1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the ARM implementation of TargetFrameLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMFrameLowering.h" 15 #include "ARMBaseInstrInfo.h" 16 #include "ARMBaseRegisterInfo.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "Utils/ARMBaseInfo.h" 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineConstantPool.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/RegisterScavenging.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetOpcodes.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/CallingConv.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/MC/MCContext.h" 46 #include "llvm/MC/MCDwarf.h" 47 #include "llvm/MC/MCInstrDesc.h" 48 #include "llvm/MC/MCRegisterInfo.h" 49 #include "llvm/Support/CodeGen.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Target/TargetMachine.h" 57 #include "llvm/Target/TargetOptions.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstddef> 61 #include <cstdint> 62 #include <iterator> 63 #include <utility> 64 #include <vector> 65 66 #define DEBUG_TYPE "arm-frame-lowering" 67 68 using namespace llvm; 69 70 static cl::opt<bool> 71 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 72 cl::desc("Align ARM NEON spills in prolog and epilog")); 73 74 static MachineBasicBlock::iterator 75 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 76 unsigned NumAlignedDPRCS2Regs); 77 78 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 79 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, 4), 80 STI(sti) {} 81 82 bool ARMFrameLowering::noFramePointerElim(const MachineFunction &MF) const { 83 // iOS always has a FP for backtracking, force other targets to keep their FP 84 // when doing FastISel. The emitted code is currently superior, and in cases 85 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 86 return TargetFrameLowering::noFramePointerElim(MF) || 87 MF.getSubtarget<ARMSubtarget>().useFastISel(); 88 } 89 90 /// Returns true if the target can safely skip saving callee-saved registers 91 /// for noreturn nounwind functions. 92 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const { 93 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) && 94 MF.getFunction().hasFnAttribute(Attribute::NoUnwind)); 95 96 // Frame pointer and link register are not treated as normal CSR, thus we 97 // can always skip CSR saves for nonreturning functions. 98 return true; 99 } 100 101 /// hasFP - Return true if the specified function should have a dedicated frame 102 /// pointer register. This is true if the function has variable sized allocas 103 /// or if frame pointer elimination is disabled. 104 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { 105 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 106 const MachineFrameInfo &MFI = MF.getFrameInfo(); 107 108 // ABI-required frame pointer. 109 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 110 return true; 111 112 // Frame pointer required for use within this function. 113 return (RegInfo->needsStackRealignment(MF) || 114 MFI.hasVarSizedObjects() || 115 MFI.isFrameAddressTaken()); 116 } 117 118 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 119 /// not required, we reserve argument space for call sites in the function 120 /// immediately on entry to the current function. This eliminates the need for 121 /// add/sub sp brackets around call sites. Returns true if the call frame is 122 /// included as part of the stack frame. 123 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 124 const MachineFrameInfo &MFI = MF.getFrameInfo(); 125 unsigned CFSize = MFI.getMaxCallFrameSize(); 126 // It's not always a good idea to include the call frame as part of the 127 // stack frame. ARM (especially Thumb) has small immediate offset to 128 // address the stack frame. So a large call frame can cause poor codegen 129 // and may even makes it impossible to scavenge a register. 130 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 131 return false; 132 133 return !MFI.hasVarSizedObjects(); 134 } 135 136 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 137 /// call frame pseudos can be simplified. Unlike most targets, having a FP 138 /// is not sufficient here since we still may reference some objects via SP 139 /// even when FP is available in Thumb2 mode. 140 bool 141 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 142 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 143 } 144 145 static bool isCSRestore(MachineInstr &MI, const ARMBaseInstrInfo &TII, 146 const MCPhysReg *CSRegs) { 147 // Integer spill area is handled with "pop". 148 if (isPopOpcode(MI.getOpcode())) { 149 // The first two operands are predicates. The last two are 150 // imp-def and imp-use of SP. Check everything in between. 151 for (int i = 5, e = MI.getNumOperands(); i != e; ++i) 152 if (!isCalleeSavedRegister(MI.getOperand(i).getReg(), CSRegs)) 153 return false; 154 return true; 155 } 156 if ((MI.getOpcode() == ARM::LDR_POST_IMM || 157 MI.getOpcode() == ARM::LDR_POST_REG || 158 MI.getOpcode() == ARM::t2LDR_POST) && 159 isCalleeSavedRegister(MI.getOperand(0).getReg(), CSRegs) && 160 MI.getOperand(1).getReg() == ARM::SP) 161 return true; 162 163 return false; 164 } 165 166 static void emitRegPlusImmediate( 167 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 168 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 169 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 170 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 171 if (isARM) 172 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 173 Pred, PredReg, TII, MIFlags); 174 else 175 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 176 Pred, PredReg, TII, MIFlags); 177 } 178 179 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 180 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 181 const ARMBaseInstrInfo &TII, int NumBytes, 182 unsigned MIFlags = MachineInstr::NoFlags, 183 ARMCC::CondCodes Pred = ARMCC::AL, 184 unsigned PredReg = 0) { 185 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 186 MIFlags, Pred, PredReg); 187 } 188 189 static int sizeOfSPAdjustment(const MachineInstr &MI) { 190 int RegSize; 191 switch (MI.getOpcode()) { 192 case ARM::VSTMDDB_UPD: 193 RegSize = 8; 194 break; 195 case ARM::STMDB_UPD: 196 case ARM::t2STMDB_UPD: 197 RegSize = 4; 198 break; 199 case ARM::t2STR_PRE: 200 case ARM::STR_PRE_IMM: 201 return 4; 202 default: 203 llvm_unreachable("Unknown push or pop like instruction"); 204 } 205 206 int count = 0; 207 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 208 // pred) so the list starts at 4. 209 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 210 count += RegSize; 211 return count; 212 } 213 214 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 215 size_t StackSizeInBytes) { 216 const MachineFrameInfo &MFI = MF.getFrameInfo(); 217 const Function &F = MF.getFunction(); 218 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 219 if (F.hasFnAttribute("stack-probe-size")) 220 F.getFnAttribute("stack-probe-size") 221 .getValueAsString() 222 .getAsInteger(0, StackProbeSize); 223 return (StackSizeInBytes >= StackProbeSize) && 224 !F.hasFnAttribute("no-stack-arg-probe"); 225 } 226 227 namespace { 228 229 struct StackAdjustingInsts { 230 struct InstInfo { 231 MachineBasicBlock::iterator I; 232 unsigned SPAdjust; 233 bool BeforeFPSet; 234 }; 235 236 SmallVector<InstInfo, 4> Insts; 237 238 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 239 bool BeforeFPSet = false) { 240 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 241 Insts.push_back(Info); 242 } 243 244 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 245 auto Info = 246 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 247 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 248 Info->SPAdjust += ExtraBytes; 249 } 250 251 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 252 const ARMBaseInstrInfo &TII, bool HasFP) { 253 MachineFunction &MF = *MBB.getParent(); 254 unsigned CFAOffset = 0; 255 for (auto &Info : Insts) { 256 if (HasFP && !Info.BeforeFPSet) 257 return; 258 259 CFAOffset -= Info.SPAdjust; 260 unsigned CFIIndex = MF.addFrameInst( 261 MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset)); 262 BuildMI(MBB, std::next(Info.I), dl, 263 TII.get(TargetOpcode::CFI_INSTRUCTION)) 264 .addCFIIndex(CFIIndex) 265 .setMIFlags(MachineInstr::FrameSetup); 266 } 267 } 268 }; 269 270 } // end anonymous namespace 271 272 /// Emit an instruction sequence that will align the address in 273 /// register Reg by zero-ing out the lower bits. For versions of the 274 /// architecture that support Neon, this must be done in a single 275 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 276 /// single instruction. That function only gets called when optimizing 277 /// spilling of D registers on a core with the Neon instruction set 278 /// present. 279 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 280 const TargetInstrInfo &TII, 281 MachineBasicBlock &MBB, 282 MachineBasicBlock::iterator MBBI, 283 const DebugLoc &DL, const unsigned Reg, 284 const unsigned Alignment, 285 const bool MustBeSingleInstruction) { 286 const ARMSubtarget &AST = 287 static_cast<const ARMSubtarget &>(MF.getSubtarget()); 288 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 289 const unsigned AlignMask = Alignment - 1; 290 const unsigned NrBitsToZero = countTrailingZeros(Alignment); 291 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 292 if (!AFI->isThumbFunction()) { 293 // if the BFC instruction is available, use that to zero the lower 294 // bits: 295 // bfc Reg, #0, log2(Alignment) 296 // otherwise use BIC, if the mask to zero the required number of bits 297 // can be encoded in the bic immediate field 298 // bic Reg, Reg, Alignment-1 299 // otherwise, emit 300 // lsr Reg, Reg, log2(Alignment) 301 // lsl Reg, Reg, log2(Alignment) 302 if (CanUseBFC) { 303 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 304 .addReg(Reg, RegState::Kill) 305 .addImm(~AlignMask) 306 .add(predOps(ARMCC::AL)); 307 } else if (AlignMask <= 255) { 308 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 309 .addReg(Reg, RegState::Kill) 310 .addImm(AlignMask) 311 .add(predOps(ARMCC::AL)) 312 .add(condCodeOp()); 313 } else { 314 assert(!MustBeSingleInstruction && 315 "Shouldn't call emitAligningInstructions demanding a single " 316 "instruction to be emitted for large stack alignment for a target " 317 "without BFC."); 318 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 319 .addReg(Reg, RegState::Kill) 320 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 321 .add(predOps(ARMCC::AL)) 322 .add(condCodeOp()); 323 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 324 .addReg(Reg, RegState::Kill) 325 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 326 .add(predOps(ARMCC::AL)) 327 .add(condCodeOp()); 328 } 329 } else { 330 // Since this is only reached for Thumb-2 targets, the BFC instruction 331 // should always be available. 332 assert(CanUseBFC); 333 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 334 .addReg(Reg, RegState::Kill) 335 .addImm(~AlignMask) 336 .add(predOps(ARMCC::AL)); 337 } 338 } 339 340 /// We need the offset of the frame pointer relative to other MachineFrameInfo 341 /// offsets which are encoded relative to SP at function begin. 342 /// See also emitPrologue() for how the FP is set up. 343 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet 344 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use 345 /// this to produce a conservative estimate that we check in an assert() later. 346 static int getMaxFPOffset(const Function &F, const ARMFunctionInfo &AFI) { 347 // This is a conservative estimation: Assume the frame pointer being r7 and 348 // pc("r15") up to r8 getting spilled before (= 8 registers). 349 return -AFI.getArgRegsSaveSize() - (8 * 4); 350 } 351 352 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 353 MachineBasicBlock &MBB) const { 354 MachineBasicBlock::iterator MBBI = MBB.begin(); 355 MachineFrameInfo &MFI = MF.getFrameInfo(); 356 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 357 MachineModuleInfo &MMI = MF.getMMI(); 358 MCContext &Context = MMI.getContext(); 359 const TargetMachine &TM = MF.getTarget(); 360 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 361 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 362 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 363 assert(!AFI->isThumb1OnlyFunction() && 364 "This emitPrologue does not support Thumb1!"); 365 bool isARM = !AFI->isThumbFunction(); 366 unsigned Align = STI.getFrameLowering()->getStackAlignment(); 367 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 368 unsigned NumBytes = MFI.getStackSize(); 369 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 370 371 // Debug location must be unknown since the first debug location is used 372 // to determine the end of the prologue. 373 DebugLoc dl; 374 375 unsigned FramePtr = RegInfo->getFrameRegister(MF); 376 377 // Determine the sizes of each callee-save spill areas and record which frame 378 // belongs to which callee-save spill areas. 379 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 380 int FramePtrSpillFI = 0; 381 int D8SpillFI = 0; 382 383 // All calls are tail calls in GHC calling conv, and functions have no 384 // prologue/epilogue. 385 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 386 return; 387 388 StackAdjustingInsts DefCFAOffsetCandidates; 389 bool HasFP = hasFP(MF); 390 391 // Allocate the vararg register save area. 392 if (ArgRegsSaveSize) { 393 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 394 MachineInstr::FrameSetup); 395 DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true); 396 } 397 398 if (!AFI->hasStackFrame() && 399 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 400 if (NumBytes - ArgRegsSaveSize != 0) { 401 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize), 402 MachineInstr::FrameSetup); 403 DefCFAOffsetCandidates.addInst(std::prev(MBBI), 404 NumBytes - ArgRegsSaveSize, true); 405 } 406 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 407 return; 408 } 409 410 // Determine spill area sizes. 411 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 412 unsigned Reg = CSI[i].getReg(); 413 int FI = CSI[i].getFrameIdx(); 414 switch (Reg) { 415 case ARM::R8: 416 case ARM::R9: 417 case ARM::R10: 418 case ARM::R11: 419 case ARM::R12: 420 if (STI.splitFramePushPop(MF)) { 421 GPRCS2Size += 4; 422 break; 423 } 424 LLVM_FALLTHROUGH; 425 case ARM::R0: 426 case ARM::R1: 427 case ARM::R2: 428 case ARM::R3: 429 case ARM::R4: 430 case ARM::R5: 431 case ARM::R6: 432 case ARM::R7: 433 case ARM::LR: 434 if (Reg == FramePtr) 435 FramePtrSpillFI = FI; 436 GPRCS1Size += 4; 437 break; 438 default: 439 // This is a DPR. Exclude the aligned DPRCS2 spills. 440 if (Reg == ARM::D8) 441 D8SpillFI = FI; 442 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) 443 DPRCSSize += 8; 444 } 445 } 446 447 // Move past area 1. 448 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 449 if (GPRCS1Size > 0) { 450 GPRCS1Push = LastPush = MBBI++; 451 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); 452 } 453 454 // Determine starting offsets of spill areas. 455 unsigned GPRCS1Offset = NumBytes - ArgRegsSaveSize - GPRCS1Size; 456 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 457 unsigned DPRAlign = DPRCSSize ? std::min(8U, Align) : 4U; 458 unsigned DPRGapSize = (GPRCS1Size + GPRCS2Size + ArgRegsSaveSize) % DPRAlign; 459 unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 460 int FramePtrOffsetInPush = 0; 461 if (HasFP) { 462 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); 463 assert(getMaxFPOffset(MF.getFunction(), *AFI) <= FPOffset && 464 "Max FP estimation is wrong"); 465 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize; 466 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 467 NumBytes); 468 } 469 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 470 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 471 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 472 473 // Move past area 2. 474 if (GPRCS2Size > 0) { 475 GPRCS2Push = LastPush = MBBI++; 476 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 477 } 478 479 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 480 // .cfi_offset operations will reflect that. 481 if (DPRGapSize) { 482 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 483 if (LastPush != MBB.end() && 484 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 485 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 486 else { 487 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 488 MachineInstr::FrameSetup); 489 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); 490 } 491 } 492 493 // Move past area 3. 494 if (DPRCSSize > 0) { 495 // Since vpush register list cannot have gaps, there may be multiple vpush 496 // instructions in the prologue. 497 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 498 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); 499 LastPush = MBBI++; 500 } 501 } 502 503 // Move past the aligned DPRCS2 area. 504 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 505 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 506 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 507 // leaves the stack pointer pointing to the DPRCS2 area. 508 // 509 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 510 NumBytes += MFI.getObjectOffset(D8SpillFI); 511 } else 512 NumBytes = DPRCSOffset; 513 514 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 515 uint32_t NumWords = NumBytes >> 2; 516 517 if (NumWords < 65536) 518 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 519 .addImm(NumWords) 520 .setMIFlags(MachineInstr::FrameSetup) 521 .add(predOps(ARMCC::AL)); 522 else 523 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4) 524 .addImm(NumWords) 525 .setMIFlags(MachineInstr::FrameSetup); 526 527 switch (TM.getCodeModel()) { 528 case CodeModel::Small: 529 case CodeModel::Medium: 530 case CodeModel::Kernel: 531 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 532 .add(predOps(ARMCC::AL)) 533 .addExternalSymbol("__chkstk") 534 .addReg(ARM::R4, RegState::Implicit) 535 .setMIFlags(MachineInstr::FrameSetup); 536 break; 537 case CodeModel::Large: 538 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 539 .addExternalSymbol("__chkstk") 540 .setMIFlags(MachineInstr::FrameSetup); 541 542 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 543 .add(predOps(ARMCC::AL)) 544 .addReg(ARM::R12, RegState::Kill) 545 .addReg(ARM::R4, RegState::Implicit) 546 .setMIFlags(MachineInstr::FrameSetup); 547 break; 548 } 549 550 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 551 .addReg(ARM::SP, RegState::Kill) 552 .addReg(ARM::R4, RegState::Kill) 553 .setMIFlags(MachineInstr::FrameSetup) 554 .add(predOps(ARMCC::AL)) 555 .add(condCodeOp()); 556 NumBytes = 0; 557 } 558 559 if (NumBytes) { 560 // Adjust SP after all the callee-save spills. 561 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 562 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 563 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 564 else { 565 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 566 MachineInstr::FrameSetup); 567 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 568 } 569 570 if (HasFP && isARM) 571 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 572 // Note it's not safe to do this in Thumb2 mode because it would have 573 // taken two instructions: 574 // mov sp, r7 575 // sub sp, #24 576 // If an interrupt is taken between the two instructions, then sp is in 577 // an inconsistent state (pointing to the middle of callee-saved area). 578 // The interrupt handler can end up clobbering the registers. 579 AFI->setShouldRestoreSPFromFP(true); 580 } 581 582 // Set FP to point to the stack slot that contains the previous FP. 583 // For iOS, FP is R7, which has now been stored in spill area 1. 584 // Otherwise, if this is not iOS, all the callee-saved registers go 585 // into spill area 1, including the FP in R11. In either case, it 586 // is in area one and the adjustment needs to take place just after 587 // that push. 588 if (HasFP) { 589 MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push); 590 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); 591 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, 592 dl, TII, FramePtr, ARM::SP, 593 PushSize + FramePtrOffsetInPush, 594 MachineInstr::FrameSetup); 595 if (FramePtrOffsetInPush + PushSize != 0) { 596 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa( 597 nullptr, MRI->getDwarfRegNum(FramePtr, true), 598 -(ArgRegsSaveSize - FramePtrOffsetInPush))); 599 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 600 .addCFIIndex(CFIIndex) 601 .setMIFlags(MachineInstr::FrameSetup); 602 } else { 603 unsigned CFIIndex = 604 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 605 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 606 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 607 .addCFIIndex(CFIIndex) 608 .setMIFlags(MachineInstr::FrameSetup); 609 } 610 } 611 612 // Now that the prologue's actual instructions are finalised, we can insert 613 // the necessary DWARF cf instructions to describe the situation. Start by 614 // recording where each register ended up: 615 if (GPRCS1Size > 0) { 616 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push); 617 int CFIIndex; 618 for (const auto &Entry : CSI) { 619 unsigned Reg = Entry.getReg(); 620 int FI = Entry.getFrameIdx(); 621 switch (Reg) { 622 case ARM::R8: 623 case ARM::R9: 624 case ARM::R10: 625 case ARM::R11: 626 case ARM::R12: 627 if (STI.splitFramePushPop(MF)) 628 break; 629 LLVM_FALLTHROUGH; 630 case ARM::R0: 631 case ARM::R1: 632 case ARM::R2: 633 case ARM::R3: 634 case ARM::R4: 635 case ARM::R5: 636 case ARM::R6: 637 case ARM::R7: 638 case ARM::LR: 639 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 640 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI))); 641 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 642 .addCFIIndex(CFIIndex) 643 .setMIFlags(MachineInstr::FrameSetup); 644 break; 645 } 646 } 647 } 648 649 if (GPRCS2Size > 0) { 650 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push); 651 for (const auto &Entry : CSI) { 652 unsigned Reg = Entry.getReg(); 653 int FI = Entry.getFrameIdx(); 654 switch (Reg) { 655 case ARM::R8: 656 case ARM::R9: 657 case ARM::R10: 658 case ARM::R11: 659 case ARM::R12: 660 if (STI.splitFramePushPop(MF)) { 661 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 662 unsigned Offset = MFI.getObjectOffset(FI); 663 unsigned CFIIndex = MF.addFrameInst( 664 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 665 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 666 .addCFIIndex(CFIIndex) 667 .setMIFlags(MachineInstr::FrameSetup); 668 } 669 break; 670 } 671 } 672 } 673 674 if (DPRCSSize > 0) { 675 // Since vpush register list cannot have gaps, there may be multiple vpush 676 // instructions in the prologue. 677 MachineBasicBlock::iterator Pos = std::next(LastPush); 678 for (const auto &Entry : CSI) { 679 unsigned Reg = Entry.getReg(); 680 int FI = Entry.getFrameIdx(); 681 if ((Reg >= ARM::D0 && Reg <= ARM::D31) && 682 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) { 683 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 684 unsigned Offset = MFI.getObjectOffset(FI); 685 unsigned CFIIndex = MF.addFrameInst( 686 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 687 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 688 .addCFIIndex(CFIIndex) 689 .setMIFlags(MachineInstr::FrameSetup); 690 } 691 } 692 } 693 694 // Now we can emit descriptions of where the canonical frame address was 695 // throughout the process. If we have a frame pointer, it takes over the job 696 // half-way through, so only the first few .cfi_def_cfa_offset instructions 697 // actually get emitted. 698 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 699 700 if (STI.isTargetELF() && hasFP(MF)) 701 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 702 AFI->getFramePtrSpillOffset()); 703 704 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 705 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 706 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 707 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 708 709 // If we need dynamic stack realignment, do it here. Be paranoid and make 710 // sure if we also have VLAs, we have a base pointer for frame access. 711 // If aligned NEON registers were spilled, the stack has already been 712 // realigned. 713 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) { 714 unsigned MaxAlign = MFI.getMaxAlignment(); 715 assert(!AFI->isThumb1OnlyFunction()); 716 if (!AFI->isThumbFunction()) { 717 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 718 false); 719 } else { 720 // We cannot use sp as source/dest register here, thus we're using r4 to 721 // perform the calculations. We're emitting the following sequence: 722 // mov r4, sp 723 // -- use emitAligningInstructions to produce best sequence to zero 724 // -- out lower bits in r4 725 // mov sp, r4 726 // FIXME: It will be better just to find spare register here. 727 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 728 .addReg(ARM::SP, RegState::Kill) 729 .add(predOps(ARMCC::AL)); 730 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 731 false); 732 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 733 .addReg(ARM::R4, RegState::Kill) 734 .add(predOps(ARMCC::AL)); 735 } 736 737 AFI->setShouldRestoreSPFromFP(true); 738 } 739 740 // If we need a base pointer, set it up here. It's whatever the value 741 // of the stack pointer is at this point. Any variable size objects 742 // will be allocated after this, so we can still use the base pointer 743 // to reference locals. 744 // FIXME: Clarify FrameSetup flags here. 745 if (RegInfo->hasBasePointer(MF)) { 746 if (isARM) 747 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 748 .addReg(ARM::SP) 749 .add(predOps(ARMCC::AL)) 750 .add(condCodeOp()); 751 else 752 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 753 .addReg(ARM::SP) 754 .add(predOps(ARMCC::AL)); 755 } 756 757 // If the frame has variable sized objects then the epilogue must restore 758 // the sp from fp. We can assume there's an FP here since hasFP already 759 // checks for hasVarSizedObjects. 760 if (MFI.hasVarSizedObjects()) 761 AFI->setShouldRestoreSPFromFP(true); 762 } 763 764 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 765 MachineBasicBlock &MBB) const { 766 MachineFrameInfo &MFI = MF.getFrameInfo(); 767 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 768 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 769 const ARMBaseInstrInfo &TII = 770 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 771 assert(!AFI->isThumb1OnlyFunction() && 772 "This emitEpilogue does not support Thumb1!"); 773 bool isARM = !AFI->isThumbFunction(); 774 775 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 776 int NumBytes = (int)MFI.getStackSize(); 777 unsigned FramePtr = RegInfo->getFrameRegister(MF); 778 779 // All calls are tail calls in GHC calling conv, and functions have no 780 // prologue/epilogue. 781 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 782 return; 783 784 // First put ourselves on the first (from top) terminator instructions. 785 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 786 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 787 788 if (!AFI->hasStackFrame()) { 789 if (NumBytes - ArgRegsSaveSize != 0) 790 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize); 791 } else { 792 // Unwind MBBI to point to first LDR / VLDRD. 793 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 794 if (MBBI != MBB.begin()) { 795 do { 796 --MBBI; 797 } while (MBBI != MBB.begin() && isCSRestore(*MBBI, TII, CSRegs)); 798 if (!isCSRestore(*MBBI, TII, CSRegs)) 799 ++MBBI; 800 } 801 802 // Move SP to start of FP callee save spill area. 803 NumBytes -= (ArgRegsSaveSize + 804 AFI->getGPRCalleeSavedArea1Size() + 805 AFI->getGPRCalleeSavedArea2Size() + 806 AFI->getDPRCalleeSavedGapSize() + 807 AFI->getDPRCalleeSavedAreaSize()); 808 809 // Reset SP based on frame pointer only if the stack frame extends beyond 810 // frame pointer stack slot or target is ELF and the function has FP. 811 if (AFI->shouldRestoreSPFromFP()) { 812 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 813 if (NumBytes) { 814 if (isARM) 815 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 816 ARMCC::AL, 0, TII); 817 else { 818 // It's not possible to restore SP from FP in a single instruction. 819 // For iOS, this looks like: 820 // mov sp, r7 821 // sub sp, #24 822 // This is bad, if an interrupt is taken after the mov, sp is in an 823 // inconsistent state. 824 // Use the first callee-saved register as a scratch register. 825 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 826 "No scratch register to restore SP from FP!"); 827 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 828 ARMCC::AL, 0, TII); 829 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 830 .addReg(ARM::R4) 831 .add(predOps(ARMCC::AL)); 832 } 833 } else { 834 // Thumb2 or ARM. 835 if (isARM) 836 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 837 .addReg(FramePtr) 838 .add(predOps(ARMCC::AL)) 839 .add(condCodeOp()); 840 else 841 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 842 .addReg(FramePtr) 843 .add(predOps(ARMCC::AL)); 844 } 845 } else if (NumBytes && 846 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 847 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes); 848 849 // Increment past our save areas. 850 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { 851 MBBI++; 852 // Since vpop register list cannot have gaps, there may be multiple vpop 853 // instructions in the epilogue. 854 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 855 MBBI++; 856 } 857 if (AFI->getDPRCalleeSavedGapSize()) { 858 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 859 "unexpected DPR alignment gap"); 860 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize()); 861 } 862 863 if (AFI->getGPRCalleeSavedArea2Size()) MBBI++; 864 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 865 } 866 867 if (ArgRegsSaveSize) 868 emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize); 869 } 870 871 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 872 /// debug info. It's the same as what we use for resolving the code-gen 873 /// references for now. FIXME: This can go wrong when references are 874 /// SP-relative and simple call frames aren't used. 875 int 876 ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 877 unsigned &FrameReg) const { 878 return ResolveFrameIndexReference(MF, FI, FrameReg, 0); 879 } 880 881 int 882 ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 883 int FI, unsigned &FrameReg, 884 int SPAdj) const { 885 const MachineFrameInfo &MFI = MF.getFrameInfo(); 886 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 887 MF.getSubtarget().getRegisterInfo()); 888 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 889 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 890 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 891 bool isFixed = MFI.isFixedObjectIndex(FI); 892 893 FrameReg = ARM::SP; 894 Offset += SPAdj; 895 896 // SP can move around if there are allocas. We may also lose track of SP 897 // when emergency spilling inside a non-reserved call frame setup. 898 bool hasMovingSP = !hasReservedCallFrame(MF); 899 900 // When dynamically realigning the stack, use the frame pointer for 901 // parameters, and the stack/base pointer for locals. 902 if (RegInfo->needsStackRealignment(MF)) { 903 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 904 if (isFixed) { 905 FrameReg = RegInfo->getFrameRegister(MF); 906 Offset = FPOffset; 907 } else if (hasMovingSP) { 908 assert(RegInfo->hasBasePointer(MF) && 909 "VLAs and dynamic stack alignment, but missing base pointer!"); 910 FrameReg = RegInfo->getBaseRegister(); 911 } 912 return Offset; 913 } 914 915 // If there is a frame pointer, use it when we can. 916 if (hasFP(MF) && AFI->hasStackFrame()) { 917 // Use frame pointer to reference fixed objects. Use it for locals if 918 // there are VLAs (and thus the SP isn't reliable as a base). 919 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 920 FrameReg = RegInfo->getFrameRegister(MF); 921 return FPOffset; 922 } else if (hasMovingSP) { 923 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 924 if (AFI->isThumb2Function()) { 925 // Try to use the frame pointer if we can, else use the base pointer 926 // since it's available. This is handy for the emergency spill slot, in 927 // particular. 928 if (FPOffset >= -255 && FPOffset < 0) { 929 FrameReg = RegInfo->getFrameRegister(MF); 930 return FPOffset; 931 } 932 } 933 } else if (AFI->isThumbFunction()) { 934 // Prefer SP to base pointer, if the offset is suitably aligned and in 935 // range as the effective range of the immediate offset is bigger when 936 // basing off SP. 937 // Use add <rd>, sp, #<imm8> 938 // ldr <rd>, [sp, #<imm8>] 939 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 940 return Offset; 941 // In Thumb2 mode, the negative offset is very limited. Try to avoid 942 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 943 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) { 944 FrameReg = RegInfo->getFrameRegister(MF); 945 return FPOffset; 946 } 947 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 948 // Otherwise, use SP or FP, whichever is closer to the stack slot. 949 FrameReg = RegInfo->getFrameRegister(MF); 950 return FPOffset; 951 } 952 } 953 // Use the base pointer if we have one. 954 if (RegInfo->hasBasePointer(MF)) 955 FrameReg = RegInfo->getBaseRegister(); 956 return Offset; 957 } 958 959 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 960 MachineBasicBlock::iterator MI, 961 const std::vector<CalleeSavedInfo> &CSI, 962 unsigned StmOpc, unsigned StrOpc, 963 bool NoGap, 964 bool(*Func)(unsigned, bool), 965 unsigned NumAlignedDPRCS2Regs, 966 unsigned MIFlags) const { 967 MachineFunction &MF = *MBB.getParent(); 968 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 969 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 970 971 DebugLoc DL; 972 973 using RegAndKill = std::pair<unsigned, bool>; 974 975 SmallVector<RegAndKill, 4> Regs; 976 unsigned i = CSI.size(); 977 while (i != 0) { 978 unsigned LastReg = 0; 979 for (; i != 0; --i) { 980 unsigned Reg = CSI[i-1].getReg(); 981 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 982 983 // D-registers in the aligned area DPRCS2 are NOT spilled here. 984 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 985 continue; 986 987 const MachineRegisterInfo &MRI = MF.getRegInfo(); 988 bool isLiveIn = MRI.isLiveIn(Reg); 989 if (!isLiveIn && !MRI.isReserved(Reg)) 990 MBB.addLiveIn(Reg); 991 // If NoGap is true, push consecutive registers and then leave the rest 992 // for other instructions. e.g. 993 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 994 if (NoGap && LastReg && LastReg != Reg-1) 995 break; 996 LastReg = Reg; 997 // Do not set a kill flag on values that are also marked as live-in. This 998 // happens with the @llvm-returnaddress intrinsic and with arguments 999 // passed in callee saved registers. 1000 // Omitting the kill flags is conservatively correct even if the live-in 1001 // is not used after all. 1002 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 1003 } 1004 1005 if (Regs.empty()) 1006 continue; 1007 1008 llvm::sort(Regs.begin(), Regs.end(), [&](const RegAndKill &LHS, 1009 const RegAndKill &RHS) { 1010 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 1011 }); 1012 1013 if (Regs.size() > 1 || StrOpc== 0) { 1014 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 1015 .addReg(ARM::SP) 1016 .setMIFlags(MIFlags) 1017 .add(predOps(ARMCC::AL)); 1018 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1019 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 1020 } else if (Regs.size() == 1) { 1021 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 1022 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 1023 .addReg(ARM::SP) 1024 .setMIFlags(MIFlags) 1025 .addImm(-4) 1026 .add(predOps(ARMCC::AL)); 1027 } 1028 Regs.clear(); 1029 1030 // Put any subsequent vpush instructions before this one: they will refer to 1031 // higher register numbers so need to be pushed first in order to preserve 1032 // monotonicity. 1033 if (MI != MBB.begin()) 1034 --MI; 1035 } 1036 } 1037 1038 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1039 MachineBasicBlock::iterator MI, 1040 std::vector<CalleeSavedInfo> &CSI, 1041 unsigned LdmOpc, unsigned LdrOpc, 1042 bool isVarArg, bool NoGap, 1043 bool(*Func)(unsigned, bool), 1044 unsigned NumAlignedDPRCS2Regs) const { 1045 MachineFunction &MF = *MBB.getParent(); 1046 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1047 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1048 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1049 DebugLoc DL; 1050 bool isTailCall = false; 1051 bool isInterrupt = false; 1052 bool isTrap = false; 1053 if (MBB.end() != MI) { 1054 DL = MI->getDebugLoc(); 1055 unsigned RetOpcode = MI->getOpcode(); 1056 isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri); 1057 isInterrupt = 1058 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1059 isTrap = 1060 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1061 RetOpcode == ARM::tTRAP; 1062 } 1063 1064 SmallVector<unsigned, 4> Regs; 1065 unsigned i = CSI.size(); 1066 while (i != 0) { 1067 unsigned LastReg = 0; 1068 bool DeleteRet = false; 1069 for (; i != 0; --i) { 1070 CalleeSavedInfo &Info = CSI[i-1]; 1071 unsigned Reg = Info.getReg(); 1072 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1073 1074 // The aligned reloads from area DPRCS2 are not inserted here. 1075 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1076 continue; 1077 1078 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1079 !isTrap && STI.hasV5TOps()) { 1080 if (MBB.succ_empty()) { 1081 Reg = ARM::PC; 1082 // Fold the return instruction into the LDM. 1083 DeleteRet = true; 1084 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1085 // We 'restore' LR into PC so it is not live out of the return block: 1086 // Clear Restored bit. 1087 Info.setRestored(false); 1088 } else 1089 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1090 } 1091 1092 // If NoGap is true, pop consecutive registers and then leave the rest 1093 // for other instructions. e.g. 1094 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1095 if (NoGap && LastReg && LastReg != Reg-1) 1096 break; 1097 1098 LastReg = Reg; 1099 Regs.push_back(Reg); 1100 } 1101 1102 if (Regs.empty()) 1103 continue; 1104 1105 llvm::sort(Regs.begin(), Regs.end(), [&](unsigned LHS, unsigned RHS) { 1106 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1107 }); 1108 1109 if (Regs.size() > 1 || LdrOpc == 0) { 1110 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1111 .addReg(ARM::SP) 1112 .add(predOps(ARMCC::AL)); 1113 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1114 MIB.addReg(Regs[i], getDefRegState(true)); 1115 if (DeleteRet) { 1116 if (MI != MBB.end()) { 1117 MIB.copyImplicitOps(*MI); 1118 MI->eraseFromParent(); 1119 } 1120 } 1121 MI = MIB; 1122 } else if (Regs.size() == 1) { 1123 // If we adjusted the reg to PC from LR above, switch it back here. We 1124 // only do that for LDM. 1125 if (Regs[0] == ARM::PC) 1126 Regs[0] = ARM::LR; 1127 MachineInstrBuilder MIB = 1128 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1129 .addReg(ARM::SP, RegState::Define) 1130 .addReg(ARM::SP); 1131 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1132 // that refactoring is complete (eventually). 1133 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1134 MIB.addReg(0); 1135 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1136 } else 1137 MIB.addImm(4); 1138 MIB.add(predOps(ARMCC::AL)); 1139 } 1140 Regs.clear(); 1141 1142 // Put any subsequent vpop instructions after this one: they will refer to 1143 // higher register numbers so need to be popped afterwards. 1144 if (MI != MBB.end()) 1145 ++MI; 1146 } 1147 } 1148 1149 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1150 /// starting from d8. Also insert stack realignment code and leave the stack 1151 /// pointer pointing to the d8 spill slot. 1152 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1153 MachineBasicBlock::iterator MI, 1154 unsigned NumAlignedDPRCS2Regs, 1155 const std::vector<CalleeSavedInfo> &CSI, 1156 const TargetRegisterInfo *TRI) { 1157 MachineFunction &MF = *MBB.getParent(); 1158 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1159 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1160 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1161 MachineFrameInfo &MFI = MF.getFrameInfo(); 1162 1163 // Mark the D-register spill slots as properly aligned. Since MFI computes 1164 // stack slot layout backwards, this can actually mean that the d-reg stack 1165 // slot offsets can be wrong. The offset for d8 will always be correct. 1166 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 1167 unsigned DNum = CSI[i].getReg() - ARM::D8; 1168 if (DNum > NumAlignedDPRCS2Regs - 1) 1169 continue; 1170 int FI = CSI[i].getFrameIdx(); 1171 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1172 // registers will be 8-byte aligned. 1173 MFI.setObjectAlignment(FI, DNum % 2 ? 8 : 16); 1174 1175 // The stack slot for D8 needs to be maximally aligned because this is 1176 // actually the point where we align the stack pointer. MachineFrameInfo 1177 // computes all offsets relative to the incoming stack pointer which is a 1178 // bit weird when realigning the stack. Any extra padding for this 1179 // over-alignment is not realized because the code inserted below adjusts 1180 // the stack pointer by numregs * 8 before aligning the stack pointer. 1181 if (DNum == 0) 1182 MFI.setObjectAlignment(FI, MFI.getMaxAlignment()); 1183 } 1184 1185 // Move the stack pointer to the d8 spill slot, and align it at the same 1186 // time. Leave the stack slot address in the scratch register r4. 1187 // 1188 // sub r4, sp, #numregs * 8 1189 // bic r4, r4, #align - 1 1190 // mov sp, r4 1191 // 1192 bool isThumb = AFI->isThumbFunction(); 1193 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1194 AFI->setShouldRestoreSPFromFP(true); 1195 1196 // sub r4, sp, #numregs * 8 1197 // The immediate is <= 64, so it doesn't need any special encoding. 1198 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1199 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1200 .addReg(ARM::SP) 1201 .addImm(8 * NumAlignedDPRCS2Regs) 1202 .add(predOps(ARMCC::AL)) 1203 .add(condCodeOp()); 1204 1205 unsigned MaxAlign = MF.getFrameInfo().getMaxAlignment(); 1206 // We must set parameter MustBeSingleInstruction to true, since 1207 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1208 // stack alignment. Luckily, this can always be done since all ARM 1209 // architecture versions that support Neon also support the BFC 1210 // instruction. 1211 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1212 1213 // mov sp, r4 1214 // The stack pointer must be adjusted before spilling anything, otherwise 1215 // the stack slots could be clobbered by an interrupt handler. 1216 // Leave r4 live, it is used below. 1217 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1218 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1219 .addReg(ARM::R4) 1220 .add(predOps(ARMCC::AL)); 1221 if (!isThumb) 1222 MIB.add(condCodeOp()); 1223 1224 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1225 // r4 holds the stack slot address. 1226 unsigned NextReg = ARM::D8; 1227 1228 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1229 // The writeback is only needed when emitting two vst1.64 instructions. 1230 if (NumAlignedDPRCS2Regs >= 6) { 1231 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1232 &ARM::QQPRRegClass); 1233 MBB.addLiveIn(SupReg); 1234 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1235 .addReg(ARM::R4, RegState::Kill) 1236 .addImm(16) 1237 .addReg(NextReg) 1238 .addReg(SupReg, RegState::ImplicitKill) 1239 .add(predOps(ARMCC::AL)); 1240 NextReg += 4; 1241 NumAlignedDPRCS2Regs -= 4; 1242 } 1243 1244 // We won't modify r4 beyond this point. It currently points to the next 1245 // register to be spilled. 1246 unsigned R4BaseReg = NextReg; 1247 1248 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1249 if (NumAlignedDPRCS2Regs >= 4) { 1250 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1251 &ARM::QQPRRegClass); 1252 MBB.addLiveIn(SupReg); 1253 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1254 .addReg(ARM::R4) 1255 .addImm(16) 1256 .addReg(NextReg) 1257 .addReg(SupReg, RegState::ImplicitKill) 1258 .add(predOps(ARMCC::AL)); 1259 NextReg += 4; 1260 NumAlignedDPRCS2Regs -= 4; 1261 } 1262 1263 // 16-byte aligned vst1.64 with 2 d-regs. 1264 if (NumAlignedDPRCS2Regs >= 2) { 1265 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1266 &ARM::QPRRegClass); 1267 MBB.addLiveIn(SupReg); 1268 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1269 .addReg(ARM::R4) 1270 .addImm(16) 1271 .addReg(SupReg) 1272 .add(predOps(ARMCC::AL)); 1273 NextReg += 2; 1274 NumAlignedDPRCS2Regs -= 2; 1275 } 1276 1277 // Finally, use a vanilla vstr.64 for the odd last register. 1278 if (NumAlignedDPRCS2Regs) { 1279 MBB.addLiveIn(NextReg); 1280 // vstr.64 uses addrmode5 which has an offset scale of 4. 1281 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1282 .addReg(NextReg) 1283 .addReg(ARM::R4) 1284 .addImm((NextReg - R4BaseReg) * 2) 1285 .add(predOps(ARMCC::AL)); 1286 } 1287 1288 // The last spill instruction inserted should kill the scratch register r4. 1289 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1290 } 1291 1292 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1293 /// iterator to the following instruction. 1294 static MachineBasicBlock::iterator 1295 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1296 unsigned NumAlignedDPRCS2Regs) { 1297 // sub r4, sp, #numregs * 8 1298 // bic r4, r4, #align - 1 1299 // mov sp, r4 1300 ++MI; ++MI; ++MI; 1301 assert(MI->mayStore() && "Expecting spill instruction"); 1302 1303 // These switches all fall through. 1304 switch(NumAlignedDPRCS2Regs) { 1305 case 7: 1306 ++MI; 1307 assert(MI->mayStore() && "Expecting spill instruction"); 1308 LLVM_FALLTHROUGH; 1309 default: 1310 ++MI; 1311 assert(MI->mayStore() && "Expecting spill instruction"); 1312 LLVM_FALLTHROUGH; 1313 case 1: 1314 case 2: 1315 case 4: 1316 assert(MI->killsRegister(ARM::R4) && "Missed kill flag"); 1317 ++MI; 1318 } 1319 return MI; 1320 } 1321 1322 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1323 /// starting from d8. These instructions are assumed to execute while the 1324 /// stack is still aligned, unlike the code inserted by emitPopInst. 1325 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1326 MachineBasicBlock::iterator MI, 1327 unsigned NumAlignedDPRCS2Regs, 1328 const std::vector<CalleeSavedInfo> &CSI, 1329 const TargetRegisterInfo *TRI) { 1330 MachineFunction &MF = *MBB.getParent(); 1331 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1332 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1333 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1334 1335 // Find the frame index assigned to d8. 1336 int D8SpillFI = 0; 1337 for (unsigned i = 0, e = CSI.size(); i != e; ++i) 1338 if (CSI[i].getReg() == ARM::D8) { 1339 D8SpillFI = CSI[i].getFrameIdx(); 1340 break; 1341 } 1342 1343 // Materialize the address of the d8 spill slot into the scratch register r4. 1344 // This can be fairly complicated if the stack frame is large, so just use 1345 // the normal frame index elimination mechanism to do it. This code runs as 1346 // the initial part of the epilog where the stack and base pointers haven't 1347 // been changed yet. 1348 bool isThumb = AFI->isThumbFunction(); 1349 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1350 1351 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 1352 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1353 .addFrameIndex(D8SpillFI) 1354 .addImm(0) 1355 .add(predOps(ARMCC::AL)) 1356 .add(condCodeOp()); 1357 1358 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 1359 unsigned NextReg = ARM::D8; 1360 1361 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 1362 if (NumAlignedDPRCS2Regs >= 6) { 1363 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1364 &ARM::QQPRRegClass); 1365 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 1366 .addReg(ARM::R4, RegState::Define) 1367 .addReg(ARM::R4, RegState::Kill) 1368 .addImm(16) 1369 .addReg(SupReg, RegState::ImplicitDefine) 1370 .add(predOps(ARMCC::AL)); 1371 NextReg += 4; 1372 NumAlignedDPRCS2Regs -= 4; 1373 } 1374 1375 // We won't modify r4 beyond this point. It currently points to the next 1376 // register to be spilled. 1377 unsigned R4BaseReg = NextReg; 1378 1379 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 1380 if (NumAlignedDPRCS2Regs >= 4) { 1381 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1382 &ARM::QQPRRegClass); 1383 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 1384 .addReg(ARM::R4) 1385 .addImm(16) 1386 .addReg(SupReg, RegState::ImplicitDefine) 1387 .add(predOps(ARMCC::AL)); 1388 NextReg += 4; 1389 NumAlignedDPRCS2Regs -= 4; 1390 } 1391 1392 // 16-byte aligned vld1.64 with 2 d-regs. 1393 if (NumAlignedDPRCS2Regs >= 2) { 1394 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1395 &ARM::QPRRegClass); 1396 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 1397 .addReg(ARM::R4) 1398 .addImm(16) 1399 .add(predOps(ARMCC::AL)); 1400 NextReg += 2; 1401 NumAlignedDPRCS2Regs -= 2; 1402 } 1403 1404 // Finally, use a vanilla vldr.64 for the remaining odd register. 1405 if (NumAlignedDPRCS2Regs) 1406 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 1407 .addReg(ARM::R4) 1408 .addImm(2 * (NextReg - R4BaseReg)) 1409 .add(predOps(ARMCC::AL)); 1410 1411 // Last store kills r4. 1412 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1413 } 1414 1415 bool ARMFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB, 1416 MachineBasicBlock::iterator MI, 1417 const std::vector<CalleeSavedInfo> &CSI, 1418 const TargetRegisterInfo *TRI) const { 1419 if (CSI.empty()) 1420 return false; 1421 1422 MachineFunction &MF = *MBB.getParent(); 1423 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1424 1425 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 1426 unsigned PushOneOpc = AFI->isThumbFunction() ? 1427 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 1428 unsigned FltOpc = ARM::VSTMDDB_UPD; 1429 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1430 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0, 1431 MachineInstr::FrameSetup); 1432 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0, 1433 MachineInstr::FrameSetup); 1434 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 1435 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 1436 1437 // The code above does not insert spill code for the aligned DPRCS2 registers. 1438 // The stack realignment code will be inserted between the push instructions 1439 // and these spills. 1440 if (NumAlignedDPRCS2Regs) 1441 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1442 1443 return true; 1444 } 1445 1446 bool ARMFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, 1447 MachineBasicBlock::iterator MI, 1448 std::vector<CalleeSavedInfo> &CSI, 1449 const TargetRegisterInfo *TRI) const { 1450 if (CSI.empty()) 1451 return false; 1452 1453 MachineFunction &MF = *MBB.getParent(); 1454 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1455 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 1456 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1457 1458 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 1459 // registers. Do that here instead. 1460 if (NumAlignedDPRCS2Regs) 1461 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1462 1463 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1464 unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM; 1465 unsigned FltOpc = ARM::VLDMDIA_UPD; 1466 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 1467 NumAlignedDPRCS2Regs); 1468 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1469 &isARMArea2Register, 0); 1470 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1471 &isARMArea1Register, 0); 1472 1473 return true; 1474 } 1475 1476 // FIXME: Make generic? 1477 static unsigned GetFunctionSizeInBytes(const MachineFunction &MF, 1478 const ARMBaseInstrInfo &TII) { 1479 unsigned FnSize = 0; 1480 for (auto &MBB : MF) { 1481 for (auto &MI : MBB) 1482 FnSize += TII.getInstSizeInBytes(MI); 1483 } 1484 return FnSize; 1485 } 1486 1487 /// estimateRSStackSizeLimit - Look at each instruction that references stack 1488 /// frames and return the stack size limit beyond which some of these 1489 /// instructions will require a scratch register during their expansion later. 1490 // FIXME: Move to TII? 1491 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 1492 const TargetFrameLowering *TFI) { 1493 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1494 unsigned Limit = (1 << 12) - 1; 1495 for (auto &MBB : MF) { 1496 for (auto &MI : MBB) { 1497 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1498 if (!MI.getOperand(i).isFI()) 1499 continue; 1500 1501 // When using ADDri to get the address of a stack object, 255 is the 1502 // largest offset guaranteed to fit in the immediate offset. 1503 if (MI.getOpcode() == ARM::ADDri) { 1504 Limit = std::min(Limit, (1U << 8) - 1); 1505 break; 1506 } 1507 1508 // Otherwise check the addressing mode. 1509 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 1510 case ARMII::AddrMode3: 1511 case ARMII::AddrModeT2_i8: 1512 Limit = std::min(Limit, (1U << 8) - 1); 1513 break; 1514 case ARMII::AddrMode5: 1515 case ARMII::AddrModeT2_i8s4: 1516 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 1517 break; 1518 case ARMII::AddrModeT2_i12: 1519 // i12 supports only positive offset so these will be converted to 1520 // i8 opcodes. See llvm::rewriteT2FrameIndex. 1521 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 1522 Limit = std::min(Limit, (1U << 8) - 1); 1523 break; 1524 case ARMII::AddrMode4: 1525 case ARMII::AddrMode6: 1526 // Addressing modes 4 & 6 (load/store) instructions can't encode an 1527 // immediate offset for stack references. 1528 return 0; 1529 default: 1530 break; 1531 } 1532 break; // At most one FI per instruction 1533 } 1534 } 1535 } 1536 1537 return Limit; 1538 } 1539 1540 // In functions that realign the stack, it can be an advantage to spill the 1541 // callee-saved vector registers after realigning the stack. The vst1 and vld1 1542 // instructions take alignment hints that can improve performance. 1543 static void 1544 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 1545 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 1546 if (!SpillAlignedNEONRegs) 1547 return; 1548 1549 // Naked functions don't spill callee-saved registers. 1550 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 1551 return; 1552 1553 // We are planning to use NEON instructions vst1 / vld1. 1554 if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON()) 1555 return; 1556 1557 // Don't bother if the default stack alignment is sufficiently high. 1558 if (MF.getSubtarget().getFrameLowering()->getStackAlignment() >= 8) 1559 return; 1560 1561 // Aligned spills require stack realignment. 1562 if (!static_cast<const ARMBaseRegisterInfo *>( 1563 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 1564 return; 1565 1566 // We always spill contiguous d-registers starting from d8. Count how many 1567 // needs spilling. The register allocator will almost always use the 1568 // callee-saved registers in order, but it can happen that there are holes in 1569 // the range. Registers above the hole will be spilled to the standard DPRCS 1570 // area. 1571 unsigned NumSpills = 0; 1572 for (; NumSpills < 8; ++NumSpills) 1573 if (!SavedRegs.test(ARM::D8 + NumSpills)) 1574 break; 1575 1576 // Don't do this for just one d-register. It's not worth it. 1577 if (NumSpills < 2) 1578 return; 1579 1580 // Spill the first NumSpills D-registers after realigning the stack. 1581 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 1582 1583 // A scratch register is required for the vst1 / vld1 instructions. 1584 SavedRegs.set(ARM::R4); 1585 } 1586 1587 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 1588 BitVector &SavedRegs, 1589 RegScavenger *RS) const { 1590 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1591 // This tells PEI to spill the FP as if it is any other callee-save register 1592 // to take advantage the eliminateFrameIndex machinery. This also ensures it 1593 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 1594 // to combine multiple loads / stores. 1595 bool CanEliminateFrame = true; 1596 bool CS1Spilled = false; 1597 bool LRSpilled = false; 1598 unsigned NumGPRSpills = 0; 1599 unsigned NumFPRSpills = 0; 1600 SmallVector<unsigned, 4> UnspilledCS1GPRs; 1601 SmallVector<unsigned, 4> UnspilledCS2GPRs; 1602 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1603 MF.getSubtarget().getRegisterInfo()); 1604 const ARMBaseInstrInfo &TII = 1605 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1606 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1607 MachineFrameInfo &MFI = MF.getFrameInfo(); 1608 MachineRegisterInfo &MRI = MF.getRegInfo(); 1609 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1610 (void)TRI; // Silence unused warning in non-assert builds. 1611 unsigned FramePtr = RegInfo->getFrameRegister(MF); 1612 1613 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 1614 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 1615 // since it's not always possible to restore sp from fp in a single 1616 // instruction. 1617 // FIXME: It will be better just to find spare register here. 1618 if (AFI->isThumb2Function() && 1619 (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF))) 1620 SavedRegs.set(ARM::R4); 1621 1622 if (AFI->isThumb1OnlyFunction()) { 1623 // Spill LR if Thumb1 function uses variable length argument lists. 1624 if (AFI->getArgRegsSaveSize() > 0) 1625 SavedRegs.set(ARM::LR); 1626 1627 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function 1628 // requires stack alignment. We don't know for sure what the stack size 1629 // will be, but for this, an estimate is good enough. If there anything 1630 // changes it, it'll be a spill, which implies we've used all the registers 1631 // and so R4 is already used, so not marking it here will be OK. 1632 // FIXME: It will be better just to find spare register here. 1633 if (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF) || 1634 MFI.estimateStackSize(MF) > 508) 1635 SavedRegs.set(ARM::R4); 1636 } 1637 1638 // See if we can spill vector registers to aligned stack. 1639 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 1640 1641 // Spill the BasePtr if it's used. 1642 if (RegInfo->hasBasePointer(MF)) 1643 SavedRegs.set(RegInfo->getBaseRegister()); 1644 1645 // Don't spill FP if the frame can be eliminated. This is determined 1646 // by scanning the callee-save registers to see if any is modified. 1647 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 1648 for (unsigned i = 0; CSRegs[i]; ++i) { 1649 unsigned Reg = CSRegs[i]; 1650 bool Spilled = false; 1651 if (SavedRegs.test(Reg)) { 1652 Spilled = true; 1653 CanEliminateFrame = false; 1654 } 1655 1656 if (!ARM::GPRRegClass.contains(Reg)) { 1657 if (Spilled) { 1658 if (ARM::SPRRegClass.contains(Reg)) 1659 NumFPRSpills++; 1660 else if (ARM::DPRRegClass.contains(Reg)) 1661 NumFPRSpills += 2; 1662 else if (ARM::QPRRegClass.contains(Reg)) 1663 NumFPRSpills += 4; 1664 } 1665 continue; 1666 } 1667 1668 if (Spilled) { 1669 NumGPRSpills++; 1670 1671 if (!STI.splitFramePushPop(MF)) { 1672 if (Reg == ARM::LR) 1673 LRSpilled = true; 1674 CS1Spilled = true; 1675 continue; 1676 } 1677 1678 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 1679 switch (Reg) { 1680 case ARM::LR: 1681 LRSpilled = true; 1682 LLVM_FALLTHROUGH; 1683 case ARM::R0: case ARM::R1: 1684 case ARM::R2: case ARM::R3: 1685 case ARM::R4: case ARM::R5: 1686 case ARM::R6: case ARM::R7: 1687 CS1Spilled = true; 1688 break; 1689 default: 1690 break; 1691 } 1692 } else { 1693 if (!STI.splitFramePushPop(MF)) { 1694 UnspilledCS1GPRs.push_back(Reg); 1695 continue; 1696 } 1697 1698 switch (Reg) { 1699 case ARM::R0: case ARM::R1: 1700 case ARM::R2: case ARM::R3: 1701 case ARM::R4: case ARM::R5: 1702 case ARM::R6: case ARM::R7: 1703 case ARM::LR: 1704 UnspilledCS1GPRs.push_back(Reg); 1705 break; 1706 default: 1707 UnspilledCS2GPRs.push_back(Reg); 1708 break; 1709 } 1710 } 1711 } 1712 1713 bool ForceLRSpill = false; 1714 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 1715 unsigned FnSize = GetFunctionSizeInBytes(MF, TII); 1716 // Force LR to be spilled if the Thumb function size is > 2048. This enables 1717 // use of BL to implement far jump. If it turns out that it's not needed 1718 // then the branch fix up path will undo it. 1719 if (FnSize >= (1 << 11)) { 1720 CanEliminateFrame = false; 1721 ForceLRSpill = true; 1722 } 1723 } 1724 1725 // If any of the stack slot references may be out of range of an immediate 1726 // offset, make sure a register (or a spill slot) is available for the 1727 // register scavenger. Note that if we're indexing off the frame pointer, the 1728 // effective stack size is 4 bytes larger since the FP points to the stack 1729 // slot of the previous FP. Also, if we have variable sized objects in the 1730 // function, stack slot references will often be negative, and some of 1731 // our instructions are positive-offset only, so conservatively consider 1732 // that case to want a spill slot (or register) as well. Similarly, if 1733 // the function adjusts the stack pointer during execution and the 1734 // adjustments aren't already part of our stack size estimate, our offset 1735 // calculations may be off, so be conservative. 1736 // FIXME: We could add logic to be more precise about negative offsets 1737 // and which instructions will need a scratch register for them. Is it 1738 // worth the effort and added fragility? 1739 unsigned EstimatedStackSize = 1740 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 1741 1742 // Determine biggest (positive) SP offset in MachineFrameInfo. 1743 int MaxFixedOffset = 0; 1744 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 1745 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); 1746 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); 1747 } 1748 1749 bool HasFP = hasFP(MF); 1750 if (HasFP) { 1751 if (AFI->hasStackFrame()) 1752 EstimatedStackSize += 4; 1753 } else { 1754 // If FP is not used, SP will be used to access arguments, so count the 1755 // size of arguments into the estimation. 1756 EstimatedStackSize += MaxFixedOffset; 1757 } 1758 EstimatedStackSize += 16; // For possible paddings. 1759 1760 unsigned EstimatedRSStackSizeLimit = estimateRSStackSizeLimit(MF, this); 1761 int MaxFPOffset = getMaxFPOffset(MF.getFunction(), *AFI); 1762 bool BigFrameOffsets = EstimatedStackSize >= EstimatedRSStackSizeLimit || 1763 MFI.hasVarSizedObjects() || 1764 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)) || 1765 // For large argument stacks fp relative addressed may overflow. 1766 (HasFP && (MaxFixedOffset - MaxFPOffset) >= (int)EstimatedRSStackSizeLimit); 1767 if (BigFrameOffsets || 1768 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 1769 AFI->setHasStackFrame(true); 1770 1771 if (HasFP) { 1772 SavedRegs.set(FramePtr); 1773 // If the frame pointer is required by the ABI, also spill LR so that we 1774 // emit a complete frame record. 1775 if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) { 1776 SavedRegs.set(ARM::LR); 1777 LRSpilled = true; 1778 NumGPRSpills++; 1779 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 1780 if (LRPos != UnspilledCS1GPRs.end()) 1781 UnspilledCS1GPRs.erase(LRPos); 1782 } 1783 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 1784 if (FPPos != UnspilledCS1GPRs.end()) 1785 UnspilledCS1GPRs.erase(FPPos); 1786 NumGPRSpills++; 1787 if (FramePtr == ARM::R7) 1788 CS1Spilled = true; 1789 } 1790 1791 // This is true when we inserted a spill for an unused register that can now 1792 // be used for register scavenging. 1793 bool ExtraCSSpill = false; 1794 1795 if (AFI->isThumb1OnlyFunction()) { 1796 // For Thumb1-only targets, we need some low registers when we save and 1797 // restore the high registers (which aren't allocatable, but could be 1798 // used by inline assembly) because the push/pop instructions can not 1799 // access high registers. If necessary, we might need to push more low 1800 // registers to ensure that there is at least one free that can be used 1801 // for the saving & restoring, and preferably we should ensure that as 1802 // many as are needed are available so that fewer push/pop instructions 1803 // are required. 1804 1805 // Low registers which are not currently pushed, but could be (r4-r7). 1806 SmallVector<unsigned, 4> AvailableRegs; 1807 1808 // Unused argument registers (r0-r3) can be clobbered in the prologue for 1809 // free. 1810 int EntryRegDeficit = 0; 1811 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 1812 if (!MF.getRegInfo().isLiveIn(Reg)) { 1813 --EntryRegDeficit; 1814 DEBUG(dbgs() << printReg(Reg, TRI) 1815 << " is unused argument register, EntryRegDeficit = " 1816 << EntryRegDeficit << "\n"); 1817 } 1818 } 1819 1820 // Unused return registers can be clobbered in the epilogue for free. 1821 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 1822 DEBUG(dbgs() << AFI->getReturnRegsCount() 1823 << " return regs used, ExitRegDeficit = " << ExitRegDeficit 1824 << "\n"); 1825 1826 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 1827 DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 1828 1829 // r4-r6 can be used in the prologue if they are pushed by the first push 1830 // instruction. 1831 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 1832 if (SavedRegs.test(Reg)) { 1833 --RegDeficit; 1834 DEBUG(dbgs() << printReg(Reg, TRI) 1835 << " is saved low register, RegDeficit = " << RegDeficit 1836 << "\n"); 1837 } else { 1838 AvailableRegs.push_back(Reg); 1839 DEBUG(dbgs() 1840 << printReg(Reg, TRI) 1841 << " is non-saved low register, adding to AvailableRegs\n"); 1842 } 1843 } 1844 1845 // r7 can be used if it is not being used as the frame pointer. 1846 if (!HasFP) { 1847 if (SavedRegs.test(ARM::R7)) { 1848 --RegDeficit; 1849 DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = " 1850 << RegDeficit << "\n"); 1851 } else { 1852 AvailableRegs.push_back(ARM::R7); 1853 DEBUG(dbgs() 1854 << "%r7 is non-saved low register, adding to AvailableRegs\n"); 1855 } 1856 } 1857 1858 // Each of r8-r11 needs to be copied to a low register, then pushed. 1859 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 1860 if (SavedRegs.test(Reg)) { 1861 ++RegDeficit; 1862 DEBUG(dbgs() << printReg(Reg, TRI) 1863 << " is saved high register, RegDeficit = " << RegDeficit 1864 << "\n"); 1865 } 1866 } 1867 1868 // LR can only be used by PUSH, not POP, and can't be used at all if the 1869 // llvm.returnaddress intrinsic is used. This is only worth doing if we 1870 // are more limited at function entry than exit. 1871 if ((EntryRegDeficit > ExitRegDeficit) && 1872 !(MF.getRegInfo().isLiveIn(ARM::LR) && 1873 MF.getFrameInfo().isReturnAddressTaken())) { 1874 if (SavedRegs.test(ARM::LR)) { 1875 --RegDeficit; 1876 DEBUG(dbgs() << "%lr is saved register, RegDeficit = " << RegDeficit 1877 << "\n"); 1878 } else { 1879 AvailableRegs.push_back(ARM::LR); 1880 DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n"); 1881 } 1882 } 1883 1884 // If there are more high registers that need pushing than low registers 1885 // available, push some more low registers so that we can use fewer push 1886 // instructions. This might not reduce RegDeficit all the way to zero, 1887 // because we can only guarantee that r4-r6 are available, but r8-r11 may 1888 // need saving. 1889 DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 1890 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 1891 unsigned Reg = AvailableRegs.pop_back_val(); 1892 DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 1893 << " to make up reg deficit\n"); 1894 SavedRegs.set(Reg); 1895 NumGPRSpills++; 1896 CS1Spilled = true; 1897 assert(!MRI.isReserved(Reg) && "Should not be reserved"); 1898 if (!MRI.isPhysRegUsed(Reg)) 1899 ExtraCSSpill = true; 1900 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 1901 if (Reg == ARM::LR) 1902 LRSpilled = true; 1903 } 1904 DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit << "\n"); 1905 } 1906 1907 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 1908 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 1909 if (!LRSpilled && CS1Spilled) { 1910 SavedRegs.set(ARM::LR); 1911 NumGPRSpills++; 1912 SmallVectorImpl<unsigned>::iterator LRPos; 1913 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 1914 if (LRPos != UnspilledCS1GPRs.end()) 1915 UnspilledCS1GPRs.erase(LRPos); 1916 1917 ForceLRSpill = false; 1918 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR)) 1919 ExtraCSSpill = true; 1920 } 1921 1922 // If stack and double are 8-byte aligned and we are spilling an odd number 1923 // of GPRs, spill one extra callee save GPR so we won't have to pad between 1924 // the integer and double callee save areas. 1925 DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 1926 unsigned TargetAlign = getStackAlignment(); 1927 if (TargetAlign >= 8 && (NumGPRSpills & 1)) { 1928 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 1929 for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) { 1930 unsigned Reg = UnspilledCS1GPRs[i]; 1931 // Don't spill high register if the function is thumb. In the case of 1932 // Windows on ARM, accept R11 (frame pointer) 1933 if (!AFI->isThumbFunction() || 1934 (STI.isTargetWindows() && Reg == ARM::R11) || 1935 isARMLowRegister(Reg) || Reg == ARM::LR) { 1936 SavedRegs.set(Reg); 1937 DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 1938 << " to make up alignment\n"); 1939 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 1940 ExtraCSSpill = true; 1941 break; 1942 } 1943 } 1944 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 1945 unsigned Reg = UnspilledCS2GPRs.front(); 1946 SavedRegs.set(Reg); 1947 DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 1948 << " to make up alignment\n"); 1949 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 1950 ExtraCSSpill = true; 1951 } 1952 } 1953 1954 // Estimate if we might need to scavenge a register at some point in order 1955 // to materialize a stack offset. If so, either spill one additional 1956 // callee-saved register or reserve a special spill slot to facilitate 1957 // register scavenging. Thumb1 needs a spill slot for stack pointer 1958 // adjustments also, even when the frame itself is small. 1959 if (BigFrameOffsets && !ExtraCSSpill) { 1960 // If any non-reserved CS register isn't spilled, just spill one or two 1961 // extra. That should take care of it! 1962 unsigned NumExtras = TargetAlign / 4; 1963 SmallVector<unsigned, 2> Extras; 1964 while (NumExtras && !UnspilledCS1GPRs.empty()) { 1965 unsigned Reg = UnspilledCS1GPRs.back(); 1966 UnspilledCS1GPRs.pop_back(); 1967 if (!MRI.isReserved(Reg) && 1968 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg) || 1969 Reg == ARM::LR)) { 1970 Extras.push_back(Reg); 1971 NumExtras--; 1972 } 1973 } 1974 // For non-Thumb1 functions, also check for hi-reg CS registers 1975 if (!AFI->isThumb1OnlyFunction()) { 1976 while (NumExtras && !UnspilledCS2GPRs.empty()) { 1977 unsigned Reg = UnspilledCS2GPRs.back(); 1978 UnspilledCS2GPRs.pop_back(); 1979 if (!MRI.isReserved(Reg)) { 1980 Extras.push_back(Reg); 1981 NumExtras--; 1982 } 1983 } 1984 } 1985 if (NumExtras == 0) { 1986 for (unsigned Reg : Extras) { 1987 SavedRegs.set(Reg); 1988 if (!MRI.isPhysRegUsed(Reg)) 1989 ExtraCSSpill = true; 1990 } 1991 } 1992 if (!ExtraCSSpill && !AFI->isThumb1OnlyFunction()) { 1993 // note: Thumb1 functions spill to R12, not the stack. Reserve a slot 1994 // closest to SP or frame pointer. 1995 assert(RS && "Register scavenging not provided"); 1996 const TargetRegisterClass &RC = ARM::GPRRegClass; 1997 unsigned Size = TRI->getSpillSize(RC); 1998 unsigned Align = TRI->getSpillAlignment(RC); 1999 RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Align, false)); 2000 } 2001 } 2002 } 2003 2004 if (ForceLRSpill) { 2005 SavedRegs.set(ARM::LR); 2006 AFI->setLRIsSpilledForFarJump(true); 2007 } 2008 } 2009 2010 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 2011 MachineFunction &MF, MachineBasicBlock &MBB, 2012 MachineBasicBlock::iterator I) const { 2013 const ARMBaseInstrInfo &TII = 2014 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2015 if (!hasReservedCallFrame(MF)) { 2016 // If we have alloca, convert as follows: 2017 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 2018 // ADJCALLSTACKUP -> add, sp, sp, amount 2019 MachineInstr &Old = *I; 2020 DebugLoc dl = Old.getDebugLoc(); 2021 unsigned Amount = TII.getFrameSize(Old); 2022 if (Amount != 0) { 2023 // We need to keep the stack aligned properly. To do this, we round the 2024 // amount of space needed for the outgoing arguments up to the next 2025 // alignment boundary. 2026 Amount = alignSPAdjust(Amount); 2027 2028 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2029 assert(!AFI->isThumb1OnlyFunction() && 2030 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 2031 bool isARM = !AFI->isThumbFunction(); 2032 2033 // Replace the pseudo instruction with a new instruction... 2034 unsigned Opc = Old.getOpcode(); 2035 int PIdx = Old.findFirstPredOperandIdx(); 2036 ARMCC::CondCodes Pred = 2037 (PIdx == -1) ? ARMCC::AL 2038 : (ARMCC::CondCodes)Old.getOperand(PIdx).getImm(); 2039 unsigned PredReg = TII.getFramePred(Old); 2040 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 2041 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 2042 Pred, PredReg); 2043 } else { 2044 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 2045 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 2046 Pred, PredReg); 2047 } 2048 } 2049 } 2050 return MBB.erase(I); 2051 } 2052 2053 /// Get the minimum constant for ARM that is greater than or equal to the 2054 /// argument. In ARM, constants can have any value that can be produced by 2055 /// rotating an 8-bit value to the right by an even number of bits within a 2056 /// 32-bit word. 2057 static uint32_t alignToARMConstant(uint32_t Value) { 2058 unsigned Shifted = 0; 2059 2060 if (Value == 0) 2061 return 0; 2062 2063 while (!(Value & 0xC0000000)) { 2064 Value = Value << 2; 2065 Shifted += 2; 2066 } 2067 2068 bool Carry = (Value & 0x00FFFFFF); 2069 Value = ((Value & 0xFF000000) >> 24) + Carry; 2070 2071 if (Value & 0x0000100) 2072 Value = Value & 0x000001FC; 2073 2074 if (Shifted > 24) 2075 Value = Value >> (Shifted - 24); 2076 else 2077 Value = Value << (24 - Shifted); 2078 2079 return Value; 2080 } 2081 2082 // The stack limit in the TCB is set to this many bytes above the actual 2083 // stack limit. 2084 static const uint64_t kSplitStackAvailable = 256; 2085 2086 // Adjust the function prologue to enable split stacks. This currently only 2087 // supports android and linux. 2088 // 2089 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 2090 // must be well defined in order to allow for consistent implementations of the 2091 // __morestack helper function. The ABI is also not a normal ABI in that it 2092 // doesn't follow the normal calling conventions because this allows the 2093 // prologue of each function to be optimized further. 2094 // 2095 // Currently, the ABI looks like (when calling __morestack) 2096 // 2097 // * r4 holds the minimum stack size requested for this function call 2098 // * r5 holds the stack size of the arguments to the function 2099 // * the beginning of the function is 3 instructions after the call to 2100 // __morestack 2101 // 2102 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 2103 // place the arguments on to the new stack, and the 3-instruction knowledge to 2104 // jump directly to the body of the function when working on the new stack. 2105 // 2106 // An old (and possibly no longer compatible) implementation of __morestack for 2107 // ARM can be found at [1]. 2108 // 2109 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 2110 void ARMFrameLowering::adjustForSegmentedStacks( 2111 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2112 unsigned Opcode; 2113 unsigned CFIIndex; 2114 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 2115 bool Thumb = ST->isThumb(); 2116 2117 // Sadly, this currently doesn't support varargs, platforms other than 2118 // android/linux. Note that thumb1/thumb2 are support for android/linux. 2119 if (MF.getFunction().isVarArg()) 2120 report_fatal_error("Segmented stacks do not support vararg functions."); 2121 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 2122 report_fatal_error("Segmented stacks not supported on this platform."); 2123 2124 MachineFrameInfo &MFI = MF.getFrameInfo(); 2125 MachineModuleInfo &MMI = MF.getMMI(); 2126 MCContext &Context = MMI.getContext(); 2127 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 2128 const ARMBaseInstrInfo &TII = 2129 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2130 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 2131 DebugLoc DL; 2132 2133 uint64_t StackSize = MFI.getStackSize(); 2134 2135 // Do not generate a prologue for functions with a stack of size zero 2136 if (StackSize == 0) 2137 return; 2138 2139 // Use R4 and R5 as scratch registers. 2140 // We save R4 and R5 before use and restore them before leaving the function. 2141 unsigned ScratchReg0 = ARM::R4; 2142 unsigned ScratchReg1 = ARM::R5; 2143 uint64_t AlignedStackSize; 2144 2145 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 2146 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 2147 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 2148 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 2149 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 2150 2151 // Grab everything that reaches PrologueMBB to update there liveness as well. 2152 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 2153 SmallVector<MachineBasicBlock *, 2> WalkList; 2154 WalkList.push_back(&PrologueMBB); 2155 2156 do { 2157 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 2158 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 2159 if (BeforePrologueRegion.insert(PredBB).second) 2160 WalkList.push_back(PredBB); 2161 } 2162 } while (!WalkList.empty()); 2163 2164 // The order in that list is important. 2165 // The blocks will all be inserted before PrologueMBB using that order. 2166 // Therefore the block that should appear first in the CFG should appear 2167 // first in the list. 2168 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 2169 PostStackMBB}; 2170 2171 for (MachineBasicBlock *B : AddedBlocks) 2172 BeforePrologueRegion.insert(B); 2173 2174 for (const auto &LI : PrologueMBB.liveins()) { 2175 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 2176 PredBB->addLiveIn(LI); 2177 } 2178 2179 // Remove the newly added blocks from the list, since we know 2180 // we do not have to do the following updates for them. 2181 for (MachineBasicBlock *B : AddedBlocks) { 2182 BeforePrologueRegion.erase(B); 2183 MF.insert(PrologueMBB.getIterator(), B); 2184 } 2185 2186 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 2187 // Make sure the LiveIns are still sorted and unique. 2188 MBB->sortUniqueLiveIns(); 2189 // Replace the edges to PrologueMBB by edges to the sequences 2190 // we are about to add. 2191 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 2192 } 2193 2194 // The required stack size that is aligned to ARM constant criterion. 2195 AlignedStackSize = alignToARMConstant(StackSize); 2196 2197 // When the frame size is less than 256 we just compare the stack 2198 // boundary directly to the value of the stack pointer, per gcc. 2199 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 2200 2201 // We will use two of the callee save registers as scratch registers so we 2202 // need to save those registers onto the stack. 2203 // We will use SR0 to hold stack limit and SR1 to hold the stack size 2204 // requested and arguments for __morestack(). 2205 // SR0: Scratch Register #0 2206 // SR1: Scratch Register #1 2207 // push {SR0, SR1} 2208 if (Thumb) { 2209 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 2210 .add(predOps(ARMCC::AL)) 2211 .addReg(ScratchReg0) 2212 .addReg(ScratchReg1); 2213 } else { 2214 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 2215 .addReg(ARM::SP, RegState::Define) 2216 .addReg(ARM::SP) 2217 .add(predOps(ARMCC::AL)) 2218 .addReg(ScratchReg0) 2219 .addReg(ScratchReg1); 2220 } 2221 2222 // Emit the relevant DWARF information about the change in stack pointer as 2223 // well as where to find both r4 and r5 (the callee-save registers) 2224 CFIIndex = 2225 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -8)); 2226 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2227 .addCFIIndex(CFIIndex); 2228 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2229 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 2230 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2231 .addCFIIndex(CFIIndex); 2232 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2233 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 2234 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2235 .addCFIIndex(CFIIndex); 2236 2237 // mov SR1, sp 2238 if (Thumb) { 2239 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 2240 .addReg(ARM::SP) 2241 .add(predOps(ARMCC::AL)); 2242 } else if (CompareStackPointer) { 2243 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 2244 .addReg(ARM::SP) 2245 .add(predOps(ARMCC::AL)) 2246 .add(condCodeOp()); 2247 } 2248 2249 // sub SR1, sp, #StackSize 2250 if (!CompareStackPointer && Thumb) { 2251 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 2252 .add(condCodeOp()) 2253 .addReg(ScratchReg1) 2254 .addImm(AlignedStackSize) 2255 .add(predOps(ARMCC::AL)); 2256 } else if (!CompareStackPointer) { 2257 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 2258 .addReg(ARM::SP) 2259 .addImm(AlignedStackSize) 2260 .add(predOps(ARMCC::AL)) 2261 .add(condCodeOp()); 2262 } 2263 2264 if (Thumb && ST->isThumb1Only()) { 2265 unsigned PCLabelId = ARMFI->createPICLabelUId(); 2266 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 2267 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0); 2268 MachineConstantPool *MCP = MF.getConstantPool(); 2269 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, 4); 2270 2271 // ldr SR0, [pc, offset(STACK_LIMIT)] 2272 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 2273 .addConstantPoolIndex(CPI) 2274 .add(predOps(ARMCC::AL)); 2275 2276 // ldr SR0, [SR0] 2277 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 2278 .addReg(ScratchReg0) 2279 .addImm(0) 2280 .add(predOps(ARMCC::AL)); 2281 } else { 2282 // Get TLS base address from the coprocessor 2283 // mrc p15, #0, SR0, c13, c0, #3 2284 BuildMI(McrMBB, DL, TII.get(ARM::MRC), ScratchReg0) 2285 .addImm(15) 2286 .addImm(0) 2287 .addImm(13) 2288 .addImm(0) 2289 .addImm(3) 2290 .add(predOps(ARMCC::AL)); 2291 2292 // Use the last tls slot on android and a private field of the TCP on linux. 2293 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 2294 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 2295 2296 // Get the stack limit from the right offset 2297 // ldr SR0, [sr0, #4 * TlsOffset] 2298 BuildMI(GetMBB, DL, TII.get(ARM::LDRi12), ScratchReg0) 2299 .addReg(ScratchReg0) 2300 .addImm(4 * TlsOffset) 2301 .add(predOps(ARMCC::AL)); 2302 } 2303 2304 // Compare stack limit with stack size requested. 2305 // cmp SR0, SR1 2306 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 2307 BuildMI(GetMBB, DL, TII.get(Opcode)) 2308 .addReg(ScratchReg0) 2309 .addReg(ScratchReg1) 2310 .add(predOps(ARMCC::AL)); 2311 2312 // This jump is taken if StackLimit < SP - stack required. 2313 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 2314 BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB) 2315 .addImm(ARMCC::LO) 2316 .addReg(ARM::CPSR); 2317 2318 2319 // Calling __morestack(StackSize, Size of stack arguments). 2320 // __morestack knows that the stack size requested is in SR0(r4) 2321 // and amount size of stack arguments is in SR1(r5). 2322 2323 // Pass first argument for the __morestack by Scratch Register #0. 2324 // The amount size of stack required 2325 if (Thumb) { 2326 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 2327 .add(condCodeOp()) 2328 .addImm(AlignedStackSize) 2329 .add(predOps(ARMCC::AL)); 2330 } else { 2331 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 2332 .addImm(AlignedStackSize) 2333 .add(predOps(ARMCC::AL)) 2334 .add(condCodeOp()); 2335 } 2336 // Pass second argument for the __morestack by Scratch Register #1. 2337 // The amount size of stack consumed to save function arguments. 2338 if (Thumb) { 2339 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 2340 .add(condCodeOp()) 2341 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2342 .add(predOps(ARMCC::AL)); 2343 } else { 2344 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 2345 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2346 .add(predOps(ARMCC::AL)) 2347 .add(condCodeOp()); 2348 } 2349 2350 // push {lr} - Save return address of this function. 2351 if (Thumb) { 2352 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 2353 .add(predOps(ARMCC::AL)) 2354 .addReg(ARM::LR); 2355 } else { 2356 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 2357 .addReg(ARM::SP, RegState::Define) 2358 .addReg(ARM::SP) 2359 .add(predOps(ARMCC::AL)) 2360 .addReg(ARM::LR); 2361 } 2362 2363 // Emit the DWARF info about the change in stack as well as where to find the 2364 // previous link register 2365 CFIIndex = 2366 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -12)); 2367 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2368 .addCFIIndex(CFIIndex); 2369 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2370 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 2371 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2372 .addCFIIndex(CFIIndex); 2373 2374 // Call __morestack(). 2375 if (Thumb) { 2376 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 2377 .add(predOps(ARMCC::AL)) 2378 .addExternalSymbol("__morestack"); 2379 } else { 2380 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 2381 .addExternalSymbol("__morestack"); 2382 } 2383 2384 // pop {lr} - Restore return address of this original function. 2385 if (Thumb) { 2386 if (ST->isThumb1Only()) { 2387 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2388 .add(predOps(ARMCC::AL)) 2389 .addReg(ScratchReg0); 2390 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 2391 .addReg(ScratchReg0) 2392 .add(predOps(ARMCC::AL)); 2393 } else { 2394 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 2395 .addReg(ARM::LR, RegState::Define) 2396 .addReg(ARM::SP, RegState::Define) 2397 .addReg(ARM::SP) 2398 .addImm(4) 2399 .add(predOps(ARMCC::AL)); 2400 } 2401 } else { 2402 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2403 .addReg(ARM::SP, RegState::Define) 2404 .addReg(ARM::SP) 2405 .add(predOps(ARMCC::AL)) 2406 .addReg(ARM::LR); 2407 } 2408 2409 // Restore SR0 and SR1 in case of __morestack() was called. 2410 // __morestack() will skip PostStackMBB block so we need to restore 2411 // scratch registers from here. 2412 // pop {SR0, SR1} 2413 if (Thumb) { 2414 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2415 .add(predOps(ARMCC::AL)) 2416 .addReg(ScratchReg0) 2417 .addReg(ScratchReg1); 2418 } else { 2419 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2420 .addReg(ARM::SP, RegState::Define) 2421 .addReg(ARM::SP) 2422 .add(predOps(ARMCC::AL)) 2423 .addReg(ScratchReg0) 2424 .addReg(ScratchReg1); 2425 } 2426 2427 // Update the CFA offset now that we've popped 2428 CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); 2429 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2430 .addCFIIndex(CFIIndex); 2431 2432 // Return from this function. 2433 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL)); 2434 2435 // Restore SR0 and SR1 in case of __morestack() was not called. 2436 // pop {SR0, SR1} 2437 if (Thumb) { 2438 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 2439 .add(predOps(ARMCC::AL)) 2440 .addReg(ScratchReg0) 2441 .addReg(ScratchReg1); 2442 } else { 2443 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 2444 .addReg(ARM::SP, RegState::Define) 2445 .addReg(ARM::SP) 2446 .add(predOps(ARMCC::AL)) 2447 .addReg(ScratchReg0) 2448 .addReg(ScratchReg1); 2449 } 2450 2451 // Update the CFA offset now that we've popped 2452 CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); 2453 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2454 .addCFIIndex(CFIIndex); 2455 2456 // Tell debuggers that r4 and r5 are now the same as they were in the 2457 // previous function, that they're the "Same Value". 2458 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2459 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 2460 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2461 .addCFIIndex(CFIIndex); 2462 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2463 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 2464 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2465 .addCFIIndex(CFIIndex); 2466 2467 // Organizing MBB lists 2468 PostStackMBB->addSuccessor(&PrologueMBB); 2469 2470 AllocMBB->addSuccessor(PostStackMBB); 2471 2472 GetMBB->addSuccessor(PostStackMBB); 2473 GetMBB->addSuccessor(AllocMBB); 2474 2475 McrMBB->addSuccessor(GetMBB); 2476 2477 PrevStackMBB->addSuccessor(McrMBB); 2478 2479 #ifdef EXPENSIVE_CHECKS 2480 MF.verify(); 2481 #endif 2482 } 2483