROUGH;
2294       case ARM::R0: case ARM::R1:
2295       case ARM::R2: case ARM::R3:
2296       case ARM::R4: case ARM::R5:
2297       case ARM::R6: case ARM::R7:
2298         CS1Spilled = true;
2299         break;
2300       default:
2301         break;
2302       }
2303     } else {
2304       if (!STI.splitFramePushPop(MF)) {
2305         UnspilledCS1GPRs.push_back(Reg);
2306         continue;
2307       }
2308 
2309       switch (Reg) {
2310       case ARM::R0: case ARM::R1:
2311       case ARM::R2: case ARM::R3:
2312       case ARM::R4: case ARM::R5:
2313       case ARM::R6: case ARM::R7:
2314       case ARM::LR:
2315         UnspilledCS1GPRs.push_back(Reg);
2316         break;
2317       default:
2318         UnspilledCS2GPRs.push_back(Reg);
2319         break;
2320       }
2321     }
2322   }
2323 
2324   bool ForceLRSpill = false;
2325   if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
2326     unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII);
2327     // Force LR to be spilled if the Thumb function size is > 2048. This enables
2328     // use of BL to implement far jump.
2329     if (FnSize >= (1 << 11)) {
2330       CanEliminateFrame = false;
2331       ForceLRSpill = true;
2332     }
2333   }
2334 
2335   // If any of the stack slot references may be out of range of an immediate
2336   // offset, make sure a register (or a spill slot) is available for the
2337   // register scavenger. Note that if we're indexing off the frame pointer, the
2338   // effective stack size is 4 bytes larger since the FP points to the stack
2339   // slot of the previous FP. Also, if we have variable sized objects in the
2340   // function, stack slot references will often be negative, and some of
2341   // our instructions are positive-offset only, so conservatively consider
2342   // that case to want a spill slot (or register) as well. Similarly, if
2343   // the function adjusts the stack pointer during execution and the
2344   // adjustments aren't already part of our stack size estimate, our offset
2345   // calculations may be off, so be conservative.
2346   // FIXME: We could add logic to be more precise about negative offsets
2347   //        and which instructions will need a scratch register for them. Is it
2348   //        worth the effort and added fragility?
2349   unsigned EstimatedStackSize =
2350       MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
2351 
2352   // Determine biggest (positive) SP offset in MachineFrameInfo.
2353   int MaxFixedOffset = 0;
2354   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
2355     int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
2356     MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
2357   }
2358 
2359   bool HasFP = hasFP(MF);
2360   if (HasFP) {
2361     if (AFI->hasStackFrame())
2362       EstimatedStackSize += 4;
2363   } else {
2364     // If FP is not used, SP will be used to access arguments, so count the
2365     // size of arguments into the estimation.
2366     EstimatedStackSize += MaxFixedOffset;
2367   }
2368   EstimatedStackSize += 16; // For possible paddings.
2369 
2370   unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit;
2371   bool HasNonSPFrameIndex = false;
2372   if (AFI->isThumb1OnlyFunction()) {
2373     // For Thumb1, don't bother to iterate over the function. The only
2374     // instruction that requires an emergency spill slot is a store to a
2375     // frame index.
2376     //
2377     // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned
2378     // immediate. tSTRi, which is used for bp- and fp-relative accesses, has
2379     // a 5-bit unsigned immediate.
2380     //
2381     // We could try to check if the function actually contains a tSTRspi
2382     // that might need the spill slot, but it's not really important.
2383     // Functions with VLAs or extremely large call frames are rare, and
2384     // if a function is allocating more than 1KB of stack, an extra 4-byte
2385     // slot probably isn't relevant.
2386     if (RegInfo->hasBasePointer(MF))
2387       EstimatedRSStackSizeLimit = (1U << 5) * 4;
2388     else
2389       EstimatedRSStackSizeLimit = (1U << 8) * 4;
2390     EstimatedRSFixedSizeLimit = (1U << 5) * 4;
2391   } else {
2392     EstimatedRSStackSizeLimit =
2393         estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex);
2394     EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit;
2395   }
2396   // Final estimate of whether sp or bp-relative accesses might require
2397   // scavenging.
2398   bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit;
2399 
2400   // If the stack pointer moves and we don't have a base pointer, the
2401   // estimate logic doesn't work. The actual offsets might be larger when
2402   // we're constructing a call frame, or we might need to use negative
2403   // offsets from fp.
2404   bool HasMovingSP = MFI.hasVarSizedObjects() ||
2405     (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF));
2406   bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP;
2407 
2408   // If we have a frame pointer, we assume arguments will be accessed
2409   // relative to the frame pointer. Check whether fp-relative accesses to
2410   // arguments require scavenging.
2411   //
2412   // We could do slightly better on Thumb1; in some cases, an sp-relative
2413   // offset would be legal even though an fp-relative offset is not.
2414   int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF);
2415   bool HasLargeArgumentList =
2416       HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit;
2417 
2418   bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP ||
2419                          HasLargeArgumentList || HasNonSPFrameIndex;
2420   LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit
2421                     << "; EstimatedStack: " << EstimatedStackSize
2422                     << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset
2423                     << "; BigFrameOffsets: " << BigFrameOffsets << "\n");
2424   if (BigFrameOffsets ||
2425       !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
2426     AFI->setHasStackFrame(true);
2427 
2428     if (HasFP) {
2429       SavedRegs.set(FramePtr);
2430       // If the frame pointer is required by the ABI, also spill LR so that we
2431       // emit a complete frame record.
2432       if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) {
2433         SavedRegs.set(ARM::LR);
2434         LRSpilled = true;
2435         NumGPRSpills++;
2436         auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
2437         if (LRPos != UnspilledCS1GPRs.end())
2438           UnspilledCS1GPRs.erase(LRPos);
2439       }
2440       auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
2441       if (FPPos != UnspilledCS1GPRs.end())
2442         UnspilledCS1GPRs.erase(FPPos);
2443       NumGPRSpills++;
2444       if (FramePtr == ARM::R7)
2445         CS1Spilled = true;
2446     }
2447 
2448     // This is true when we inserted a spill for a callee-save GPR which is
2449     // not otherwise used by the function. This guaranteees it is possible
2450     // to scavenge a register to hold the address of a stack slot. On Thumb1,
2451     // the register must be a valid operand to tSTRi, i.e. r4-r7. For other
2452     // subtargets, this is any GPR, i.e. r4-r11 or lr.
2453     //
2454     // If we don't insert a spill, we instead allocate an emergency spill
2455     // slot, which can be used by scavenging to spill an arbitrary register.
2456     //
2457     // We currently don't try to figure out whether any specific instruction
2458     // requires scavening an additional register.
2459     bool ExtraCSSpill = false;
2460 
2461     if (AFI->isThumb1OnlyFunction()) {
2462       // For Thumb1-only targets, we need some low registers when we save and
2463       // restore the high registers (which aren't allocatable, but could be
2464       // used by inline assembly) because the push/pop instructions can not
2465       // access high registers. If necessary, we might need to push more low
2466       // registers to ensure that there is at least one free that can be used
2467       // for the saving & restoring, and preferably we should ensure that as
2468       // many as are needed are available so that fewer push/pop instructions
2469       // are required.
2470 
2471       // Low registers which are not currently pushed, but could be (r4-r7).
2472       SmallVector<unsigned, 4> AvailableRegs;
2473 
2474       // Unused argument registers (r0-r3) can be clobbered in the prologue for
2475       // free.
2476       int EntryRegDeficit = 0;
2477       for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
2478         if (!MF.getRegInfo().isLiveIn(Reg)) {
2479           --EntryRegDeficit;
2480           LLVM_DEBUG(dbgs()
2481                      << printReg(Reg, TRI)
2482                      << " is unused argument register, EntryRegDeficit = "
2483                      << EntryRegDeficit << "\n");
2484         }
2485       }
2486 
2487       // Unused return registers can be clobbered in the epilogue for free.
2488       int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
2489       LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
2490                         << " return regs used, ExitRegDeficit = "
2491                         << ExitRegDeficit << "\n");
2492 
2493       int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
2494       LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
2495 
2496       // r4-r6 can be used in the prologue if they are pushed by the first push
2497       // instruction.
2498       for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
2499         if (SavedRegs.test(Reg)) {
2500           --RegDeficit;
2501           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2502                             << " is saved low register, RegDeficit = "
2503                             << RegDeficit << "\n");
2504         } else {
2505           AvailableRegs.push_back(Reg);
2506           LLVM_DEBUG(
2507               dbgs()
2508               << printReg(Reg, TRI)
2509               << " is non-saved low register, adding to AvailableRegs\n");
2510         }
2511       }
2512 
2513       // r7 can be used if it is not being used as the frame pointer.
2514       if (!HasFP) {
2515         if (SavedRegs.test(ARM::R7)) {
2516           --RegDeficit;
2517           LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
2518                             << RegDeficit << "\n");
2519         } else {
2520           AvailableRegs.push_back(ARM::R7);
2521           LLVM_DEBUG(
2522               dbgs()
2523               << "%r7 is non-saved low register, adding to AvailableRegs\n");
2524         }
2525       }
2526 
2527       // Each of r8-r11 needs to be copied to a low register, then pushed.
2528       for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
2529         if (SavedRegs.test(Reg)) {
2530           ++RegDeficit;
2531           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2532                             << " is saved high register, RegDeficit = "
2533                             << RegDeficit << "\n");
2534         }
2535       }
2536 
2537       // LR can only be used by PUSH, not POP, and can't be used at all if the
2538       // llvm.returnaddress intrinsic is used. This is only worth doing if we
2539       // are more limited at function entry than exit.
2540       if ((EntryRegDeficit > ExitRegDeficit) &&
2541           !(MF.getRegInfo().isLiveIn(ARM::LR) &&
2542             MF.getFrameInfo().isReturnAddressTaken())) {
2543         if (SavedRegs.test(ARM::LR)) {
2544           --RegDeficit;
2545           LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
2546                             << RegDeficit << "\n");
2547         } else {
2548           AvailableRegs.push_back(ARM::LR);
2549           LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
2550         }
2551       }
2552 
2553       // If there are more high registers that need pushing than low registers
2554       // available, push some more low registers so that we can use fewer push
2555       // instructions. This might not reduce RegDeficit all the way to zero,
2556       // because we can only guarantee that r4-r6 are available, but r8-r11 may
2557       // need saving.
2558       LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
2559       for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
2560         unsigned Reg = AvailableRegs.pop_back_val();
2561         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2562                           << " to make up reg deficit\n");
2563         SavedRegs.set(Reg);
2564         NumGPRSpills++;
2565         CS1Spilled = true;
2566         assert(!MRI.isReserved(Reg) && "Should not be reserved");
2567         if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg))
2568           ExtraCSSpill = true;
2569         UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
2570         if (Reg == ARM::LR)
2571           LRSpilled = true;
2572       }
2573       LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
2574                         << "\n");
2575     }
2576 
2577     // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
2578     // restore LR in that case.
2579     bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall();
2580 
2581     // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
2582     // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
2583     if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) {
2584       SavedRegs.set(ARM::LR);
2585       NumGPRSpills++;
2586       SmallVectorImpl<unsigned>::iterator LRPos;
2587       LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
2588       if (LRPos != UnspilledCS1GPRs.end())
2589         UnspilledCS1GPRs.erase(LRPos);
2590 
2591       ForceLRSpill = false;
2592       if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) &&
2593           !AFI->isThumb1OnlyFunction())
2594         ExtraCSSpill = true;
2595     }
2596 
2597     // If stack and double are 8-byte aligned and we are spilling an odd number
2598     // of GPRs, spill one extra callee save GPR so we won't have to pad between
2599     // the integer and double callee save areas.
2600     LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
2601     const Align TargetAlign = getStackAlign();
2602     if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) {
2603       if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
2604         for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
2605           unsigned Reg = UnspilledCS1GPRs[i];
2606           // Don't spill high register if the function is thumb.  In the case of
2607           // Windows on ARM, accept R11 (frame pointer)
2608           if (!AFI->isThumbFunction() ||
2609               (STI.isTargetWindows() && Reg == ARM::R11) ||
2610               isARMLowRegister(Reg) ||
2611               (Reg == ARM::LR && !ExpensiveLRRestore)) {
2612             SavedRegs.set(Reg);
2613             LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2614                               << " to make up alignment\n");
2615             if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) &&
2616                 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction()))
2617               ExtraCSSpill = true;
2618             break;
2619           }
2620         }
2621       } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
2622         unsigned Reg = UnspilledCS2GPRs.front();
2623         SavedRegs.set(Reg);
2624         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2625                           << " to make up alignment\n");
2626         if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
2627           ExtraCSSpill = true;
2628       }
2629     }
2630 
2631     // Estimate if we might need to scavenge a register at some point in order
2632     // to materialize a stack offset. If so, either spill one additional
2633     // callee-saved register or reserve a special spill slot to facilitate
2634     // register scavenging. Thumb1 needs a spill slot for stack pointer
2635     // adjustments also, even when the frame itself is small.
2636     if (BigFrameOffsets && !ExtraCSSpill) {
2637       // If any non-reserved CS register isn't spilled, just spill one or two
2638       // extra. That should take care of it!
2639       unsigned NumExtras = TargetAlign.value() / 4;
2640       SmallVector<unsigned, 2> Extras;
2641       while (NumExtras && !UnspilledCS1GPRs.empty()) {
2642         unsigned Reg = UnspilledCS1GPRs.pop_back_val();
2643         if (!MRI.isReserved(Reg) &&
2644             (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) {
2645           Extras.push_back(Reg);
2646           NumExtras--;
2647         }
2648       }
2649       // For non-Thumb1 functions, also check for hi-reg CS registers
2650       if (!AFI->isThumb1OnlyFunction()) {
2651         while (NumExtras && !UnspilledCS2GPRs.empty()) {
2652           unsigned Reg = UnspilledCS2GPRs.pop_back_val();
2653           if (!MRI.isReserved(Reg)) {
2654             Extras.push_back(Reg);
2655             NumExtras--;
2656           }
2657         }
2658       }
2659       if (NumExtras == 0) {
2660         for (unsigned Reg : Extras) {
2661           SavedRegs.set(Reg);
2662           if (!MRI.isPhysRegUsed(Reg))
2663             ExtraCSSpill = true;
2664         }
2665       }
2666       if (!ExtraCSSpill && RS) {
2667         // Reserve a slot closest to SP or frame pointer.
2668         LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n");
2669         const TargetRegisterClass &RC = ARM::GPRRegClass;
2670         unsigned Size = TRI->getSpillSize(RC);
2671         Align Alignment = TRI->getSpillAlign(RC);
2672         RS->addScavengingFrameIndex(
2673             MFI.CreateStackObject(Size, Alignment, false));
2674       }
2675     }
2676   }
2677 
2678   if (ForceLRSpill)
2679     SavedRegs.set(ARM::LR);
2680   AFI->setLRIsSpilled(SavedRegs.test(ARM::LR));
2681 }
2682 
2683 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF,
2684                                       BitVector &SavedRegs) const {
2685   TargetFrameLowering::getCalleeSaves(MF, SavedRegs);
2686 
2687   // If we have the "returned" parameter attribute which guarantees that we
2688   // return the value which was passed in r0 unmodified (e.g. C++ 'structors),
2689   // record that fact for IPRA.
2690   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2691   if (AFI->getPreservesR0())
2692     SavedRegs.set(ARM::R0);
2693 }
2694 
2695 bool ARMFrameLowering::assignCalleeSavedSpillSlots(
2696     MachineFunction &MF, const TargetRegisterInfo *TRI,
2697     std::vector<CalleeSavedInfo> &CSI) const {
2698   // For CMSE entry functions, handle floating-point context as if it was a
2699   // callee-saved register.
2700   if (STI.hasV8_1MMainlineOps() &&
2701       MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) {
2702     CSI.emplace_back(ARM::FPCXTNS);
2703     CSI.back().setRestored(false);
2704   }
2705 
2706   // For functions, which sign their return address, upon function entry, the
2707   // return address PAC is computed in R12. Treat R12 as a callee-saved register
2708   // in this case.
2709   const auto &AFI = *MF.getInfo<ARMFunctionInfo>();
2710   if (AFI.shouldSignReturnAddress()) {
2711     // The order of register must match the order we push them, because the
2712     // PEI assigns frame indices in that order. When compiling for return
2713     // address sign and authenication, we use split push, therefore the orders
2714     // we want are:
2715     // LR, R7, R6, R5, R4, <R12>, R11, R10,  R9,  R8, D15-D8
2716     CSI.insert(find_if(CSI,
2717                        [=](const auto &CS) {
2718                          Register Reg = CS.getReg();
2719                          return Reg == ARM::R10 || Reg == ARM::R11 ||
2720                                 Reg == ARM::R8 || Reg == ARM::R9 ||
2721                                 ARM::DPRRegClass.contains(Reg);
2722                        }),
2723                CalleeSavedInfo(ARM::R12));
2724   }
2725 
2726   return false;
2727 }
2728 
2729 const TargetFrameLowering::SpillSlot *
2730 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const {
2731   static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}};
2732   NumEntries = array_lengthof(FixedSpillOffsets);
2733   return FixedSpillOffsets;
2734 }
2735 
2736 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
2737     MachineFunction &MF, MachineBasicBlock &MBB,
2738     MachineBasicBlock::iterator I) const {
2739   const ARMBaseInstrInfo &TII =
2740       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2741   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2742   bool isARM = !AFI->isThumbFunction();
2743   DebugLoc dl = I->getDebugLoc();
2744   unsigned Opc = I->getOpcode();
2745   bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode();
2746   unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
2747 
2748   assert(!AFI->isThumb1OnlyFunction() &&
2749          "This eliminateCallFramePseudoInstr does not support Thumb1!");
2750 
2751   int PIdx = I->findFirstPredOperandIdx();
2752   ARMCC::CondCodes Pred = (PIdx == -1)
2753                               ? ARMCC::AL
2754                               : (ARMCC::CondCodes)I->getOperand(PIdx).getImm();
2755   unsigned PredReg = TII.getFramePred(*I);
2756 
2757   if (!hasReservedCallFrame(MF)) {
2758     // Bail early if the callee is expected to do the adjustment.
2759     if (IsDestroy && CalleePopAmount != -1U)
2760       return MBB.erase(I);
2761 
2762     // If we have alloca, convert as follows:
2763     // ADJCALLSTACKDOWN -> sub, sp, sp, amount
2764     // ADJCALLSTACKUP   -> add, sp, sp, amount
2765     unsigned Amount = TII.getFrameSize(*I);
2766     if (Amount != 0) {
2767       // We need to keep the stack aligned properly.  To do this, we round the
2768       // amount of space needed for the outgoing arguments up to the next
2769       // alignment boundary.
2770       Amount = alignSPAdjust(Amount);
2771 
2772       if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
2773         emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
2774                      Pred, PredReg);
2775       } else {
2776         assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
2777         emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
2778                      Pred, PredReg);
2779       }
2780     }
2781   } else if (CalleePopAmount != -1U) {
2782     // If the calling convention demands that the callee pops arguments from the
2783     // stack, we want to add it back if we have a reserved call frame.
2784     emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount,
2785                  MachineInstr::NoFlags, Pred, PredReg);
2786   }
2787   return MBB.erase(I);
2788 }
2789 
2790 /// Get the minimum constant for ARM that is greater than or equal to the
2791 /// argument. In ARM, constants can have any value that can be produced by
2792 /// rotating an 8-bit value to the right by an even number of bits within a
2793 /// 32-bit word.
2794 static uint32_t alignToARMConstant(uint32_t Value) {
2795   unsigned Shifted = 0;
2796 
2797   if (Value == 0)
2798       return 0;
2799 
2800   while (!(Value & 0xC0000000)) {
2801       Value = Value << 2;
2802       Shifted += 2;
2803   }
2804 
2805   bool Carry = (Value & 0x00FFFFFF);
2806   Value = ((Value & 0xFF000000) >> 24) + Carry;
2807 
2808   if (Value & 0x0000100)
2809       Value = Value & 0x000001FC;
2810 
2811   if (Shifted > 24)
2812       Value = Value >> (Shifted - 24);
2813   else
2814       Value = Value << (24 - Shifted);
2815 
2816   return Value;
2817 }
2818 
2819 // The stack limit in the TCB is set to this many bytes above the actual
2820 // stack limit.
2821 static const uint64_t kSplitStackAvailable = 256;
2822 
2823 // Adjust the function prologue to enable split stacks. This currently only
2824 // supports android and linux.
2825 //
2826 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but
2827 // must be well defined in order to allow for consistent implementations of the
2828 // __morestack helper function. The ABI is also not a normal ABI in that it
2829 // doesn't follow the normal calling conventions because this allows the
2830 // prologue of each function to be optimized further.
2831 //
2832 // Currently, the ABI looks like (when calling __morestack)
2833 //
2834 //  * r4 holds the minimum stack size requested for this function call
2835 //  * r5 holds the stack size of the arguments to the function
2836 //  * the beginning of the function is 3 instructions after the call to
2837 //    __morestack
2838 //
2839 // Implementations of __morestack should use r4 to allocate a new stack, r5 to
2840 // place the arguments on to the new stack, and the 3-instruction knowledge to
2841 // jump directly to the body of the function when working on the new stack.
2842 //
2843 // An old (and possibly no longer compatible) implementation of __morestack for
2844 // ARM can be found at [1].
2845 //
2846 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
2847 void ARMFrameLowering::adjustForSegmentedStacks(
2848     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2849   unsigned Opcode;
2850   unsigned CFIIndex;
2851   const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
2852   bool Thumb = ST->isThumb();
2853   bool Thumb2 = ST->isThumb2();
2854 
2855   // Sadly, this currently doesn't support varargs, platforms other than
2856   // android/linux. Note that thumb1/thumb2 are support for android/linux.
2857   if (MF.getFunction().isVarArg())
2858     report_fatal_error("Segmented stacks do not support vararg functions.");
2859   if (!ST->isTargetAndroid() && !ST->isTargetLinux())
2860     report_fatal_error("Segmented stacks not supported on this platform.");
2861 
2862   MachineFrameInfo &MFI = MF.getFrameInfo();
2863   MachineModuleInfo &MMI = MF.getMMI();
2864   MCContext &Context = MMI.getContext();
2865   const MCRegisterInfo *MRI = Context.getRegisterInfo();
2866   const ARMBaseInstrInfo &TII =
2867       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2868   ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
2869   DebugLoc DL;
2870 
2871   if (!MFI.needsSplitStackProlog())
2872     return;
2873 
2874   uint64_t StackSize = MFI.getStackSize();
2875 
2876   // Use R4 and R5 as scratch registers.
2877   // We save R4 and R5 before use and restore them before leaving the function.
2878   unsigned ScratchReg0 = ARM::R4;
2879   unsigned ScratchReg1 = ARM::R5;
2880   uint64_t AlignedStackSize;
2881 
2882   MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
2883   MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
2884   MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
2885   MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
2886   MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
2887 
2888   // Grab everything that reaches PrologueMBB to update there liveness as well.
2889   SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
2890   SmallVector<MachineBasicBlock *, 2> WalkList;
2891   WalkList.push_back(&PrologueMBB);
2892 
2893   do {
2894     MachineBasicBlock *CurMBB = WalkList.pop_back_val();
2895     for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
2896       if (BeforePrologueRegion.insert(PredBB).second)
2897         WalkList.push_back(PredBB);
2898     }
2899   } while (!WalkList.empty());
2900 
2901   // The order in that list is important.
2902   // The blocks will all be inserted before PrologueMBB using that order.
2903   // Therefore the block that should appear first in the CFG should appear
2904   // first in the list.
2905   MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
2906                                       PostStackMBB};
2907 
2908   for (MachineBasicBlock *B : AddedBlocks)
2909     BeforePrologueRegion.insert(B);
2910 
2911   for (const auto &LI : PrologueMBB.liveins()) {
2912     for (MachineBasicBlock *PredBB : BeforePrologueRegion)
2913       PredBB->addLiveIn(LI);
2914   }
2915 
2916   // Remove the newly added blocks from the list, since we know
2917   // we do not have to do the following updates for them.
2918   for (MachineBasicBlock *B : AddedBlocks) {
2919     BeforePrologueRegion.erase(B);
2920     MF.insert(PrologueMBB.getIterator(), B);
2921   }
2922 
2923   for (MachineBasicBlock *MBB : BeforePrologueRegion) {
2924     // Make sure the LiveIns are still sorted and unique.
2925     MBB->sortUniqueLiveIns();
2926     // Replace the edges to PrologueMBB by edges to the sequences
2927     // we are about to add, but only update for immediate predecessors.
2928     if (MBB->isSuccessor(&PrologueMBB))
2929       MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
2930   }
2931 
2932   // The required stack size that is aligned to ARM constant criterion.
2933   AlignedStackSize = alignToARMConstant(StackSize);
2934 
2935   // When the frame size is less than 256 we just compare the stack
2936   // boundary directly to the value of the stack pointer, per gcc.
2937   bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
2938 
2939   // We will use two of the callee save registers as scratch registers so we
2940   // need to save those registers onto the stack.
2941   // We will use SR0 to hold stack limit and SR1 to hold the stack size
2942   // requested and arguments for __morestack().
2943   // SR0: Scratch Register #0
2944   // SR1: Scratch Register #1
2945   // push {SR0, SR1}
2946   if (Thumb) {
2947     BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
2948         .add(predOps(ARMCC::AL))
2949         .addReg(ScratchReg0)
2950         .addReg(ScratchReg1);
2951   } else {
2952     BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
2953         .addReg(ARM::SP, RegState::Define)
2954         .addReg(ARM::SP)
2955         .add(predOps(ARMCC::AL))
2956         .addReg(ScratchReg0)
2957         .addReg(ScratchReg1);
2958   }
2959 
2960   // Emit the relevant DWARF information about the change in stack pointer as
2961   // well as where to find both r4 and r5 (the callee-save registers)
2962   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
2963     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8));
2964     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2965         .addCFIIndex(CFIIndex);
2966     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2967         nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
2968     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2969         .addCFIIndex(CFIIndex);
2970     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2971         nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
2972     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2973         .addCFIIndex(CFIIndex);
2974   }
2975 
2976   // mov SR1, sp
2977   if (Thumb) {
2978     BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
2979         .addReg(ARM::SP)
2980         .add(predOps(ARMCC::AL));
2981   } else if (CompareStackPointer) {
2982     BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
2983         .addReg(ARM::SP)
2984         .add(predOps(ARMCC::AL))
2985         .add(condCodeOp());
2986   }
2987 
2988   // sub SR1, sp, #StackSize
2989   if (!CompareStackPointer && Thumb) {
2990     if (AlignedStackSize < 256) {
2991       BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
2992           .add(condCodeOp())
2993           .addReg(ScratchReg1)
2994           .addImm(AlignedStackSize)
2995           .add(predOps(ARMCC::AL));
2996     } else {
2997       if (Thumb2) {
2998         BuildMI(McrMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg0)
2999             .addImm(AlignedStackSize);
3000       } else {
3001         auto MBBI = McrMBB->end();
3002         auto RegInfo = STI.getRegisterInfo();
3003         RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
3004                                    AlignedStackSize);
3005       }
3006       BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1)
3007           .add(condCodeOp())
3008           .addReg(ScratchReg1)
3009           .addReg(ScratchReg0)
3010           .add(predOps(ARMCC::AL));
3011     }
3012   } else if (!CompareStackPointer) {
3013     if (AlignedStackSize < 256) {
3014       BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
3015           .addReg(ARM::SP)
3016           .addImm(AlignedStackSize)
3017           .add(predOps(ARMCC::AL))
3018           .add(condCodeOp());
3019     } else {
3020       auto MBBI = McrMBB->end();
3021       auto RegInfo = STI.getRegisterInfo();
3022       RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
3023                                  AlignedStackSize);
3024       BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1)
3025           .addReg(ARM::SP)
3026           .addReg(ScratchReg0)
3027           .add(predOps(ARMCC::AL))
3028           .add(condCodeOp());
3029     }
3030   }
3031 
3032   if (Thumb && ST->isThumb1Only()) {
3033     unsigned PCLabelId = ARMFI->createPICLabelUId();
3034     ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
3035         MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
3036     MachineConstantPool *MCP = MF.getConstantPool();
3037     unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4));
3038 
3039     // ldr SR0, [pc, offset(STACK_LIMIT)]
3040     BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
3041         .addConstantPoolIndex(CPI)
3042         .add(predOps(ARMCC::AL));
3043 
3044     // ldr SR0, [SR0]
3045     BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
3046         .addReg(ScratchReg0)
3047         .addImm(0)
3048         .add(predOps(ARMCC::AL));
3049   } else {
3050     // Get TLS base address from the coprocessor
3051     // mrc p15, #0, SR0, c13, c0, #3
3052     BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC),
3053             ScratchReg0)
3054         .addImm(15)
3055         .addImm(0)
3056         .addImm(13)
3057         .addImm(0)
3058         .addImm(3)
3059         .add(predOps(ARMCC::AL));
3060 
3061     // Use the last tls slot on android and a private field of the TCP on linux.
3062     assert(ST->isTargetAndroid() || ST->isTargetLinux());
3063     unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
3064 
3065     // Get the stack limit from the right offset
3066     // ldr SR0, [sr0, #4 * TlsOffset]
3067     BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12),
3068             ScratchReg0)
3069         .addReg(ScratchReg0)
3070         .addImm(4 * TlsOffset)
3071         .add(predOps(ARMCC::AL));
3072   }
3073 
3074   // Compare stack limit with stack size requested.
3075   // cmp SR0, SR1
3076   Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
3077   BuildMI(GetMBB, DL, TII.get(Opcode))
3078       .addReg(ScratchReg0)
3079       .addReg(ScratchReg1)
3080       .add(predOps(ARMCC::AL));
3081 
3082   // This jump is taken if StackLimit < SP - stack required.
3083   Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
3084   BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB)
3085        .addImm(ARMCC::LO)
3086        .addReg(ARM::CPSR);
3087 
3088 
3089   // Calling __morestack(StackSize, Size of stack arguments).
3090   // __morestack knows that the stack size requested is in SR0(r4)
3091   // and amount size of stack arguments is in SR1(r5).
3092 
3093   // Pass first argument for the __morestack by Scratch Register #0.
3094   //   The amount size of stack required
3095   if (Thumb) {
3096     if (AlignedStackSize < 256) {
3097       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
3098           .add(condCodeOp())
3099           .addImm(AlignedStackSize)
3100           .add(predOps(ARMCC::AL));
3101     } else {
3102       if (Thumb2) {
3103         BuildMI(AllocMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg0)
3104             .addImm(AlignedStackSize);
3105       } else {
3106         auto MBBI = AllocMBB->end();
3107         auto RegInfo = STI.getRegisterInfo();
3108         RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
3109                                    AlignedStackSize);
3110       }
3111     }
3112   } else {
3113     if (AlignedStackSize < 256) {
3114       BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
3115           .addImm(AlignedStackSize)
3116           .add(predOps(ARMCC::AL))
3117           .add(condCodeOp());
3118     } else {
3119       auto MBBI = AllocMBB->end();
3120       auto RegInfo = STI.getRegisterInfo();
3121       RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
3122                                  AlignedStackSize);
3123     }
3124   }
3125 
3126   // Pass second argument for the __morestack by Scratch Register #1.
3127   //   The amount size of stack consumed to save function arguments.
3128   if (Thumb) {
3129     if (ARMFI->getArgumentStackSize() < 256) {
3130       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
3131           .add(condCodeOp())
3132           .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
3133           .add(predOps(ARMCC::AL));
3134     } else {
3135       if (Thumb2) {
3136         BuildMI(AllocMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg1)
3137             .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()));
3138       } else {
3139         auto MBBI = AllocMBB->end();
3140         auto RegInfo = STI.getRegisterInfo();
3141         RegInfo->emitLoadConstPool(
3142             *AllocMBB, MBBI, DL, ScratchReg1, 0,
3143             alignToARMConstant(ARMFI->getArgumentStackSize()));
3144       }
3145     }
3146   } else {
3147     if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) {
3148       BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
3149           .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
3150           .add(predOps(ARMCC::AL))
3151           .add(condCodeOp());
3152     } else {
3153       auto MBBI = AllocMBB->end();
3154       auto RegInfo = STI.getRegisterInfo();
3155       RegInfo->emitLoadConstPool(
3156           *AllocMBB, MBBI, DL, ScratchReg1, 0,
3157           alignToARMConstant(ARMFI->getArgumentStackSize()));
3158     }
3159   }
3160 
3161   // push {lr} - Save return address of this function.
3162   if (Thumb) {
3163     BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
3164         .add(predOps(ARMCC::AL))
3165         .addReg(ARM::LR);
3166   } else {
3167     BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
3168         .addReg(ARM::SP, RegState::Define)
3169         .addReg(ARM::SP)
3170         .add(predOps(ARMCC::AL))
3171         .addReg(ARM::LR);
3172   }
3173 
3174   // Emit the DWARF info about the change in stack as well as where to find the
3175   // previous link register
3176   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3177     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12));
3178     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3179         .addCFIIndex(CFIIndex);
3180     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3181         nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
3182     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3183         .addCFIIndex(CFIIndex);
3184   }
3185 
3186   // Call __morestack().
3187   if (Thumb) {
3188     BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
3189         .add(predOps(ARMCC::AL))
3190         .addExternalSymbol("__morestack");
3191   } else {
3192     BuildMI(AllocMBB, DL, TII.get(ARM::BL))
3193         .addExternalSymbol("__morestack");
3194   }
3195 
3196   // pop {lr} - Restore return address of this original function.
3197   if (Thumb) {
3198     if (ST->isThumb1Only()) {
3199       BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
3200           .add(predOps(ARMCC::AL))
3201           .addReg(ScratchReg0);
3202       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
3203           .addReg(ScratchReg0)
3204           .add(predOps(ARMCC::AL));
3205     } else {
3206       BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
3207           .addReg(ARM::LR, RegState::Define)
3208           .addReg(ARM::SP, RegState::Define)
3209           .addReg(ARM::SP)
3210           .addImm(4)
3211           .add(predOps(ARMCC::AL));
3212     }
3213   } else {
3214     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
3215         .addReg(ARM::SP, RegState::Define)
3216         .addReg(ARM::SP)
3217         .add(predOps(ARMCC::AL))
3218         .addReg(ARM::LR);
3219   }
3220 
3221   // Restore SR0 and SR1 in case of __morestack() was called.
3222   // __morestack() will skip PostStackMBB block so we need to restore
3223   // scratch registers from here.
3224   // pop {SR0, SR1}
3225   if (Thumb) {
3226     BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
3227         .add(predOps(ARMCC::AL))
3228         .addReg(ScratchReg0)
3229         .addReg(ScratchReg1);
3230   } else {
3231     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
3232         .addReg(ARM::SP, RegState::Define)
3233         .addReg(ARM::SP)
3234         .add(predOps(ARMCC::AL))
3235         .addReg(ScratchReg0)
3236         .addReg(ScratchReg1);
3237   }
3238 
3239   // Update the CFA offset now that we've popped
3240   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3241     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
3242     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3243         .addCFIIndex(CFIIndex);
3244   }
3245 
3246   // Return from this function.
3247   BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
3248 
3249   // Restore SR0 and SR1 in case of __morestack() was not called.
3250   // pop {SR0, SR1}
3251   if (Thumb) {
3252     BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
3253         .add(predOps(ARMCC::AL))
3254         .addReg(ScratchReg0)
3255         .addReg(ScratchReg1);
3256   } else {
3257     BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
3258         .addReg(ARM::SP, RegState::Define)
3259         .addReg(ARM::SP)
3260         .add(predOps(ARMCC::AL))
3261         .addReg(ScratchReg0)
3262         .addReg(ScratchReg1);
3263   }
3264 
3265   // Update the CFA offset now that we've popped
3266   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3267     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
3268     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3269         .addCFIIndex(CFIIndex);
3270 
3271     // Tell debuggers that r4 and r5 are now the same as they were in the
3272     // previous function, that they're the "Same Value".
3273     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
3274         nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
3275     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3276         .addCFIIndex(CFIIndex);
3277     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
3278         nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
3279     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3280         .addCFIIndex(CFIIndex);
3281   }
3282 
3283   // Organizing MBB lists
3284   PostStackMBB->addSuccessor(&PrologueMBB);
3285 
3286   AllocMBB->addSuccessor(PostStackMBB);
3287 
3288   GetMBB->addSuccessor(PostStackMBB);
3289   GetMBB->addSuccessor(AllocMBB);
3290 
3291   McrMBB->addSuccessor(GetMBB);
3292 
3293   PrevStackMBB->addSuccessor(McrMBB);
3294 
3295 #ifdef EXPENSIVE_CHECKS
3296   MF.verify();
3297 #endif
3298 }
3299