xref: /llvm-project/llvm/lib/Target/ARM/ARMFrameLowering.cpp (revision ad4a582fd938c933e784f0052bd773676b37b690)
1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the ARM implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 //
13 // This file contains the ARM implementation of TargetFrameLowering class.
14 //
15 // On ARM, stack frames are structured as follows:
16 //
17 // The stack grows downward.
18 //
19 // All of the individual frame areas on the frame below are optional, i.e. it's
20 // possible to create a function so that the particular area isn't present
21 // in the frame.
22 //
23 // At function entry, the "frame" looks as follows:
24 //
25 // |                                   | Higher address
26 // |-----------------------------------|
27 // |                                   |
28 // | arguments passed on the stack     |
29 // |                                   |
30 // |-----------------------------------| <- sp
31 // |                                   | Lower address
32 //
33 //
34 // After the prologue has run, the frame has the following general structure.
35 // Technically the last frame area (VLAs) doesn't get created until in the
36 // main function body, after the prologue is run. However, it's depicted here
37 // for completeness.
38 //
39 // |                                   | Higher address
40 // |-----------------------------------|
41 // |                                   |
42 // | arguments passed on the stack     |
43 // |                                   |
44 // |-----------------------------------| <- (sp at function entry)
45 // |                                   |
46 // | varargs from registers            |
47 // |                                   |
48 // |-----------------------------------|
49 // |                                   |
50 // | prev_lr                           |
51 // | prev_fp                           |
52 // | (a.k.a. "frame record")           |
53 // |                                   |
54 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11)
55 // |                                   |
56 // | callee-saved gpr registers        |
57 // |                                   |
58 // |-----------------------------------|
59 // |                                   |
60 // | callee-saved fp/simd regs         |
61 // |                                   |
62 // |-----------------------------------|
63 // |.empty.space.to.make.part.below....|
64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
65 // |.the.standard.8-byte.alignment.....|  compile time; if present)
66 // |-----------------------------------|
67 // |                                   |
68 // | local variables of fixed size     |
69 // | including spill slots             |
70 // |-----------------------------------| <- base pointer (not defined by ABI,
71 // |.variable-sized.local.variables....|       LLVM chooses r6)
72 // |.(VLAs)............................| (size of this area is unknown at
73 // |...................................|  compile time)
74 // |-----------------------------------| <- sp
75 // |                                   | Lower address
76 //
77 //
78 // To access the data in a frame, at-compile time, a constant offset must be
79 // computable from one of the pointers (fp, bp, sp) to access it. The size
80 // of the areas with a dotted background cannot be computed at compile-time
81 // if they are present, making it required to have all three of fp, bp and
82 // sp to be set up to be able to access all contents in the frame areas,
83 // assuming all of the frame areas are non-empty.
84 //
85 // For most functions, some of the frame areas are empty. For those functions,
86 // it may not be necessary to set up fp or bp:
87 // * A base pointer is definitely needed when there are both VLAs and local
88 //   variables with more-than-default alignment requirements.
89 // * A frame pointer is definitely needed when there are local variables with
90 //   more-than-default alignment requirements.
91 //
92 // In some cases when a base pointer is not strictly needed, it is generated
93 // anyway when offsets from the frame pointer to access local variables become
94 // so large that the offset can't be encoded in the immediate fields of loads
95 // or stores.
96 //
97 // The frame pointer might be chosen to be r7 or r11, depending on the target
98 // architecture and operating system. See ARMSubtarget::getFramePointerReg for
99 // details.
100 //
101 // Outgoing function arguments must be at the bottom of the stack frame when
102 // calling another function. If we do not have variable-sized stack objects, we
103 // can allocate a "reserved call frame" area at the bottom of the local
104 // variable area, large enough for all outgoing calls. If we do have VLAs, then
105 // the stack pointer must be decremented and incremented around each call to
106 // make space for the arguments below the VLAs.
107 //
108 //===----------------------------------------------------------------------===//
109 
110 #include "ARMFrameLowering.h"
111 #include "ARMBaseInstrInfo.h"
112 #include "ARMBaseRegisterInfo.h"
113 #include "ARMConstantPoolValue.h"
114 #include "ARMMachineFunctionInfo.h"
115 #include "ARMSubtarget.h"
116 #include "MCTargetDesc/ARMAddressingModes.h"
117 #include "MCTargetDesc/ARMBaseInfo.h"
118 #include "Utils/ARMBaseInfo.h"
119 #include "llvm/ADT/BitVector.h"
120 #include "llvm/ADT/STLExtras.h"
121 #include "llvm/ADT/SmallPtrSet.h"
122 #include "llvm/ADT/SmallVector.h"
123 #include "llvm/CodeGen/MachineBasicBlock.h"
124 #include "llvm/CodeGen/MachineConstantPool.h"
125 #include "llvm/CodeGen/MachineFrameInfo.h"
126 #include "llvm/CodeGen/MachineFunction.h"
127 #include "llvm/CodeGen/MachineInstr.h"
128 #include "llvm/CodeGen/MachineInstrBuilder.h"
129 #include "llvm/CodeGen/MachineJumpTableInfo.h"
130 #include "llvm/CodeGen/MachineModuleInfo.h"
131 #include "llvm/CodeGen/MachineOperand.h"
132 #include "llvm/CodeGen/MachineRegisterInfo.h"
133 #include "llvm/CodeGen/RegisterScavenging.h"
134 #include "llvm/CodeGen/TargetInstrInfo.h"
135 #include "llvm/CodeGen/TargetOpcodes.h"
136 #include "llvm/CodeGen/TargetRegisterInfo.h"
137 #include "llvm/CodeGen/TargetSubtargetInfo.h"
138 #include "llvm/IR/Attributes.h"
139 #include "llvm/IR/CallingConv.h"
140 #include "llvm/IR/DebugLoc.h"
141 #include "llvm/IR/Function.h"
142 #include "llvm/MC/MCAsmInfo.h"
143 #include "llvm/MC/MCContext.h"
144 #include "llvm/MC/MCDwarf.h"
145 #include "llvm/MC/MCInstrDesc.h"
146 #include "llvm/MC/MCRegisterInfo.h"
147 #include "llvm/Support/CodeGen.h"
148 #include "llvm/Support/CommandLine.h"
149 #include "llvm/Support/Compiler.h"
150 #include "llvm/Support/Debug.h"
151 #include "llvm/Support/ErrorHandling.h"
152 #include "llvm/Support/MathExtras.h"
153 #include "llvm/Support/raw_ostream.h"
154 #include "llvm/Target/TargetMachine.h"
155 #include "llvm/Target/TargetOptions.h"
156 #include <algorithm>
157 #include <cassert>
158 #include <cstddef>
159 #include <cstdint>
160 #include <iterator>
161 #include <utility>
162 #include <vector>
163 
164 #define DEBUG_TYPE "arm-frame-lowering"
165 
166 using namespace llvm;
167 
168 static cl::opt<bool>
169 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
170                      cl::desc("Align ARM NEON spills in prolog and epilog"));
171 
172 static MachineBasicBlock::iterator
173 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
174                         unsigned NumAlignedDPRCS2Regs);
175 
176 enum class SpillArea {
177   GPRCS1,
178   GPRCS2,
179   DPRCS1,
180   DPRCS2,
181   FPCXT,
182 };
183 
184 /// Get the spill area that Reg should be saved into in the prologue.
185 SpillArea getSpillArea(Register Reg,
186                        ARMSubtarget::PushPopSplitVariation Variation,
187                        unsigned NumAlignedDPRCS2Regs,
188                        const ARMBaseRegisterInfo *RegInfo) {
189   // NoSplit:
190   // push {r0-r12, lr}   GPRCS1
191   // vpush {r8-d15}      DPRCS1
192   //
193   // SplitR7:
194   // push {r0-r7, lr}    GPRCS1
195   // push {r8-r12}       GPRCS2
196   // vpush {r8-d15}      DPRCS1
197   //
198   // SplitR11WindowsSEH:
199   // push {r0-r10, r12}  GPRCS1
200   // vpush {r8-d15}      DPRCS1
201   // push {r11, lr}      GPRCS2
202   //
203   // SplitR11AAPCSSignRA:
204   // push {r0-r10, r12}  GPRSC1
205   // push {r11, lr}      GPRCS2
206   // vpush {r8-d15}      DPRCS1
207 
208   // If FPCXTNS is spilled (for CMSE secure entryfunctions), it is always at
209   // the top of the stack frame.
210   // The DPRCS2 region is used for ABIs which only guarantee 4-byte alignment
211   // of SP. If used, it will be below the other save areas, after the stack has
212   // been re-aligned.
213 
214   switch (Reg) {
215   default:
216     dbgs() << "Don't know where to spill " << printReg(Reg, RegInfo) << "\n";
217     llvm_unreachable("Don't know where to spill this register");
218     break;
219 
220   case ARM::FPCXTNS:
221     return SpillArea::FPCXT;
222 
223   case ARM::R0:
224   case ARM::R1:
225   case ARM::R2:
226   case ARM::R3:
227   case ARM::R4:
228   case ARM::R5:
229   case ARM::R6:
230   case ARM::R7:
231     return SpillArea::GPRCS1;
232 
233   case ARM::R8:
234   case ARM::R9:
235   case ARM::R10:
236     if (Variation == ARMSubtarget::SplitR7)
237       return SpillArea::GPRCS2;
238     else
239       return SpillArea::GPRCS1;
240 
241   case ARM::R11:
242     if (Variation == ARMSubtarget::NoSplit)
243       return SpillArea::GPRCS1;
244     else
245       return SpillArea::GPRCS2;
246 
247   case ARM::R12:
248     if (Variation == ARMSubtarget::SplitR7)
249       return SpillArea::GPRCS2;
250     else
251       return SpillArea::GPRCS1;
252 
253   case ARM::LR:
254     if (Variation == ARMSubtarget::SplitR11WindowsSEH ||
255         Variation == ARMSubtarget::SplitR11AAPCSSignRA)
256       return SpillArea::GPRCS2;
257     else
258       return SpillArea::GPRCS1;
259 
260   case ARM::D0:
261   case ARM::D1:
262   case ARM::D2:
263   case ARM::D3:
264   case ARM::D4:
265   case ARM::D5:
266   case ARM::D6:
267   case ARM::D7:
268     return SpillArea::DPRCS1;
269 
270   case ARM::D8:
271   case ARM::D9:
272   case ARM::D10:
273   case ARM::D11:
274   case ARM::D12:
275   case ARM::D13:
276   case ARM::D14:
277   case ARM::D15:
278     if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
279       return SpillArea::DPRCS2;
280     else
281       return SpillArea::DPRCS1;
282 
283   case ARM::D16:
284   case ARM::D17:
285   case ARM::D18:
286   case ARM::D19:
287   case ARM::D20:
288   case ARM::D21:
289   case ARM::D22:
290   case ARM::D23:
291   case ARM::D24:
292   case ARM::D25:
293   case ARM::D26:
294   case ARM::D27:
295   case ARM::D28:
296   case ARM::D29:
297   case ARM::D30:
298   case ARM::D31:
299     return SpillArea::DPRCS1;
300   }
301 }
302 
303 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
304     : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)),
305       STI(sti) {}
306 
307 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const {
308   // iOS always has a FP for backtracking, force other targets to keep their FP
309   // when doing FastISel. The emitted code is currently superior, and in cases
310   // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
311   return MF.getSubtarget<ARMSubtarget>().useFastISel();
312 }
313 
314 /// Returns true if the target can safely skip saving callee-saved registers
315 /// for noreturn nounwind functions.
316 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
317   assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
318          MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
319          !MF.getFunction().hasFnAttribute(Attribute::UWTable));
320 
321   // Frame pointer and link register are not treated as normal CSR, thus we
322   // can always skip CSR saves for nonreturning functions.
323   return true;
324 }
325 
326 /// hasFPImpl - Return true if the specified function should have a dedicated
327 /// frame pointer register.  This is true if the function has variable sized
328 /// allocas or if frame pointer elimination is disabled.
329 bool ARMFrameLowering::hasFPImpl(const MachineFunction &MF) const {
330   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
331   const MachineFrameInfo &MFI = MF.getFrameInfo();
332 
333   // Check to see if the target want to forcibly keep frame pointer.
334   if (keepFramePointer(MF))
335     return true;
336 
337   // ABI-required frame pointer.
338   if (MF.getTarget().Options.DisableFramePointerElim(MF))
339     return true;
340 
341   // Frame pointer required for use within this function.
342   return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
343           MFI.isFrameAddressTaken());
344 }
345 
346 /// isFPReserved - Return true if the frame pointer register should be
347 /// considered a reserved register on the scope of the specified function.
348 bool ARMFrameLowering::isFPReserved(const MachineFunction &MF) const {
349   return hasFP(MF) || MF.getTarget().Options.FramePointerIsReserved(MF);
350 }
351 
352 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
353 /// not required, we reserve argument space for call sites in the function
354 /// immediately on entry to the current function.  This eliminates the need for
355 /// add/sub sp brackets around call sites.  Returns true if the call frame is
356 /// included as part of the stack frame.
357 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
358   const MachineFrameInfo &MFI = MF.getFrameInfo();
359   unsigned CFSize = MFI.getMaxCallFrameSize();
360   // It's not always a good idea to include the call frame as part of the
361   // stack frame. ARM (especially Thumb) has small immediate offset to
362   // address the stack frame. So a large call frame can cause poor codegen
363   // and may even makes it impossible to scavenge a register.
364   if (CFSize >= ((1 << 12) - 1) / 2)  // Half of imm12
365     return false;
366 
367   return !MFI.hasVarSizedObjects();
368 }
369 
370 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
371 /// call frame pseudos can be simplified.  Unlike most targets, having a FP
372 /// is not sufficient here since we still may reference some objects via SP
373 /// even when FP is available in Thumb2 mode.
374 bool
375 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
376   return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
377 }
378 
379 // Returns how much of the incoming argument stack area we should clean up in an
380 // epilogue. For the C calling convention this will be 0, for guaranteed tail
381 // call conventions it can be positive (a normal return or a tail call to a
382 // function that uses less stack space for arguments) or negative (for a tail
383 // call to a function that needs more stack space than us for arguments).
384 static int getArgumentStackToRestore(MachineFunction &MF,
385                                      MachineBasicBlock &MBB) {
386   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
387   bool IsTailCallReturn = false;
388   if (MBB.end() != MBBI) {
389     unsigned RetOpcode = MBBI->getOpcode();
390     IsTailCallReturn = RetOpcode == ARM::TCRETURNdi ||
391                        RetOpcode == ARM::TCRETURNri ||
392                        RetOpcode == ARM::TCRETURNrinotr12;
393   }
394   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
395 
396   int ArgumentPopSize = 0;
397   if (IsTailCallReturn) {
398     MachineOperand &StackAdjust = MBBI->getOperand(1);
399 
400     // For a tail-call in a callee-pops-arguments environment, some or all of
401     // the stack may actually be in use for the call's arguments, this is
402     // calculated during LowerCall and consumed here...
403     ArgumentPopSize = StackAdjust.getImm();
404   } else {
405     // ... otherwise the amount to pop is *all* of the argument space,
406     // conveniently stored in the MachineFunctionInfo by
407     // LowerFormalArguments. This will, of course, be zero for the C calling
408     // convention.
409     ArgumentPopSize = AFI->getArgumentStackToRestore();
410   }
411 
412   return ArgumentPopSize;
413 }
414 
415 static bool needsWinCFI(const MachineFunction &MF) {
416   const Function &F = MF.getFunction();
417   return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
418          F.needsUnwindTableEntry();
419 }
420 
421 // Given a load or a store instruction, generate an appropriate unwinding SEH
422 // code on Windows.
423 static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI,
424                                              const TargetInstrInfo &TII,
425                                              unsigned Flags) {
426   unsigned Opc = MBBI->getOpcode();
427   MachineBasicBlock *MBB = MBBI->getParent();
428   MachineFunction &MF = *MBB->getParent();
429   DebugLoc DL = MBBI->getDebugLoc();
430   MachineInstrBuilder MIB;
431   const ARMSubtarget &Subtarget = MF.getSubtarget<ARMSubtarget>();
432   const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
433 
434   Flags |= MachineInstr::NoMerge;
435 
436   switch (Opc) {
437   default:
438     report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc));
439     break;
440   case ARM::t2ADDri:   // add.w r11, sp, #xx
441   case ARM::t2ADDri12: // add.w r11, sp, #xx
442   case ARM::t2MOVTi16: // movt  r4, #xx
443   case ARM::tBL:       // bl __chkstk
444     // These are harmless if used for just setting up a frame pointer,
445     // but that frame pointer can't be relied upon for unwinding, unless
446     // set up with SEH_SaveSP.
447     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
448               .addImm(/*Wide=*/1)
449               .setMIFlags(Flags);
450     break;
451 
452   case ARM::t2MOVi16: { // mov(w) r4, #xx
453     bool Wide = MBBI->getOperand(1).getImm() >= 256;
454     if (!Wide) {
455       MachineInstrBuilder NewInstr =
456           BuildMI(MF, DL, TII.get(ARM::tMOVi8)).setMIFlags(MBBI->getFlags());
457       NewInstr.add(MBBI->getOperand(0));
458       NewInstr.add(t1CondCodeOp(/*isDead=*/true));
459       for (MachineOperand &MO : llvm::drop_begin(MBBI->operands()))
460         NewInstr.add(MO);
461       MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr);
462       MBB->erase(MBBI);
463       MBBI = NewMBBI;
464     }
465     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)).addImm(Wide).setMIFlags(Flags);
466     break;
467   }
468 
469   case ARM::tBLXr: // blx r12 (__chkstk)
470     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
471               .addImm(/*Wide=*/0)
472               .setMIFlags(Flags);
473     break;
474 
475   case ARM::t2MOVi32imm: // movw+movt
476     // This pseudo instruction expands into two mov instructions. If the
477     // second operand is a symbol reference, this will stay as two wide
478     // instructions, movw+movt. If they're immediates, the first one can
479     // end up as a narrow mov though.
480     // As two SEH instructions are appended here, they won't get interleaved
481     // between the two final movw/movt instructions, but it doesn't make any
482     // practical difference.
483     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
484               .addImm(/*Wide=*/1)
485               .setMIFlags(Flags);
486     MBB->insertAfter(MBBI, MIB);
487     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
488               .addImm(/*Wide=*/1)
489               .setMIFlags(Flags);
490     break;
491 
492   case ARM::t2STR_PRE:
493     if (MBBI->getOperand(0).getReg() == ARM::SP &&
494         MBBI->getOperand(2).getReg() == ARM::SP &&
495         MBBI->getOperand(3).getImm() == -4) {
496       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
497       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs))
498                 .addImm(1ULL << Reg)
499                 .addImm(/*Wide=*/1)
500                 .setMIFlags(Flags);
501     } else {
502       report_fatal_error("No matching SEH Opcode for t2STR_PRE");
503     }
504     break;
505 
506   case ARM::t2LDR_POST:
507     if (MBBI->getOperand(1).getReg() == ARM::SP &&
508         MBBI->getOperand(2).getReg() == ARM::SP &&
509         MBBI->getOperand(3).getImm() == 4) {
510       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
511       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs))
512                 .addImm(1ULL << Reg)
513                 .addImm(/*Wide=*/1)
514                 .setMIFlags(Flags);
515     } else {
516       report_fatal_error("No matching SEH Opcode for t2LDR_POST");
517     }
518     break;
519 
520   case ARM::t2LDMIA_RET:
521   case ARM::t2LDMIA_UPD:
522   case ARM::t2STMDB_UPD: {
523     unsigned Mask = 0;
524     bool Wide = false;
525     for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) {
526       const MachineOperand &MO = MBBI->getOperand(i);
527       if (!MO.isReg() || MO.isImplicit())
528         continue;
529       unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
530       if (Reg == 15)
531         Reg = 14;
532       if (Reg >= 8 && Reg <= 13)
533         Wide = true;
534       else if (Opc == ARM::t2LDMIA_UPD && Reg == 14)
535         Wide = true;
536       Mask |= 1 << Reg;
537     }
538     if (!Wide) {
539       unsigned NewOpc;
540       switch (Opc) {
541       case ARM::t2LDMIA_RET:
542         NewOpc = ARM::tPOP_RET;
543         break;
544       case ARM::t2LDMIA_UPD:
545         NewOpc = ARM::tPOP;
546         break;
547       case ARM::t2STMDB_UPD:
548         NewOpc = ARM::tPUSH;
549         break;
550       default:
551         llvm_unreachable("");
552       }
553       MachineInstrBuilder NewInstr =
554           BuildMI(MF, DL, TII.get(NewOpc)).setMIFlags(MBBI->getFlags());
555       for (unsigned i = 2, NumOps = MBBI->getNumOperands(); i != NumOps; ++i)
556         NewInstr.add(MBBI->getOperand(i));
557       MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr);
558       MBB->erase(MBBI);
559       MBBI = NewMBBI;
560     }
561     unsigned SEHOpc =
562         (Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs;
563     MIB = BuildMI(MF, DL, TII.get(SEHOpc))
564               .addImm(Mask)
565               .addImm(Wide ? 1 : 0)
566               .setMIFlags(Flags);
567     break;
568   }
569   case ARM::VSTMDDB_UPD:
570   case ARM::VLDMDIA_UPD: {
571     int First = -1, Last = 0;
572     for (const MachineOperand &MO : llvm::drop_begin(MBBI->operands(), 4)) {
573       unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
574       if (First == -1)
575         First = Reg;
576       Last = Reg;
577     }
578     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs))
579               .addImm(First)
580               .addImm(Last)
581               .setMIFlags(Flags);
582     break;
583   }
584   case ARM::tSUBspi:
585   case ARM::tADDspi:
586     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
587               .addImm(MBBI->getOperand(2).getImm() * 4)
588               .addImm(/*Wide=*/0)
589               .setMIFlags(Flags);
590     break;
591   case ARM::t2SUBspImm:
592   case ARM::t2SUBspImm12:
593   case ARM::t2ADDspImm:
594   case ARM::t2ADDspImm12:
595     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
596               .addImm(MBBI->getOperand(2).getImm())
597               .addImm(/*Wide=*/1)
598               .setMIFlags(Flags);
599     break;
600 
601   case ARM::tMOVr:
602     if (MBBI->getOperand(1).getReg() == ARM::SP &&
603         (Flags & MachineInstr::FrameSetup)) {
604       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
605       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
606                 .addImm(Reg)
607                 .setMIFlags(Flags);
608     } else if (MBBI->getOperand(0).getReg() == ARM::SP &&
609                (Flags & MachineInstr::FrameDestroy)) {
610       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
611       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
612                 .addImm(Reg)
613                 .setMIFlags(Flags);
614     } else {
615       report_fatal_error("No SEH Opcode for MOV");
616     }
617     break;
618 
619   case ARM::tBX_RET:
620   case ARM::TCRETURNri:
621   case ARM::TCRETURNrinotr12:
622     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
623               .addImm(/*Wide=*/0)
624               .setMIFlags(Flags);
625     break;
626 
627   case ARM::TCRETURNdi:
628     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
629               .addImm(/*Wide=*/1)
630               .setMIFlags(Flags);
631     break;
632   }
633   return MBB->insertAfter(MBBI, MIB);
634 }
635 
636 static MachineBasicBlock::iterator
637 initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) {
638   if (MBBI == MBB.begin())
639     return MachineBasicBlock::iterator();
640   return std::prev(MBBI);
641 }
642 
643 static void insertSEHRange(MachineBasicBlock &MBB,
644                            MachineBasicBlock::iterator Start,
645                            const MachineBasicBlock::iterator &End,
646                            const ARMBaseInstrInfo &TII, unsigned MIFlags) {
647   if (Start.isValid())
648     Start = std::next(Start);
649   else
650     Start = MBB.begin();
651 
652   for (auto MI = Start; MI != End;) {
653     auto Next = std::next(MI);
654     // Check if this instruction already has got a SEH opcode added. In that
655     // case, don't do this generic mapping.
656     if (Next != End && isSEHInstruction(*Next)) {
657       MI = std::next(Next);
658       while (MI != End && isSEHInstruction(*MI))
659         ++MI;
660       continue;
661     }
662     insertSEH(MI, TII, MIFlags);
663     MI = Next;
664   }
665 }
666 
667 static void emitRegPlusImmediate(
668     bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
669     const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
670     unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
671     ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
672   if (isARM)
673     emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
674                             Pred, PredReg, TII, MIFlags);
675   else
676     emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
677                            Pred, PredReg, TII, MIFlags);
678 }
679 
680 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
681                          MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
682                          const ARMBaseInstrInfo &TII, int NumBytes,
683                          unsigned MIFlags = MachineInstr::NoFlags,
684                          ARMCC::CondCodes Pred = ARMCC::AL,
685                          unsigned PredReg = 0) {
686   emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
687                        MIFlags, Pred, PredReg);
688 }
689 
690 static int sizeOfSPAdjustment(const MachineInstr &MI) {
691   int RegSize;
692   switch (MI.getOpcode()) {
693   case ARM::VSTMDDB_UPD:
694     RegSize = 8;
695     break;
696   case ARM::STMDB_UPD:
697   case ARM::t2STMDB_UPD:
698     RegSize = 4;
699     break;
700   case ARM::t2STR_PRE:
701   case ARM::STR_PRE_IMM:
702     return 4;
703   default:
704     llvm_unreachable("Unknown push or pop like instruction");
705   }
706 
707   int count = 0;
708   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
709   // pred) so the list starts at 4.
710   for (int i = MI.getNumOperands() - 1; i >= 4; --i)
711     count += RegSize;
712   return count;
713 }
714 
715 static bool WindowsRequiresStackProbe(const MachineFunction &MF,
716                                       size_t StackSizeInBytes) {
717   const MachineFrameInfo &MFI = MF.getFrameInfo();
718   const Function &F = MF.getFunction();
719   unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
720 
721   StackProbeSize =
722       F.getFnAttributeAsParsedInteger("stack-probe-size", StackProbeSize);
723   return (StackSizeInBytes >= StackProbeSize) &&
724          !F.hasFnAttribute("no-stack-arg-probe");
725 }
726 
727 namespace {
728 
729 struct StackAdjustingInsts {
730   struct InstInfo {
731     MachineBasicBlock::iterator I;
732     unsigned SPAdjust;
733     bool BeforeFPSet;
734 
735 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
736     void dump() {
737       dbgs() << "  " << (BeforeFPSet ? "before-fp " : "          ")
738              << "sp-adjust=" << SPAdjust;
739       I->dump();
740     }
741 #endif
742   };
743 
744   SmallVector<InstInfo, 4> Insts;
745 
746   void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
747                bool BeforeFPSet = false) {
748     InstInfo Info = {I, SPAdjust, BeforeFPSet};
749     Insts.push_back(Info);
750   }
751 
752   void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
753     auto Info =
754         llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
755     assert(Info != Insts.end() && "invalid sp adjusting instruction");
756     Info->SPAdjust += ExtraBytes;
757   }
758 
759   void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
760                          const ARMBaseInstrInfo &TII, bool HasFP) {
761     MachineFunction &MF = *MBB.getParent();
762     unsigned CFAOffset = 0;
763     for (auto &Info : Insts) {
764       if (HasFP && !Info.BeforeFPSet)
765         return;
766 
767       CFAOffset += Info.SPAdjust;
768       unsigned CFIIndex = MF.addFrameInst(
769           MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset));
770       BuildMI(MBB, std::next(Info.I), dl,
771               TII.get(TargetOpcode::CFI_INSTRUCTION))
772               .addCFIIndex(CFIIndex)
773               .setMIFlags(MachineInstr::FrameSetup);
774     }
775   }
776 
777 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
778   void dump() {
779     dbgs() << "StackAdjustingInsts:\n";
780     for (auto &Info : Insts)
781       Info.dump();
782   }
783 #endif
784 };
785 
786 } // end anonymous namespace
787 
788 /// Emit an instruction sequence that will align the address in
789 /// register Reg by zero-ing out the lower bits.  For versions of the
790 /// architecture that support Neon, this must be done in a single
791 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
792 /// single instruction. That function only gets called when optimizing
793 /// spilling of D registers on a core with the Neon instruction set
794 /// present.
795 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
796                                      const TargetInstrInfo &TII,
797                                      MachineBasicBlock &MBB,
798                                      MachineBasicBlock::iterator MBBI,
799                                      const DebugLoc &DL, const unsigned Reg,
800                                      const Align Alignment,
801                                      const bool MustBeSingleInstruction) {
802   const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>();
803   const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
804   const unsigned AlignMask = Alignment.value() - 1U;
805   const unsigned NrBitsToZero = Log2(Alignment);
806   assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
807   if (!AFI->isThumbFunction()) {
808     // if the BFC instruction is available, use that to zero the lower
809     // bits:
810     //   bfc Reg, #0, log2(Alignment)
811     // otherwise use BIC, if the mask to zero the required number of bits
812     // can be encoded in the bic immediate field
813     //   bic Reg, Reg, Alignment-1
814     // otherwise, emit
815     //   lsr Reg, Reg, log2(Alignment)
816     //   lsl Reg, Reg, log2(Alignment)
817     if (CanUseBFC) {
818       BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
819           .addReg(Reg, RegState::Kill)
820           .addImm(~AlignMask)
821           .add(predOps(ARMCC::AL));
822     } else if (AlignMask <= 255) {
823       BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
824           .addReg(Reg, RegState::Kill)
825           .addImm(AlignMask)
826           .add(predOps(ARMCC::AL))
827           .add(condCodeOp());
828     } else {
829       assert(!MustBeSingleInstruction &&
830              "Shouldn't call emitAligningInstructions demanding a single "
831              "instruction to be emitted for large stack alignment for a target "
832              "without BFC.");
833       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
834           .addReg(Reg, RegState::Kill)
835           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
836           .add(predOps(ARMCC::AL))
837           .add(condCodeOp());
838       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
839           .addReg(Reg, RegState::Kill)
840           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
841           .add(predOps(ARMCC::AL))
842           .add(condCodeOp());
843     }
844   } else {
845     // Since this is only reached for Thumb-2 targets, the BFC instruction
846     // should always be available.
847     assert(CanUseBFC);
848     BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
849         .addReg(Reg, RegState::Kill)
850         .addImm(~AlignMask)
851         .add(predOps(ARMCC::AL));
852   }
853 }
854 
855 /// We need the offset of the frame pointer relative to other MachineFrameInfo
856 /// offsets which are encoded relative to SP at function begin.
857 /// See also emitPrologue() for how the FP is set up.
858 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet
859 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
860 /// this to produce a conservative estimate that we check in an assert() later.
861 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI,
862                           const MachineFunction &MF) {
863   ARMSubtarget::PushPopSplitVariation PushPopSplit =
864       STI.getPushPopSplitVariation(MF);
865   // For Thumb1, push.w isn't available, so the first push will always push
866   // r7 and lr onto the stack first.
867   if (AFI.isThumb1OnlyFunction())
868     return -AFI.getArgRegsSaveSize() - (2 * 4);
869   // This is a conservative estimation: Assume the frame pointer being r7 and
870   // pc("r15") up to r8 getting spilled before (= 8 registers).
871   int MaxRegBytes = 8 * 4;
872   if (PushPopSplit == ARMSubtarget::SplitR11AAPCSSignRA)
873     // Here, r11 can be stored below all of r4-r15.
874     MaxRegBytes = 11 * 4;
875   if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) {
876     // Here, r11 can be stored below all of r4-r15 plus d8-d15.
877     MaxRegBytes = 11 * 4 + 8 * 8;
878   }
879   int FPCXTSaveSize =
880       (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0;
881   return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes;
882 }
883 
884 void ARMFrameLowering::emitPrologue(MachineFunction &MF,
885                                     MachineBasicBlock &MBB) const {
886   MachineBasicBlock::iterator MBBI = MBB.begin();
887   MachineFrameInfo  &MFI = MF.getFrameInfo();
888   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
889   MCContext &Context = MF.getContext();
890   const TargetMachine &TM = MF.getTarget();
891   const MCRegisterInfo *MRI = Context.getRegisterInfo();
892   const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
893   const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
894   assert(!AFI->isThumb1OnlyFunction() &&
895          "This emitPrologue does not support Thumb1!");
896   bool isARM = !AFI->isThumbFunction();
897   Align Alignment = STI.getFrameLowering()->getStackAlign();
898   unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
899   unsigned NumBytes = MFI.getStackSize();
900   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
901   int FPCXTSaveSize = 0;
902   bool NeedsWinCFI = needsWinCFI(MF);
903   ARMSubtarget::PushPopSplitVariation PushPopSplit =
904       STI.getPushPopSplitVariation(MF);
905 
906   LLVM_DEBUG(dbgs() << "Emitting prologue for " << MF.getName() << "\n");
907 
908   // Debug location must be unknown since the first debug location is used
909   // to determine the end of the prologue.
910   DebugLoc dl;
911 
912   Register FramePtr = RegInfo->getFrameRegister(MF);
913 
914   // Determine the sizes of each callee-save spill areas and record which frame
915   // belongs to which callee-save spill areas.
916   unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
917   int FramePtrSpillFI = 0;
918   int D8SpillFI = 0;
919 
920   // All calls are tail calls in GHC calling conv, and functions have no
921   // prologue/epilogue.
922   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
923     return;
924 
925   StackAdjustingInsts DefCFAOffsetCandidates;
926   bool HasFP = hasFP(MF);
927 
928   if (!AFI->hasStackFrame() &&
929       (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
930     if (NumBytes != 0) {
931       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
932                    MachineInstr::FrameSetup);
933       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true);
934     }
935     if (!NeedsWinCFI)
936       DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
937     if (NeedsWinCFI && MBBI != MBB.begin()) {
938       insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup);
939       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd))
940           .setMIFlag(MachineInstr::FrameSetup);
941       MF.setHasWinCFI(true);
942     }
943     return;
944   }
945 
946   // Determine spill area sizes, and some important frame indices.
947   SpillArea FramePtrSpillArea;
948   bool BeforeFPPush = true;
949   for (const CalleeSavedInfo &I : CSI) {
950     Register Reg = I.getReg();
951     int FI = I.getFrameIdx();
952 
953     SpillArea Area = getSpillArea(Reg, PushPopSplit,
954                                   AFI->getNumAlignedDPRCS2Regs(), RegInfo);
955 
956     if (Reg == FramePtr) {
957       FramePtrSpillFI = FI;
958       FramePtrSpillArea = Area;
959     }
960     if (Reg == ARM::D8)
961       D8SpillFI = FI;
962 
963     switch (Area) {
964     case SpillArea::FPCXT:
965       FPCXTSaveSize += 4;
966       break;
967     case SpillArea::GPRCS1:
968       GPRCS1Size += 4;
969       break;
970     case SpillArea::GPRCS2:
971       GPRCS2Size += 4;
972       break;
973     case SpillArea::DPRCS1:
974       DPRCSSize += 8;
975       break;
976     case SpillArea::DPRCS2:
977       break;
978     }
979   }
980 
981   MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
982 
983   // Move past the PAC computation.
984   if (AFI->shouldSignReturnAddress())
985     LastPush = MBBI++;
986 
987   // Move past FPCXT area.
988   if (FPCXTSaveSize > 0) {
989     LastPush = MBBI++;
990     DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, BeforeFPPush);
991   }
992 
993   // Allocate the vararg register save area.
994   if (ArgRegsSaveSize) {
995     emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
996                  MachineInstr::FrameSetup);
997     LastPush = std::prev(MBBI);
998     DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, BeforeFPPush);
999   }
1000 
1001   // Move past area 1.
1002   if (GPRCS1Size > 0) {
1003     GPRCS1Push = LastPush = MBBI++;
1004     DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, BeforeFPPush);
1005     if (FramePtrSpillArea == SpillArea::GPRCS1)
1006       BeforeFPPush = false;
1007   }
1008 
1009   // Determine starting offsets of spill areas. These offsets are all positive
1010   // offsets from the bottom of the lowest-addressed callee-save area
1011   // (excluding DPRCS2, which is th the re-aligned stack region) to the bottom
1012   // of the spill area in question.
1013   unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize;
1014   unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size;
1015   unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
1016   Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4);
1017   unsigned DPRGapSize = GPRCS1Size + FPCXTSaveSize + ArgRegsSaveSize;
1018   if (PushPopSplit != ARMSubtarget::SplitR11WindowsSEH) {
1019     DPRGapSize += GPRCS2Size;
1020   }
1021   DPRGapSize %= DPRAlign.value();
1022 
1023   unsigned DPRCSOffset;
1024   if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) {
1025     DPRCSOffset = GPRCS1Offset - DPRGapSize - DPRCSSize;
1026     GPRCS2Offset = DPRCSOffset - GPRCS2Size;
1027   } else {
1028     DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
1029   }
1030   if (HasFP) {
1031     // Offset from the CFA to the saved frame pointer, will be negative.
1032     [[maybe_unused]] int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
1033     LLVM_DEBUG(dbgs() << "FramePtrSpillFI: " << FramePtrSpillFI
1034                       << ", FPOffset: " << FPOffset << "\n");
1035     assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset &&
1036            "Max FP estimation is wrong");
1037     AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
1038                                 NumBytes);
1039   }
1040   AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
1041   AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
1042   AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
1043 
1044   // Move GPRCS2, unless using SplitR11WindowsSEH, in which case it will be
1045   // after DPRCS1.
1046   if (GPRCS2Size > 0 && PushPopSplit != ARMSubtarget::SplitR11WindowsSEH) {
1047     GPRCS2Push = LastPush = MBBI++;
1048     DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size, BeforeFPPush);
1049     if (FramePtrSpillArea == SpillArea::GPRCS2)
1050       BeforeFPPush = false;
1051   }
1052 
1053   // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
1054   // .cfi_offset operations will reflect that.
1055   if (DPRGapSize) {
1056     assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
1057     if (LastPush != MBB.end() &&
1058         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
1059       DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
1060     else {
1061       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
1062                    MachineInstr::FrameSetup);
1063       DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize, BeforeFPPush);
1064     }
1065   }
1066 
1067   // Move past DPRCS1.
1068   if (DPRCSSize > 0) {
1069     // Since vpush register list cannot have gaps, there may be multiple vpush
1070     // instructions in the prologue.
1071     while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
1072       DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI),
1073                                      BeforeFPPush);
1074       LastPush = MBBI++;
1075     }
1076   }
1077 
1078   // Move past the aligned DPRCS2 area.
1079   if (AFI->getNumAlignedDPRCS2Regs() > 0) {
1080     MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
1081     // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
1082     // leaves the stack pointer pointing to the DPRCS2 area.
1083     //
1084     // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
1085     NumBytes += MFI.getObjectOffset(D8SpillFI);
1086   } else
1087     NumBytes = DPRCSOffset;
1088 
1089   // Move GPRCS2, if using using SplitR11WindowsSEH.
1090   if (GPRCS2Size > 0 && PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) {
1091     GPRCS2Push = LastPush = MBBI++;
1092     DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size, BeforeFPPush);
1093     if (FramePtrSpillArea == SpillArea::GPRCS2)
1094       BeforeFPPush = false;
1095   }
1096 
1097   bool NeedsWinCFIStackAlloc = NeedsWinCFI;
1098   if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH && HasFP)
1099     NeedsWinCFIStackAlloc = false;
1100 
1101   if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
1102     uint32_t NumWords = NumBytes >> 2;
1103 
1104     if (NumWords < 65536) {
1105       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
1106           .addImm(NumWords)
1107           .setMIFlags(MachineInstr::FrameSetup)
1108           .add(predOps(ARMCC::AL));
1109     } else {
1110       // Split into two instructions here, instead of using t2MOVi32imm,
1111       // to allow inserting accurate SEH instructions (including accurate
1112       // instruction size for each of them).
1113       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
1114           .addImm(NumWords & 0xffff)
1115           .setMIFlags(MachineInstr::FrameSetup)
1116           .add(predOps(ARMCC::AL));
1117       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4)
1118           .addReg(ARM::R4)
1119           .addImm(NumWords >> 16)
1120           .setMIFlags(MachineInstr::FrameSetup)
1121           .add(predOps(ARMCC::AL));
1122     }
1123 
1124     switch (TM.getCodeModel()) {
1125     case CodeModel::Tiny:
1126       llvm_unreachable("Tiny code model not available on ARM.");
1127     case CodeModel::Small:
1128     case CodeModel::Medium:
1129     case CodeModel::Kernel:
1130       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
1131           .add(predOps(ARMCC::AL))
1132           .addExternalSymbol("__chkstk")
1133           .addReg(ARM::R4, RegState::Implicit)
1134           .setMIFlags(MachineInstr::FrameSetup);
1135       break;
1136     case CodeModel::Large:
1137       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
1138         .addExternalSymbol("__chkstk")
1139         .setMIFlags(MachineInstr::FrameSetup);
1140 
1141       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
1142           .add(predOps(ARMCC::AL))
1143           .addReg(ARM::R12, RegState::Kill)
1144           .addReg(ARM::R4, RegState::Implicit)
1145           .setMIFlags(MachineInstr::FrameSetup);
1146       break;
1147     }
1148 
1149     MachineInstrBuilder Instr, SEH;
1150     Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
1151                 .addReg(ARM::SP, RegState::Kill)
1152                 .addReg(ARM::R4, RegState::Kill)
1153                 .setMIFlags(MachineInstr::FrameSetup)
1154                 .add(predOps(ARMCC::AL))
1155                 .add(condCodeOp());
1156     if (NeedsWinCFIStackAlloc) {
1157       SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc))
1158                 .addImm(NumBytes)
1159                 .addImm(/*Wide=*/1)
1160                 .setMIFlags(MachineInstr::FrameSetup);
1161       MBB.insertAfter(Instr, SEH);
1162     }
1163     NumBytes = 0;
1164   }
1165 
1166   if (NumBytes) {
1167     // Adjust SP after all the callee-save spills.
1168     if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
1169         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
1170       DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
1171     else {
1172       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
1173                    MachineInstr::FrameSetup);
1174       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
1175     }
1176 
1177     if (HasFP && isARM)
1178       // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
1179       // Note it's not safe to do this in Thumb2 mode because it would have
1180       // taken two instructions:
1181       // mov sp, r7
1182       // sub sp, #24
1183       // If an interrupt is taken between the two instructions, then sp is in
1184       // an inconsistent state (pointing to the middle of callee-saved area).
1185       // The interrupt handler can end up clobbering the registers.
1186       AFI->setShouldRestoreSPFromFP(true);
1187   }
1188 
1189   // Set FP to point to the stack slot that contains the previous FP.
1190   // For iOS, FP is R7, which has now been stored in spill area 1.
1191   // Otherwise, if this is not iOS, all the callee-saved registers go
1192   // into spill area 1, including the FP in R11.  In either case, it
1193   // is in area one and the adjustment needs to take place just after
1194   // that push.
1195   MachineBasicBlock::iterator AfterPush;
1196   if (HasFP) {
1197     MachineBasicBlock::iterator FPPushInst;
1198     // Offset from SP immediately after the push which saved the FP to the FP
1199     // save slot.
1200     int64_t FPOffsetAfterPush;
1201     switch (FramePtrSpillArea) {
1202     case SpillArea::GPRCS1:
1203       FPPushInst = GPRCS1Push;
1204       FPOffsetAfterPush = MFI.getObjectOffset(FramePtrSpillFI) +
1205                           ArgRegsSaveSize + FPCXTSaveSize +
1206                           sizeOfSPAdjustment(*FPPushInst);
1207       LLVM_DEBUG(dbgs() << "Frame pointer in GPRCS1, offset "
1208                         << FPOffsetAfterPush << "  after that push\n");
1209       break;
1210     case SpillArea::GPRCS2:
1211       FPPushInst = GPRCS2Push;
1212       FPOffsetAfterPush = MFI.getObjectOffset(FramePtrSpillFI) +
1213                           ArgRegsSaveSize + FPCXTSaveSize + GPRCS1Size +
1214                           sizeOfSPAdjustment(*FPPushInst);
1215       if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH)
1216         FPOffsetAfterPush += DPRCSSize + DPRGapSize;
1217       LLVM_DEBUG(dbgs() << "Frame pointer in GPRCS2, offset "
1218                         << FPOffsetAfterPush << "  after that push\n");
1219       break;
1220     default:
1221       llvm_unreachable("frame pointer in unknown spill area");
1222       break;
1223     }
1224     AfterPush = std::next(FPPushInst);
1225     if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH)
1226       assert(FPOffsetAfterPush == 0);
1227 
1228     // Emit the MOV or ADD to set up the frame pointer register.
1229     emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII,
1230                          FramePtr, ARM::SP, FPOffsetAfterPush,
1231                          MachineInstr::FrameSetup);
1232 
1233     if (!NeedsWinCFI) {
1234       // Emit DWARF info to find the CFA using the frame pointer from this
1235       // point onward.
1236       if (FPOffsetAfterPush != 0) {
1237         unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
1238             nullptr, MRI->getDwarfRegNum(FramePtr, true),
1239             -MFI.getObjectOffset(FramePtrSpillFI)));
1240         BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1241             .addCFIIndex(CFIIndex)
1242             .setMIFlags(MachineInstr::FrameSetup);
1243       } else {
1244         unsigned CFIIndex =
1245             MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
1246                 nullptr, MRI->getDwarfRegNum(FramePtr, true)));
1247         BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1248             .addCFIIndex(CFIIndex)
1249             .setMIFlags(MachineInstr::FrameSetup);
1250       }
1251     }
1252   }
1253 
1254   // Emit a SEH opcode indicating the prologue end. The rest of the prologue
1255   // instructions below don't need to be replayed to unwind the stack.
1256   if (NeedsWinCFI && MBBI != MBB.begin()) {
1257     MachineBasicBlock::iterator End = MBBI;
1258     if (HasFP && PushPopSplit == ARMSubtarget::SplitR11WindowsSEH)
1259       End = AfterPush;
1260     insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup);
1261     BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd))
1262         .setMIFlag(MachineInstr::FrameSetup);
1263     MF.setHasWinCFI(true);
1264   }
1265 
1266   // Now that the prologue's actual instructions are finalised, we can insert
1267   // the necessary DWARF cf instructions to describe the situation. Start by
1268   // recording where each register ended up:
1269   if (!NeedsWinCFI) {
1270     for (const auto &Entry : reverse(CSI)) {
1271       Register Reg = Entry.getReg();
1272       int FI = Entry.getFrameIdx();
1273       MachineBasicBlock::iterator CFIPos;
1274       switch (getSpillArea(Reg, PushPopSplit, AFI->getNumAlignedDPRCS2Regs(),
1275                            RegInfo)) {
1276       case SpillArea::GPRCS1:
1277         CFIPos = std::next(GPRCS1Push);
1278         break;
1279       case SpillArea::GPRCS2:
1280         CFIPos = std::next(GPRCS2Push);
1281         break;
1282       case SpillArea::DPRCS1:
1283         CFIPos = std::next(LastPush);
1284         break;
1285       case SpillArea::FPCXT:
1286       case SpillArea::DPRCS2:
1287         // FPCXT and DPRCS2 are not represented in the DWARF info.
1288         break;
1289       }
1290 
1291       if (CFIPos.isValid()) {
1292         int CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1293             nullptr,
1294             MRI->getDwarfRegNum(Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg,
1295                                 true),
1296             MFI.getObjectOffset(FI)));
1297         BuildMI(MBB, CFIPos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1298             .addCFIIndex(CFIIndex)
1299             .setMIFlags(MachineInstr::FrameSetup);
1300       }
1301     }
1302   }
1303 
1304   // Now we can emit descriptions of where the canonical frame address was
1305   // throughout the process. If we have a frame pointer, it takes over the job
1306   // half-way through, so only the first few .cfi_def_cfa_offset instructions
1307   // actually get emitted.
1308   if (!NeedsWinCFI) {
1309     LLVM_DEBUG(DefCFAOffsetCandidates.dump());
1310     DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
1311   }
1312 
1313   if (STI.isTargetELF() && hasFP(MF))
1314     MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
1315                             AFI->getFramePtrSpillOffset());
1316 
1317   AFI->setFPCXTSaveAreaSize(FPCXTSaveSize);
1318   AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
1319   AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
1320   AFI->setDPRCalleeSavedGapSize(DPRGapSize);
1321   AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
1322 
1323   // If we need dynamic stack realignment, do it here. Be paranoid and make
1324   // sure if we also have VLAs, we have a base pointer for frame access.
1325   // If aligned NEON registers were spilled, the stack has already been
1326   // realigned.
1327   if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) {
1328     Align MaxAlign = MFI.getMaxAlign();
1329     assert(!AFI->isThumb1OnlyFunction());
1330     if (!AFI->isThumbFunction()) {
1331       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
1332                                false);
1333     } else {
1334       // We cannot use sp as source/dest register here, thus we're using r4 to
1335       // perform the calculations. We're emitting the following sequence:
1336       // mov r4, sp
1337       // -- use emitAligningInstructions to produce best sequence to zero
1338       // -- out lower bits in r4
1339       // mov sp, r4
1340       // FIXME: It will be better just to find spare register here.
1341       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
1342           .addReg(ARM::SP, RegState::Kill)
1343           .add(predOps(ARMCC::AL));
1344       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
1345                                false);
1346       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1347           .addReg(ARM::R4, RegState::Kill)
1348           .add(predOps(ARMCC::AL));
1349     }
1350 
1351     AFI->setShouldRestoreSPFromFP(true);
1352   }
1353 
1354   // If we need a base pointer, set it up here. It's whatever the value
1355   // of the stack pointer is at this point. Any variable size objects
1356   // will be allocated after this, so we can still use the base pointer
1357   // to reference locals.
1358   // FIXME: Clarify FrameSetup flags here.
1359   if (RegInfo->hasBasePointer(MF)) {
1360     if (isARM)
1361       BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
1362           .addReg(ARM::SP)
1363           .add(predOps(ARMCC::AL))
1364           .add(condCodeOp());
1365     else
1366       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
1367           .addReg(ARM::SP)
1368           .add(predOps(ARMCC::AL));
1369   }
1370 
1371   // If the frame has variable sized objects then the epilogue must restore
1372   // the sp from fp. We can assume there's an FP here since hasFP already
1373   // checks for hasVarSizedObjects.
1374   if (MFI.hasVarSizedObjects())
1375     AFI->setShouldRestoreSPFromFP(true);
1376 }
1377 
1378 void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
1379                                     MachineBasicBlock &MBB) const {
1380   MachineFrameInfo &MFI = MF.getFrameInfo();
1381   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1382   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
1383   const ARMBaseInstrInfo &TII =
1384       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1385   assert(!AFI->isThumb1OnlyFunction() &&
1386          "This emitEpilogue does not support Thumb1!");
1387   bool isARM = !AFI->isThumbFunction();
1388   ARMSubtarget::PushPopSplitVariation PushPopSplit =
1389       STI.getPushPopSplitVariation(MF);
1390 
1391   LLVM_DEBUG(dbgs() << "Emitting epilogue for " << MF.getName() << "\n");
1392 
1393   // Amount of stack space we reserved next to incoming args for either
1394   // varargs registers or stack arguments in tail calls made by this function.
1395   unsigned ReservedArgStack = AFI->getArgRegsSaveSize();
1396 
1397   // How much of the stack used by incoming arguments this function is expected
1398   // to restore in this particular epilogue.
1399   int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB);
1400   int NumBytes = (int)MFI.getStackSize();
1401   Register FramePtr = RegInfo->getFrameRegister(MF);
1402 
1403   // All calls are tail calls in GHC calling conv, and functions have no
1404   // prologue/epilogue.
1405   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1406     return;
1407 
1408   // First put ourselves on the first (from top) terminator instructions.
1409   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1410   DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1411 
1412   MachineBasicBlock::iterator RangeStart;
1413   if (!AFI->hasStackFrame()) {
1414     if (MF.hasWinCFI()) {
1415       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
1416           .setMIFlag(MachineInstr::FrameDestroy);
1417       RangeStart = initMBBRange(MBB, MBBI);
1418     }
1419 
1420     if (NumBytes + IncomingArgStackToRestore != 0)
1421       emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1422                    NumBytes + IncomingArgStackToRestore,
1423                    MachineInstr::FrameDestroy);
1424   } else {
1425     // Unwind MBBI to point to first LDR / VLDRD.
1426     if (MBBI != MBB.begin()) {
1427       do {
1428         --MBBI;
1429       } while (MBBI != MBB.begin() &&
1430                MBBI->getFlag(MachineInstr::FrameDestroy));
1431       if (!MBBI->getFlag(MachineInstr::FrameDestroy))
1432         ++MBBI;
1433     }
1434 
1435     if (MF.hasWinCFI()) {
1436       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
1437           .setMIFlag(MachineInstr::FrameDestroy);
1438       RangeStart = initMBBRange(MBB, MBBI);
1439     }
1440 
1441     // Move SP to start of FP callee save spill area.
1442     NumBytes -= (ReservedArgStack +
1443                  AFI->getFPCXTSaveAreaSize() +
1444                  AFI->getGPRCalleeSavedArea1Size() +
1445                  AFI->getGPRCalleeSavedArea2Size() +
1446                  AFI->getDPRCalleeSavedGapSize() +
1447                  AFI->getDPRCalleeSavedAreaSize());
1448 
1449     // Reset SP based on frame pointer only if the stack frame extends beyond
1450     // frame pointer stack slot or target is ELF and the function has FP.
1451     if (AFI->shouldRestoreSPFromFP()) {
1452       NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
1453       if (NumBytes) {
1454         if (isARM)
1455           emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
1456                                   ARMCC::AL, 0, TII,
1457                                   MachineInstr::FrameDestroy);
1458         else {
1459           // It's not possible to restore SP from FP in a single instruction.
1460           // For iOS, this looks like:
1461           // mov sp, r7
1462           // sub sp, #24
1463           // This is bad, if an interrupt is taken after the mov, sp is in an
1464           // inconsistent state.
1465           // Use the first callee-saved register as a scratch register.
1466           assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
1467                  "No scratch register to restore SP from FP!");
1468           emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
1469                                  ARMCC::AL, 0, TII, MachineInstr::FrameDestroy);
1470           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1471               .addReg(ARM::R4)
1472               .add(predOps(ARMCC::AL))
1473               .setMIFlag(MachineInstr::FrameDestroy);
1474         }
1475       } else {
1476         // Thumb2 or ARM.
1477         if (isARM)
1478           BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
1479               .addReg(FramePtr)
1480               .add(predOps(ARMCC::AL))
1481               .add(condCodeOp())
1482               .setMIFlag(MachineInstr::FrameDestroy);
1483         else
1484           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1485               .addReg(FramePtr)
1486               .add(predOps(ARMCC::AL))
1487               .setMIFlag(MachineInstr::FrameDestroy);
1488       }
1489     } else if (NumBytes &&
1490                !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
1491       emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes,
1492                    MachineInstr::FrameDestroy);
1493 
1494     // Increment past our save areas.
1495     if (AFI->getGPRCalleeSavedArea2Size() &&
1496         PushPopSplit == ARMSubtarget::SplitR11WindowsSEH)
1497       MBBI++;
1498 
1499     if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
1500       MBBI++;
1501       // Since vpop register list cannot have gaps, there may be multiple vpop
1502       // instructions in the epilogue.
1503       while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
1504         MBBI++;
1505     }
1506     if (AFI->getDPRCalleeSavedGapSize()) {
1507       assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
1508              "unexpected DPR alignment gap");
1509       emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(),
1510                    MachineInstr::FrameDestroy);
1511     }
1512 
1513     if (AFI->getGPRCalleeSavedArea2Size() &&
1514         PushPopSplit != ARMSubtarget::SplitR11WindowsSEH)
1515       MBBI++;
1516     if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
1517 
1518     if (ReservedArgStack || IncomingArgStackToRestore) {
1519       assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 &&
1520              "attempting to restore negative stack amount");
1521       emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1522                    ReservedArgStack + IncomingArgStackToRestore,
1523                    MachineInstr::FrameDestroy);
1524     }
1525 
1526     // Validate PAC, It should have been already popped into R12. For CMSE entry
1527     // function, the validation instruction is emitted during expansion of the
1528     // tBXNS_RET, since the validation must use the value of SP at function
1529     // entry, before saving, resp. after restoring, FPCXTNS.
1530     if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction())
1531       BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT));
1532   }
1533 
1534   if (MF.hasWinCFI()) {
1535     insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy);
1536     BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd))
1537         .setMIFlag(MachineInstr::FrameDestroy);
1538   }
1539 }
1540 
1541 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1542 /// debug info.  It's the same as what we use for resolving the code-gen
1543 /// references for now.  FIXME: This can go wrong when references are
1544 /// SP-relative and simple call frames aren't used.
1545 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF,
1546                                                      int FI,
1547                                                      Register &FrameReg) const {
1548   return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0));
1549 }
1550 
1551 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
1552                                                  int FI, Register &FrameReg,
1553                                                  int SPAdj) const {
1554   const MachineFrameInfo &MFI = MF.getFrameInfo();
1555   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1556       MF.getSubtarget().getRegisterInfo());
1557   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1558   int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
1559   int FPOffset = Offset - AFI->getFramePtrSpillOffset();
1560   bool isFixed = MFI.isFixedObjectIndex(FI);
1561 
1562   FrameReg = ARM::SP;
1563   Offset += SPAdj;
1564 
1565   // SP can move around if there are allocas.  We may also lose track of SP
1566   // when emergency spilling inside a non-reserved call frame setup.
1567   bool hasMovingSP = !hasReservedCallFrame(MF);
1568 
1569   // When dynamically realigning the stack, use the frame pointer for
1570   // parameters, and the stack/base pointer for locals.
1571   if (RegInfo->hasStackRealignment(MF)) {
1572     assert(hasFP(MF) && "dynamic stack realignment without a FP!");
1573     if (isFixed) {
1574       FrameReg = RegInfo->getFrameRegister(MF);
1575       Offset = FPOffset;
1576     } else if (hasMovingSP) {
1577       assert(RegInfo->hasBasePointer(MF) &&
1578              "VLAs and dynamic stack alignment, but missing base pointer!");
1579       FrameReg = RegInfo->getBaseRegister();
1580       Offset -= SPAdj;
1581     }
1582     return Offset;
1583   }
1584 
1585   // If there is a frame pointer, use it when we can.
1586   if (hasFP(MF) && AFI->hasStackFrame()) {
1587     // Use frame pointer to reference fixed objects. Use it for locals if
1588     // there are VLAs (and thus the SP isn't reliable as a base).
1589     if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
1590       FrameReg = RegInfo->getFrameRegister(MF);
1591       return FPOffset;
1592     } else if (hasMovingSP) {
1593       assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
1594       if (AFI->isThumb2Function()) {
1595         // Try to use the frame pointer if we can, else use the base pointer
1596         // since it's available. This is handy for the emergency spill slot, in
1597         // particular.
1598         if (FPOffset >= -255 && FPOffset < 0) {
1599           FrameReg = RegInfo->getFrameRegister(MF);
1600           return FPOffset;
1601         }
1602       }
1603     } else if (AFI->isThumbFunction()) {
1604       // Prefer SP to base pointer, if the offset is suitably aligned and in
1605       // range as the effective range of the immediate offset is bigger when
1606       // basing off SP.
1607       // Use  add <rd>, sp, #<imm8>
1608       //      ldr <rd>, [sp, #<imm8>]
1609       if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
1610         return Offset;
1611       // In Thumb2 mode, the negative offset is very limited. Try to avoid
1612       // out of range references. ldr <rt>,[<rn>, #-<imm8>]
1613       if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
1614         FrameReg = RegInfo->getFrameRegister(MF);
1615         return FPOffset;
1616       }
1617     } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
1618       // Otherwise, use SP or FP, whichever is closer to the stack slot.
1619       FrameReg = RegInfo->getFrameRegister(MF);
1620       return FPOffset;
1621     }
1622   }
1623   // Use the base pointer if we have one.
1624   // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper?
1625   // That can happen if we forced a base pointer for a large call frame.
1626   if (RegInfo->hasBasePointer(MF)) {
1627     FrameReg = RegInfo->getBaseRegister();
1628     Offset -= SPAdj;
1629   }
1630   return Offset;
1631 }
1632 
1633 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
1634                                     MachineBasicBlock::iterator MI,
1635                                     ArrayRef<CalleeSavedInfo> CSI,
1636                                     unsigned StmOpc, unsigned StrOpc,
1637                                     bool NoGap,
1638                                     function_ref<bool(unsigned)> Func) const {
1639   MachineFunction &MF = *MBB.getParent();
1640   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1641   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1642 
1643   DebugLoc DL;
1644 
1645   using RegAndKill = std::pair<unsigned, bool>;
1646 
1647   SmallVector<RegAndKill, 4> Regs;
1648   unsigned i = CSI.size();
1649   while (i != 0) {
1650     unsigned LastReg = 0;
1651     for (; i != 0; --i) {
1652       Register Reg = CSI[i-1].getReg();
1653       if (!Func(Reg))
1654         continue;
1655 
1656       const MachineRegisterInfo &MRI = MF.getRegInfo();
1657       bool isLiveIn = MRI.isLiveIn(Reg);
1658       if (!isLiveIn && !MRI.isReserved(Reg))
1659         MBB.addLiveIn(Reg);
1660       // If NoGap is true, push consecutive registers and then leave the rest
1661       // for other instructions. e.g.
1662       // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
1663       if (NoGap && LastReg && LastReg != Reg-1)
1664         break;
1665       LastReg = Reg;
1666       // Do not set a kill flag on values that are also marked as live-in. This
1667       // happens with the @llvm-returnaddress intrinsic and with arguments
1668       // passed in callee saved registers.
1669       // Omitting the kill flags is conservatively correct even if the live-in
1670       // is not used after all.
1671       Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
1672     }
1673 
1674     if (Regs.empty())
1675       continue;
1676 
1677     llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) {
1678       return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
1679     });
1680 
1681     if (Regs.size() > 1 || StrOpc== 0) {
1682       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
1683                                     .addReg(ARM::SP)
1684                                     .setMIFlags(MachineInstr::FrameSetup)
1685                                     .add(predOps(ARMCC::AL));
1686       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1687         MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
1688     } else if (Regs.size() == 1) {
1689       BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
1690           .addReg(Regs[0].first, getKillRegState(Regs[0].second))
1691           .addReg(ARM::SP)
1692           .setMIFlags(MachineInstr::FrameSetup)
1693           .addImm(-4)
1694           .add(predOps(ARMCC::AL));
1695     }
1696     Regs.clear();
1697 
1698     // Put any subsequent vpush instructions before this one: they will refer to
1699     // higher register numbers so need to be pushed first in order to preserve
1700     // monotonicity.
1701     if (MI != MBB.begin())
1702       --MI;
1703   }
1704 }
1705 
1706 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
1707                                    MachineBasicBlock::iterator MI,
1708                                    MutableArrayRef<CalleeSavedInfo> CSI,
1709                                    unsigned LdmOpc, unsigned LdrOpc,
1710                                    bool isVarArg, bool NoGap,
1711                                    function_ref<bool(unsigned)> Func) const {
1712   MachineFunction &MF = *MBB.getParent();
1713   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1714   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1715   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1716   bool hasPAC = AFI->shouldSignReturnAddress();
1717   DebugLoc DL;
1718   bool isTailCall = false;
1719   bool isInterrupt = false;
1720   bool isTrap = false;
1721   bool isCmseEntry = false;
1722   ARMSubtarget::PushPopSplitVariation PushPopSplit =
1723       STI.getPushPopSplitVariation(MF);
1724   if (MBB.end() != MI) {
1725     DL = MI->getDebugLoc();
1726     unsigned RetOpcode = MI->getOpcode();
1727     isTailCall =
1728         (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri ||
1729          RetOpcode == ARM::TCRETURNrinotr12);
1730     isInterrupt =
1731         RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
1732     isTrap =
1733         RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
1734         RetOpcode == ARM::tTRAP;
1735     isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET);
1736   }
1737 
1738   SmallVector<unsigned, 4> Regs;
1739   unsigned i = CSI.size();
1740   while (i != 0) {
1741     unsigned LastReg = 0;
1742     bool DeleteRet = false;
1743     for (; i != 0; --i) {
1744       CalleeSavedInfo &Info = CSI[i-1];
1745       Register Reg = Info.getReg();
1746       if (!Func(Reg))
1747         continue;
1748 
1749       if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
1750           !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 &&
1751           STI.hasV5TOps() && MBB.succ_empty() && !hasPAC &&
1752           (PushPopSplit != ARMSubtarget::SplitR11WindowsSEH &&
1753            PushPopSplit != ARMSubtarget::SplitR11AAPCSSignRA)) {
1754         Reg = ARM::PC;
1755         // Fold the return instruction into the LDM.
1756         DeleteRet = true;
1757         LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
1758       }
1759 
1760       // If NoGap is true, pop consecutive registers and then leave the rest
1761       // for other instructions. e.g.
1762       // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1763       if (NoGap && LastReg && LastReg != Reg-1)
1764         break;
1765 
1766       LastReg = Reg;
1767       Regs.push_back(Reg);
1768     }
1769 
1770     if (Regs.empty())
1771       continue;
1772 
1773     llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) {
1774       return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
1775     });
1776 
1777     if (Regs.size() > 1 || LdrOpc == 0) {
1778       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
1779                                     .addReg(ARM::SP)
1780                                     .add(predOps(ARMCC::AL))
1781                                     .setMIFlags(MachineInstr::FrameDestroy);
1782       for (unsigned Reg : Regs)
1783         MIB.addReg(Reg, getDefRegState(true));
1784       if (DeleteRet) {
1785         if (MI != MBB.end()) {
1786           MIB.copyImplicitOps(*MI);
1787           MI->eraseFromParent();
1788         }
1789       }
1790       MI = MIB;
1791     } else if (Regs.size() == 1) {
1792       // If we adjusted the reg to PC from LR above, switch it back here. We
1793       // only do that for LDM.
1794       if (Regs[0] == ARM::PC)
1795         Regs[0] = ARM::LR;
1796       MachineInstrBuilder MIB =
1797         BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
1798           .addReg(ARM::SP, RegState::Define)
1799           .addReg(ARM::SP)
1800           .setMIFlags(MachineInstr::FrameDestroy);
1801       // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1802       // that refactoring is complete (eventually).
1803       if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
1804         MIB.addReg(0);
1805         MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
1806       } else
1807         MIB.addImm(4);
1808       MIB.add(predOps(ARMCC::AL));
1809     }
1810     Regs.clear();
1811 
1812     // Put any subsequent vpop instructions after this one: they will refer to
1813     // higher register numbers so need to be popped afterwards.
1814     if (MI != MBB.end())
1815       ++MI;
1816   }
1817 }
1818 
1819 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1820 /// starting from d8.  Also insert stack realignment code and leave the stack
1821 /// pointer pointing to the d8 spill slot.
1822 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
1823                                     MachineBasicBlock::iterator MI,
1824                                     unsigned NumAlignedDPRCS2Regs,
1825                                     ArrayRef<CalleeSavedInfo> CSI,
1826                                     const TargetRegisterInfo *TRI) {
1827   MachineFunction &MF = *MBB.getParent();
1828   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1829   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1830   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1831   MachineFrameInfo &MFI = MF.getFrameInfo();
1832 
1833   // Mark the D-register spill slots as properly aligned.  Since MFI computes
1834   // stack slot layout backwards, this can actually mean that the d-reg stack
1835   // slot offsets can be wrong. The offset for d8 will always be correct.
1836   for (const CalleeSavedInfo &I : CSI) {
1837     unsigned DNum = I.getReg() - ARM::D8;
1838     if (DNum > NumAlignedDPRCS2Regs - 1)
1839       continue;
1840     int FI = I.getFrameIdx();
1841     // The even-numbered registers will be 16-byte aligned, the odd-numbered
1842     // registers will be 8-byte aligned.
1843     MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16));
1844 
1845     // The stack slot for D8 needs to be maximally aligned because this is
1846     // actually the point where we align the stack pointer.  MachineFrameInfo
1847     // computes all offsets relative to the incoming stack pointer which is a
1848     // bit weird when realigning the stack.  Any extra padding for this
1849     // over-alignment is not realized because the code inserted below adjusts
1850     // the stack pointer by numregs * 8 before aligning the stack pointer.
1851     if (DNum == 0)
1852       MFI.setObjectAlignment(FI, MFI.getMaxAlign());
1853   }
1854 
1855   // Move the stack pointer to the d8 spill slot, and align it at the same
1856   // time. Leave the stack slot address in the scratch register r4.
1857   //
1858   //   sub r4, sp, #numregs * 8
1859   //   bic r4, r4, #align - 1
1860   //   mov sp, r4
1861   //
1862   bool isThumb = AFI->isThumbFunction();
1863   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1864   AFI->setShouldRestoreSPFromFP(true);
1865 
1866   // sub r4, sp, #numregs * 8
1867   // The immediate is <= 64, so it doesn't need any special encoding.
1868   unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
1869   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1870       .addReg(ARM::SP)
1871       .addImm(8 * NumAlignedDPRCS2Regs)
1872       .add(predOps(ARMCC::AL))
1873       .add(condCodeOp());
1874 
1875   Align MaxAlign = MF.getFrameInfo().getMaxAlign();
1876   // We must set parameter MustBeSingleInstruction to true, since
1877   // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1878   // stack alignment.  Luckily, this can always be done since all ARM
1879   // architecture versions that support Neon also support the BFC
1880   // instruction.
1881   emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
1882 
1883   // mov sp, r4
1884   // The stack pointer must be adjusted before spilling anything, otherwise
1885   // the stack slots could be clobbered by an interrupt handler.
1886   // Leave r4 live, it is used below.
1887   Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
1888   MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
1889                                 .addReg(ARM::R4)
1890                                 .add(predOps(ARMCC::AL));
1891   if (!isThumb)
1892     MIB.add(condCodeOp());
1893 
1894   // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1895   // r4 holds the stack slot address.
1896   unsigned NextReg = ARM::D8;
1897 
1898   // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1899   // The writeback is only needed when emitting two vst1.64 instructions.
1900   if (NumAlignedDPRCS2Regs >= 6) {
1901     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1902                                                &ARM::QQPRRegClass);
1903     MBB.addLiveIn(SupReg);
1904     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
1905         .addReg(ARM::R4, RegState::Kill)
1906         .addImm(16)
1907         .addReg(NextReg)
1908         .addReg(SupReg, RegState::ImplicitKill)
1909         .add(predOps(ARMCC::AL));
1910     NextReg += 4;
1911     NumAlignedDPRCS2Regs -= 4;
1912   }
1913 
1914   // We won't modify r4 beyond this point.  It currently points to the next
1915   // register to be spilled.
1916   unsigned R4BaseReg = NextReg;
1917 
1918   // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1919   if (NumAlignedDPRCS2Regs >= 4) {
1920     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1921                                                &ARM::QQPRRegClass);
1922     MBB.addLiveIn(SupReg);
1923     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
1924         .addReg(ARM::R4)
1925         .addImm(16)
1926         .addReg(NextReg)
1927         .addReg(SupReg, RegState::ImplicitKill)
1928         .add(predOps(ARMCC::AL));
1929     NextReg += 4;
1930     NumAlignedDPRCS2Regs -= 4;
1931   }
1932 
1933   // 16-byte aligned vst1.64 with 2 d-regs.
1934   if (NumAlignedDPRCS2Regs >= 2) {
1935     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1936                                                &ARM::QPRRegClass);
1937     MBB.addLiveIn(SupReg);
1938     BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
1939         .addReg(ARM::R4)
1940         .addImm(16)
1941         .addReg(SupReg)
1942         .add(predOps(ARMCC::AL));
1943     NextReg += 2;
1944     NumAlignedDPRCS2Regs -= 2;
1945   }
1946 
1947   // Finally, use a vanilla vstr.64 for the odd last register.
1948   if (NumAlignedDPRCS2Regs) {
1949     MBB.addLiveIn(NextReg);
1950     // vstr.64 uses addrmode5 which has an offset scale of 4.
1951     BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
1952         .addReg(NextReg)
1953         .addReg(ARM::R4)
1954         .addImm((NextReg - R4BaseReg) * 2)
1955         .add(predOps(ARMCC::AL));
1956   }
1957 
1958   // The last spill instruction inserted should kill the scratch register r4.
1959   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1960 }
1961 
1962 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1963 /// iterator to the following instruction.
1964 static MachineBasicBlock::iterator
1965 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
1966                         unsigned NumAlignedDPRCS2Regs) {
1967   //   sub r4, sp, #numregs * 8
1968   //   bic r4, r4, #align - 1
1969   //   mov sp, r4
1970   ++MI; ++MI; ++MI;
1971   assert(MI->mayStore() && "Expecting spill instruction");
1972 
1973   // These switches all fall through.
1974   switch(NumAlignedDPRCS2Regs) {
1975   case 7:
1976     ++MI;
1977     assert(MI->mayStore() && "Expecting spill instruction");
1978     [[fallthrough]];
1979   default:
1980     ++MI;
1981     assert(MI->mayStore() && "Expecting spill instruction");
1982     [[fallthrough]];
1983   case 1:
1984   case 2:
1985   case 4:
1986     assert(MI->killsRegister(ARM::R4, /*TRI=*/nullptr) && "Missed kill flag");
1987     ++MI;
1988   }
1989   return MI;
1990 }
1991 
1992 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1993 /// starting from d8.  These instructions are assumed to execute while the
1994 /// stack is still aligned, unlike the code inserted by emitPopInst.
1995 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
1996                                       MachineBasicBlock::iterator MI,
1997                                       unsigned NumAlignedDPRCS2Regs,
1998                                       ArrayRef<CalleeSavedInfo> CSI,
1999                                       const TargetRegisterInfo *TRI) {
2000   MachineFunction &MF = *MBB.getParent();
2001   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2002   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
2003   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2004 
2005   // Find the frame index assigned to d8.
2006   int D8SpillFI = 0;
2007   for (const CalleeSavedInfo &I : CSI)
2008     if (I.getReg() == ARM::D8) {
2009       D8SpillFI = I.getFrameIdx();
2010       break;
2011     }
2012 
2013   // Materialize the address of the d8 spill slot into the scratch register r4.
2014   // This can be fairly complicated if the stack frame is large, so just use
2015   // the normal frame index elimination mechanism to do it.  This code runs as
2016   // the initial part of the epilog where the stack and base pointers haven't
2017   // been changed yet.
2018   bool isThumb = AFI->isThumbFunction();
2019   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
2020 
2021   unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
2022   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
2023       .addFrameIndex(D8SpillFI)
2024       .addImm(0)
2025       .add(predOps(ARMCC::AL))
2026       .add(condCodeOp());
2027 
2028   // Now restore NumAlignedDPRCS2Regs registers starting from d8.
2029   unsigned NextReg = ARM::D8;
2030 
2031   // 16-byte aligned vld1.64 with 4 d-regs and writeback.
2032   if (NumAlignedDPRCS2Regs >= 6) {
2033     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
2034                                                &ARM::QQPRRegClass);
2035     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
2036         .addReg(ARM::R4, RegState::Define)
2037         .addReg(ARM::R4, RegState::Kill)
2038         .addImm(16)
2039         .addReg(SupReg, RegState::ImplicitDefine)
2040         .add(predOps(ARMCC::AL));
2041     NextReg += 4;
2042     NumAlignedDPRCS2Regs -= 4;
2043   }
2044 
2045   // We won't modify r4 beyond this point.  It currently points to the next
2046   // register to be spilled.
2047   unsigned R4BaseReg = NextReg;
2048 
2049   // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
2050   if (NumAlignedDPRCS2Regs >= 4) {
2051     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
2052                                                &ARM::QQPRRegClass);
2053     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
2054         .addReg(ARM::R4)
2055         .addImm(16)
2056         .addReg(SupReg, RegState::ImplicitDefine)
2057         .add(predOps(ARMCC::AL));
2058     NextReg += 4;
2059     NumAlignedDPRCS2Regs -= 4;
2060   }
2061 
2062   // 16-byte aligned vld1.64 with 2 d-regs.
2063   if (NumAlignedDPRCS2Regs >= 2) {
2064     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
2065                                                &ARM::QPRRegClass);
2066     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
2067         .addReg(ARM::R4)
2068         .addImm(16)
2069         .add(predOps(ARMCC::AL));
2070     NextReg += 2;
2071     NumAlignedDPRCS2Regs -= 2;
2072   }
2073 
2074   // Finally, use a vanilla vldr.64 for the remaining odd register.
2075   if (NumAlignedDPRCS2Regs)
2076     BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
2077         .addReg(ARM::R4)
2078         .addImm(2 * (NextReg - R4BaseReg))
2079         .add(predOps(ARMCC::AL));
2080 
2081   // Last store kills r4.
2082   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
2083 }
2084 
2085 bool ARMFrameLowering::spillCalleeSavedRegisters(
2086     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2087     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2088   if (CSI.empty())
2089     return false;
2090 
2091   MachineFunction &MF = *MBB.getParent();
2092   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2093   ARMSubtarget::PushPopSplitVariation PushPopSplit =
2094       STI.getPushPopSplitVariation(MF);
2095   const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
2096 
2097   unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
2098   unsigned PushOneOpc = AFI->isThumbFunction() ?
2099     ARM::t2STR_PRE : ARM::STR_PRE_IMM;
2100   unsigned FltOpc = ARM::VSTMDDB_UPD;
2101   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
2102   // Compute PAC in R12.
2103   if (AFI->shouldSignReturnAddress()) {
2104     BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC))
2105         .setMIFlags(MachineInstr::FrameSetup);
2106   }
2107   // Save the non-secure floating point context.
2108   if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) {
2109         return C.getReg() == ARM::FPCXTNS;
2110       })) {
2111     BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre),
2112             ARM::SP)
2113         .addReg(ARM::SP)
2114         .addImm(-4)
2115         .add(predOps(ARMCC::AL));
2116   }
2117 
2118   auto CheckRegArea = [PushPopSplit, NumAlignedDPRCS2Regs,
2119                        RegInfo](unsigned Reg, SpillArea TestArea) {
2120     return getSpillArea(Reg, PushPopSplit, NumAlignedDPRCS2Regs, RegInfo) ==
2121            TestArea;
2122   };
2123   auto IsGPRCS1 = [&CheckRegArea](unsigned Reg) {
2124     return CheckRegArea(Reg, SpillArea::GPRCS1);
2125   };
2126   auto IsGPRCS2 = [&CheckRegArea](unsigned Reg) {
2127     return CheckRegArea(Reg, SpillArea::GPRCS2);
2128   };
2129   auto IsDPRCS1 = [&CheckRegArea](unsigned Reg) {
2130     return CheckRegArea(Reg, SpillArea::DPRCS1);
2131   };
2132 
2133   // Windows SEH requires the floating-point registers to be pushed between the
2134   // two blocks of GPRs in some situations. In all other cases, they are pushed
2135   // below the GPRs.
2136   if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) {
2137     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS1);
2138     emitPushInst(MBB, MI, CSI, FltOpc, 0, true, IsDPRCS1);
2139     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS2);
2140   } else {
2141     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS1);
2142     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS2);
2143     emitPushInst(MBB, MI, CSI, FltOpc, 0, true, IsDPRCS1);
2144   }
2145 
2146   // The code above does not insert spill code for the aligned DPRCS2 registers.
2147   // The stack realignment code will be inserted between the push instructions
2148   // and these spills.
2149   if (NumAlignedDPRCS2Regs)
2150     emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
2151 
2152   return true;
2153 }
2154 
2155 bool ARMFrameLowering::restoreCalleeSavedRegisters(
2156     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2157     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2158   if (CSI.empty())
2159     return false;
2160 
2161   MachineFunction &MF = *MBB.getParent();
2162   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2163   const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
2164 
2165   bool isVarArg = AFI->getArgRegsSaveSize() > 0;
2166   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
2167   ARMSubtarget::PushPopSplitVariation PushPopSplit =
2168       STI.getPushPopSplitVariation(MF);
2169 
2170   // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
2171   // registers. Do that here instead.
2172   if (NumAlignedDPRCS2Regs)
2173     emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
2174 
2175   unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
2176   unsigned LdrOpc =
2177       AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
2178   unsigned FltOpc = ARM::VLDMDIA_UPD;
2179 
2180   auto CheckRegArea = [PushPopSplit, NumAlignedDPRCS2Regs,
2181                        RegInfo](unsigned Reg, SpillArea TestArea) {
2182     return getSpillArea(Reg, PushPopSplit, NumAlignedDPRCS2Regs, RegInfo) ==
2183            TestArea;
2184   };
2185   auto IsGPRCS1 = [&CheckRegArea](unsigned Reg) {
2186     return CheckRegArea(Reg, SpillArea::GPRCS1);
2187   };
2188   auto IsGPRCS2 = [&CheckRegArea](unsigned Reg) {
2189     return CheckRegArea(Reg, SpillArea::GPRCS2);
2190   };
2191   auto IsDPRCS1 = [&CheckRegArea](unsigned Reg) {
2192     return CheckRegArea(Reg, SpillArea::DPRCS1);
2193   };
2194 
2195   if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) {
2196     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS2);
2197     emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, IsDPRCS1);
2198     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS1);
2199   } else {
2200     emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, IsDPRCS1);
2201     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS2);
2202     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS1);
2203   }
2204 
2205   return true;
2206 }
2207 
2208 // FIXME: Make generic?
2209 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF,
2210                                             const ARMBaseInstrInfo &TII) {
2211   unsigned FnSize = 0;
2212   for (auto &MBB : MF) {
2213     for (auto &MI : MBB)
2214       FnSize += TII.getInstSizeInBytes(MI);
2215   }
2216   if (MF.getJumpTableInfo())
2217     for (auto &Table: MF.getJumpTableInfo()->getJumpTables())
2218       FnSize += Table.MBBs.size() * 4;
2219   FnSize += MF.getConstantPool()->getConstants().size() * 4;
2220   return FnSize;
2221 }
2222 
2223 /// estimateRSStackSizeLimit - Look at each instruction that references stack
2224 /// frames and return the stack size limit beyond which some of these
2225 /// instructions will require a scratch register during their expansion later.
2226 // FIXME: Move to TII?
2227 static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
2228                                          const TargetFrameLowering *TFI,
2229                                          bool &HasNonSPFrameIndex) {
2230   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2231   const ARMBaseInstrInfo &TII =
2232       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2233   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2234   unsigned Limit = (1 << 12) - 1;
2235   for (auto &MBB : MF) {
2236     for (auto &MI : MBB) {
2237       if (MI.isDebugInstr())
2238         continue;
2239       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2240         if (!MI.getOperand(i).isFI())
2241           continue;
2242 
2243         // When using ADDri to get the address of a stack object, 255 is the
2244         // largest offset guaranteed to fit in the immediate offset.
2245         if (MI.getOpcode() == ARM::ADDri) {
2246           Limit = std::min(Limit, (1U << 8) - 1);
2247           break;
2248         }
2249         // t2ADDri will not require an extra register, it can reuse the
2250         // destination.
2251         if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12)
2252           break;
2253 
2254         const MCInstrDesc &MCID = MI.getDesc();
2255         const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF);
2256         if (RegClass && !RegClass->contains(ARM::SP))
2257           HasNonSPFrameIndex = true;
2258 
2259         // Otherwise check the addressing mode.
2260         switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
2261         case ARMII::AddrMode_i12:
2262         case ARMII::AddrMode2:
2263           // Default 12 bit limit.
2264           break;
2265         case ARMII::AddrMode3:
2266         case ARMII::AddrModeT2_i8neg:
2267           Limit = std::min(Limit, (1U << 8) - 1);
2268           break;
2269         case ARMII::AddrMode5FP16:
2270           Limit = std::min(Limit, ((1U << 8) - 1) * 2);
2271           break;
2272         case ARMII::AddrMode5:
2273         case ARMII::AddrModeT2_i8s4:
2274         case ARMII::AddrModeT2_ldrex:
2275           Limit = std::min(Limit, ((1U << 8) - 1) * 4);
2276           break;
2277         case ARMII::AddrModeT2_i12:
2278           // i12 supports only positive offset so these will be converted to
2279           // i8 opcodes. See llvm::rewriteT2FrameIndex.
2280           if (TFI->hasFP(MF) && AFI->hasStackFrame())
2281             Limit = std::min(Limit, (1U << 8) - 1);
2282           break;
2283         case ARMII::AddrMode4:
2284         case ARMII::AddrMode6:
2285           // Addressing modes 4 & 6 (load/store) instructions can't encode an
2286           // immediate offset for stack references.
2287           return 0;
2288         case ARMII::AddrModeT2_i7:
2289           Limit = std::min(Limit, ((1U << 7) - 1) * 1);
2290           break;
2291         case ARMII::AddrModeT2_i7s2:
2292           Limit = std::min(Limit, ((1U << 7) - 1) * 2);
2293           break;
2294         case ARMII::AddrModeT2_i7s4:
2295           Limit = std::min(Limit, ((1U << 7) - 1) * 4);
2296           break;
2297         default:
2298           llvm_unreachable("Unhandled addressing mode in stack size limit calculation");
2299         }
2300         break; // At most one FI per instruction
2301       }
2302     }
2303   }
2304 
2305   return Limit;
2306 }
2307 
2308 // In functions that realign the stack, it can be an advantage to spill the
2309 // callee-saved vector registers after realigning the stack. The vst1 and vld1
2310 // instructions take alignment hints that can improve performance.
2311 static void
2312 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
2313   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
2314   if (!SpillAlignedNEONRegs)
2315     return;
2316 
2317   // Naked functions don't spill callee-saved registers.
2318   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
2319     return;
2320 
2321   // We are planning to use NEON instructions vst1 / vld1.
2322   if (!MF.getSubtarget<ARMSubtarget>().hasNEON())
2323     return;
2324 
2325   // Don't bother if the default stack alignment is sufficiently high.
2326   if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8))
2327     return;
2328 
2329   // Aligned spills require stack realignment.
2330   if (!static_cast<const ARMBaseRegisterInfo *>(
2331            MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
2332     return;
2333 
2334   // We always spill contiguous d-registers starting from d8. Count how many
2335   // needs spilling.  The register allocator will almost always use the
2336   // callee-saved registers in order, but it can happen that there are holes in
2337   // the range.  Registers above the hole will be spilled to the standard DPRCS
2338   // area.
2339   unsigned NumSpills = 0;
2340   for (; NumSpills < 8; ++NumSpills)
2341     if (!SavedRegs.test(ARM::D8 + NumSpills))
2342       break;
2343 
2344   // Don't do this for just one d-register. It's not worth it.
2345   if (NumSpills < 2)
2346     return;
2347 
2348   // Spill the first NumSpills D-registers after realigning the stack.
2349   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
2350 
2351   // A scratch register is required for the vst1 / vld1 instructions.
2352   SavedRegs.set(ARM::R4);
2353 }
2354 
2355 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2356   // For CMSE entry functions, we want to save the FPCXT_NS immediately
2357   // upon function entry (resp. restore it immmediately before return)
2358   if (STI.hasV8_1MMainlineOps() &&
2359       MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction())
2360     return false;
2361 
2362   // We are disabling shrinkwrapping for now when PAC is enabled, as
2363   // shrinkwrapping can cause clobbering of r12 when the PAC code is
2364   // generated. A follow-up patch will fix this in a more performant manner.
2365   if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress(
2366           true /* SpillsLR */))
2367     return false;
2368 
2369   return true;
2370 }
2371 
2372 bool ARMFrameLowering::requiresAAPCSFrameRecord(
2373     const MachineFunction &MF) const {
2374   const auto &Subtarget = MF.getSubtarget<ARMSubtarget>();
2375   return Subtarget.createAAPCSFrameChain() && hasFP(MF);
2376 }
2377 
2378 // Thumb1 may require a spill when storing to a frame index through FP (or any
2379 // access with execute-only), for cases where FP is a high register (R11). This
2380 // scans the function for cases where this may happen.
2381 static bool canSpillOnFrameIndexAccess(const MachineFunction &MF,
2382                                        const TargetFrameLowering &TFI) {
2383   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2384   if (!AFI->isThumb1OnlyFunction())
2385     return false;
2386 
2387   const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
2388   for (const auto &MBB : MF)
2389     for (const auto &MI : MBB)
2390       if (MI.getOpcode() == ARM::tSTRspi || MI.getOpcode() == ARM::tSTRi ||
2391           STI.genExecuteOnly())
2392         for (const auto &Op : MI.operands())
2393           if (Op.isFI()) {
2394             Register Reg;
2395             TFI.getFrameIndexReference(MF, Op.getIndex(), Reg);
2396             if (ARM::hGPRRegClass.contains(Reg) && Reg != ARM::SP)
2397               return true;
2398           }
2399   return false;
2400 }
2401 
2402 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
2403                                             BitVector &SavedRegs,
2404                                             RegScavenger *RS) const {
2405   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2406   // This tells PEI to spill the FP as if it is any other callee-save register
2407   // to take advantage the eliminateFrameIndex machinery. This also ensures it
2408   // is spilled in the order specified by getCalleeSavedRegs() to make it easier
2409   // to combine multiple loads / stores.
2410   bool CanEliminateFrame = !(requiresAAPCSFrameRecord(MF) && hasFP(MF)) &&
2411                            !MF.getTarget().Options.DisableFramePointerElim(MF);
2412   bool CS1Spilled = false;
2413   bool LRSpilled = false;
2414   unsigned NumGPRSpills = 0;
2415   unsigned NumFPRSpills = 0;
2416   SmallVector<unsigned, 4> UnspilledCS1GPRs;
2417   SmallVector<unsigned, 4> UnspilledCS2GPRs;
2418   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
2419       MF.getSubtarget().getRegisterInfo());
2420   const ARMBaseInstrInfo &TII =
2421       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2422   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2423   MachineFrameInfo &MFI = MF.getFrameInfo();
2424   MachineRegisterInfo &MRI = MF.getRegInfo();
2425   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2426   (void)TRI;  // Silence unused warning in non-assert builds.
2427   Register FramePtr = RegInfo->getFrameRegister(MF);
2428   ARMSubtarget::PushPopSplitVariation PushPopSplit =
2429       STI.getPushPopSplitVariation(MF);
2430 
2431   // Spill R4 if Thumb2 function requires stack realignment - it will be used as
2432   // scratch register. Also spill R4 if Thumb2 function has varsized objects,
2433   // since it's not always possible to restore sp from fp in a single
2434   // instruction.
2435   // FIXME: It will be better just to find spare register here.
2436   if (AFI->isThumb2Function() &&
2437       (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF)))
2438     SavedRegs.set(ARM::R4);
2439 
2440   // If a stack probe will be emitted, spill R4 and LR, since they are
2441   // clobbered by the stack probe call.
2442   // This estimate should be a safe, conservative estimate. The actual
2443   // stack probe is enabled based on the size of the local objects;
2444   // this estimate also includes the varargs store size.
2445   if (STI.isTargetWindows() &&
2446       WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
2447     SavedRegs.set(ARM::R4);
2448     SavedRegs.set(ARM::LR);
2449   }
2450 
2451   if (AFI->isThumb1OnlyFunction()) {
2452     // Spill LR if Thumb1 function uses variable length argument lists.
2453     if (AFI->getArgRegsSaveSize() > 0)
2454       SavedRegs.set(ARM::LR);
2455 
2456     // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
2457     // requires stack alignment.  We don't know for sure what the stack size
2458     // will be, but for this, an estimate is good enough. If there anything
2459     // changes it, it'll be a spill, which implies we've used all the registers
2460     // and so R4 is already used, so not marking it here will be OK.
2461     // FIXME: It will be better just to find spare register here.
2462     if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) ||
2463         MFI.estimateStackSize(MF) > 508)
2464       SavedRegs.set(ARM::R4);
2465   }
2466 
2467   // See if we can spill vector registers to aligned stack.
2468   checkNumAlignedDPRCS2Regs(MF, SavedRegs);
2469 
2470   // Spill the BasePtr if it's used.
2471   if (RegInfo->hasBasePointer(MF))
2472     SavedRegs.set(RegInfo->getBaseRegister());
2473 
2474   // On v8.1-M.Main CMSE entry functions save/restore FPCXT.
2475   if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction())
2476     CanEliminateFrame = false;
2477 
2478   // When return address signing is enabled R12 is treated as callee-saved.
2479   if (AFI->shouldSignReturnAddress())
2480     CanEliminateFrame = false;
2481 
2482   // Don't spill FP if the frame can be eliminated. This is determined
2483   // by scanning the callee-save registers to see if any is modified.
2484   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
2485   for (unsigned i = 0; CSRegs[i]; ++i) {
2486     unsigned Reg = CSRegs[i];
2487     bool Spilled = false;
2488     if (SavedRegs.test(Reg)) {
2489       Spilled = true;
2490       CanEliminateFrame = false;
2491     }
2492 
2493     if (!ARM::GPRRegClass.contains(Reg)) {
2494       if (Spilled) {
2495         if (ARM::SPRRegClass.contains(Reg))
2496           NumFPRSpills++;
2497         else if (ARM::DPRRegClass.contains(Reg))
2498           NumFPRSpills += 2;
2499         else if (ARM::QPRRegClass.contains(Reg))
2500           NumFPRSpills += 4;
2501       }
2502       continue;
2503     }
2504 
2505     if (Spilled) {
2506       NumGPRSpills++;
2507 
2508       if (PushPopSplit != ARMSubtarget::SplitR7) {
2509         if (Reg == ARM::LR)
2510           LRSpilled = true;
2511         CS1Spilled = true;
2512         continue;
2513       }
2514 
2515       // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
2516       switch (Reg) {
2517       case ARM::LR:
2518         LRSpilled = true;
2519         [[fallthrough]];
2520       case ARM::R0: case ARM::R1:
2521       case ARM::R2: case ARM::R3:
2522       case ARM::R4: case ARM::R5:
2523       case ARM::R6: case ARM::R7:
2524         CS1Spilled = true;
2525         break;
2526       default:
2527         break;
2528       }
2529     } else {
2530       if (PushPopSplit != ARMSubtarget::SplitR7) {
2531         UnspilledCS1GPRs.push_back(Reg);
2532         continue;
2533       }
2534 
2535       switch (Reg) {
2536       case ARM::R0: case ARM::R1:
2537       case ARM::R2: case ARM::R3:
2538       case ARM::R4: case ARM::R5:
2539       case ARM::R6: case ARM::R7:
2540       case ARM::LR:
2541         UnspilledCS1GPRs.push_back(Reg);
2542         break;
2543       default:
2544         UnspilledCS2GPRs.push_back(Reg);
2545         break;
2546       }
2547     }
2548   }
2549 
2550   bool ForceLRSpill = false;
2551   if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
2552     unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII);
2553     // Force LR to be spilled if the Thumb function size is > 2048. This enables
2554     // use of BL to implement far jump.
2555     if (FnSize >= (1 << 11)) {
2556       CanEliminateFrame = false;
2557       ForceLRSpill = true;
2558     }
2559   }
2560 
2561   // If any of the stack slot references may be out of range of an immediate
2562   // offset, make sure a register (or a spill slot) is available for the
2563   // register scavenger. Note that if we're indexing off the frame pointer, the
2564   // effective stack size is 4 bytes larger since the FP points to the stack
2565   // slot of the previous FP. Also, if we have variable sized objects in the
2566   // function, stack slot references will often be negative, and some of
2567   // our instructions are positive-offset only, so conservatively consider
2568   // that case to want a spill slot (or register) as well. Similarly, if
2569   // the function adjusts the stack pointer during execution and the
2570   // adjustments aren't already part of our stack size estimate, our offset
2571   // calculations may be off, so be conservative.
2572   // FIXME: We could add logic to be more precise about negative offsets
2573   //        and which instructions will need a scratch register for them. Is it
2574   //        worth the effort and added fragility?
2575   unsigned EstimatedStackSize =
2576       MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
2577 
2578   // Determine biggest (positive) SP offset in MachineFrameInfo.
2579   int MaxFixedOffset = 0;
2580   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
2581     int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
2582     MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
2583   }
2584 
2585   bool HasFP = hasFP(MF);
2586   if (HasFP) {
2587     if (AFI->hasStackFrame())
2588       EstimatedStackSize += 4;
2589   } else {
2590     // If FP is not used, SP will be used to access arguments, so count the
2591     // size of arguments into the estimation.
2592     EstimatedStackSize += MaxFixedOffset;
2593   }
2594   EstimatedStackSize += 16; // For possible paddings.
2595 
2596   unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit;
2597   bool HasNonSPFrameIndex = false;
2598   if (AFI->isThumb1OnlyFunction()) {
2599     // For Thumb1, don't bother to iterate over the function. The only
2600     // instruction that requires an emergency spill slot is a store to a
2601     // frame index.
2602     //
2603     // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned
2604     // immediate. tSTRi, which is used for bp- and fp-relative accesses, has
2605     // a 5-bit unsigned immediate.
2606     //
2607     // We could try to check if the function actually contains a tSTRspi
2608     // that might need the spill slot, but it's not really important.
2609     // Functions with VLAs or extremely large call frames are rare, and
2610     // if a function is allocating more than 1KB of stack, an extra 4-byte
2611     // slot probably isn't relevant.
2612     //
2613     // A special case is the scenario where r11 is used as FP, where accesses
2614     // to a frame index will require its value to be moved into a low reg.
2615     // This is handled later on, once we are able to determine if we have any
2616     // fp-relative accesses.
2617     if (RegInfo->hasBasePointer(MF))
2618       EstimatedRSStackSizeLimit = (1U << 5) * 4;
2619     else
2620       EstimatedRSStackSizeLimit = (1U << 8) * 4;
2621     EstimatedRSFixedSizeLimit = (1U << 5) * 4;
2622   } else {
2623     EstimatedRSStackSizeLimit =
2624         estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex);
2625     EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit;
2626   }
2627   // Final estimate of whether sp or bp-relative accesses might require
2628   // scavenging.
2629   bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit;
2630 
2631   // If the stack pointer moves and we don't have a base pointer, the
2632   // estimate logic doesn't work. The actual offsets might be larger when
2633   // we're constructing a call frame, or we might need to use negative
2634   // offsets from fp.
2635   bool HasMovingSP = MFI.hasVarSizedObjects() ||
2636     (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF));
2637   bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP;
2638 
2639   // If we have a frame pointer, we assume arguments will be accessed
2640   // relative to the frame pointer. Check whether fp-relative accesses to
2641   // arguments require scavenging.
2642   //
2643   // We could do slightly better on Thumb1; in some cases, an sp-relative
2644   // offset would be legal even though an fp-relative offset is not.
2645   int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF);
2646   bool HasLargeArgumentList =
2647       HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit;
2648 
2649   bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP ||
2650                          HasLargeArgumentList || HasNonSPFrameIndex;
2651   LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit
2652                     << "; EstimatedStack: " << EstimatedStackSize
2653                     << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset
2654                     << "; BigFrameOffsets: " << BigFrameOffsets << "\n");
2655   if (BigFrameOffsets ||
2656       !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
2657     AFI->setHasStackFrame(true);
2658 
2659     if (HasFP) {
2660       SavedRegs.set(FramePtr);
2661       // If the frame pointer is required by the ABI, also spill LR so that we
2662       // emit a complete frame record.
2663       if ((requiresAAPCSFrameRecord(MF) ||
2664            MF.getTarget().Options.DisableFramePointerElim(MF)) &&
2665           !LRSpilled) {
2666         SavedRegs.set(ARM::LR);
2667         LRSpilled = true;
2668         NumGPRSpills++;
2669         auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
2670         if (LRPos != UnspilledCS1GPRs.end())
2671           UnspilledCS1GPRs.erase(LRPos);
2672       }
2673       auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
2674       if (FPPos != UnspilledCS1GPRs.end())
2675         UnspilledCS1GPRs.erase(FPPos);
2676       NumGPRSpills++;
2677       if (FramePtr == ARM::R7)
2678         CS1Spilled = true;
2679     }
2680 
2681     // This is the number of extra spills inserted for callee-save GPRs which
2682     // would not otherwise be used by the function. When greater than zero it
2683     // guaranteees that it is possible to scavenge a register to hold the
2684     // address of a stack slot. On Thumb1, the register must be a valid operand
2685     // to tSTRi, i.e. r4-r7. For other subtargets, this is any GPR, i.e. r4-r11
2686     // or lr.
2687     //
2688     // If we don't insert a spill, we instead allocate an emergency spill
2689     // slot, which can be used by scavenging to spill an arbitrary register.
2690     //
2691     // We currently don't try to figure out whether any specific instruction
2692     // requires scavening an additional register.
2693     unsigned NumExtraCSSpill = 0;
2694 
2695     if (AFI->isThumb1OnlyFunction()) {
2696       // For Thumb1-only targets, we need some low registers when we save and
2697       // restore the high registers (which aren't allocatable, but could be
2698       // used by inline assembly) because the push/pop instructions can not
2699       // access high registers. If necessary, we might need to push more low
2700       // registers to ensure that there is at least one free that can be used
2701       // for the saving & restoring, and preferably we should ensure that as
2702       // many as are needed are available so that fewer push/pop instructions
2703       // are required.
2704 
2705       // Low registers which are not currently pushed, but could be (r4-r7).
2706       SmallVector<unsigned, 4> AvailableRegs;
2707 
2708       // Unused argument registers (r0-r3) can be clobbered in the prologue for
2709       // free.
2710       int EntryRegDeficit = 0;
2711       for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
2712         if (!MF.getRegInfo().isLiveIn(Reg)) {
2713           --EntryRegDeficit;
2714           LLVM_DEBUG(dbgs()
2715                      << printReg(Reg, TRI)
2716                      << " is unused argument register, EntryRegDeficit = "
2717                      << EntryRegDeficit << "\n");
2718         }
2719       }
2720 
2721       // Unused return registers can be clobbered in the epilogue for free.
2722       int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
2723       LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
2724                         << " return regs used, ExitRegDeficit = "
2725                         << ExitRegDeficit << "\n");
2726 
2727       int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
2728       LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
2729 
2730       // r4-r6 can be used in the prologue if they are pushed by the first push
2731       // instruction.
2732       for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
2733         if (SavedRegs.test(Reg)) {
2734           --RegDeficit;
2735           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2736                             << " is saved low register, RegDeficit = "
2737                             << RegDeficit << "\n");
2738         } else {
2739           AvailableRegs.push_back(Reg);
2740           LLVM_DEBUG(
2741               dbgs()
2742               << printReg(Reg, TRI)
2743               << " is non-saved low register, adding to AvailableRegs\n");
2744         }
2745       }
2746 
2747       // r7 can be used if it is not being used as the frame pointer.
2748       if (!HasFP || FramePtr != ARM::R7) {
2749         if (SavedRegs.test(ARM::R7)) {
2750           --RegDeficit;
2751           LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
2752                             << RegDeficit << "\n");
2753         } else {
2754           AvailableRegs.push_back(ARM::R7);
2755           LLVM_DEBUG(
2756               dbgs()
2757               << "%r7 is non-saved low register, adding to AvailableRegs\n");
2758         }
2759       }
2760 
2761       // Each of r8-r11 needs to be copied to a low register, then pushed.
2762       for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
2763         if (SavedRegs.test(Reg)) {
2764           ++RegDeficit;
2765           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2766                             << " is saved high register, RegDeficit = "
2767                             << RegDeficit << "\n");
2768         }
2769       }
2770 
2771       // LR can only be used by PUSH, not POP, and can't be used at all if the
2772       // llvm.returnaddress intrinsic is used. This is only worth doing if we
2773       // are more limited at function entry than exit.
2774       if ((EntryRegDeficit > ExitRegDeficit) &&
2775           !(MF.getRegInfo().isLiveIn(ARM::LR) &&
2776             MF.getFrameInfo().isReturnAddressTaken())) {
2777         if (SavedRegs.test(ARM::LR)) {
2778           --RegDeficit;
2779           LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
2780                             << RegDeficit << "\n");
2781         } else {
2782           AvailableRegs.push_back(ARM::LR);
2783           LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
2784         }
2785       }
2786 
2787       // If there are more high registers that need pushing than low registers
2788       // available, push some more low registers so that we can use fewer push
2789       // instructions. This might not reduce RegDeficit all the way to zero,
2790       // because we can only guarantee that r4-r6 are available, but r8-r11 may
2791       // need saving.
2792       LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
2793       for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
2794         unsigned Reg = AvailableRegs.pop_back_val();
2795         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2796                           << " to make up reg deficit\n");
2797         SavedRegs.set(Reg);
2798         NumGPRSpills++;
2799         CS1Spilled = true;
2800         assert(!MRI.isReserved(Reg) && "Should not be reserved");
2801         if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg))
2802           NumExtraCSSpill++;
2803         UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
2804         if (Reg == ARM::LR)
2805           LRSpilled = true;
2806       }
2807       LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
2808                         << "\n");
2809     }
2810 
2811     // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
2812     // restore LR in that case.
2813     bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall();
2814 
2815     // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
2816     // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
2817     if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) {
2818       SavedRegs.set(ARM::LR);
2819       NumGPRSpills++;
2820       SmallVectorImpl<unsigned>::iterator LRPos;
2821       LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
2822       if (LRPos != UnspilledCS1GPRs.end())
2823         UnspilledCS1GPRs.erase(LRPos);
2824 
2825       ForceLRSpill = false;
2826       if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) &&
2827           !AFI->isThumb1OnlyFunction())
2828         NumExtraCSSpill++;
2829     }
2830 
2831     // If stack and double are 8-byte aligned and we are spilling an odd number
2832     // of GPRs, spill one extra callee save GPR so we won't have to pad between
2833     // the integer and double callee save areas.
2834     LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
2835     const Align TargetAlign = getStackAlign();
2836     if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) {
2837       if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
2838         for (unsigned Reg : UnspilledCS1GPRs) {
2839           // Don't spill high register if the function is thumb.  In the case of
2840           // Windows on ARM, accept R11 (frame pointer)
2841           if (!AFI->isThumbFunction() ||
2842               (STI.isTargetWindows() && Reg == ARM::R11) ||
2843               isARMLowRegister(Reg) ||
2844               (Reg == ARM::LR && !ExpensiveLRRestore)) {
2845             SavedRegs.set(Reg);
2846             LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2847                               << " to make up alignment\n");
2848             if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) &&
2849                 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction()))
2850               NumExtraCSSpill++;
2851             break;
2852           }
2853         }
2854       } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
2855         unsigned Reg = UnspilledCS2GPRs.front();
2856         SavedRegs.set(Reg);
2857         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2858                           << " to make up alignment\n");
2859         if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
2860           NumExtraCSSpill++;
2861       }
2862     }
2863 
2864     // Estimate if we might need to scavenge registers at some point in order
2865     // to materialize a stack offset. If so, either spill one additional
2866     // callee-saved register or reserve a special spill slot to facilitate
2867     // register scavenging. Thumb1 needs a spill slot for stack pointer
2868     // adjustments and for frame index accesses when FP is high register,
2869     // even when the frame itself is small.
2870     unsigned RegsNeeded = 0;
2871     if (BigFrameOffsets || canSpillOnFrameIndexAccess(MF, *this)) {
2872       RegsNeeded++;
2873       // With thumb1 execute-only we may need an additional register for saving
2874       // and restoring the CPSR.
2875       if (AFI->isThumb1OnlyFunction() && STI.genExecuteOnly() && !STI.useMovt())
2876         RegsNeeded++;
2877     }
2878 
2879     if (RegsNeeded > NumExtraCSSpill) {
2880       // If any non-reserved CS register isn't spilled, just spill one or two
2881       // extra. That should take care of it!
2882       unsigned NumExtras = TargetAlign.value() / 4;
2883       SmallVector<unsigned, 2> Extras;
2884       while (NumExtras && !UnspilledCS1GPRs.empty()) {
2885         unsigned Reg = UnspilledCS1GPRs.pop_back_val();
2886         if (!MRI.isReserved(Reg) &&
2887             (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) {
2888           Extras.push_back(Reg);
2889           NumExtras--;
2890         }
2891       }
2892       // For non-Thumb1 functions, also check for hi-reg CS registers
2893       if (!AFI->isThumb1OnlyFunction()) {
2894         while (NumExtras && !UnspilledCS2GPRs.empty()) {
2895           unsigned Reg = UnspilledCS2GPRs.pop_back_val();
2896           if (!MRI.isReserved(Reg)) {
2897             Extras.push_back(Reg);
2898             NumExtras--;
2899           }
2900         }
2901       }
2902       if (NumExtras == 0) {
2903         for (unsigned Reg : Extras) {
2904           SavedRegs.set(Reg);
2905           if (!MRI.isPhysRegUsed(Reg))
2906             NumExtraCSSpill++;
2907         }
2908       }
2909       while ((RegsNeeded > NumExtraCSSpill) && RS) {
2910         // Reserve a slot closest to SP or frame pointer.
2911         LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n");
2912         const TargetRegisterClass &RC = ARM::GPRRegClass;
2913         unsigned Size = TRI->getSpillSize(RC);
2914         Align Alignment = TRI->getSpillAlign(RC);
2915         RS->addScavengingFrameIndex(
2916             MFI.CreateStackObject(Size, Alignment, false));
2917         --RegsNeeded;
2918       }
2919     }
2920   }
2921 
2922   if (ForceLRSpill)
2923     SavedRegs.set(ARM::LR);
2924   AFI->setLRIsSpilled(SavedRegs.test(ARM::LR));
2925 }
2926 
2927 void ARMFrameLowering::updateLRRestored(MachineFunction &MF) {
2928   MachineFrameInfo &MFI = MF.getFrameInfo();
2929   if (!MFI.isCalleeSavedInfoValid())
2930     return;
2931 
2932   // Check if all terminators do not implicitly use LR. Then we can 'restore' LR
2933   // into PC so it is not live out of the return block: Clear the Restored bit
2934   // in that case.
2935   for (CalleeSavedInfo &Info : MFI.getCalleeSavedInfo()) {
2936     if (Info.getReg() != ARM::LR)
2937       continue;
2938     if (all_of(MF, [](const MachineBasicBlock &MBB) {
2939           return all_of(MBB.terminators(), [](const MachineInstr &Term) {
2940             return !Term.isReturn() || Term.getOpcode() == ARM::LDMIA_RET ||
2941                    Term.getOpcode() == ARM::t2LDMIA_RET ||
2942                    Term.getOpcode() == ARM::tPOP_RET;
2943           });
2944         })) {
2945       Info.setRestored(false);
2946       break;
2947     }
2948   }
2949 }
2950 
2951 void ARMFrameLowering::processFunctionBeforeFrameFinalized(
2952     MachineFunction &MF, RegScavenger *RS) const {
2953   TargetFrameLowering::processFunctionBeforeFrameFinalized(MF, RS);
2954   updateLRRestored(MF);
2955 }
2956 
2957 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF,
2958                                       BitVector &SavedRegs) const {
2959   TargetFrameLowering::getCalleeSaves(MF, SavedRegs);
2960 
2961   // If we have the "returned" parameter attribute which guarantees that we
2962   // return the value which was passed in r0 unmodified (e.g. C++ 'structors),
2963   // record that fact for IPRA.
2964   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2965   if (AFI->getPreservesR0())
2966     SavedRegs.set(ARM::R0);
2967 }
2968 
2969 bool ARMFrameLowering::assignCalleeSavedSpillSlots(
2970     MachineFunction &MF, const TargetRegisterInfo *TRI,
2971     std::vector<CalleeSavedInfo> &CSI) const {
2972   // For CMSE entry functions, handle floating-point context as if it was a
2973   // callee-saved register.
2974   if (STI.hasV8_1MMainlineOps() &&
2975       MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) {
2976     CSI.emplace_back(ARM::FPCXTNS);
2977     CSI.back().setRestored(false);
2978   }
2979 
2980   // For functions, which sign their return address, upon function entry, the
2981   // return address PAC is computed in R12. Treat R12 as a callee-saved register
2982   // in this case.
2983   const auto &AFI = *MF.getInfo<ARMFunctionInfo>();
2984   if (AFI.shouldSignReturnAddress()) {
2985     // The order of register must match the order we push them, because the
2986     // PEI assigns frame indices in that order. That order depends on the
2987     // PushPopSplitVariation, there are only two cases which we use with return
2988     // address signing:
2989     switch (STI.getPushPopSplitVariation(MF)) {
2990     case ARMSubtarget::SplitR7:
2991       // LR, R7, R6, R5, R4, <R12>, R11, R10,  R9,  R8, D15-D8
2992       CSI.insert(find_if(CSI,
2993                          [=](const auto &CS) {
2994                            Register Reg = CS.getReg();
2995                            return Reg == ARM::R10 || Reg == ARM::R11 ||
2996                                   Reg == ARM::R8 || Reg == ARM::R9 ||
2997                                   ARM::DPRRegClass.contains(Reg);
2998                          }),
2999                  CalleeSavedInfo(ARM::R12));
3000       break;
3001     case ARMSubtarget::SplitR11AAPCSSignRA:
3002       // With SplitR11AAPCSSignRA, R12 will always be the highest-addressed CSR
3003       // on the stack.
3004       CSI.insert(CSI.begin(), CalleeSavedInfo(ARM::R12));
3005       break;
3006     default:
3007       llvm_unreachable("Unexpected CSR split with return address signing");
3008     }
3009   }
3010 
3011   return false;
3012 }
3013 
3014 const TargetFrameLowering::SpillSlot *
3015 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const {
3016   static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}};
3017   NumEntries = std::size(FixedSpillOffsets);
3018   return FixedSpillOffsets;
3019 }
3020 
3021 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
3022     MachineFunction &MF, MachineBasicBlock &MBB,
3023     MachineBasicBlock::iterator I) const {
3024   const ARMBaseInstrInfo &TII =
3025       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
3026   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3027   bool isARM = !AFI->isThumbFunction();
3028   DebugLoc dl = I->getDebugLoc();
3029   unsigned Opc = I->getOpcode();
3030   bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode();
3031   unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
3032 
3033   assert(!AFI->isThumb1OnlyFunction() &&
3034          "This eliminateCallFramePseudoInstr does not support Thumb1!");
3035 
3036   int PIdx = I->findFirstPredOperandIdx();
3037   ARMCC::CondCodes Pred = (PIdx == -1)
3038                               ? ARMCC::AL
3039                               : (ARMCC::CondCodes)I->getOperand(PIdx).getImm();
3040   unsigned PredReg = TII.getFramePred(*I);
3041 
3042   if (!hasReservedCallFrame(MF)) {
3043     // Bail early if the callee is expected to do the adjustment.
3044     if (IsDestroy && CalleePopAmount != -1U)
3045       return MBB.erase(I);
3046 
3047     // If we have alloca, convert as follows:
3048     // ADJCALLSTACKDOWN -> sub, sp, sp, amount
3049     // ADJCALLSTACKUP   -> add, sp, sp, amount
3050     unsigned Amount = TII.getFrameSize(*I);
3051     if (Amount != 0) {
3052       // We need to keep the stack aligned properly.  To do this, we round the
3053       // amount of space needed for the outgoing arguments up to the next
3054       // alignment boundary.
3055       Amount = alignSPAdjust(Amount);
3056 
3057       if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
3058         emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
3059                      Pred, PredReg);
3060       } else {
3061         assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
3062         emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
3063                      Pred, PredReg);
3064       }
3065     }
3066   } else if (CalleePopAmount != -1U) {
3067     // If the calling convention demands that the callee pops arguments from the
3068     // stack, we want to add it back if we have a reserved call frame.
3069     emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount,
3070                  MachineInstr::NoFlags, Pred, PredReg);
3071   }
3072   return MBB.erase(I);
3073 }
3074 
3075 /// Get the minimum constant for ARM that is greater than or equal to the
3076 /// argument. In ARM, constants can have any value that can be produced by
3077 /// rotating an 8-bit value to the right by an even number of bits within a
3078 /// 32-bit word.
3079 static uint32_t alignToARMConstant(uint32_t Value) {
3080   unsigned Shifted = 0;
3081 
3082   if (Value == 0)
3083       return 0;
3084 
3085   while (!(Value & 0xC0000000)) {
3086       Value = Value << 2;
3087       Shifted += 2;
3088   }
3089 
3090   bool Carry = (Value & 0x00FFFFFF);
3091   Value = ((Value & 0xFF000000) >> 24) + Carry;
3092 
3093   if (Value & 0x0000100)
3094       Value = Value & 0x000001FC;
3095 
3096   if (Shifted > 24)
3097       Value = Value >> (Shifted - 24);
3098   else
3099       Value = Value << (24 - Shifted);
3100 
3101   return Value;
3102 }
3103 
3104 // The stack limit in the TCB is set to this many bytes above the actual
3105 // stack limit.
3106 static const uint64_t kSplitStackAvailable = 256;
3107 
3108 // Adjust the function prologue to enable split stacks. This currently only
3109 // supports android and linux.
3110 //
3111 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but
3112 // must be well defined in order to allow for consistent implementations of the
3113 // __morestack helper function. The ABI is also not a normal ABI in that it
3114 // doesn't follow the normal calling conventions because this allows the
3115 // prologue of each function to be optimized further.
3116 //
3117 // Currently, the ABI looks like (when calling __morestack)
3118 //
3119 //  * r4 holds the minimum stack size requested for this function call
3120 //  * r5 holds the stack size of the arguments to the function
3121 //  * the beginning of the function is 3 instructions after the call to
3122 //    __morestack
3123 //
3124 // Implementations of __morestack should use r4 to allocate a new stack, r5 to
3125 // place the arguments on to the new stack, and the 3-instruction knowledge to
3126 // jump directly to the body of the function when working on the new stack.
3127 //
3128 // An old (and possibly no longer compatible) implementation of __morestack for
3129 // ARM can be found at [1].
3130 //
3131 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
3132 void ARMFrameLowering::adjustForSegmentedStacks(
3133     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
3134   unsigned Opcode;
3135   unsigned CFIIndex;
3136   const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
3137   bool Thumb = ST->isThumb();
3138   bool Thumb2 = ST->isThumb2();
3139 
3140   // Sadly, this currently doesn't support varargs, platforms other than
3141   // android/linux. Note that thumb1/thumb2 are support for android/linux.
3142   if (MF.getFunction().isVarArg())
3143     report_fatal_error("Segmented stacks do not support vararg functions.");
3144   if (!ST->isTargetAndroid() && !ST->isTargetLinux())
3145     report_fatal_error("Segmented stacks not supported on this platform.");
3146 
3147   MachineFrameInfo &MFI = MF.getFrameInfo();
3148   MCContext &Context = MF.getContext();
3149   const MCRegisterInfo *MRI = Context.getRegisterInfo();
3150   const ARMBaseInstrInfo &TII =
3151       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
3152   ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
3153   DebugLoc DL;
3154 
3155   if (!MFI.needsSplitStackProlog())
3156     return;
3157 
3158   uint64_t StackSize = MFI.getStackSize();
3159 
3160   // Use R4 and R5 as scratch registers.
3161   // We save R4 and R5 before use and restore them before leaving the function.
3162   unsigned ScratchReg0 = ARM::R4;
3163   unsigned ScratchReg1 = ARM::R5;
3164   unsigned MovOp = ST->useMovt() ? ARM::t2MOVi32imm : ARM::tMOVi32imm;
3165   uint64_t AlignedStackSize;
3166 
3167   MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
3168   MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
3169   MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
3170   MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
3171   MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
3172 
3173   // Grab everything that reaches PrologueMBB to update there liveness as well.
3174   SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
3175   SmallVector<MachineBasicBlock *, 2> WalkList;
3176   WalkList.push_back(&PrologueMBB);
3177 
3178   do {
3179     MachineBasicBlock *CurMBB = WalkList.pop_back_val();
3180     for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
3181       if (BeforePrologueRegion.insert(PredBB).second)
3182         WalkList.push_back(PredBB);
3183     }
3184   } while (!WalkList.empty());
3185 
3186   // The order in that list is important.
3187   // The blocks will all be inserted before PrologueMBB using that order.
3188   // Therefore the block that should appear first in the CFG should appear
3189   // first in the list.
3190   MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
3191                                       PostStackMBB};
3192 
3193   for (MachineBasicBlock *B : AddedBlocks)
3194     BeforePrologueRegion.insert(B);
3195 
3196   for (const auto &LI : PrologueMBB.liveins()) {
3197     for (MachineBasicBlock *PredBB : BeforePrologueRegion)
3198       PredBB->addLiveIn(LI);
3199   }
3200 
3201   // Remove the newly added blocks from the list, since we know
3202   // we do not have to do the following updates for them.
3203   for (MachineBasicBlock *B : AddedBlocks) {
3204     BeforePrologueRegion.erase(B);
3205     MF.insert(PrologueMBB.getIterator(), B);
3206   }
3207 
3208   for (MachineBasicBlock *MBB : BeforePrologueRegion) {
3209     // Make sure the LiveIns are still sorted and unique.
3210     MBB->sortUniqueLiveIns();
3211     // Replace the edges to PrologueMBB by edges to the sequences
3212     // we are about to add, but only update for immediate predecessors.
3213     if (MBB->isSuccessor(&PrologueMBB))
3214       MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
3215   }
3216 
3217   // The required stack size that is aligned to ARM constant criterion.
3218   AlignedStackSize = alignToARMConstant(StackSize);
3219 
3220   // When the frame size is less than 256 we just compare the stack
3221   // boundary directly to the value of the stack pointer, per gcc.
3222   bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
3223 
3224   // We will use two of the callee save registers as scratch registers so we
3225   // need to save those registers onto the stack.
3226   // We will use SR0 to hold stack limit and SR1 to hold the stack size
3227   // requested and arguments for __morestack().
3228   // SR0: Scratch Register #0
3229   // SR1: Scratch Register #1
3230   // push {SR0, SR1}
3231   if (Thumb) {
3232     BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
3233         .add(predOps(ARMCC::AL))
3234         .addReg(ScratchReg0)
3235         .addReg(ScratchReg1);
3236   } else {
3237     BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
3238         .addReg(ARM::SP, RegState::Define)
3239         .addReg(ARM::SP)
3240         .add(predOps(ARMCC::AL))
3241         .addReg(ScratchReg0)
3242         .addReg(ScratchReg1);
3243   }
3244 
3245   // Emit the relevant DWARF information about the change in stack pointer as
3246   // well as where to find both r4 and r5 (the callee-save registers)
3247   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3248     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8));
3249     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3250         .addCFIIndex(CFIIndex);
3251     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3252         nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
3253     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3254         .addCFIIndex(CFIIndex);
3255     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3256         nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
3257     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3258         .addCFIIndex(CFIIndex);
3259   }
3260 
3261   // mov SR1, sp
3262   if (Thumb) {
3263     BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
3264         .addReg(ARM::SP)
3265         .add(predOps(ARMCC::AL));
3266   } else if (CompareStackPointer) {
3267     BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
3268         .addReg(ARM::SP)
3269         .add(predOps(ARMCC::AL))
3270         .add(condCodeOp());
3271   }
3272 
3273   // sub SR1, sp, #StackSize
3274   if (!CompareStackPointer && Thumb) {
3275     if (AlignedStackSize < 256) {
3276       BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
3277           .add(condCodeOp())
3278           .addReg(ScratchReg1)
3279           .addImm(AlignedStackSize)
3280           .add(predOps(ARMCC::AL));
3281     } else {
3282       if (Thumb2 || ST->genExecuteOnly()) {
3283         BuildMI(McrMBB, DL, TII.get(MovOp), ScratchReg0)
3284             .addImm(AlignedStackSize);
3285       } else {
3286         auto MBBI = McrMBB->end();
3287         auto RegInfo = STI.getRegisterInfo();
3288         RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
3289                                    AlignedStackSize);
3290       }
3291       BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1)
3292           .add(condCodeOp())
3293           .addReg(ScratchReg1)
3294           .addReg(ScratchReg0)
3295           .add(predOps(ARMCC::AL));
3296     }
3297   } else if (!CompareStackPointer) {
3298     if (AlignedStackSize < 256) {
3299       BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
3300           .addReg(ARM::SP)
3301           .addImm(AlignedStackSize)
3302           .add(predOps(ARMCC::AL))
3303           .add(condCodeOp());
3304     } else {
3305       auto MBBI = McrMBB->end();
3306       auto RegInfo = STI.getRegisterInfo();
3307       RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
3308                                  AlignedStackSize);
3309       BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1)
3310           .addReg(ARM::SP)
3311           .addReg(ScratchReg0)
3312           .add(predOps(ARMCC::AL))
3313           .add(condCodeOp());
3314     }
3315   }
3316 
3317   if (Thumb && ST->isThumb1Only()) {
3318     if (ST->genExecuteOnly()) {
3319       BuildMI(GetMBB, DL, TII.get(MovOp), ScratchReg0)
3320           .addExternalSymbol("__STACK_LIMIT");
3321     } else {
3322       unsigned PCLabelId = ARMFI->createPICLabelUId();
3323       ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
3324           MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
3325       MachineConstantPool *MCP = MF.getConstantPool();
3326       unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4));
3327 
3328       // ldr SR0, [pc, offset(STACK_LIMIT)]
3329       BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
3330           .addConstantPoolIndex(CPI)
3331           .add(predOps(ARMCC::AL));
3332     }
3333 
3334     // ldr SR0, [SR0]
3335     BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
3336         .addReg(ScratchReg0)
3337         .addImm(0)
3338         .add(predOps(ARMCC::AL));
3339   } else {
3340     // Get TLS base address from the coprocessor
3341     // mrc p15, #0, SR0, c13, c0, #3
3342     BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC),
3343             ScratchReg0)
3344         .addImm(15)
3345         .addImm(0)
3346         .addImm(13)
3347         .addImm(0)
3348         .addImm(3)
3349         .add(predOps(ARMCC::AL));
3350 
3351     // Use the last tls slot on android and a private field of the TCP on linux.
3352     assert(ST->isTargetAndroid() || ST->isTargetLinux());
3353     unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
3354 
3355     // Get the stack limit from the right offset
3356     // ldr SR0, [sr0, #4 * TlsOffset]
3357     BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12),
3358             ScratchReg0)
3359         .addReg(ScratchReg0)
3360         .addImm(4 * TlsOffset)
3361         .add(predOps(ARMCC::AL));
3362   }
3363 
3364   // Compare stack limit with stack size requested.
3365   // cmp SR0, SR1
3366   Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
3367   BuildMI(GetMBB, DL, TII.get(Opcode))
3368       .addReg(ScratchReg0)
3369       .addReg(ScratchReg1)
3370       .add(predOps(ARMCC::AL));
3371 
3372   // This jump is taken if StackLimit <= SP - stack required.
3373   Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
3374   BuildMI(GetMBB, DL, TII.get(Opcode))
3375       .addMBB(PostStackMBB)
3376       .addImm(ARMCC::LS)
3377       .addReg(ARM::CPSR);
3378 
3379   // Calling __morestack(StackSize, Size of stack arguments).
3380   // __morestack knows that the stack size requested is in SR0(r4)
3381   // and amount size of stack arguments is in SR1(r5).
3382 
3383   // Pass first argument for the __morestack by Scratch Register #0.
3384   //   The amount size of stack required
3385   if (Thumb) {
3386     if (AlignedStackSize < 256) {
3387       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
3388           .add(condCodeOp())
3389           .addImm(AlignedStackSize)
3390           .add(predOps(ARMCC::AL));
3391     } else {
3392       if (Thumb2 || ST->genExecuteOnly()) {
3393         BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg0)
3394             .addImm(AlignedStackSize);
3395       } else {
3396         auto MBBI = AllocMBB->end();
3397         auto RegInfo = STI.getRegisterInfo();
3398         RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
3399                                    AlignedStackSize);
3400       }
3401     }
3402   } else {
3403     if (AlignedStackSize < 256) {
3404       BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
3405           .addImm(AlignedStackSize)
3406           .add(predOps(ARMCC::AL))
3407           .add(condCodeOp());
3408     } else {
3409       auto MBBI = AllocMBB->end();
3410       auto RegInfo = STI.getRegisterInfo();
3411       RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
3412                                  AlignedStackSize);
3413     }
3414   }
3415 
3416   // Pass second argument for the __morestack by Scratch Register #1.
3417   //   The amount size of stack consumed to save function arguments.
3418   if (Thumb) {
3419     if (ARMFI->getArgumentStackSize() < 256) {
3420       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
3421           .add(condCodeOp())
3422           .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
3423           .add(predOps(ARMCC::AL));
3424     } else {
3425       if (Thumb2 || ST->genExecuteOnly()) {
3426         BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg1)
3427             .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()));
3428       } else {
3429         auto MBBI = AllocMBB->end();
3430         auto RegInfo = STI.getRegisterInfo();
3431         RegInfo->emitLoadConstPool(
3432             *AllocMBB, MBBI, DL, ScratchReg1, 0,
3433             alignToARMConstant(ARMFI->getArgumentStackSize()));
3434       }
3435     }
3436   } else {
3437     if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) {
3438       BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
3439           .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
3440           .add(predOps(ARMCC::AL))
3441           .add(condCodeOp());
3442     } else {
3443       auto MBBI = AllocMBB->end();
3444       auto RegInfo = STI.getRegisterInfo();
3445       RegInfo->emitLoadConstPool(
3446           *AllocMBB, MBBI, DL, ScratchReg1, 0,
3447           alignToARMConstant(ARMFI->getArgumentStackSize()));
3448     }
3449   }
3450 
3451   // push {lr} - Save return address of this function.
3452   if (Thumb) {
3453     BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
3454         .add(predOps(ARMCC::AL))
3455         .addReg(ARM::LR);
3456   } else {
3457     BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
3458         .addReg(ARM::SP, RegState::Define)
3459         .addReg(ARM::SP)
3460         .add(predOps(ARMCC::AL))
3461         .addReg(ARM::LR);
3462   }
3463 
3464   // Emit the DWARF info about the change in stack as well as where to find the
3465   // previous link register
3466   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3467     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12));
3468     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3469         .addCFIIndex(CFIIndex);
3470     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3471         nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
3472     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3473         .addCFIIndex(CFIIndex);
3474   }
3475 
3476   // Call __morestack().
3477   if (Thumb) {
3478     BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
3479         .add(predOps(ARMCC::AL))
3480         .addExternalSymbol("__morestack");
3481   } else {
3482     BuildMI(AllocMBB, DL, TII.get(ARM::BL))
3483         .addExternalSymbol("__morestack");
3484   }
3485 
3486   // pop {lr} - Restore return address of this original function.
3487   if (Thumb) {
3488     if (ST->isThumb1Only()) {
3489       BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
3490           .add(predOps(ARMCC::AL))
3491           .addReg(ScratchReg0);
3492       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
3493           .addReg(ScratchReg0)
3494           .add(predOps(ARMCC::AL));
3495     } else {
3496       BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
3497           .addReg(ARM::LR, RegState::Define)
3498           .addReg(ARM::SP, RegState::Define)
3499           .addReg(ARM::SP)
3500           .addImm(4)
3501           .add(predOps(ARMCC::AL));
3502     }
3503   } else {
3504     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
3505         .addReg(ARM::SP, RegState::Define)
3506         .addReg(ARM::SP)
3507         .add(predOps(ARMCC::AL))
3508         .addReg(ARM::LR);
3509   }
3510 
3511   // Restore SR0 and SR1 in case of __morestack() was called.
3512   // __morestack() will skip PostStackMBB block so we need to restore
3513   // scratch registers from here.
3514   // pop {SR0, SR1}
3515   if (Thumb) {
3516     BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
3517         .add(predOps(ARMCC::AL))
3518         .addReg(ScratchReg0)
3519         .addReg(ScratchReg1);
3520   } else {
3521     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
3522         .addReg(ARM::SP, RegState::Define)
3523         .addReg(ARM::SP)
3524         .add(predOps(ARMCC::AL))
3525         .addReg(ScratchReg0)
3526         .addReg(ScratchReg1);
3527   }
3528 
3529   // Update the CFA offset now that we've popped
3530   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3531     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
3532     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3533         .addCFIIndex(CFIIndex);
3534   }
3535 
3536   // Return from this function.
3537   BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
3538 
3539   // Restore SR0 and SR1 in case of __morestack() was not called.
3540   // pop {SR0, SR1}
3541   if (Thumb) {
3542     BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
3543         .add(predOps(ARMCC::AL))
3544         .addReg(ScratchReg0)
3545         .addReg(ScratchReg1);
3546   } else {
3547     BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
3548         .addReg(ARM::SP, RegState::Define)
3549         .addReg(ARM::SP)
3550         .add(predOps(ARMCC::AL))
3551         .addReg(ScratchReg0)
3552         .addReg(ScratchReg1);
3553   }
3554 
3555   // Update the CFA offset now that we've popped
3556   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3557     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
3558     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3559         .addCFIIndex(CFIIndex);
3560 
3561     // Tell debuggers that r4 and r5 are now the same as they were in the
3562     // previous function, that they're the "Same Value".
3563     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
3564         nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
3565     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3566         .addCFIIndex(CFIIndex);
3567     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
3568         nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
3569     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3570         .addCFIIndex(CFIIndex);
3571   }
3572 
3573   // Organizing MBB lists
3574   PostStackMBB->addSuccessor(&PrologueMBB);
3575 
3576   AllocMBB->addSuccessor(PostStackMBB);
3577 
3578   GetMBB->addSuccessor(PostStackMBB);
3579   GetMBB->addSuccessor(AllocMBB);
3580 
3581   McrMBB->addSuccessor(GetMBB);
3582 
3583   PrevStackMBB->addSuccessor(McrMBB);
3584 
3585 #ifdef EXPENSIVE_CHECKS
3586   MF.verify();
3587 #endif
3588 }
3589