xref: /llvm-project/llvm/lib/Target/ARM/ARMFrameLowering.cpp (revision 9893fe218ccb9a3ae9531e01befc1e8fbb7b8320)
1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the ARM implementation of TargetFrameLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMFrameLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "Utils/ARMBaseInfo.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/RegisterScavenging.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetOpcodes.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/MC/MCContext.h"
46 #include "llvm/MC/MCDwarf.h"
47 #include "llvm/MC/MCInstrDesc.h"
48 #include "llvm/MC/MCRegisterInfo.h"
49 #include "llvm/Support/CodeGen.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Target/TargetMachine.h"
57 #include "llvm/Target/TargetOptions.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstddef>
61 #include <cstdint>
62 #include <iterator>
63 #include <utility>
64 #include <vector>
65 
66 #define DEBUG_TYPE "arm-frame-lowering"
67 
68 using namespace llvm;
69 
70 static cl::opt<bool>
71 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
72                      cl::desc("Align ARM NEON spills in prolog and epilog"));
73 
74 static MachineBasicBlock::iterator
75 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
76                         unsigned NumAlignedDPRCS2Regs);
77 
78 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
79     : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, 4),
80       STI(sti) {}
81 
82 bool ARMFrameLowering::noFramePointerElim(const MachineFunction &MF) const {
83   // iOS always has a FP for backtracking, force other targets to keep their FP
84   // when doing FastISel. The emitted code is currently superior, and in cases
85   // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
86   return TargetFrameLowering::noFramePointerElim(MF) ||
87          MF.getSubtarget<ARMSubtarget>().useFastISel();
88 }
89 
90 /// Returns true if the target can safely skip saving callee-saved registers
91 /// for noreturn nounwind functions.
92 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
93   assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
94       MF.getFunction().hasFnAttribute(Attribute::NoUnwind));
95 
96   // Frame pointer and link register are not treated as normal CSR, thus we
97   // can always skip CSR saves for nonreturning functions.
98   return true;
99 }
100 
101 /// hasFP - Return true if the specified function should have a dedicated frame
102 /// pointer register.  This is true if the function has variable sized allocas
103 /// or if frame pointer elimination is disabled.
104 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
105   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
106   const MachineFrameInfo &MFI = MF.getFrameInfo();
107 
108   // ABI-required frame pointer.
109   if (MF.getTarget().Options.DisableFramePointerElim(MF))
110     return true;
111 
112   // Frame pointer required for use within this function.
113   return (RegInfo->needsStackRealignment(MF) ||
114           MFI.hasVarSizedObjects() ||
115           MFI.isFrameAddressTaken());
116 }
117 
118 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
119 /// not required, we reserve argument space for call sites in the function
120 /// immediately on entry to the current function.  This eliminates the need for
121 /// add/sub sp brackets around call sites.  Returns true if the call frame is
122 /// included as part of the stack frame.
123 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
124   const MachineFrameInfo &MFI = MF.getFrameInfo();
125   unsigned CFSize = MFI.getMaxCallFrameSize();
126   // It's not always a good idea to include the call frame as part of the
127   // stack frame. ARM (especially Thumb) has small immediate offset to
128   // address the stack frame. So a large call frame can cause poor codegen
129   // and may even makes it impossible to scavenge a register.
130   if (CFSize >= ((1 << 12) - 1) / 2)  // Half of imm12
131     return false;
132 
133   return !MFI.hasVarSizedObjects();
134 }
135 
136 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
137 /// call frame pseudos can be simplified.  Unlike most targets, having a FP
138 /// is not sufficient here since we still may reference some objects via SP
139 /// even when FP is available in Thumb2 mode.
140 bool
141 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
142   return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
143 }
144 
145 static bool isCSRestore(MachineInstr &MI, const ARMBaseInstrInfo &TII,
146                         const MCPhysReg *CSRegs) {
147   // Integer spill area is handled with "pop".
148   if (isPopOpcode(MI.getOpcode())) {
149     // The first two operands are predicates. The last two are
150     // imp-def and imp-use of SP. Check everything in between.
151     for (int i = 5, e = MI.getNumOperands(); i != e; ++i)
152       if (!isCalleeSavedRegister(MI.getOperand(i).getReg(), CSRegs))
153         return false;
154     return true;
155   }
156   if ((MI.getOpcode() == ARM::LDR_POST_IMM ||
157        MI.getOpcode() == ARM::LDR_POST_REG ||
158        MI.getOpcode() == ARM::t2LDR_POST) &&
159       isCalleeSavedRegister(MI.getOperand(0).getReg(), CSRegs) &&
160       MI.getOperand(1).getReg() == ARM::SP)
161     return true;
162 
163   return false;
164 }
165 
166 static void emitRegPlusImmediate(
167     bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
168     const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
169     unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
170     ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
171   if (isARM)
172     emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
173                             Pred, PredReg, TII, MIFlags);
174   else
175     emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
176                            Pred, PredReg, TII, MIFlags);
177 }
178 
179 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
180                          MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
181                          const ARMBaseInstrInfo &TII, int NumBytes,
182                          unsigned MIFlags = MachineInstr::NoFlags,
183                          ARMCC::CondCodes Pred = ARMCC::AL,
184                          unsigned PredReg = 0) {
185   emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
186                        MIFlags, Pred, PredReg);
187 }
188 
189 static int sizeOfSPAdjustment(const MachineInstr &MI) {
190   int RegSize;
191   switch (MI.getOpcode()) {
192   case ARM::VSTMDDB_UPD:
193     RegSize = 8;
194     break;
195   case ARM::STMDB_UPD:
196   case ARM::t2STMDB_UPD:
197     RegSize = 4;
198     break;
199   case ARM::t2STR_PRE:
200   case ARM::STR_PRE_IMM:
201     return 4;
202   default:
203     llvm_unreachable("Unknown push or pop like instruction");
204   }
205 
206   int count = 0;
207   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
208   // pred) so the list starts at 4.
209   for (int i = MI.getNumOperands() - 1; i >= 4; --i)
210     count += RegSize;
211   return count;
212 }
213 
214 static bool WindowsRequiresStackProbe(const MachineFunction &MF,
215                                       size_t StackSizeInBytes) {
216   const MachineFrameInfo &MFI = MF.getFrameInfo();
217   const Function &F = MF.getFunction();
218   unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
219   if (F.hasFnAttribute("stack-probe-size"))
220     F.getFnAttribute("stack-probe-size")
221         .getValueAsString()
222         .getAsInteger(0, StackProbeSize);
223   return (StackSizeInBytes >= StackProbeSize) &&
224          !F.hasFnAttribute("no-stack-arg-probe");
225 }
226 
227 namespace {
228 
229 struct StackAdjustingInsts {
230   struct InstInfo {
231     MachineBasicBlock::iterator I;
232     unsigned SPAdjust;
233     bool BeforeFPSet;
234   };
235 
236   SmallVector<InstInfo, 4> Insts;
237 
238   void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
239                bool BeforeFPSet = false) {
240     InstInfo Info = {I, SPAdjust, BeforeFPSet};
241     Insts.push_back(Info);
242   }
243 
244   void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
245     auto Info =
246         llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
247     assert(Info != Insts.end() && "invalid sp adjusting instruction");
248     Info->SPAdjust += ExtraBytes;
249   }
250 
251   void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
252                          const ARMBaseInstrInfo &TII, bool HasFP) {
253     MachineFunction &MF = *MBB.getParent();
254     unsigned CFAOffset = 0;
255     for (auto &Info : Insts) {
256       if (HasFP && !Info.BeforeFPSet)
257         return;
258 
259       CFAOffset -= Info.SPAdjust;
260       unsigned CFIIndex = MF.addFrameInst(
261           MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
262       BuildMI(MBB, std::next(Info.I), dl,
263               TII.get(TargetOpcode::CFI_INSTRUCTION))
264               .addCFIIndex(CFIIndex)
265               .setMIFlags(MachineInstr::FrameSetup);
266     }
267   }
268 };
269 
270 } // end anonymous namespace
271 
272 /// Emit an instruction sequence that will align the address in
273 /// register Reg by zero-ing out the lower bits.  For versions of the
274 /// architecture that support Neon, this must be done in a single
275 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
276 /// single instruction. That function only gets called when optimizing
277 /// spilling of D registers on a core with the Neon instruction set
278 /// present.
279 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
280                                      const TargetInstrInfo &TII,
281                                      MachineBasicBlock &MBB,
282                                      MachineBasicBlock::iterator MBBI,
283                                      const DebugLoc &DL, const unsigned Reg,
284                                      const unsigned Alignment,
285                                      const bool MustBeSingleInstruction) {
286   const ARMSubtarget &AST =
287       static_cast<const ARMSubtarget &>(MF.getSubtarget());
288   const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
289   const unsigned AlignMask = Alignment - 1;
290   const unsigned NrBitsToZero = countTrailingZeros(Alignment);
291   assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
292   if (!AFI->isThumbFunction()) {
293     // if the BFC instruction is available, use that to zero the lower
294     // bits:
295     //   bfc Reg, #0, log2(Alignment)
296     // otherwise use BIC, if the mask to zero the required number of bits
297     // can be encoded in the bic immediate field
298     //   bic Reg, Reg, Alignment-1
299     // otherwise, emit
300     //   lsr Reg, Reg, log2(Alignment)
301     //   lsl Reg, Reg, log2(Alignment)
302     if (CanUseBFC) {
303       BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
304           .addReg(Reg, RegState::Kill)
305           .addImm(~AlignMask)
306           .add(predOps(ARMCC::AL));
307     } else if (AlignMask <= 255) {
308       BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
309           .addReg(Reg, RegState::Kill)
310           .addImm(AlignMask)
311           .add(predOps(ARMCC::AL))
312           .add(condCodeOp());
313     } else {
314       assert(!MustBeSingleInstruction &&
315              "Shouldn't call emitAligningInstructions demanding a single "
316              "instruction to be emitted for large stack alignment for a target "
317              "without BFC.");
318       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
319           .addReg(Reg, RegState::Kill)
320           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
321           .add(predOps(ARMCC::AL))
322           .add(condCodeOp());
323       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
324           .addReg(Reg, RegState::Kill)
325           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
326           .add(predOps(ARMCC::AL))
327           .add(condCodeOp());
328     }
329   } else {
330     // Since this is only reached for Thumb-2 targets, the BFC instruction
331     // should always be available.
332     assert(CanUseBFC);
333     BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
334         .addReg(Reg, RegState::Kill)
335         .addImm(~AlignMask)
336         .add(predOps(ARMCC::AL));
337   }
338 }
339 
340 /// We need the offset of the frame pointer relative to other MachineFrameInfo
341 /// offsets which are encoded relative to SP at function begin.
342 /// See also emitPrologue() for how the FP is set up.
343 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet
344 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
345 /// this to produce a conservative estimate that we check in an assert() later.
346 static int getMaxFPOffset(const Function &F, const ARMFunctionInfo &AFI) {
347   // This is a conservative estimation: Assume the frame pointer being r7 and
348   // pc("r15") up to r8 getting spilled before (= 8 registers).
349   return -AFI.getArgRegsSaveSize() - (8 * 4);
350 }
351 
352 void ARMFrameLowering::emitPrologue(MachineFunction &MF,
353                                     MachineBasicBlock &MBB) const {
354   MachineBasicBlock::iterator MBBI = MBB.begin();
355   MachineFrameInfo  &MFI = MF.getFrameInfo();
356   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
357   MachineModuleInfo &MMI = MF.getMMI();
358   MCContext &Context = MMI.getContext();
359   const TargetMachine &TM = MF.getTarget();
360   const MCRegisterInfo *MRI = Context.getRegisterInfo();
361   const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
362   const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
363   assert(!AFI->isThumb1OnlyFunction() &&
364          "This emitPrologue does not support Thumb1!");
365   bool isARM = !AFI->isThumbFunction();
366   unsigned Align = STI.getFrameLowering()->getStackAlignment();
367   unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
368   unsigned NumBytes = MFI.getStackSize();
369   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
370 
371   // Debug location must be unknown since the first debug location is used
372   // to determine the end of the prologue.
373   DebugLoc dl;
374 
375   unsigned FramePtr = RegInfo->getFrameRegister(MF);
376 
377   // Determine the sizes of each callee-save spill areas and record which frame
378   // belongs to which callee-save spill areas.
379   unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
380   int FramePtrSpillFI = 0;
381   int D8SpillFI = 0;
382 
383   // All calls are tail calls in GHC calling conv, and functions have no
384   // prologue/epilogue.
385   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
386     return;
387 
388   StackAdjustingInsts DefCFAOffsetCandidates;
389   bool HasFP = hasFP(MF);
390 
391   // Allocate the vararg register save area.
392   if (ArgRegsSaveSize) {
393     emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
394                  MachineInstr::FrameSetup);
395     DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true);
396   }
397 
398   if (!AFI->hasStackFrame() &&
399       (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
400     if (NumBytes - ArgRegsSaveSize != 0) {
401       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize),
402                    MachineInstr::FrameSetup);
403       DefCFAOffsetCandidates.addInst(std::prev(MBBI),
404                                      NumBytes - ArgRegsSaveSize, true);
405     }
406     DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
407     return;
408   }
409 
410   // Determine spill area sizes.
411   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
412     unsigned Reg = CSI[i].getReg();
413     int FI = CSI[i].getFrameIdx();
414     switch (Reg) {
415     case ARM::R8:
416     case ARM::R9:
417     case ARM::R10:
418     case ARM::R11:
419     case ARM::R12:
420       if (STI.splitFramePushPop(MF)) {
421         GPRCS2Size += 4;
422         break;
423       }
424       LLVM_FALLTHROUGH;
425     case ARM::R0:
426     case ARM::R1:
427     case ARM::R2:
428     case ARM::R3:
429     case ARM::R4:
430     case ARM::R5:
431     case ARM::R6:
432     case ARM::R7:
433     case ARM::LR:
434       if (Reg == FramePtr)
435         FramePtrSpillFI = FI;
436       GPRCS1Size += 4;
437       break;
438     default:
439       // This is a DPR. Exclude the aligned DPRCS2 spills.
440       if (Reg == ARM::D8)
441         D8SpillFI = FI;
442       if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
443         DPRCSSize += 8;
444     }
445   }
446 
447   // Move past area 1.
448   MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
449   if (GPRCS1Size > 0) {
450     GPRCS1Push = LastPush = MBBI++;
451     DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
452   }
453 
454   // Determine starting offsets of spill areas.
455   unsigned GPRCS1Offset = NumBytes - ArgRegsSaveSize - GPRCS1Size;
456   unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
457   unsigned DPRAlign = DPRCSSize ? std::min(8U, Align) : 4U;
458   unsigned DPRGapSize = (GPRCS1Size + GPRCS2Size + ArgRegsSaveSize) % DPRAlign;
459   unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
460   int FramePtrOffsetInPush = 0;
461   if (HasFP) {
462     int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
463     assert(getMaxFPOffset(MF.getFunction(), *AFI) <= FPOffset &&
464            "Max FP estimation is wrong");
465     FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize;
466     AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
467                                 NumBytes);
468   }
469   AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
470   AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
471   AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
472 
473   // Move past area 2.
474   if (GPRCS2Size > 0) {
475     GPRCS2Push = LastPush = MBBI++;
476     DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
477   }
478 
479   // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
480   // .cfi_offset operations will reflect that.
481   if (DPRGapSize) {
482     assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
483     if (LastPush != MBB.end() &&
484         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
485       DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
486     else {
487       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
488                    MachineInstr::FrameSetup);
489       DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
490     }
491   }
492 
493   // Move past area 3.
494   if (DPRCSSize > 0) {
495     // Since vpush register list cannot have gaps, there may be multiple vpush
496     // instructions in the prologue.
497     while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
498       DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
499       LastPush = MBBI++;
500     }
501   }
502 
503   // Move past the aligned DPRCS2 area.
504   if (AFI->getNumAlignedDPRCS2Regs() > 0) {
505     MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
506     // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
507     // leaves the stack pointer pointing to the DPRCS2 area.
508     //
509     // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
510     NumBytes += MFI.getObjectOffset(D8SpillFI);
511   } else
512     NumBytes = DPRCSOffset;
513 
514   if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
515     uint32_t NumWords = NumBytes >> 2;
516 
517     if (NumWords < 65536)
518       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
519           .addImm(NumWords)
520           .setMIFlags(MachineInstr::FrameSetup)
521           .add(predOps(ARMCC::AL));
522     else
523       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4)
524         .addImm(NumWords)
525         .setMIFlags(MachineInstr::FrameSetup);
526 
527     switch (TM.getCodeModel()) {
528     case CodeModel::Small:
529     case CodeModel::Medium:
530     case CodeModel::Kernel:
531       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
532           .add(predOps(ARMCC::AL))
533           .addExternalSymbol("__chkstk")
534           .addReg(ARM::R4, RegState::Implicit)
535           .setMIFlags(MachineInstr::FrameSetup);
536       break;
537     case CodeModel::Large:
538       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
539         .addExternalSymbol("__chkstk")
540         .setMIFlags(MachineInstr::FrameSetup);
541 
542       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
543           .add(predOps(ARMCC::AL))
544           .addReg(ARM::R12, RegState::Kill)
545           .addReg(ARM::R4, RegState::Implicit)
546           .setMIFlags(MachineInstr::FrameSetup);
547       break;
548     }
549 
550     BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
551         .addReg(ARM::SP, RegState::Kill)
552         .addReg(ARM::R4, RegState::Kill)
553         .setMIFlags(MachineInstr::FrameSetup)
554         .add(predOps(ARMCC::AL))
555         .add(condCodeOp());
556     NumBytes = 0;
557   }
558 
559   if (NumBytes) {
560     // Adjust SP after all the callee-save spills.
561     if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
562         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
563       DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
564     else {
565       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
566                    MachineInstr::FrameSetup);
567       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
568     }
569 
570     if (HasFP && isARM)
571       // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
572       // Note it's not safe to do this in Thumb2 mode because it would have
573       // taken two instructions:
574       // mov sp, r7
575       // sub sp, #24
576       // If an interrupt is taken between the two instructions, then sp is in
577       // an inconsistent state (pointing to the middle of callee-saved area).
578       // The interrupt handler can end up clobbering the registers.
579       AFI->setShouldRestoreSPFromFP(true);
580   }
581 
582   // Set FP to point to the stack slot that contains the previous FP.
583   // For iOS, FP is R7, which has now been stored in spill area 1.
584   // Otherwise, if this is not iOS, all the callee-saved registers go
585   // into spill area 1, including the FP in R11.  In either case, it
586   // is in area one and the adjustment needs to take place just after
587   // that push.
588   if (HasFP) {
589     MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push);
590     unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
591     emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush,
592                          dl, TII, FramePtr, ARM::SP,
593                          PushSize + FramePtrOffsetInPush,
594                          MachineInstr::FrameSetup);
595     if (FramePtrOffsetInPush + PushSize != 0) {
596       unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa(
597           nullptr, MRI->getDwarfRegNum(FramePtr, true),
598           -(ArgRegsSaveSize - FramePtrOffsetInPush)));
599       BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
600           .addCFIIndex(CFIIndex)
601           .setMIFlags(MachineInstr::FrameSetup);
602     } else {
603       unsigned CFIIndex =
604           MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
605               nullptr, MRI->getDwarfRegNum(FramePtr, true)));
606       BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
607           .addCFIIndex(CFIIndex)
608           .setMIFlags(MachineInstr::FrameSetup);
609     }
610   }
611 
612   // Now that the prologue's actual instructions are finalised, we can insert
613   // the necessary DWARF cf instructions to describe the situation. Start by
614   // recording where each register ended up:
615   if (GPRCS1Size > 0) {
616     MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
617     int CFIIndex;
618     for (const auto &Entry : CSI) {
619       unsigned Reg = Entry.getReg();
620       int FI = Entry.getFrameIdx();
621       switch (Reg) {
622       case ARM::R8:
623       case ARM::R9:
624       case ARM::R10:
625       case ARM::R11:
626       case ARM::R12:
627         if (STI.splitFramePushPop(MF))
628           break;
629         LLVM_FALLTHROUGH;
630       case ARM::R0:
631       case ARM::R1:
632       case ARM::R2:
633       case ARM::R3:
634       case ARM::R4:
635       case ARM::R5:
636       case ARM::R6:
637       case ARM::R7:
638       case ARM::LR:
639         CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
640             nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
641         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
642             .addCFIIndex(CFIIndex)
643             .setMIFlags(MachineInstr::FrameSetup);
644         break;
645       }
646     }
647   }
648 
649   if (GPRCS2Size > 0) {
650     MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
651     for (const auto &Entry : CSI) {
652       unsigned Reg = Entry.getReg();
653       int FI = Entry.getFrameIdx();
654       switch (Reg) {
655       case ARM::R8:
656       case ARM::R9:
657       case ARM::R10:
658       case ARM::R11:
659       case ARM::R12:
660         if (STI.splitFramePushPop(MF)) {
661           unsigned DwarfReg =  MRI->getDwarfRegNum(Reg, true);
662           unsigned Offset = MFI.getObjectOffset(FI);
663           unsigned CFIIndex = MF.addFrameInst(
664               MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
665           BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
666               .addCFIIndex(CFIIndex)
667               .setMIFlags(MachineInstr::FrameSetup);
668         }
669         break;
670       }
671     }
672   }
673 
674   if (DPRCSSize > 0) {
675     // Since vpush register list cannot have gaps, there may be multiple vpush
676     // instructions in the prologue.
677     MachineBasicBlock::iterator Pos = std::next(LastPush);
678     for (const auto &Entry : CSI) {
679       unsigned Reg = Entry.getReg();
680       int FI = Entry.getFrameIdx();
681       if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
682           (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
683         unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
684         unsigned Offset = MFI.getObjectOffset(FI);
685         unsigned CFIIndex = MF.addFrameInst(
686             MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
687         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
688             .addCFIIndex(CFIIndex)
689             .setMIFlags(MachineInstr::FrameSetup);
690       }
691     }
692   }
693 
694   // Now we can emit descriptions of where the canonical frame address was
695   // throughout the process. If we have a frame pointer, it takes over the job
696   // half-way through, so only the first few .cfi_def_cfa_offset instructions
697   // actually get emitted.
698   DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
699 
700   if (STI.isTargetELF() && hasFP(MF))
701     MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
702                             AFI->getFramePtrSpillOffset());
703 
704   AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
705   AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
706   AFI->setDPRCalleeSavedGapSize(DPRGapSize);
707   AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
708 
709   // If we need dynamic stack realignment, do it here. Be paranoid and make
710   // sure if we also have VLAs, we have a base pointer for frame access.
711   // If aligned NEON registers were spilled, the stack has already been
712   // realigned.
713   if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) {
714     unsigned MaxAlign = MFI.getMaxAlignment();
715     assert(!AFI->isThumb1OnlyFunction());
716     if (!AFI->isThumbFunction()) {
717       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
718                                false);
719     } else {
720       // We cannot use sp as source/dest register here, thus we're using r4 to
721       // perform the calculations. We're emitting the following sequence:
722       // mov r4, sp
723       // -- use emitAligningInstructions to produce best sequence to zero
724       // -- out lower bits in r4
725       // mov sp, r4
726       // FIXME: It will be better just to find spare register here.
727       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
728           .addReg(ARM::SP, RegState::Kill)
729           .add(predOps(ARMCC::AL));
730       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
731                                false);
732       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
733           .addReg(ARM::R4, RegState::Kill)
734           .add(predOps(ARMCC::AL));
735     }
736 
737     AFI->setShouldRestoreSPFromFP(true);
738   }
739 
740   // If we need a base pointer, set it up here. It's whatever the value
741   // of the stack pointer is at this point. Any variable size objects
742   // will be allocated after this, so we can still use the base pointer
743   // to reference locals.
744   // FIXME: Clarify FrameSetup flags here.
745   if (RegInfo->hasBasePointer(MF)) {
746     if (isARM)
747       BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
748           .addReg(ARM::SP)
749           .add(predOps(ARMCC::AL))
750           .add(condCodeOp());
751     else
752       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
753           .addReg(ARM::SP)
754           .add(predOps(ARMCC::AL));
755   }
756 
757   // If the frame has variable sized objects then the epilogue must restore
758   // the sp from fp. We can assume there's an FP here since hasFP already
759   // checks for hasVarSizedObjects.
760   if (MFI.hasVarSizedObjects())
761     AFI->setShouldRestoreSPFromFP(true);
762 }
763 
764 void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
765                                     MachineBasicBlock &MBB) const {
766   MachineFrameInfo &MFI = MF.getFrameInfo();
767   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
768   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
769   const ARMBaseInstrInfo &TII =
770       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
771   assert(!AFI->isThumb1OnlyFunction() &&
772          "This emitEpilogue does not support Thumb1!");
773   bool isARM = !AFI->isThumbFunction();
774 
775   unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
776   int NumBytes = (int)MFI.getStackSize();
777   unsigned FramePtr = RegInfo->getFrameRegister(MF);
778 
779   // All calls are tail calls in GHC calling conv, and functions have no
780   // prologue/epilogue.
781   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
782     return;
783 
784   // First put ourselves on the first (from top) terminator instructions.
785   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
786   DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
787 
788   if (!AFI->hasStackFrame()) {
789     if (NumBytes - ArgRegsSaveSize != 0)
790       emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize);
791   } else {
792     // Unwind MBBI to point to first LDR / VLDRD.
793     const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
794     if (MBBI != MBB.begin()) {
795       do {
796         --MBBI;
797       } while (MBBI != MBB.begin() && isCSRestore(*MBBI, TII, CSRegs));
798       if (!isCSRestore(*MBBI, TII, CSRegs))
799         ++MBBI;
800     }
801 
802     // Move SP to start of FP callee save spill area.
803     NumBytes -= (ArgRegsSaveSize +
804                  AFI->getGPRCalleeSavedArea1Size() +
805                  AFI->getGPRCalleeSavedArea2Size() +
806                  AFI->getDPRCalleeSavedGapSize() +
807                  AFI->getDPRCalleeSavedAreaSize());
808 
809     // Reset SP based on frame pointer only if the stack frame extends beyond
810     // frame pointer stack slot or target is ELF and the function has FP.
811     if (AFI->shouldRestoreSPFromFP()) {
812       NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
813       if (NumBytes) {
814         if (isARM)
815           emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
816                                   ARMCC::AL, 0, TII);
817         else {
818           // It's not possible to restore SP from FP in a single instruction.
819           // For iOS, this looks like:
820           // mov sp, r7
821           // sub sp, #24
822           // This is bad, if an interrupt is taken after the mov, sp is in an
823           // inconsistent state.
824           // Use the first callee-saved register as a scratch register.
825           assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
826                  "No scratch register to restore SP from FP!");
827           emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
828                                  ARMCC::AL, 0, TII);
829           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
830               .addReg(ARM::R4)
831               .add(predOps(ARMCC::AL));
832         }
833       } else {
834         // Thumb2 or ARM.
835         if (isARM)
836           BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
837               .addReg(FramePtr)
838               .add(predOps(ARMCC::AL))
839               .add(condCodeOp());
840         else
841           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
842               .addReg(FramePtr)
843               .add(predOps(ARMCC::AL));
844       }
845     } else if (NumBytes &&
846                !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
847       emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes);
848 
849     // Increment past our save areas.
850     if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
851       MBBI++;
852       // Since vpop register list cannot have gaps, there may be multiple vpop
853       // instructions in the epilogue.
854       while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
855         MBBI++;
856     }
857     if (AFI->getDPRCalleeSavedGapSize()) {
858       assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
859              "unexpected DPR alignment gap");
860       emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize());
861     }
862 
863     if (AFI->getGPRCalleeSavedArea2Size()) MBBI++;
864     if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
865   }
866 
867   if (ArgRegsSaveSize)
868     emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize);
869 }
870 
871 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
872 /// debug info.  It's the same as what we use for resolving the code-gen
873 /// references for now.  FIXME: This can go wrong when references are
874 /// SP-relative and simple call frames aren't used.
875 int
876 ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
877                                          unsigned &FrameReg) const {
878   return ResolveFrameIndexReference(MF, FI, FrameReg, 0);
879 }
880 
881 int
882 ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
883                                              int FI, unsigned &FrameReg,
884                                              int SPAdj) const {
885   const MachineFrameInfo &MFI = MF.getFrameInfo();
886   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
887       MF.getSubtarget().getRegisterInfo());
888   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
889   int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
890   int FPOffset = Offset - AFI->getFramePtrSpillOffset();
891   bool isFixed = MFI.isFixedObjectIndex(FI);
892 
893   FrameReg = ARM::SP;
894   Offset += SPAdj;
895 
896   // SP can move around if there are allocas.  We may also lose track of SP
897   // when emergency spilling inside a non-reserved call frame setup.
898   bool hasMovingSP = !hasReservedCallFrame(MF);
899 
900   // When dynamically realigning the stack, use the frame pointer for
901   // parameters, and the stack/base pointer for locals.
902   if (RegInfo->needsStackRealignment(MF)) {
903     assert(hasFP(MF) && "dynamic stack realignment without a FP!");
904     if (isFixed) {
905       FrameReg = RegInfo->getFrameRegister(MF);
906       Offset = FPOffset;
907     } else if (hasMovingSP) {
908       assert(RegInfo->hasBasePointer(MF) &&
909              "VLAs and dynamic stack alignment, but missing base pointer!");
910       FrameReg = RegInfo->getBaseRegister();
911     }
912     return Offset;
913   }
914 
915   // If there is a frame pointer, use it when we can.
916   if (hasFP(MF) && AFI->hasStackFrame()) {
917     // Use frame pointer to reference fixed objects. Use it for locals if
918     // there are VLAs (and thus the SP isn't reliable as a base).
919     if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
920       FrameReg = RegInfo->getFrameRegister(MF);
921       return FPOffset;
922     } else if (hasMovingSP) {
923       assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
924       if (AFI->isThumb2Function()) {
925         // Try to use the frame pointer if we can, else use the base pointer
926         // since it's available. This is handy for the emergency spill slot, in
927         // particular.
928         if (FPOffset >= -255 && FPOffset < 0) {
929           FrameReg = RegInfo->getFrameRegister(MF);
930           return FPOffset;
931         }
932       }
933     } else if (AFI->isThumbFunction()) {
934       // Prefer SP to base pointer, if the offset is suitably aligned and in
935       // range as the effective range of the immediate offset is bigger when
936       // basing off SP.
937       // Use  add <rd>, sp, #<imm8>
938       //      ldr <rd>, [sp, #<imm8>]
939       if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
940         return Offset;
941       // In Thumb2 mode, the negative offset is very limited. Try to avoid
942       // out of range references. ldr <rt>,[<rn>, #-<imm8>]
943       if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
944         FrameReg = RegInfo->getFrameRegister(MF);
945         return FPOffset;
946       }
947     } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
948       // Otherwise, use SP or FP, whichever is closer to the stack slot.
949       FrameReg = RegInfo->getFrameRegister(MF);
950       return FPOffset;
951     }
952   }
953   // Use the base pointer if we have one.
954   if (RegInfo->hasBasePointer(MF))
955     FrameReg = RegInfo->getBaseRegister();
956   return Offset;
957 }
958 
959 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
960                                     MachineBasicBlock::iterator MI,
961                                     const std::vector<CalleeSavedInfo> &CSI,
962                                     unsigned StmOpc, unsigned StrOpc,
963                                     bool NoGap,
964                                     bool(*Func)(unsigned, bool),
965                                     unsigned NumAlignedDPRCS2Regs,
966                                     unsigned MIFlags) const {
967   MachineFunction &MF = *MBB.getParent();
968   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
969   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
970 
971   DebugLoc DL;
972 
973   using RegAndKill = std::pair<unsigned, bool>;
974 
975   SmallVector<RegAndKill, 4> Regs;
976   unsigned i = CSI.size();
977   while (i != 0) {
978     unsigned LastReg = 0;
979     for (; i != 0; --i) {
980       unsigned Reg = CSI[i-1].getReg();
981       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
982 
983       // D-registers in the aligned area DPRCS2 are NOT spilled here.
984       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
985         continue;
986 
987       const MachineRegisterInfo &MRI = MF.getRegInfo();
988       bool isLiveIn = MRI.isLiveIn(Reg);
989       if (!isLiveIn && !MRI.isReserved(Reg))
990         MBB.addLiveIn(Reg);
991       // If NoGap is true, push consecutive registers and then leave the rest
992       // for other instructions. e.g.
993       // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
994       if (NoGap && LastReg && LastReg != Reg-1)
995         break;
996       LastReg = Reg;
997       // Do not set a kill flag on values that are also marked as live-in. This
998       // happens with the @llvm-returnaddress intrinsic and with arguments
999       // passed in callee saved registers.
1000       // Omitting the kill flags is conservatively correct even if the live-in
1001       // is not used after all.
1002       Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
1003     }
1004 
1005     if (Regs.empty())
1006       continue;
1007 
1008     llvm::sort(Regs.begin(), Regs.end(), [&](const RegAndKill &LHS,
1009                                              const RegAndKill &RHS) {
1010       return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
1011     });
1012 
1013     if (Regs.size() > 1 || StrOpc== 0) {
1014       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
1015                                     .addReg(ARM::SP)
1016                                     .setMIFlags(MIFlags)
1017                                     .add(predOps(ARMCC::AL));
1018       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1019         MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
1020     } else if (Regs.size() == 1) {
1021       BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
1022           .addReg(Regs[0].first, getKillRegState(Regs[0].second))
1023           .addReg(ARM::SP)
1024           .setMIFlags(MIFlags)
1025           .addImm(-4)
1026           .add(predOps(ARMCC::AL));
1027     }
1028     Regs.clear();
1029 
1030     // Put any subsequent vpush instructions before this one: they will refer to
1031     // higher register numbers so need to be pushed first in order to preserve
1032     // monotonicity.
1033     if (MI != MBB.begin())
1034       --MI;
1035   }
1036 }
1037 
1038 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
1039                                    MachineBasicBlock::iterator MI,
1040                                    std::vector<CalleeSavedInfo> &CSI,
1041                                    unsigned LdmOpc, unsigned LdrOpc,
1042                                    bool isVarArg, bool NoGap,
1043                                    bool(*Func)(unsigned, bool),
1044                                    unsigned NumAlignedDPRCS2Regs) const {
1045   MachineFunction &MF = *MBB.getParent();
1046   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1047   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1048   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1049   DebugLoc DL;
1050   bool isTailCall = false;
1051   bool isInterrupt = false;
1052   bool isTrap = false;
1053   if (MBB.end() != MI) {
1054     DL = MI->getDebugLoc();
1055     unsigned RetOpcode = MI->getOpcode();
1056     isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri);
1057     isInterrupt =
1058         RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
1059     isTrap =
1060         RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
1061         RetOpcode == ARM::tTRAP;
1062   }
1063 
1064   SmallVector<unsigned, 4> Regs;
1065   unsigned i = CSI.size();
1066   while (i != 0) {
1067     unsigned LastReg = 0;
1068     bool DeleteRet = false;
1069     for (; i != 0; --i) {
1070       CalleeSavedInfo &Info = CSI[i-1];
1071       unsigned Reg = Info.getReg();
1072       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1073 
1074       // The aligned reloads from area DPRCS2 are not inserted here.
1075       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1076         continue;
1077 
1078       if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
1079           !isTrap && STI.hasV5TOps()) {
1080         if (MBB.succ_empty()) {
1081           Reg = ARM::PC;
1082           // Fold the return instruction into the LDM.
1083           DeleteRet = true;
1084           LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
1085           // We 'restore' LR into PC so it is not live out of the return block:
1086           // Clear Restored bit.
1087           Info.setRestored(false);
1088         } else
1089           LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
1090       }
1091 
1092       // If NoGap is true, pop consecutive registers and then leave the rest
1093       // for other instructions. e.g.
1094       // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1095       if (NoGap && LastReg && LastReg != Reg-1)
1096         break;
1097 
1098       LastReg = Reg;
1099       Regs.push_back(Reg);
1100     }
1101 
1102     if (Regs.empty())
1103       continue;
1104 
1105     llvm::sort(Regs.begin(), Regs.end(), [&](unsigned LHS, unsigned RHS) {
1106       return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
1107     });
1108 
1109     if (Regs.size() > 1 || LdrOpc == 0) {
1110       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
1111                                     .addReg(ARM::SP)
1112                                     .add(predOps(ARMCC::AL));
1113       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1114         MIB.addReg(Regs[i], getDefRegState(true));
1115       if (DeleteRet) {
1116         if (MI != MBB.end()) {
1117           MIB.copyImplicitOps(*MI);
1118           MI->eraseFromParent();
1119         }
1120       }
1121       MI = MIB;
1122     } else if (Regs.size() == 1) {
1123       // If we adjusted the reg to PC from LR above, switch it back here. We
1124       // only do that for LDM.
1125       if (Regs[0] == ARM::PC)
1126         Regs[0] = ARM::LR;
1127       MachineInstrBuilder MIB =
1128         BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
1129           .addReg(ARM::SP, RegState::Define)
1130           .addReg(ARM::SP);
1131       // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1132       // that refactoring is complete (eventually).
1133       if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
1134         MIB.addReg(0);
1135         MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
1136       } else
1137         MIB.addImm(4);
1138       MIB.add(predOps(ARMCC::AL));
1139     }
1140     Regs.clear();
1141 
1142     // Put any subsequent vpop instructions after this one: they will refer to
1143     // higher register numbers so need to be popped afterwards.
1144     if (MI != MBB.end())
1145       ++MI;
1146   }
1147 }
1148 
1149 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1150 /// starting from d8.  Also insert stack realignment code and leave the stack
1151 /// pointer pointing to the d8 spill slot.
1152 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
1153                                     MachineBasicBlock::iterator MI,
1154                                     unsigned NumAlignedDPRCS2Regs,
1155                                     const std::vector<CalleeSavedInfo> &CSI,
1156                                     const TargetRegisterInfo *TRI) {
1157   MachineFunction &MF = *MBB.getParent();
1158   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1159   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1160   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1161   MachineFrameInfo &MFI = MF.getFrameInfo();
1162 
1163   // Mark the D-register spill slots as properly aligned.  Since MFI computes
1164   // stack slot layout backwards, this can actually mean that the d-reg stack
1165   // slot offsets can be wrong. The offset for d8 will always be correct.
1166   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1167     unsigned DNum = CSI[i].getReg() - ARM::D8;
1168     if (DNum > NumAlignedDPRCS2Regs - 1)
1169       continue;
1170     int FI = CSI[i].getFrameIdx();
1171     // The even-numbered registers will be 16-byte aligned, the odd-numbered
1172     // registers will be 8-byte aligned.
1173     MFI.setObjectAlignment(FI, DNum % 2 ? 8 : 16);
1174 
1175     // The stack slot for D8 needs to be maximally aligned because this is
1176     // actually the point where we align the stack pointer.  MachineFrameInfo
1177     // computes all offsets relative to the incoming stack pointer which is a
1178     // bit weird when realigning the stack.  Any extra padding for this
1179     // over-alignment is not realized because the code inserted below adjusts
1180     // the stack pointer by numregs * 8 before aligning the stack pointer.
1181     if (DNum == 0)
1182       MFI.setObjectAlignment(FI, MFI.getMaxAlignment());
1183   }
1184 
1185   // Move the stack pointer to the d8 spill slot, and align it at the same
1186   // time. Leave the stack slot address in the scratch register r4.
1187   //
1188   //   sub r4, sp, #numregs * 8
1189   //   bic r4, r4, #align - 1
1190   //   mov sp, r4
1191   //
1192   bool isThumb = AFI->isThumbFunction();
1193   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1194   AFI->setShouldRestoreSPFromFP(true);
1195 
1196   // sub r4, sp, #numregs * 8
1197   // The immediate is <= 64, so it doesn't need any special encoding.
1198   unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
1199   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1200       .addReg(ARM::SP)
1201       .addImm(8 * NumAlignedDPRCS2Regs)
1202       .add(predOps(ARMCC::AL))
1203       .add(condCodeOp());
1204 
1205   unsigned MaxAlign = MF.getFrameInfo().getMaxAlignment();
1206   // We must set parameter MustBeSingleInstruction to true, since
1207   // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1208   // stack alignment.  Luckily, this can always be done since all ARM
1209   // architecture versions that support Neon also support the BFC
1210   // instruction.
1211   emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
1212 
1213   // mov sp, r4
1214   // The stack pointer must be adjusted before spilling anything, otherwise
1215   // the stack slots could be clobbered by an interrupt handler.
1216   // Leave r4 live, it is used below.
1217   Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
1218   MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
1219                                 .addReg(ARM::R4)
1220                                 .add(predOps(ARMCC::AL));
1221   if (!isThumb)
1222     MIB.add(condCodeOp());
1223 
1224   // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1225   // r4 holds the stack slot address.
1226   unsigned NextReg = ARM::D8;
1227 
1228   // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1229   // The writeback is only needed when emitting two vst1.64 instructions.
1230   if (NumAlignedDPRCS2Regs >= 6) {
1231     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1232                                                &ARM::QQPRRegClass);
1233     MBB.addLiveIn(SupReg);
1234     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
1235         .addReg(ARM::R4, RegState::Kill)
1236         .addImm(16)
1237         .addReg(NextReg)
1238         .addReg(SupReg, RegState::ImplicitKill)
1239         .add(predOps(ARMCC::AL));
1240     NextReg += 4;
1241     NumAlignedDPRCS2Regs -= 4;
1242   }
1243 
1244   // We won't modify r4 beyond this point.  It currently points to the next
1245   // register to be spilled.
1246   unsigned R4BaseReg = NextReg;
1247 
1248   // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1249   if (NumAlignedDPRCS2Regs >= 4) {
1250     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1251                                                &ARM::QQPRRegClass);
1252     MBB.addLiveIn(SupReg);
1253     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
1254         .addReg(ARM::R4)
1255         .addImm(16)
1256         .addReg(NextReg)
1257         .addReg(SupReg, RegState::ImplicitKill)
1258         .add(predOps(ARMCC::AL));
1259     NextReg += 4;
1260     NumAlignedDPRCS2Regs -= 4;
1261   }
1262 
1263   // 16-byte aligned vst1.64 with 2 d-regs.
1264   if (NumAlignedDPRCS2Regs >= 2) {
1265     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1266                                                &ARM::QPRRegClass);
1267     MBB.addLiveIn(SupReg);
1268     BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
1269         .addReg(ARM::R4)
1270         .addImm(16)
1271         .addReg(SupReg)
1272         .add(predOps(ARMCC::AL));
1273     NextReg += 2;
1274     NumAlignedDPRCS2Regs -= 2;
1275   }
1276 
1277   // Finally, use a vanilla vstr.64 for the odd last register.
1278   if (NumAlignedDPRCS2Regs) {
1279     MBB.addLiveIn(NextReg);
1280     // vstr.64 uses addrmode5 which has an offset scale of 4.
1281     BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
1282         .addReg(NextReg)
1283         .addReg(ARM::R4)
1284         .addImm((NextReg - R4BaseReg) * 2)
1285         .add(predOps(ARMCC::AL));
1286   }
1287 
1288   // The last spill instruction inserted should kill the scratch register r4.
1289   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1290 }
1291 
1292 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1293 /// iterator to the following instruction.
1294 static MachineBasicBlock::iterator
1295 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
1296                         unsigned NumAlignedDPRCS2Regs) {
1297   //   sub r4, sp, #numregs * 8
1298   //   bic r4, r4, #align - 1
1299   //   mov sp, r4
1300   ++MI; ++MI; ++MI;
1301   assert(MI->mayStore() && "Expecting spill instruction");
1302 
1303   // These switches all fall through.
1304   switch(NumAlignedDPRCS2Regs) {
1305   case 7:
1306     ++MI;
1307     assert(MI->mayStore() && "Expecting spill instruction");
1308     LLVM_FALLTHROUGH;
1309   default:
1310     ++MI;
1311     assert(MI->mayStore() && "Expecting spill instruction");
1312     LLVM_FALLTHROUGH;
1313   case 1:
1314   case 2:
1315   case 4:
1316     assert(MI->killsRegister(ARM::R4) && "Missed kill flag");
1317     ++MI;
1318   }
1319   return MI;
1320 }
1321 
1322 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1323 /// starting from d8.  These instructions are assumed to execute while the
1324 /// stack is still aligned, unlike the code inserted by emitPopInst.
1325 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
1326                                       MachineBasicBlock::iterator MI,
1327                                       unsigned NumAlignedDPRCS2Regs,
1328                                       const std::vector<CalleeSavedInfo> &CSI,
1329                                       const TargetRegisterInfo *TRI) {
1330   MachineFunction &MF = *MBB.getParent();
1331   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1332   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1333   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1334 
1335   // Find the frame index assigned to d8.
1336   int D8SpillFI = 0;
1337   for (unsigned i = 0, e = CSI.size(); i != e; ++i)
1338     if (CSI[i].getReg() == ARM::D8) {
1339       D8SpillFI = CSI[i].getFrameIdx();
1340       break;
1341     }
1342 
1343   // Materialize the address of the d8 spill slot into the scratch register r4.
1344   // This can be fairly complicated if the stack frame is large, so just use
1345   // the normal frame index elimination mechanism to do it.  This code runs as
1346   // the initial part of the epilog where the stack and base pointers haven't
1347   // been changed yet.
1348   bool isThumb = AFI->isThumbFunction();
1349   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1350 
1351   unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
1352   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1353       .addFrameIndex(D8SpillFI)
1354       .addImm(0)
1355       .add(predOps(ARMCC::AL))
1356       .add(condCodeOp());
1357 
1358   // Now restore NumAlignedDPRCS2Regs registers starting from d8.
1359   unsigned NextReg = ARM::D8;
1360 
1361   // 16-byte aligned vld1.64 with 4 d-regs and writeback.
1362   if (NumAlignedDPRCS2Regs >= 6) {
1363     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1364                                                &ARM::QQPRRegClass);
1365     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
1366         .addReg(ARM::R4, RegState::Define)
1367         .addReg(ARM::R4, RegState::Kill)
1368         .addImm(16)
1369         .addReg(SupReg, RegState::ImplicitDefine)
1370         .add(predOps(ARMCC::AL));
1371     NextReg += 4;
1372     NumAlignedDPRCS2Regs -= 4;
1373   }
1374 
1375   // We won't modify r4 beyond this point.  It currently points to the next
1376   // register to be spilled.
1377   unsigned R4BaseReg = NextReg;
1378 
1379   // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
1380   if (NumAlignedDPRCS2Regs >= 4) {
1381     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1382                                                &ARM::QQPRRegClass);
1383     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
1384         .addReg(ARM::R4)
1385         .addImm(16)
1386         .addReg(SupReg, RegState::ImplicitDefine)
1387         .add(predOps(ARMCC::AL));
1388     NextReg += 4;
1389     NumAlignedDPRCS2Regs -= 4;
1390   }
1391 
1392   // 16-byte aligned vld1.64 with 2 d-regs.
1393   if (NumAlignedDPRCS2Regs >= 2) {
1394     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1395                                                &ARM::QPRRegClass);
1396     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
1397         .addReg(ARM::R4)
1398         .addImm(16)
1399         .add(predOps(ARMCC::AL));
1400     NextReg += 2;
1401     NumAlignedDPRCS2Regs -= 2;
1402   }
1403 
1404   // Finally, use a vanilla vldr.64 for the remaining odd register.
1405   if (NumAlignedDPRCS2Regs)
1406     BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
1407         .addReg(ARM::R4)
1408         .addImm(2 * (NextReg - R4BaseReg))
1409         .add(predOps(ARMCC::AL));
1410 
1411   // Last store kills r4.
1412   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1413 }
1414 
1415 bool ARMFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1416                                         MachineBasicBlock::iterator MI,
1417                                         const std::vector<CalleeSavedInfo> &CSI,
1418                                         const TargetRegisterInfo *TRI) const {
1419   if (CSI.empty())
1420     return false;
1421 
1422   MachineFunction &MF = *MBB.getParent();
1423   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1424 
1425   unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
1426   unsigned PushOneOpc = AFI->isThumbFunction() ?
1427     ARM::t2STR_PRE : ARM::STR_PRE_IMM;
1428   unsigned FltOpc = ARM::VSTMDDB_UPD;
1429   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1430   emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0,
1431                MachineInstr::FrameSetup);
1432   emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0,
1433                MachineInstr::FrameSetup);
1434   emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
1435                NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
1436 
1437   // The code above does not insert spill code for the aligned DPRCS2 registers.
1438   // The stack realignment code will be inserted between the push instructions
1439   // and these spills.
1440   if (NumAlignedDPRCS2Regs)
1441     emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1442 
1443   return true;
1444 }
1445 
1446 bool ARMFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1447                                         MachineBasicBlock::iterator MI,
1448                                         std::vector<CalleeSavedInfo> &CSI,
1449                                         const TargetRegisterInfo *TRI) const {
1450   if (CSI.empty())
1451     return false;
1452 
1453   MachineFunction &MF = *MBB.getParent();
1454   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1455   bool isVarArg = AFI->getArgRegsSaveSize() > 0;
1456   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1457 
1458   // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
1459   // registers. Do that here instead.
1460   if (NumAlignedDPRCS2Regs)
1461     emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1462 
1463   unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
1464   unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM;
1465   unsigned FltOpc = ARM::VLDMDIA_UPD;
1466   emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
1467               NumAlignedDPRCS2Regs);
1468   emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1469               &isARMArea2Register, 0);
1470   emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1471               &isARMArea1Register, 0);
1472 
1473   return true;
1474 }
1475 
1476 // FIXME: Make generic?
1477 static unsigned GetFunctionSizeInBytes(const MachineFunction &MF,
1478                                        const ARMBaseInstrInfo &TII) {
1479   unsigned FnSize = 0;
1480   for (auto &MBB : MF) {
1481     for (auto &MI : MBB)
1482       FnSize += TII.getInstSizeInBytes(MI);
1483   }
1484   return FnSize;
1485 }
1486 
1487 /// estimateRSStackSizeLimit - Look at each instruction that references stack
1488 /// frames and return the stack size limit beyond which some of these
1489 /// instructions will require a scratch register during their expansion later.
1490 // FIXME: Move to TII?
1491 static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
1492                                          const TargetFrameLowering *TFI) {
1493   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1494   unsigned Limit = (1 << 12) - 1;
1495   for (auto &MBB : MF) {
1496     for (auto &MI : MBB) {
1497       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1498         if (!MI.getOperand(i).isFI())
1499           continue;
1500 
1501         // When using ADDri to get the address of a stack object, 255 is the
1502         // largest offset guaranteed to fit in the immediate offset.
1503         if (MI.getOpcode() == ARM::ADDri) {
1504           Limit = std::min(Limit, (1U << 8) - 1);
1505           break;
1506         }
1507 
1508         // Otherwise check the addressing mode.
1509         switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
1510         case ARMII::AddrMode3:
1511         case ARMII::AddrModeT2_i8:
1512           Limit = std::min(Limit, (1U << 8) - 1);
1513           break;
1514         case ARMII::AddrMode5:
1515         case ARMII::AddrModeT2_i8s4:
1516           Limit = std::min(Limit, ((1U << 8) - 1) * 4);
1517           break;
1518         case ARMII::AddrModeT2_i12:
1519           // i12 supports only positive offset so these will be converted to
1520           // i8 opcodes. See llvm::rewriteT2FrameIndex.
1521           if (TFI->hasFP(MF) && AFI->hasStackFrame())
1522             Limit = std::min(Limit, (1U << 8) - 1);
1523           break;
1524         case ARMII::AddrMode4:
1525         case ARMII::AddrMode6:
1526           // Addressing modes 4 & 6 (load/store) instructions can't encode an
1527           // immediate offset for stack references.
1528           return 0;
1529         default:
1530           break;
1531         }
1532         break; // At most one FI per instruction
1533       }
1534     }
1535   }
1536 
1537   return Limit;
1538 }
1539 
1540 // In functions that realign the stack, it can be an advantage to spill the
1541 // callee-saved vector registers after realigning the stack. The vst1 and vld1
1542 // instructions take alignment hints that can improve performance.
1543 static void
1544 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
1545   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
1546   if (!SpillAlignedNEONRegs)
1547     return;
1548 
1549   // Naked functions don't spill callee-saved registers.
1550   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
1551     return;
1552 
1553   // We are planning to use NEON instructions vst1 / vld1.
1554   if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON())
1555     return;
1556 
1557   // Don't bother if the default stack alignment is sufficiently high.
1558   if (MF.getSubtarget().getFrameLowering()->getStackAlignment() >= 8)
1559     return;
1560 
1561   // Aligned spills require stack realignment.
1562   if (!static_cast<const ARMBaseRegisterInfo *>(
1563            MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
1564     return;
1565 
1566   // We always spill contiguous d-registers starting from d8. Count how many
1567   // needs spilling.  The register allocator will almost always use the
1568   // callee-saved registers in order, but it can happen that there are holes in
1569   // the range.  Registers above the hole will be spilled to the standard DPRCS
1570   // area.
1571   unsigned NumSpills = 0;
1572   for (; NumSpills < 8; ++NumSpills)
1573     if (!SavedRegs.test(ARM::D8 + NumSpills))
1574       break;
1575 
1576   // Don't do this for just one d-register. It's not worth it.
1577   if (NumSpills < 2)
1578     return;
1579 
1580   // Spill the first NumSpills D-registers after realigning the stack.
1581   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
1582 
1583   // A scratch register is required for the vst1 / vld1 instructions.
1584   SavedRegs.set(ARM::R4);
1585 }
1586 
1587 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
1588                                             BitVector &SavedRegs,
1589                                             RegScavenger *RS) const {
1590   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1591   // This tells PEI to spill the FP as if it is any other callee-save register
1592   // to take advantage the eliminateFrameIndex machinery. This also ensures it
1593   // is spilled in the order specified by getCalleeSavedRegs() to make it easier
1594   // to combine multiple loads / stores.
1595   bool CanEliminateFrame = true;
1596   bool CS1Spilled = false;
1597   bool LRSpilled = false;
1598   unsigned NumGPRSpills = 0;
1599   unsigned NumFPRSpills = 0;
1600   SmallVector<unsigned, 4> UnspilledCS1GPRs;
1601   SmallVector<unsigned, 4> UnspilledCS2GPRs;
1602   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1603       MF.getSubtarget().getRegisterInfo());
1604   const ARMBaseInstrInfo &TII =
1605       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1606   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1607   MachineFrameInfo &MFI = MF.getFrameInfo();
1608   MachineRegisterInfo &MRI = MF.getRegInfo();
1609   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1610   (void)TRI;  // Silence unused warning in non-assert builds.
1611   unsigned FramePtr = RegInfo->getFrameRegister(MF);
1612 
1613   // Spill R4 if Thumb2 function requires stack realignment - it will be used as
1614   // scratch register. Also spill R4 if Thumb2 function has varsized objects,
1615   // since it's not always possible to restore sp from fp in a single
1616   // instruction.
1617   // FIXME: It will be better just to find spare register here.
1618   if (AFI->isThumb2Function() &&
1619       (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF)))
1620     SavedRegs.set(ARM::R4);
1621 
1622   if (AFI->isThumb1OnlyFunction()) {
1623     // Spill LR if Thumb1 function uses variable length argument lists.
1624     if (AFI->getArgRegsSaveSize() > 0)
1625       SavedRegs.set(ARM::LR);
1626 
1627     // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
1628     // requires stack alignment.  We don't know for sure what the stack size
1629     // will be, but for this, an estimate is good enough. If there anything
1630     // changes it, it'll be a spill, which implies we've used all the registers
1631     // and so R4 is already used, so not marking it here will be OK.
1632     // FIXME: It will be better just to find spare register here.
1633     if (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF) ||
1634         MFI.estimateStackSize(MF) > 508)
1635       SavedRegs.set(ARM::R4);
1636   }
1637 
1638   // See if we can spill vector registers to aligned stack.
1639   checkNumAlignedDPRCS2Regs(MF, SavedRegs);
1640 
1641   // Spill the BasePtr if it's used.
1642   if (RegInfo->hasBasePointer(MF))
1643     SavedRegs.set(RegInfo->getBaseRegister());
1644 
1645   // Don't spill FP if the frame can be eliminated. This is determined
1646   // by scanning the callee-save registers to see if any is modified.
1647   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
1648   for (unsigned i = 0; CSRegs[i]; ++i) {
1649     unsigned Reg = CSRegs[i];
1650     bool Spilled = false;
1651     if (SavedRegs.test(Reg)) {
1652       Spilled = true;
1653       CanEliminateFrame = false;
1654     }
1655 
1656     if (!ARM::GPRRegClass.contains(Reg)) {
1657       if (Spilled) {
1658         if (ARM::SPRRegClass.contains(Reg))
1659           NumFPRSpills++;
1660         else if (ARM::DPRRegClass.contains(Reg))
1661           NumFPRSpills += 2;
1662         else if (ARM::QPRRegClass.contains(Reg))
1663           NumFPRSpills += 4;
1664       }
1665       continue;
1666     }
1667 
1668     if (Spilled) {
1669       NumGPRSpills++;
1670 
1671       if (!STI.splitFramePushPop(MF)) {
1672         if (Reg == ARM::LR)
1673           LRSpilled = true;
1674         CS1Spilled = true;
1675         continue;
1676       }
1677 
1678       // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
1679       switch (Reg) {
1680       case ARM::LR:
1681         LRSpilled = true;
1682         LLVM_FALLTHROUGH;
1683       case ARM::R0: case ARM::R1:
1684       case ARM::R2: case ARM::R3:
1685       case ARM::R4: case ARM::R5:
1686       case ARM::R6: case ARM::R7:
1687         CS1Spilled = true;
1688         break;
1689       default:
1690         break;
1691       }
1692     } else {
1693       if (!STI.splitFramePushPop(MF)) {
1694         UnspilledCS1GPRs.push_back(Reg);
1695         continue;
1696       }
1697 
1698       switch (Reg) {
1699       case ARM::R0: case ARM::R1:
1700       case ARM::R2: case ARM::R3:
1701       case ARM::R4: case ARM::R5:
1702       case ARM::R6: case ARM::R7:
1703       case ARM::LR:
1704         UnspilledCS1GPRs.push_back(Reg);
1705         break;
1706       default:
1707         UnspilledCS2GPRs.push_back(Reg);
1708         break;
1709       }
1710     }
1711   }
1712 
1713   bool ForceLRSpill = false;
1714   if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
1715     unsigned FnSize = GetFunctionSizeInBytes(MF, TII);
1716     // Force LR to be spilled if the Thumb function size is > 2048. This enables
1717     // use of BL to implement far jump. If it turns out that it's not needed
1718     // then the branch fix up path will undo it.
1719     if (FnSize >= (1 << 11)) {
1720       CanEliminateFrame = false;
1721       ForceLRSpill = true;
1722     }
1723   }
1724 
1725   // If any of the stack slot references may be out of range of an immediate
1726   // offset, make sure a register (or a spill slot) is available for the
1727   // register scavenger. Note that if we're indexing off the frame pointer, the
1728   // effective stack size is 4 bytes larger since the FP points to the stack
1729   // slot of the previous FP. Also, if we have variable sized objects in the
1730   // function, stack slot references will often be negative, and some of
1731   // our instructions are positive-offset only, so conservatively consider
1732   // that case to want a spill slot (or register) as well. Similarly, if
1733   // the function adjusts the stack pointer during execution and the
1734   // adjustments aren't already part of our stack size estimate, our offset
1735   // calculations may be off, so be conservative.
1736   // FIXME: We could add logic to be more precise about negative offsets
1737   //        and which instructions will need a scratch register for them. Is it
1738   //        worth the effort and added fragility?
1739   unsigned EstimatedStackSize =
1740       MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
1741 
1742   // Determine biggest (positive) SP offset in MachineFrameInfo.
1743   int MaxFixedOffset = 0;
1744   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
1745     int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
1746     MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
1747   }
1748 
1749   bool HasFP = hasFP(MF);
1750   if (HasFP) {
1751     if (AFI->hasStackFrame())
1752       EstimatedStackSize += 4;
1753   } else {
1754     // If FP is not used, SP will be used to access arguments, so count the
1755     // size of arguments into the estimation.
1756     EstimatedStackSize += MaxFixedOffset;
1757   }
1758   EstimatedStackSize += 16; // For possible paddings.
1759 
1760   unsigned EstimatedRSStackSizeLimit = estimateRSStackSizeLimit(MF, this);
1761   int MaxFPOffset = getMaxFPOffset(MF.getFunction(), *AFI);
1762   bool BigFrameOffsets = EstimatedStackSize >= EstimatedRSStackSizeLimit ||
1763     MFI.hasVarSizedObjects() ||
1764     (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)) ||
1765     // For large argument stacks fp relative addressed may overflow.
1766     (HasFP && (MaxFixedOffset - MaxFPOffset) >= (int)EstimatedRSStackSizeLimit);
1767   if (BigFrameOffsets ||
1768       !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
1769     AFI->setHasStackFrame(true);
1770 
1771     if (HasFP) {
1772       SavedRegs.set(FramePtr);
1773       // If the frame pointer is required by the ABI, also spill LR so that we
1774       // emit a complete frame record.
1775       if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) {
1776         SavedRegs.set(ARM::LR);
1777         LRSpilled = true;
1778         NumGPRSpills++;
1779         auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
1780         if (LRPos != UnspilledCS1GPRs.end())
1781           UnspilledCS1GPRs.erase(LRPos);
1782       }
1783       auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
1784       if (FPPos != UnspilledCS1GPRs.end())
1785         UnspilledCS1GPRs.erase(FPPos);
1786       NumGPRSpills++;
1787       if (FramePtr == ARM::R7)
1788         CS1Spilled = true;
1789     }
1790 
1791     // This is true when we inserted a spill for an unused register that can now
1792     // be used for register scavenging.
1793     bool ExtraCSSpill = false;
1794 
1795     if (AFI->isThumb1OnlyFunction()) {
1796       // For Thumb1-only targets, we need some low registers when we save and
1797       // restore the high registers (which aren't allocatable, but could be
1798       // used by inline assembly) because the push/pop instructions can not
1799       // access high registers. If necessary, we might need to push more low
1800       // registers to ensure that there is at least one free that can be used
1801       // for the saving & restoring, and preferably we should ensure that as
1802       // many as are needed are available so that fewer push/pop instructions
1803       // are required.
1804 
1805       // Low registers which are not currently pushed, but could be (r4-r7).
1806       SmallVector<unsigned, 4> AvailableRegs;
1807 
1808       // Unused argument registers (r0-r3) can be clobbered in the prologue for
1809       // free.
1810       int EntryRegDeficit = 0;
1811       for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
1812         if (!MF.getRegInfo().isLiveIn(Reg)) {
1813           --EntryRegDeficit;
1814           DEBUG(dbgs() << printReg(Reg, TRI)
1815                        << " is unused argument register, EntryRegDeficit = "
1816                        << EntryRegDeficit << "\n");
1817         }
1818       }
1819 
1820       // Unused return registers can be clobbered in the epilogue for free.
1821       int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
1822       DEBUG(dbgs() << AFI->getReturnRegsCount()
1823                    << " return regs used, ExitRegDeficit = " << ExitRegDeficit
1824                    << "\n");
1825 
1826       int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
1827       DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
1828 
1829       // r4-r6 can be used in the prologue if they are pushed by the first push
1830       // instruction.
1831       for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
1832         if (SavedRegs.test(Reg)) {
1833           --RegDeficit;
1834           DEBUG(dbgs() << printReg(Reg, TRI)
1835                        << " is saved low register, RegDeficit = " << RegDeficit
1836                        << "\n");
1837         } else {
1838           AvailableRegs.push_back(Reg);
1839           DEBUG(dbgs()
1840                 << printReg(Reg, TRI)
1841                 << " is non-saved low register, adding to AvailableRegs\n");
1842         }
1843       }
1844 
1845       // r7 can be used if it is not being used as the frame pointer.
1846       if (!HasFP) {
1847         if (SavedRegs.test(ARM::R7)) {
1848           --RegDeficit;
1849           DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
1850                        << RegDeficit << "\n");
1851         } else {
1852           AvailableRegs.push_back(ARM::R7);
1853           DEBUG(dbgs()
1854                 << "%r7 is non-saved low register, adding to AvailableRegs\n");
1855         }
1856       }
1857 
1858       // Each of r8-r11 needs to be copied to a low register, then pushed.
1859       for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
1860         if (SavedRegs.test(Reg)) {
1861           ++RegDeficit;
1862           DEBUG(dbgs() << printReg(Reg, TRI)
1863                        << " is saved high register, RegDeficit = " << RegDeficit
1864                        << "\n");
1865         }
1866       }
1867 
1868       // LR can only be used by PUSH, not POP, and can't be used at all if the
1869       // llvm.returnaddress intrinsic is used. This is only worth doing if we
1870       // are more limited at function entry than exit.
1871       if ((EntryRegDeficit > ExitRegDeficit) &&
1872           !(MF.getRegInfo().isLiveIn(ARM::LR) &&
1873             MF.getFrameInfo().isReturnAddressTaken())) {
1874         if (SavedRegs.test(ARM::LR)) {
1875           --RegDeficit;
1876           DEBUG(dbgs() << "%lr is saved register, RegDeficit = " << RegDeficit
1877                        << "\n");
1878         } else {
1879           AvailableRegs.push_back(ARM::LR);
1880           DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
1881         }
1882       }
1883 
1884       // If there are more high registers that need pushing than low registers
1885       // available, push some more low registers so that we can use fewer push
1886       // instructions. This might not reduce RegDeficit all the way to zero,
1887       // because we can only guarantee that r4-r6 are available, but r8-r11 may
1888       // need saving.
1889       DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
1890       for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
1891         unsigned Reg = AvailableRegs.pop_back_val();
1892         DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
1893                      << " to make up reg deficit\n");
1894         SavedRegs.set(Reg);
1895         NumGPRSpills++;
1896         CS1Spilled = true;
1897         assert(!MRI.isReserved(Reg) && "Should not be reserved");
1898         if (!MRI.isPhysRegUsed(Reg))
1899           ExtraCSSpill = true;
1900         UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
1901         if (Reg == ARM::LR)
1902           LRSpilled = true;
1903       }
1904       DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit << "\n");
1905     }
1906 
1907     // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
1908     // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
1909     if (!LRSpilled && CS1Spilled) {
1910       SavedRegs.set(ARM::LR);
1911       NumGPRSpills++;
1912       SmallVectorImpl<unsigned>::iterator LRPos;
1913       LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
1914       if (LRPos != UnspilledCS1GPRs.end())
1915         UnspilledCS1GPRs.erase(LRPos);
1916 
1917       ForceLRSpill = false;
1918       if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR))
1919         ExtraCSSpill = true;
1920     }
1921 
1922     // If stack and double are 8-byte aligned and we are spilling an odd number
1923     // of GPRs, spill one extra callee save GPR so we won't have to pad between
1924     // the integer and double callee save areas.
1925     DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
1926     unsigned TargetAlign = getStackAlignment();
1927     if (TargetAlign >= 8 && (NumGPRSpills & 1)) {
1928       if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
1929         for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
1930           unsigned Reg = UnspilledCS1GPRs[i];
1931           // Don't spill high register if the function is thumb.  In the case of
1932           // Windows on ARM, accept R11 (frame pointer)
1933           if (!AFI->isThumbFunction() ||
1934               (STI.isTargetWindows() && Reg == ARM::R11) ||
1935               isARMLowRegister(Reg) || Reg == ARM::LR) {
1936             SavedRegs.set(Reg);
1937             DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
1938                          << " to make up alignment\n");
1939             if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
1940               ExtraCSSpill = true;
1941             break;
1942           }
1943         }
1944       } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
1945         unsigned Reg = UnspilledCS2GPRs.front();
1946         SavedRegs.set(Reg);
1947         DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
1948                      << " to make up alignment\n");
1949         if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
1950           ExtraCSSpill = true;
1951       }
1952     }
1953 
1954     // Estimate if we might need to scavenge a register at some point in order
1955     // to materialize a stack offset. If so, either spill one additional
1956     // callee-saved register or reserve a special spill slot to facilitate
1957     // register scavenging. Thumb1 needs a spill slot for stack pointer
1958     // adjustments also, even when the frame itself is small.
1959     if (BigFrameOffsets && !ExtraCSSpill) {
1960       // If any non-reserved CS register isn't spilled, just spill one or two
1961       // extra. That should take care of it!
1962       unsigned NumExtras = TargetAlign / 4;
1963       SmallVector<unsigned, 2> Extras;
1964       while (NumExtras && !UnspilledCS1GPRs.empty()) {
1965         unsigned Reg = UnspilledCS1GPRs.back();
1966         UnspilledCS1GPRs.pop_back();
1967         if (!MRI.isReserved(Reg) &&
1968             (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg) ||
1969              Reg == ARM::LR)) {
1970           Extras.push_back(Reg);
1971           NumExtras--;
1972         }
1973       }
1974       // For non-Thumb1 functions, also check for hi-reg CS registers
1975       if (!AFI->isThumb1OnlyFunction()) {
1976         while (NumExtras && !UnspilledCS2GPRs.empty()) {
1977           unsigned Reg = UnspilledCS2GPRs.back();
1978           UnspilledCS2GPRs.pop_back();
1979           if (!MRI.isReserved(Reg)) {
1980             Extras.push_back(Reg);
1981             NumExtras--;
1982           }
1983         }
1984       }
1985       if (NumExtras == 0) {
1986         for (unsigned Reg : Extras) {
1987           SavedRegs.set(Reg);
1988           if (!MRI.isPhysRegUsed(Reg))
1989             ExtraCSSpill = true;
1990         }
1991       }
1992       if (!ExtraCSSpill && !AFI->isThumb1OnlyFunction()) {
1993         // note: Thumb1 functions spill to R12, not the stack.  Reserve a slot
1994         // closest to SP or frame pointer.
1995         assert(RS && "Register scavenging not provided");
1996         const TargetRegisterClass &RC = ARM::GPRRegClass;
1997         unsigned Size = TRI->getSpillSize(RC);
1998         unsigned Align = TRI->getSpillAlignment(RC);
1999         RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Align, false));
2000       }
2001     }
2002   }
2003 
2004   if (ForceLRSpill) {
2005     SavedRegs.set(ARM::LR);
2006     AFI->setLRIsSpilledForFarJump(true);
2007   }
2008 }
2009 
2010 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
2011     MachineFunction &MF, MachineBasicBlock &MBB,
2012     MachineBasicBlock::iterator I) const {
2013   const ARMBaseInstrInfo &TII =
2014       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2015   if (!hasReservedCallFrame(MF)) {
2016     // If we have alloca, convert as follows:
2017     // ADJCALLSTACKDOWN -> sub, sp, sp, amount
2018     // ADJCALLSTACKUP   -> add, sp, sp, amount
2019     MachineInstr &Old = *I;
2020     DebugLoc dl = Old.getDebugLoc();
2021     unsigned Amount = TII.getFrameSize(Old);
2022     if (Amount != 0) {
2023       // We need to keep the stack aligned properly.  To do this, we round the
2024       // amount of space needed for the outgoing arguments up to the next
2025       // alignment boundary.
2026       Amount = alignSPAdjust(Amount);
2027 
2028       ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2029       assert(!AFI->isThumb1OnlyFunction() &&
2030              "This eliminateCallFramePseudoInstr does not support Thumb1!");
2031       bool isARM = !AFI->isThumbFunction();
2032 
2033       // Replace the pseudo instruction with a new instruction...
2034       unsigned Opc = Old.getOpcode();
2035       int PIdx = Old.findFirstPredOperandIdx();
2036       ARMCC::CondCodes Pred =
2037           (PIdx == -1) ? ARMCC::AL
2038                        : (ARMCC::CondCodes)Old.getOperand(PIdx).getImm();
2039       unsigned PredReg = TII.getFramePred(Old);
2040       if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
2041         emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
2042                      Pred, PredReg);
2043       } else {
2044         assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
2045         emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
2046                      Pred, PredReg);
2047       }
2048     }
2049   }
2050   return MBB.erase(I);
2051 }
2052 
2053 /// Get the minimum constant for ARM that is greater than or equal to the
2054 /// argument. In ARM, constants can have any value that can be produced by
2055 /// rotating an 8-bit value to the right by an even number of bits within a
2056 /// 32-bit word.
2057 static uint32_t alignToARMConstant(uint32_t Value) {
2058   unsigned Shifted = 0;
2059 
2060   if (Value == 0)
2061       return 0;
2062 
2063   while (!(Value & 0xC0000000)) {
2064       Value = Value << 2;
2065       Shifted += 2;
2066   }
2067 
2068   bool Carry = (Value & 0x00FFFFFF);
2069   Value = ((Value & 0xFF000000) >> 24) + Carry;
2070 
2071   if (Value & 0x0000100)
2072       Value = Value & 0x000001FC;
2073 
2074   if (Shifted > 24)
2075       Value = Value >> (Shifted - 24);
2076   else
2077       Value = Value << (24 - Shifted);
2078 
2079   return Value;
2080 }
2081 
2082 // The stack limit in the TCB is set to this many bytes above the actual
2083 // stack limit.
2084 static const uint64_t kSplitStackAvailable = 256;
2085 
2086 // Adjust the function prologue to enable split stacks. This currently only
2087 // supports android and linux.
2088 //
2089 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but
2090 // must be well defined in order to allow for consistent implementations of the
2091 // __morestack helper function. The ABI is also not a normal ABI in that it
2092 // doesn't follow the normal calling conventions because this allows the
2093 // prologue of each function to be optimized further.
2094 //
2095 // Currently, the ABI looks like (when calling __morestack)
2096 //
2097 //  * r4 holds the minimum stack size requested for this function call
2098 //  * r5 holds the stack size of the arguments to the function
2099 //  * the beginning of the function is 3 instructions after the call to
2100 //    __morestack
2101 //
2102 // Implementations of __morestack should use r4 to allocate a new stack, r5 to
2103 // place the arguments on to the new stack, and the 3-instruction knowledge to
2104 // jump directly to the body of the function when working on the new stack.
2105 //
2106 // An old (and possibly no longer compatible) implementation of __morestack for
2107 // ARM can be found at [1].
2108 //
2109 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
2110 void ARMFrameLowering::adjustForSegmentedStacks(
2111     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2112   unsigned Opcode;
2113   unsigned CFIIndex;
2114   const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
2115   bool Thumb = ST->isThumb();
2116 
2117   // Sadly, this currently doesn't support varargs, platforms other than
2118   // android/linux. Note that thumb1/thumb2 are support for android/linux.
2119   if (MF.getFunction().isVarArg())
2120     report_fatal_error("Segmented stacks do not support vararg functions.");
2121   if (!ST->isTargetAndroid() && !ST->isTargetLinux())
2122     report_fatal_error("Segmented stacks not supported on this platform.");
2123 
2124   MachineFrameInfo &MFI = MF.getFrameInfo();
2125   MachineModuleInfo &MMI = MF.getMMI();
2126   MCContext &Context = MMI.getContext();
2127   const MCRegisterInfo *MRI = Context.getRegisterInfo();
2128   const ARMBaseInstrInfo &TII =
2129       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2130   ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
2131   DebugLoc DL;
2132 
2133   uint64_t StackSize = MFI.getStackSize();
2134 
2135   // Do not generate a prologue for functions with a stack of size zero
2136   if (StackSize == 0)
2137     return;
2138 
2139   // Use R4 and R5 as scratch registers.
2140   // We save R4 and R5 before use and restore them before leaving the function.
2141   unsigned ScratchReg0 = ARM::R4;
2142   unsigned ScratchReg1 = ARM::R5;
2143   uint64_t AlignedStackSize;
2144 
2145   MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
2146   MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
2147   MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
2148   MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
2149   MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
2150 
2151   // Grab everything that reaches PrologueMBB to update there liveness as well.
2152   SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
2153   SmallVector<MachineBasicBlock *, 2> WalkList;
2154   WalkList.push_back(&PrologueMBB);
2155 
2156   do {
2157     MachineBasicBlock *CurMBB = WalkList.pop_back_val();
2158     for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
2159       if (BeforePrologueRegion.insert(PredBB).second)
2160         WalkList.push_back(PredBB);
2161     }
2162   } while (!WalkList.empty());
2163 
2164   // The order in that list is important.
2165   // The blocks will all be inserted before PrologueMBB using that order.
2166   // Therefore the block that should appear first in the CFG should appear
2167   // first in the list.
2168   MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
2169                                       PostStackMBB};
2170 
2171   for (MachineBasicBlock *B : AddedBlocks)
2172     BeforePrologueRegion.insert(B);
2173 
2174   for (const auto &LI : PrologueMBB.liveins()) {
2175     for (MachineBasicBlock *PredBB : BeforePrologueRegion)
2176       PredBB->addLiveIn(LI);
2177   }
2178 
2179   // Remove the newly added blocks from the list, since we know
2180   // we do not have to do the following updates for them.
2181   for (MachineBasicBlock *B : AddedBlocks) {
2182     BeforePrologueRegion.erase(B);
2183     MF.insert(PrologueMBB.getIterator(), B);
2184   }
2185 
2186   for (MachineBasicBlock *MBB : BeforePrologueRegion) {
2187     // Make sure the LiveIns are still sorted and unique.
2188     MBB->sortUniqueLiveIns();
2189     // Replace the edges to PrologueMBB by edges to the sequences
2190     // we are about to add.
2191     MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
2192   }
2193 
2194   // The required stack size that is aligned to ARM constant criterion.
2195   AlignedStackSize = alignToARMConstant(StackSize);
2196 
2197   // When the frame size is less than 256 we just compare the stack
2198   // boundary directly to the value of the stack pointer, per gcc.
2199   bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
2200 
2201   // We will use two of the callee save registers as scratch registers so we
2202   // need to save those registers onto the stack.
2203   // We will use SR0 to hold stack limit and SR1 to hold the stack size
2204   // requested and arguments for __morestack().
2205   // SR0: Scratch Register #0
2206   // SR1: Scratch Register #1
2207   // push {SR0, SR1}
2208   if (Thumb) {
2209     BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
2210         .add(predOps(ARMCC::AL))
2211         .addReg(ScratchReg0)
2212         .addReg(ScratchReg1);
2213   } else {
2214     BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
2215         .addReg(ARM::SP, RegState::Define)
2216         .addReg(ARM::SP)
2217         .add(predOps(ARMCC::AL))
2218         .addReg(ScratchReg0)
2219         .addReg(ScratchReg1);
2220   }
2221 
2222   // Emit the relevant DWARF information about the change in stack pointer as
2223   // well as where to find both r4 and r5 (the callee-save registers)
2224   CFIIndex =
2225       MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -8));
2226   BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2227       .addCFIIndex(CFIIndex);
2228   CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2229       nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
2230   BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2231       .addCFIIndex(CFIIndex);
2232   CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2233       nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
2234   BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2235       .addCFIIndex(CFIIndex);
2236 
2237   // mov SR1, sp
2238   if (Thumb) {
2239     BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
2240         .addReg(ARM::SP)
2241         .add(predOps(ARMCC::AL));
2242   } else if (CompareStackPointer) {
2243     BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
2244         .addReg(ARM::SP)
2245         .add(predOps(ARMCC::AL))
2246         .add(condCodeOp());
2247   }
2248 
2249   // sub SR1, sp, #StackSize
2250   if (!CompareStackPointer && Thumb) {
2251     BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
2252         .add(condCodeOp())
2253         .addReg(ScratchReg1)
2254         .addImm(AlignedStackSize)
2255         .add(predOps(ARMCC::AL));
2256   } else if (!CompareStackPointer) {
2257     BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
2258         .addReg(ARM::SP)
2259         .addImm(AlignedStackSize)
2260         .add(predOps(ARMCC::AL))
2261         .add(condCodeOp());
2262   }
2263 
2264   if (Thumb && ST->isThumb1Only()) {
2265     unsigned PCLabelId = ARMFI->createPICLabelUId();
2266     ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
2267         MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
2268     MachineConstantPool *MCP = MF.getConstantPool();
2269     unsigned CPI = MCP->getConstantPoolIndex(NewCPV, 4);
2270 
2271     // ldr SR0, [pc, offset(STACK_LIMIT)]
2272     BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
2273         .addConstantPoolIndex(CPI)
2274         .add(predOps(ARMCC::AL));
2275 
2276     // ldr SR0, [SR0]
2277     BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
2278         .addReg(ScratchReg0)
2279         .addImm(0)
2280         .add(predOps(ARMCC::AL));
2281   } else {
2282     // Get TLS base address from the coprocessor
2283     // mrc p15, #0, SR0, c13, c0, #3
2284     BuildMI(McrMBB, DL, TII.get(ARM::MRC), ScratchReg0)
2285         .addImm(15)
2286         .addImm(0)
2287         .addImm(13)
2288         .addImm(0)
2289         .addImm(3)
2290         .add(predOps(ARMCC::AL));
2291 
2292     // Use the last tls slot on android and a private field of the TCP on linux.
2293     assert(ST->isTargetAndroid() || ST->isTargetLinux());
2294     unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
2295 
2296     // Get the stack limit from the right offset
2297     // ldr SR0, [sr0, #4 * TlsOffset]
2298     BuildMI(GetMBB, DL, TII.get(ARM::LDRi12), ScratchReg0)
2299         .addReg(ScratchReg0)
2300         .addImm(4 * TlsOffset)
2301         .add(predOps(ARMCC::AL));
2302   }
2303 
2304   // Compare stack limit with stack size requested.
2305   // cmp SR0, SR1
2306   Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
2307   BuildMI(GetMBB, DL, TII.get(Opcode))
2308       .addReg(ScratchReg0)
2309       .addReg(ScratchReg1)
2310       .add(predOps(ARMCC::AL));
2311 
2312   // This jump is taken if StackLimit < SP - stack required.
2313   Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
2314   BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB)
2315        .addImm(ARMCC::LO)
2316        .addReg(ARM::CPSR);
2317 
2318 
2319   // Calling __morestack(StackSize, Size of stack arguments).
2320   // __morestack knows that the stack size requested is in SR0(r4)
2321   // and amount size of stack arguments is in SR1(r5).
2322 
2323   // Pass first argument for the __morestack by Scratch Register #0.
2324   //   The amount size of stack required
2325   if (Thumb) {
2326     BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
2327         .add(condCodeOp())
2328         .addImm(AlignedStackSize)
2329         .add(predOps(ARMCC::AL));
2330   } else {
2331     BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
2332         .addImm(AlignedStackSize)
2333         .add(predOps(ARMCC::AL))
2334         .add(condCodeOp());
2335   }
2336   // Pass second argument for the __morestack by Scratch Register #1.
2337   //   The amount size of stack consumed to save function arguments.
2338   if (Thumb) {
2339     BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
2340         .add(condCodeOp())
2341         .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
2342         .add(predOps(ARMCC::AL));
2343   } else {
2344     BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
2345         .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
2346         .add(predOps(ARMCC::AL))
2347         .add(condCodeOp());
2348   }
2349 
2350   // push {lr} - Save return address of this function.
2351   if (Thumb) {
2352     BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
2353         .add(predOps(ARMCC::AL))
2354         .addReg(ARM::LR);
2355   } else {
2356     BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
2357         .addReg(ARM::SP, RegState::Define)
2358         .addReg(ARM::SP)
2359         .add(predOps(ARMCC::AL))
2360         .addReg(ARM::LR);
2361   }
2362 
2363   // Emit the DWARF info about the change in stack as well as where to find the
2364   // previous link register
2365   CFIIndex =
2366       MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -12));
2367   BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2368       .addCFIIndex(CFIIndex);
2369   CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2370         nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
2371   BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2372       .addCFIIndex(CFIIndex);
2373 
2374   // Call __morestack().
2375   if (Thumb) {
2376     BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
2377         .add(predOps(ARMCC::AL))
2378         .addExternalSymbol("__morestack");
2379   } else {
2380     BuildMI(AllocMBB, DL, TII.get(ARM::BL))
2381         .addExternalSymbol("__morestack");
2382   }
2383 
2384   // pop {lr} - Restore return address of this original function.
2385   if (Thumb) {
2386     if (ST->isThumb1Only()) {
2387       BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
2388           .add(predOps(ARMCC::AL))
2389           .addReg(ScratchReg0);
2390       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
2391           .addReg(ScratchReg0)
2392           .add(predOps(ARMCC::AL));
2393     } else {
2394       BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
2395           .addReg(ARM::LR, RegState::Define)
2396           .addReg(ARM::SP, RegState::Define)
2397           .addReg(ARM::SP)
2398           .addImm(4)
2399           .add(predOps(ARMCC::AL));
2400     }
2401   } else {
2402     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
2403         .addReg(ARM::SP, RegState::Define)
2404         .addReg(ARM::SP)
2405         .add(predOps(ARMCC::AL))
2406         .addReg(ARM::LR);
2407   }
2408 
2409   // Restore SR0 and SR1 in case of __morestack() was called.
2410   // __morestack() will skip PostStackMBB block so we need to restore
2411   // scratch registers from here.
2412   // pop {SR0, SR1}
2413   if (Thumb) {
2414     BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
2415         .add(predOps(ARMCC::AL))
2416         .addReg(ScratchReg0)
2417         .addReg(ScratchReg1);
2418   } else {
2419     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
2420         .addReg(ARM::SP, RegState::Define)
2421         .addReg(ARM::SP)
2422         .add(predOps(ARMCC::AL))
2423         .addReg(ScratchReg0)
2424         .addReg(ScratchReg1);
2425   }
2426 
2427   // Update the CFA offset now that we've popped
2428   CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0));
2429   BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2430       .addCFIIndex(CFIIndex);
2431 
2432   // Return from this function.
2433   BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
2434 
2435   // Restore SR0 and SR1 in case of __morestack() was not called.
2436   // pop {SR0, SR1}
2437   if (Thumb) {
2438     BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
2439         .add(predOps(ARMCC::AL))
2440         .addReg(ScratchReg0)
2441         .addReg(ScratchReg1);
2442   } else {
2443     BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
2444         .addReg(ARM::SP, RegState::Define)
2445         .addReg(ARM::SP)
2446         .add(predOps(ARMCC::AL))
2447         .addReg(ScratchReg0)
2448         .addReg(ScratchReg1);
2449   }
2450 
2451   // Update the CFA offset now that we've popped
2452   CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0));
2453   BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2454       .addCFIIndex(CFIIndex);
2455 
2456   // Tell debuggers that r4 and r5 are now the same as they were in the
2457   // previous function, that they're the "Same Value".
2458   CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
2459       nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
2460   BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2461       .addCFIIndex(CFIIndex);
2462   CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
2463       nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
2464   BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2465       .addCFIIndex(CFIIndex);
2466 
2467   // Organizing MBB lists
2468   PostStackMBB->addSuccessor(&PrologueMBB);
2469 
2470   AllocMBB->addSuccessor(PostStackMBB);
2471 
2472   GetMBB->addSuccessor(PostStackMBB);
2473   GetMBB->addSuccessor(AllocMBB);
2474 
2475   McrMBB->addSuccessor(GetMBB);
2476 
2477   PrevStackMBB->addSuccessor(McrMBB);
2478 
2479 #ifdef EXPENSIVE_CHECKS
2480   MF.verify();
2481 #endif
2482 }
2483