1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the ARM implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 // 13 // This file contains the ARM implementation of TargetFrameLowering class. 14 // 15 // On ARM, stack frames are structured as follows: 16 // 17 // The stack grows downward. 18 // 19 // All of the individual frame areas on the frame below are optional, i.e. it's 20 // possible to create a function so that the particular area isn't present 21 // in the frame. 22 // 23 // At function entry, the "frame" looks as follows: 24 // 25 // | | Higher address 26 // |-----------------------------------| 27 // | | 28 // | arguments passed on the stack | 29 // | | 30 // |-----------------------------------| <- sp 31 // | | Lower address 32 // 33 // 34 // After the prologue has run, the frame has the following general structure. 35 // Technically the last frame area (VLAs) doesn't get created until in the 36 // main function body, after the prologue is run. However, it's depicted here 37 // for completeness. 38 // 39 // | | Higher address 40 // |-----------------------------------| 41 // | | 42 // | arguments passed on the stack | 43 // | | 44 // |-----------------------------------| <- (sp at function entry) 45 // | | 46 // | varargs from registers | 47 // | | 48 // |-----------------------------------| 49 // | | 50 // | prev_lr | 51 // | prev_fp | 52 // | (a.k.a. "frame record") | 53 // | | 54 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11) 55 // | | 56 // | callee-saved gpr registers | 57 // | | 58 // |-----------------------------------| 59 // | | 60 // | callee-saved fp/simd regs | 61 // | | 62 // |-----------------------------------| 63 // |.empty.space.to.make.part.below....| 64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at 65 // |.the.standard.8-byte.alignment.....| compile time; if present) 66 // |-----------------------------------| 67 // | | 68 // | local variables of fixed size | 69 // | including spill slots | 70 // |-----------------------------------| <- base pointer (not defined by ABI, 71 // |.variable-sized.local.variables....| LLVM chooses r6) 72 // |.(VLAs)............................| (size of this area is unknown at 73 // |...................................| compile time) 74 // |-----------------------------------| <- sp 75 // | | Lower address 76 // 77 // 78 // To access the data in a frame, at-compile time, a constant offset must be 79 // computable from one of the pointers (fp, bp, sp) to access it. The size 80 // of the areas with a dotted background cannot be computed at compile-time 81 // if they are present, making it required to have all three of fp, bp and 82 // sp to be set up to be able to access all contents in the frame areas, 83 // assuming all of the frame areas are non-empty. 84 // 85 // For most functions, some of the frame areas are empty. For those functions, 86 // it may not be necessary to set up fp or bp: 87 // * A base pointer is definitely needed when there are both VLAs and local 88 // variables with more-than-default alignment requirements. 89 // * A frame pointer is definitely needed when there are local variables with 90 // more-than-default alignment requirements. 91 // 92 // In some cases when a base pointer is not strictly needed, it is generated 93 // anyway when offsets from the frame pointer to access local variables become 94 // so large that the offset can't be encoded in the immediate fields of loads 95 // or stores. 96 // 97 // The frame pointer might be chosen to be r7 or r11, depending on the target 98 // architecture and operating system. See ARMSubtarget::getFramePointerReg for 99 // details. 100 // 101 // Outgoing function arguments must be at the bottom of the stack frame when 102 // calling another function. If we do not have variable-sized stack objects, we 103 // can allocate a "reserved call frame" area at the bottom of the local 104 // variable area, large enough for all outgoing calls. If we do have VLAs, then 105 // the stack pointer must be decremented and incremented around each call to 106 // make space for the arguments below the VLAs. 107 // 108 //===----------------------------------------------------------------------===// 109 110 #include "ARMFrameLowering.h" 111 #include "ARMBaseInstrInfo.h" 112 #include "ARMBaseRegisterInfo.h" 113 #include "ARMConstantPoolValue.h" 114 #include "ARMMachineFunctionInfo.h" 115 #include "ARMSubtarget.h" 116 #include "MCTargetDesc/ARMAddressingModes.h" 117 #include "MCTargetDesc/ARMBaseInfo.h" 118 #include "Utils/ARMBaseInfo.h" 119 #include "llvm/ADT/BitVector.h" 120 #include "llvm/ADT/STLExtras.h" 121 #include "llvm/ADT/SmallPtrSet.h" 122 #include "llvm/ADT/SmallVector.h" 123 #include "llvm/CodeGen/MachineBasicBlock.h" 124 #include "llvm/CodeGen/MachineConstantPool.h" 125 #include "llvm/CodeGen/MachineFrameInfo.h" 126 #include "llvm/CodeGen/MachineFunction.h" 127 #include "llvm/CodeGen/MachineInstr.h" 128 #include "llvm/CodeGen/MachineInstrBuilder.h" 129 #include "llvm/CodeGen/MachineJumpTableInfo.h" 130 #include "llvm/CodeGen/MachineModuleInfo.h" 131 #include "llvm/CodeGen/MachineOperand.h" 132 #include "llvm/CodeGen/MachineRegisterInfo.h" 133 #include "llvm/CodeGen/RegisterScavenging.h" 134 #include "llvm/CodeGen/TargetInstrInfo.h" 135 #include "llvm/CodeGen/TargetOpcodes.h" 136 #include "llvm/CodeGen/TargetRegisterInfo.h" 137 #include "llvm/CodeGen/TargetSubtargetInfo.h" 138 #include "llvm/IR/Attributes.h" 139 #include "llvm/IR/CallingConv.h" 140 #include "llvm/IR/DebugLoc.h" 141 #include "llvm/IR/Function.h" 142 #include "llvm/MC/MCAsmInfo.h" 143 #include "llvm/MC/MCContext.h" 144 #include "llvm/MC/MCDwarf.h" 145 #include "llvm/MC/MCInstrDesc.h" 146 #include "llvm/MC/MCRegisterInfo.h" 147 #include "llvm/Support/CodeGen.h" 148 #include "llvm/Support/CommandLine.h" 149 #include "llvm/Support/Compiler.h" 150 #include "llvm/Support/Debug.h" 151 #include "llvm/Support/ErrorHandling.h" 152 #include "llvm/Support/raw_ostream.h" 153 #include "llvm/Target/TargetMachine.h" 154 #include "llvm/Target/TargetOptions.h" 155 #include <algorithm> 156 #include <cassert> 157 #include <cstddef> 158 #include <cstdint> 159 #include <iterator> 160 #include <utility> 161 #include <vector> 162 163 #define DEBUG_TYPE "arm-frame-lowering" 164 165 using namespace llvm; 166 167 static cl::opt<bool> 168 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 169 cl::desc("Align ARM NEON spills in prolog and epilog")); 170 171 static MachineBasicBlock::iterator 172 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 173 unsigned NumAlignedDPRCS2Regs); 174 175 enum class SpillArea { 176 GPRCS1, 177 GPRCS2, 178 DPRCS1, 179 DPRCS2, 180 FPCXT, 181 }; 182 183 /// Get the spill area that Reg should be saved into in the prologue. 184 SpillArea getSpillArea(Register Reg, 185 ARMSubtarget::PushPopSplitVariation Variation, 186 unsigned NumAlignedDPRCS2Regs, 187 const ARMBaseRegisterInfo *RegInfo) { 188 // NoSplit: 189 // push {r0-r12, lr} GPRCS1 190 // vpush {r8-d15} DPRCS1 191 // 192 // SplitR7: 193 // push {r0-r7, lr} GPRCS1 194 // push {r8-r12} GPRCS2 195 // vpush {r8-d15} DPRCS1 196 // 197 // SplitR11WindowsSEH: 198 // push {r0-r10, r12} GPRCS1 199 // vpush {r8-d15} DPRCS1 200 // push {r11, lr} GPRCS2 201 // 202 // SplitR11AAPCSSignRA: 203 // push {r0-r10, r12} GPRSC1 204 // push {r11, lr} GPRCS2 205 // vpush {r8-d15} DPRCS1 206 207 // If FPCXTNS is spilled (for CMSE secure entryfunctions), it is always at 208 // the top of the stack frame. 209 // The DPRCS2 region is used for ABIs which only guarantee 4-byte alignment 210 // of SP. If used, it will be below the other save areas, after the stack has 211 // been re-aligned. 212 213 switch (Reg) { 214 default: 215 dbgs() << "Don't know where to spill " << printReg(Reg, RegInfo) << "\n"; 216 llvm_unreachable("Don't know where to spill this register"); 217 break; 218 219 case ARM::FPCXTNS: 220 return SpillArea::FPCXT; 221 222 case ARM::R0: 223 case ARM::R1: 224 case ARM::R2: 225 case ARM::R3: 226 case ARM::R4: 227 case ARM::R5: 228 case ARM::R6: 229 case ARM::R7: 230 return SpillArea::GPRCS1; 231 232 case ARM::R8: 233 case ARM::R9: 234 case ARM::R10: 235 if (Variation == ARMSubtarget::SplitR7) 236 return SpillArea::GPRCS2; 237 else 238 return SpillArea::GPRCS1; 239 240 case ARM::R11: 241 if (Variation == ARMSubtarget::NoSplit) 242 return SpillArea::GPRCS1; 243 else 244 return SpillArea::GPRCS2; 245 246 case ARM::R12: 247 if (Variation == ARMSubtarget::SplitR7) 248 return SpillArea::GPRCS2; 249 else 250 return SpillArea::GPRCS1; 251 252 case ARM::LR: 253 if (Variation == ARMSubtarget::SplitR11WindowsSEH || 254 Variation == ARMSubtarget::SplitR11AAPCSSignRA) 255 return SpillArea::GPRCS2; 256 else 257 return SpillArea::GPRCS1; 258 259 case ARM::D0: 260 case ARM::D1: 261 case ARM::D2: 262 case ARM::D3: 263 case ARM::D4: 264 case ARM::D5: 265 case ARM::D6: 266 case ARM::D7: 267 return SpillArea::DPRCS1; 268 269 case ARM::D8: 270 case ARM::D9: 271 case ARM::D10: 272 case ARM::D11: 273 case ARM::D12: 274 case ARM::D13: 275 case ARM::D14: 276 case ARM::D15: 277 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 278 return SpillArea::DPRCS2; 279 else 280 return SpillArea::DPRCS1; 281 282 case ARM::D16: 283 case ARM::D17: 284 case ARM::D18: 285 case ARM::D19: 286 case ARM::D20: 287 case ARM::D21: 288 case ARM::D22: 289 case ARM::D23: 290 case ARM::D24: 291 case ARM::D25: 292 case ARM::D26: 293 case ARM::D27: 294 case ARM::D28: 295 case ARM::D29: 296 case ARM::D30: 297 case ARM::D31: 298 return SpillArea::DPRCS1; 299 } 300 } 301 302 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 303 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)), 304 STI(sti) {} 305 306 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const { 307 // iOS always has a FP for backtracking, force other targets to keep their FP 308 // when doing FastISel. The emitted code is currently superior, and in cases 309 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 310 return MF.getSubtarget<ARMSubtarget>().useFastISel(); 311 } 312 313 /// Returns true if the target can safely skip saving callee-saved registers 314 /// for noreturn nounwind functions. 315 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const { 316 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) && 317 MF.getFunction().hasFnAttribute(Attribute::NoUnwind) && 318 !MF.getFunction().hasFnAttribute(Attribute::UWTable)); 319 320 // Frame pointer and link register are not treated as normal CSR, thus we 321 // can always skip CSR saves for nonreturning functions. 322 return true; 323 } 324 325 /// hasFPImpl - Return true if the specified function should have a dedicated 326 /// frame pointer register. This is true if the function has variable sized 327 /// allocas or if frame pointer elimination is disabled. 328 bool ARMFrameLowering::hasFPImpl(const MachineFunction &MF) const { 329 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 330 const MachineFrameInfo &MFI = MF.getFrameInfo(); 331 332 // Check to see if the target want to forcibly keep frame pointer. 333 if (keepFramePointer(MF)) 334 return true; 335 336 // ABI-required frame pointer. 337 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 338 return true; 339 340 // Frame pointer required for use within this function. 341 return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 342 MFI.isFrameAddressTaken()); 343 } 344 345 /// isFPReserved - Return true if the frame pointer register should be 346 /// considered a reserved register on the scope of the specified function. 347 bool ARMFrameLowering::isFPReserved(const MachineFunction &MF) const { 348 return hasFP(MF) || MF.getTarget().Options.FramePointerIsReserved(MF); 349 } 350 351 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 352 /// not required, we reserve argument space for call sites in the function 353 /// immediately on entry to the current function. This eliminates the need for 354 /// add/sub sp brackets around call sites. Returns true if the call frame is 355 /// included as part of the stack frame. 356 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 357 const MachineFrameInfo &MFI = MF.getFrameInfo(); 358 unsigned CFSize = MFI.getMaxCallFrameSize(); 359 // It's not always a good idea to include the call frame as part of the 360 // stack frame. ARM (especially Thumb) has small immediate offset to 361 // address the stack frame. So a large call frame can cause poor codegen 362 // and may even makes it impossible to scavenge a register. 363 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 364 return false; 365 366 return !MFI.hasVarSizedObjects(); 367 } 368 369 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 370 /// call frame pseudos can be simplified. Unlike most targets, having a FP 371 /// is not sufficient here since we still may reference some objects via SP 372 /// even when FP is available in Thumb2 mode. 373 bool 374 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 375 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 376 } 377 378 // Returns how much of the incoming argument stack area we should clean up in an 379 // epilogue. For the C calling convention this will be 0, for guaranteed tail 380 // call conventions it can be positive (a normal return or a tail call to a 381 // function that uses less stack space for arguments) or negative (for a tail 382 // call to a function that needs more stack space than us for arguments). 383 static int getArgumentStackToRestore(MachineFunction &MF, 384 MachineBasicBlock &MBB) { 385 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 386 bool IsTailCallReturn = false; 387 if (MBB.end() != MBBI) { 388 unsigned RetOpcode = MBBI->getOpcode(); 389 IsTailCallReturn = RetOpcode == ARM::TCRETURNdi || 390 RetOpcode == ARM::TCRETURNri || 391 RetOpcode == ARM::TCRETURNrinotr12; 392 } 393 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 394 395 int ArgumentPopSize = 0; 396 if (IsTailCallReturn) { 397 MachineOperand &StackAdjust = MBBI->getOperand(1); 398 399 // For a tail-call in a callee-pops-arguments environment, some or all of 400 // the stack may actually be in use for the call's arguments, this is 401 // calculated during LowerCall and consumed here... 402 ArgumentPopSize = StackAdjust.getImm(); 403 } else { 404 // ... otherwise the amount to pop is *all* of the argument space, 405 // conveniently stored in the MachineFunctionInfo by 406 // LowerFormalArguments. This will, of course, be zero for the C calling 407 // convention. 408 ArgumentPopSize = AFI->getArgumentStackToRestore(); 409 } 410 411 return ArgumentPopSize; 412 } 413 414 static bool needsWinCFI(const MachineFunction &MF) { 415 const Function &F = MF.getFunction(); 416 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 417 F.needsUnwindTableEntry(); 418 } 419 420 // Given a load or a store instruction, generate an appropriate unwinding SEH 421 // code on Windows. 422 static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI, 423 const TargetInstrInfo &TII, 424 unsigned Flags) { 425 unsigned Opc = MBBI->getOpcode(); 426 MachineBasicBlock *MBB = MBBI->getParent(); 427 MachineFunction &MF = *MBB->getParent(); 428 DebugLoc DL = MBBI->getDebugLoc(); 429 MachineInstrBuilder MIB; 430 const ARMSubtarget &Subtarget = MF.getSubtarget<ARMSubtarget>(); 431 const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 432 433 Flags |= MachineInstr::NoMerge; 434 435 switch (Opc) { 436 default: 437 report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc)); 438 break; 439 case ARM::t2ADDri: // add.w r11, sp, #xx 440 case ARM::t2ADDri12: // add.w r11, sp, #xx 441 case ARM::t2MOVTi16: // movt r4, #xx 442 case ARM::tBL: // bl __chkstk 443 // These are harmless if used for just setting up a frame pointer, 444 // but that frame pointer can't be relied upon for unwinding, unless 445 // set up with SEH_SaveSP. 446 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 447 .addImm(/*Wide=*/1) 448 .setMIFlags(Flags); 449 break; 450 451 case ARM::t2MOVi16: { // mov(w) r4, #xx 452 bool Wide = MBBI->getOperand(1).getImm() >= 256; 453 if (!Wide) { 454 MachineInstrBuilder NewInstr = 455 BuildMI(MF, DL, TII.get(ARM::tMOVi8)).setMIFlags(MBBI->getFlags()); 456 NewInstr.add(MBBI->getOperand(0)); 457 NewInstr.add(t1CondCodeOp(/*isDead=*/true)); 458 for (MachineOperand &MO : llvm::drop_begin(MBBI->operands())) 459 NewInstr.add(MO); 460 MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr); 461 MBB->erase(MBBI); 462 MBBI = NewMBBI; 463 } 464 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)).addImm(Wide).setMIFlags(Flags); 465 break; 466 } 467 468 case ARM::tBLXr: // blx r12 (__chkstk) 469 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 470 .addImm(/*Wide=*/0) 471 .setMIFlags(Flags); 472 break; 473 474 case ARM::t2MOVi32imm: // movw+movt 475 // This pseudo instruction expands into two mov instructions. If the 476 // second operand is a symbol reference, this will stay as two wide 477 // instructions, movw+movt. If they're immediates, the first one can 478 // end up as a narrow mov though. 479 // As two SEH instructions are appended here, they won't get interleaved 480 // between the two final movw/movt instructions, but it doesn't make any 481 // practical difference. 482 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 483 .addImm(/*Wide=*/1) 484 .setMIFlags(Flags); 485 MBB->insertAfter(MBBI, MIB); 486 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 487 .addImm(/*Wide=*/1) 488 .setMIFlags(Flags); 489 break; 490 491 case ARM::t2STR_PRE: 492 if (MBBI->getOperand(0).getReg() == ARM::SP && 493 MBBI->getOperand(2).getReg() == ARM::SP && 494 MBBI->getOperand(3).getImm() == -4) { 495 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 496 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs)) 497 .addImm(1ULL << Reg) 498 .addImm(/*Wide=*/1) 499 .setMIFlags(Flags); 500 } else { 501 report_fatal_error("No matching SEH Opcode for t2STR_PRE"); 502 } 503 break; 504 505 case ARM::t2LDR_POST: 506 if (MBBI->getOperand(1).getReg() == ARM::SP && 507 MBBI->getOperand(2).getReg() == ARM::SP && 508 MBBI->getOperand(3).getImm() == 4) { 509 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 510 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs)) 511 .addImm(1ULL << Reg) 512 .addImm(/*Wide=*/1) 513 .setMIFlags(Flags); 514 } else { 515 report_fatal_error("No matching SEH Opcode for t2LDR_POST"); 516 } 517 break; 518 519 case ARM::t2LDMIA_RET: 520 case ARM::t2LDMIA_UPD: 521 case ARM::t2STMDB_UPD: { 522 unsigned Mask = 0; 523 bool Wide = false; 524 for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) { 525 const MachineOperand &MO = MBBI->getOperand(i); 526 if (!MO.isReg() || MO.isImplicit()) 527 continue; 528 unsigned Reg = RegInfo->getSEHRegNum(MO.getReg()); 529 if (Reg == 15) 530 Reg = 14; 531 if (Reg >= 8 && Reg <= 13) 532 Wide = true; 533 else if (Opc == ARM::t2LDMIA_UPD && Reg == 14) 534 Wide = true; 535 Mask |= 1 << Reg; 536 } 537 if (!Wide) { 538 unsigned NewOpc; 539 switch (Opc) { 540 case ARM::t2LDMIA_RET: 541 NewOpc = ARM::tPOP_RET; 542 break; 543 case ARM::t2LDMIA_UPD: 544 NewOpc = ARM::tPOP; 545 break; 546 case ARM::t2STMDB_UPD: 547 NewOpc = ARM::tPUSH; 548 break; 549 default: 550 llvm_unreachable(""); 551 } 552 MachineInstrBuilder NewInstr = 553 BuildMI(MF, DL, TII.get(NewOpc)).setMIFlags(MBBI->getFlags()); 554 for (unsigned i = 2, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) 555 NewInstr.add(MBBI->getOperand(i)); 556 MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr); 557 MBB->erase(MBBI); 558 MBBI = NewMBBI; 559 } 560 unsigned SEHOpc = 561 (Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs; 562 MIB = BuildMI(MF, DL, TII.get(SEHOpc)) 563 .addImm(Mask) 564 .addImm(Wide ? 1 : 0) 565 .setMIFlags(Flags); 566 break; 567 } 568 case ARM::VSTMDDB_UPD: 569 case ARM::VLDMDIA_UPD: { 570 int First = -1, Last = 0; 571 for (const MachineOperand &MO : llvm::drop_begin(MBBI->operands(), 4)) { 572 unsigned Reg = RegInfo->getSEHRegNum(MO.getReg()); 573 if (First == -1) 574 First = Reg; 575 Last = Reg; 576 } 577 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs)) 578 .addImm(First) 579 .addImm(Last) 580 .setMIFlags(Flags); 581 break; 582 } 583 case ARM::tSUBspi: 584 case ARM::tADDspi: 585 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc)) 586 .addImm(MBBI->getOperand(2).getImm() * 4) 587 .addImm(/*Wide=*/0) 588 .setMIFlags(Flags); 589 break; 590 case ARM::t2SUBspImm: 591 case ARM::t2SUBspImm12: 592 case ARM::t2ADDspImm: 593 case ARM::t2ADDspImm12: 594 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc)) 595 .addImm(MBBI->getOperand(2).getImm()) 596 .addImm(/*Wide=*/1) 597 .setMIFlags(Flags); 598 break; 599 600 case ARM::tMOVr: 601 if (MBBI->getOperand(1).getReg() == ARM::SP && 602 (Flags & MachineInstr::FrameSetup)) { 603 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 604 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP)) 605 .addImm(Reg) 606 .setMIFlags(Flags); 607 } else if (MBBI->getOperand(0).getReg() == ARM::SP && 608 (Flags & MachineInstr::FrameDestroy)) { 609 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 610 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP)) 611 .addImm(Reg) 612 .setMIFlags(Flags); 613 } else { 614 report_fatal_error("No SEH Opcode for MOV"); 615 } 616 break; 617 618 case ARM::tBX_RET: 619 case ARM::TCRETURNri: 620 case ARM::TCRETURNrinotr12: 621 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret)) 622 .addImm(/*Wide=*/0) 623 .setMIFlags(Flags); 624 break; 625 626 case ARM::TCRETURNdi: 627 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret)) 628 .addImm(/*Wide=*/1) 629 .setMIFlags(Flags); 630 break; 631 } 632 return MBB->insertAfter(MBBI, MIB); 633 } 634 635 static MachineBasicBlock::iterator 636 initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) { 637 if (MBBI == MBB.begin()) 638 return MachineBasicBlock::iterator(); 639 return std::prev(MBBI); 640 } 641 642 static void insertSEHRange(MachineBasicBlock &MBB, 643 MachineBasicBlock::iterator Start, 644 const MachineBasicBlock::iterator &End, 645 const ARMBaseInstrInfo &TII, unsigned MIFlags) { 646 if (Start.isValid()) 647 Start = std::next(Start); 648 else 649 Start = MBB.begin(); 650 651 for (auto MI = Start; MI != End;) { 652 auto Next = std::next(MI); 653 // Check if this instruction already has got a SEH opcode added. In that 654 // case, don't do this generic mapping. 655 if (Next != End && isSEHInstruction(*Next)) { 656 MI = std::next(Next); 657 while (MI != End && isSEHInstruction(*MI)) 658 ++MI; 659 continue; 660 } 661 insertSEH(MI, TII, MIFlags); 662 MI = Next; 663 } 664 } 665 666 static void emitRegPlusImmediate( 667 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 668 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 669 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 670 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 671 if (isARM) 672 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 673 Pred, PredReg, TII, MIFlags); 674 else 675 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 676 Pred, PredReg, TII, MIFlags); 677 } 678 679 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 680 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 681 const ARMBaseInstrInfo &TII, int NumBytes, 682 unsigned MIFlags = MachineInstr::NoFlags, 683 ARMCC::CondCodes Pred = ARMCC::AL, 684 unsigned PredReg = 0) { 685 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 686 MIFlags, Pred, PredReg); 687 } 688 689 static int sizeOfSPAdjustment(const MachineInstr &MI) { 690 int RegSize; 691 switch (MI.getOpcode()) { 692 case ARM::VSTMDDB_UPD: 693 RegSize = 8; 694 break; 695 case ARM::STMDB_UPD: 696 case ARM::t2STMDB_UPD: 697 RegSize = 4; 698 break; 699 case ARM::t2STR_PRE: 700 case ARM::STR_PRE_IMM: 701 return 4; 702 default: 703 llvm_unreachable("Unknown push or pop like instruction"); 704 } 705 706 int count = 0; 707 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 708 // pred) so the list starts at 4. 709 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 710 count += RegSize; 711 return count; 712 } 713 714 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 715 size_t StackSizeInBytes) { 716 const MachineFrameInfo &MFI = MF.getFrameInfo(); 717 const Function &F = MF.getFunction(); 718 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 719 720 StackProbeSize = 721 F.getFnAttributeAsParsedInteger("stack-probe-size", StackProbeSize); 722 return (StackSizeInBytes >= StackProbeSize) && 723 !F.hasFnAttribute("no-stack-arg-probe"); 724 } 725 726 namespace { 727 728 struct StackAdjustingInsts { 729 struct InstInfo { 730 MachineBasicBlock::iterator I; 731 unsigned SPAdjust; 732 bool BeforeFPSet; 733 734 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 735 void dump() { 736 dbgs() << " " << (BeforeFPSet ? "before-fp " : " ") 737 << "sp-adjust=" << SPAdjust; 738 I->dump(); 739 } 740 #endif 741 }; 742 743 SmallVector<InstInfo, 4> Insts; 744 745 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 746 bool BeforeFPSet = false) { 747 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 748 Insts.push_back(Info); 749 } 750 751 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 752 auto Info = 753 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 754 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 755 Info->SPAdjust += ExtraBytes; 756 } 757 758 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 759 const ARMBaseInstrInfo &TII, bool HasFP) { 760 MachineFunction &MF = *MBB.getParent(); 761 unsigned CFAOffset = 0; 762 for (auto &Info : Insts) { 763 if (HasFP && !Info.BeforeFPSet) 764 return; 765 766 CFAOffset += Info.SPAdjust; 767 unsigned CFIIndex = MF.addFrameInst( 768 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset)); 769 BuildMI(MBB, std::next(Info.I), dl, 770 TII.get(TargetOpcode::CFI_INSTRUCTION)) 771 .addCFIIndex(CFIIndex) 772 .setMIFlags(MachineInstr::FrameSetup); 773 } 774 } 775 776 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 777 void dump() { 778 dbgs() << "StackAdjustingInsts:\n"; 779 for (auto &Info : Insts) 780 Info.dump(); 781 } 782 #endif 783 }; 784 785 } // end anonymous namespace 786 787 /// Emit an instruction sequence that will align the address in 788 /// register Reg by zero-ing out the lower bits. For versions of the 789 /// architecture that support Neon, this must be done in a single 790 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 791 /// single instruction. That function only gets called when optimizing 792 /// spilling of D registers on a core with the Neon instruction set 793 /// present. 794 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 795 const TargetInstrInfo &TII, 796 MachineBasicBlock &MBB, 797 MachineBasicBlock::iterator MBBI, 798 const DebugLoc &DL, const unsigned Reg, 799 const Align Alignment, 800 const bool MustBeSingleInstruction) { 801 const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>(); 802 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 803 const unsigned AlignMask = Alignment.value() - 1U; 804 const unsigned NrBitsToZero = Log2(Alignment); 805 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 806 if (!AFI->isThumbFunction()) { 807 // if the BFC instruction is available, use that to zero the lower 808 // bits: 809 // bfc Reg, #0, log2(Alignment) 810 // otherwise use BIC, if the mask to zero the required number of bits 811 // can be encoded in the bic immediate field 812 // bic Reg, Reg, Alignment-1 813 // otherwise, emit 814 // lsr Reg, Reg, log2(Alignment) 815 // lsl Reg, Reg, log2(Alignment) 816 if (CanUseBFC) { 817 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 818 .addReg(Reg, RegState::Kill) 819 .addImm(~AlignMask) 820 .add(predOps(ARMCC::AL)); 821 } else if (AlignMask <= 255) { 822 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 823 .addReg(Reg, RegState::Kill) 824 .addImm(AlignMask) 825 .add(predOps(ARMCC::AL)) 826 .add(condCodeOp()); 827 } else { 828 assert(!MustBeSingleInstruction && 829 "Shouldn't call emitAligningInstructions demanding a single " 830 "instruction to be emitted for large stack alignment for a target " 831 "without BFC."); 832 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 833 .addReg(Reg, RegState::Kill) 834 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 835 .add(predOps(ARMCC::AL)) 836 .add(condCodeOp()); 837 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 838 .addReg(Reg, RegState::Kill) 839 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 840 .add(predOps(ARMCC::AL)) 841 .add(condCodeOp()); 842 } 843 } else { 844 // Since this is only reached for Thumb-2 targets, the BFC instruction 845 // should always be available. 846 assert(CanUseBFC); 847 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 848 .addReg(Reg, RegState::Kill) 849 .addImm(~AlignMask) 850 .add(predOps(ARMCC::AL)); 851 } 852 } 853 854 /// We need the offset of the frame pointer relative to other MachineFrameInfo 855 /// offsets which are encoded relative to SP at function begin. 856 /// See also emitPrologue() for how the FP is set up. 857 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet 858 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use 859 /// this to produce a conservative estimate that we check in an assert() later. 860 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI, 861 const MachineFunction &MF) { 862 ARMSubtarget::PushPopSplitVariation PushPopSplit = 863 STI.getPushPopSplitVariation(MF); 864 // For Thumb1, push.w isn't available, so the first push will always push 865 // r7 and lr onto the stack first. 866 if (AFI.isThumb1OnlyFunction()) 867 return -AFI.getArgRegsSaveSize() - (2 * 4); 868 // This is a conservative estimation: Assume the frame pointer being r7 and 869 // pc("r15") up to r8 getting spilled before (= 8 registers). 870 int MaxRegBytes = 8 * 4; 871 if (PushPopSplit == ARMSubtarget::SplitR11AAPCSSignRA) 872 // Here, r11 can be stored below all of r4-r15. 873 MaxRegBytes = 11 * 4; 874 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 875 // Here, r11 can be stored below all of r4-r15 plus d8-d15. 876 MaxRegBytes = 11 * 4 + 8 * 8; 877 } 878 int FPCXTSaveSize = 879 (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0; 880 return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes; 881 } 882 883 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 884 MachineBasicBlock &MBB) const { 885 MachineBasicBlock::iterator MBBI = MBB.begin(); 886 MachineFrameInfo &MFI = MF.getFrameInfo(); 887 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 888 MCContext &Context = MF.getContext(); 889 const TargetMachine &TM = MF.getTarget(); 890 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 891 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 892 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 893 assert(!AFI->isThumb1OnlyFunction() && 894 "This emitPrologue does not support Thumb1!"); 895 bool isARM = !AFI->isThumbFunction(); 896 Align Alignment = STI.getFrameLowering()->getStackAlign(); 897 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 898 unsigned NumBytes = MFI.getStackSize(); 899 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 900 int FPCXTSaveSize = 0; 901 bool NeedsWinCFI = needsWinCFI(MF); 902 ARMSubtarget::PushPopSplitVariation PushPopSplit = 903 STI.getPushPopSplitVariation(MF); 904 905 LLVM_DEBUG(dbgs() << "Emitting prologue for " << MF.getName() << "\n"); 906 907 // Debug location must be unknown since the first debug location is used 908 // to determine the end of the prologue. 909 DebugLoc dl; 910 911 Register FramePtr = RegInfo->getFrameRegister(MF); 912 913 // Determine the sizes of each callee-save spill areas and record which frame 914 // belongs to which callee-save spill areas. 915 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 916 int FramePtrSpillFI = 0; 917 int D8SpillFI = 0; 918 919 // All calls are tail calls in GHC calling conv, and functions have no 920 // prologue/epilogue. 921 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 922 return; 923 924 StackAdjustingInsts DefCFAOffsetCandidates; 925 bool HasFP = hasFP(MF); 926 927 if (!AFI->hasStackFrame() && 928 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 929 if (NumBytes != 0) { 930 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 931 MachineInstr::FrameSetup); 932 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true); 933 } 934 if (!NeedsWinCFI) 935 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 936 if (NeedsWinCFI && MBBI != MBB.begin()) { 937 insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup); 938 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd)) 939 .setMIFlag(MachineInstr::FrameSetup); 940 MF.setHasWinCFI(true); 941 } 942 return; 943 } 944 945 // Determine spill area sizes, and some important frame indices. 946 SpillArea FramePtrSpillArea = SpillArea::GPRCS1; 947 bool BeforeFPPush = true; 948 for (const CalleeSavedInfo &I : CSI) { 949 Register Reg = I.getReg(); 950 int FI = I.getFrameIdx(); 951 952 SpillArea Area = getSpillArea(Reg, PushPopSplit, 953 AFI->getNumAlignedDPRCS2Regs(), RegInfo); 954 955 if (Reg == FramePtr) { 956 FramePtrSpillFI = FI; 957 FramePtrSpillArea = Area; 958 } 959 if (Reg == ARM::D8) 960 D8SpillFI = FI; 961 962 switch (Area) { 963 case SpillArea::FPCXT: 964 FPCXTSaveSize += 4; 965 break; 966 case SpillArea::GPRCS1: 967 GPRCS1Size += 4; 968 break; 969 case SpillArea::GPRCS2: 970 GPRCS2Size += 4; 971 break; 972 case SpillArea::DPRCS1: 973 DPRCSSize += 8; 974 break; 975 case SpillArea::DPRCS2: 976 break; 977 } 978 } 979 980 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 981 982 // Move past the PAC computation. 983 if (AFI->shouldSignReturnAddress()) 984 LastPush = MBBI++; 985 986 // Move past FPCXT area. 987 if (FPCXTSaveSize > 0) { 988 LastPush = MBBI++; 989 DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, BeforeFPPush); 990 } 991 992 // Allocate the vararg register save area. 993 if (ArgRegsSaveSize) { 994 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 995 MachineInstr::FrameSetup); 996 LastPush = std::prev(MBBI); 997 DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, BeforeFPPush); 998 } 999 1000 // Move past area 1. 1001 if (GPRCS1Size > 0) { 1002 GPRCS1Push = LastPush = MBBI++; 1003 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, BeforeFPPush); 1004 if (FramePtrSpillArea == SpillArea::GPRCS1) 1005 BeforeFPPush = false; 1006 } 1007 1008 // Determine starting offsets of spill areas. These offsets are all positive 1009 // offsets from the bottom of the lowest-addressed callee-save area 1010 // (excluding DPRCS2, which is th the re-aligned stack region) to the bottom 1011 // of the spill area in question. 1012 unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize; 1013 unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size; 1014 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 1015 Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4); 1016 unsigned DPRGapSize = GPRCS1Size + FPCXTSaveSize + ArgRegsSaveSize; 1017 if (PushPopSplit != ARMSubtarget::SplitR11WindowsSEH) { 1018 DPRGapSize += GPRCS2Size; 1019 } 1020 DPRGapSize %= DPRAlign.value(); 1021 1022 unsigned DPRCSOffset; 1023 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 1024 DPRCSOffset = GPRCS1Offset - DPRGapSize - DPRCSSize; 1025 GPRCS2Offset = DPRCSOffset - GPRCS2Size; 1026 } else { 1027 DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 1028 } 1029 if (HasFP) { 1030 // Offset from the CFA to the saved frame pointer, will be negative. 1031 [[maybe_unused]] int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); 1032 LLVM_DEBUG(dbgs() << "FramePtrSpillFI: " << FramePtrSpillFI 1033 << ", FPOffset: " << FPOffset << "\n"); 1034 assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset && 1035 "Max FP estimation is wrong"); 1036 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 1037 NumBytes); 1038 } 1039 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 1040 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 1041 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 1042 1043 // Move GPRCS2, unless using SplitR11WindowsSEH, in which case it will be 1044 // after DPRCS1. 1045 if (GPRCS2Size > 0 && PushPopSplit != ARMSubtarget::SplitR11WindowsSEH) { 1046 GPRCS2Push = LastPush = MBBI++; 1047 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size, BeforeFPPush); 1048 if (FramePtrSpillArea == SpillArea::GPRCS2) 1049 BeforeFPPush = false; 1050 } 1051 1052 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 1053 // .cfi_offset operations will reflect that. 1054 if (DPRGapSize) { 1055 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 1056 if (LastPush != MBB.end() && 1057 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 1058 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 1059 else { 1060 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 1061 MachineInstr::FrameSetup); 1062 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize, BeforeFPPush); 1063 } 1064 } 1065 1066 // Move past DPRCS1. 1067 if (DPRCSSize > 0) { 1068 // Since vpush register list cannot have gaps, there may be multiple vpush 1069 // instructions in the prologue. 1070 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 1071 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI), 1072 BeforeFPPush); 1073 LastPush = MBBI++; 1074 } 1075 } 1076 1077 // Move past the aligned DPRCS2 area. 1078 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 1079 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 1080 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 1081 // leaves the stack pointer pointing to the DPRCS2 area. 1082 // 1083 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 1084 NumBytes += MFI.getObjectOffset(D8SpillFI); 1085 } else 1086 NumBytes = DPRCSOffset; 1087 1088 // Move GPRCS2, if using using SplitR11WindowsSEH. 1089 if (GPRCS2Size > 0 && PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 1090 GPRCS2Push = LastPush = MBBI++; 1091 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size, BeforeFPPush); 1092 if (FramePtrSpillArea == SpillArea::GPRCS2) 1093 BeforeFPPush = false; 1094 } 1095 1096 bool NeedsWinCFIStackAlloc = NeedsWinCFI; 1097 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH && HasFP) 1098 NeedsWinCFIStackAlloc = false; 1099 1100 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 1101 uint32_t NumWords = NumBytes >> 2; 1102 1103 if (NumWords < 65536) { 1104 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 1105 .addImm(NumWords) 1106 .setMIFlags(MachineInstr::FrameSetup) 1107 .add(predOps(ARMCC::AL)); 1108 } else { 1109 // Split into two instructions here, instead of using t2MOVi32imm, 1110 // to allow inserting accurate SEH instructions (including accurate 1111 // instruction size for each of them). 1112 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 1113 .addImm(NumWords & 0xffff) 1114 .setMIFlags(MachineInstr::FrameSetup) 1115 .add(predOps(ARMCC::AL)); 1116 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4) 1117 .addReg(ARM::R4) 1118 .addImm(NumWords >> 16) 1119 .setMIFlags(MachineInstr::FrameSetup) 1120 .add(predOps(ARMCC::AL)); 1121 } 1122 1123 switch (TM.getCodeModel()) { 1124 case CodeModel::Tiny: 1125 llvm_unreachable("Tiny code model not available on ARM."); 1126 case CodeModel::Small: 1127 case CodeModel::Medium: 1128 case CodeModel::Kernel: 1129 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 1130 .add(predOps(ARMCC::AL)) 1131 .addExternalSymbol("__chkstk") 1132 .addReg(ARM::R4, RegState::Implicit) 1133 .setMIFlags(MachineInstr::FrameSetup); 1134 break; 1135 case CodeModel::Large: 1136 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 1137 .addExternalSymbol("__chkstk") 1138 .setMIFlags(MachineInstr::FrameSetup); 1139 1140 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 1141 .add(predOps(ARMCC::AL)) 1142 .addReg(ARM::R12, RegState::Kill) 1143 .addReg(ARM::R4, RegState::Implicit) 1144 .setMIFlags(MachineInstr::FrameSetup); 1145 break; 1146 } 1147 1148 MachineInstrBuilder Instr, SEH; 1149 Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 1150 .addReg(ARM::SP, RegState::Kill) 1151 .addReg(ARM::R4, RegState::Kill) 1152 .setMIFlags(MachineInstr::FrameSetup) 1153 .add(predOps(ARMCC::AL)) 1154 .add(condCodeOp()); 1155 if (NeedsWinCFIStackAlloc) { 1156 SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc)) 1157 .addImm(NumBytes) 1158 .addImm(/*Wide=*/1) 1159 .setMIFlags(MachineInstr::FrameSetup); 1160 MBB.insertAfter(Instr, SEH); 1161 } 1162 NumBytes = 0; 1163 } 1164 1165 if (NumBytes) { 1166 // Adjust SP after all the callee-save spills. 1167 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 1168 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 1169 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 1170 else { 1171 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 1172 MachineInstr::FrameSetup); 1173 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 1174 } 1175 1176 if (HasFP && isARM) 1177 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 1178 // Note it's not safe to do this in Thumb2 mode because it would have 1179 // taken two instructions: 1180 // mov sp, r7 1181 // sub sp, #24 1182 // If an interrupt is taken between the two instructions, then sp is in 1183 // an inconsistent state (pointing to the middle of callee-saved area). 1184 // The interrupt handler can end up clobbering the registers. 1185 AFI->setShouldRestoreSPFromFP(true); 1186 } 1187 1188 // Set FP to point to the stack slot that contains the previous FP. 1189 // For iOS, FP is R7, which has now been stored in spill area 1. 1190 // Otherwise, if this is not iOS, all the callee-saved registers go 1191 // into spill area 1, including the FP in R11. In either case, it 1192 // is in area one and the adjustment needs to take place just after 1193 // that push. 1194 MachineBasicBlock::iterator AfterPush; 1195 if (HasFP) { 1196 MachineBasicBlock::iterator FPPushInst; 1197 // Offset from SP immediately after the push which saved the FP to the FP 1198 // save slot. 1199 int64_t FPOffsetAfterPush; 1200 switch (FramePtrSpillArea) { 1201 case SpillArea::GPRCS1: 1202 FPPushInst = GPRCS1Push; 1203 FPOffsetAfterPush = MFI.getObjectOffset(FramePtrSpillFI) + 1204 ArgRegsSaveSize + FPCXTSaveSize + 1205 sizeOfSPAdjustment(*FPPushInst); 1206 LLVM_DEBUG(dbgs() << "Frame pointer in GPRCS1, offset " 1207 << FPOffsetAfterPush << " after that push\n"); 1208 break; 1209 case SpillArea::GPRCS2: 1210 FPPushInst = GPRCS2Push; 1211 FPOffsetAfterPush = MFI.getObjectOffset(FramePtrSpillFI) + 1212 ArgRegsSaveSize + FPCXTSaveSize + GPRCS1Size + 1213 sizeOfSPAdjustment(*FPPushInst); 1214 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) 1215 FPOffsetAfterPush += DPRCSSize + DPRGapSize; 1216 LLVM_DEBUG(dbgs() << "Frame pointer in GPRCS2, offset " 1217 << FPOffsetAfterPush << " after that push\n"); 1218 break; 1219 default: 1220 llvm_unreachable("frame pointer in unknown spill area"); 1221 break; 1222 } 1223 AfterPush = std::next(FPPushInst); 1224 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) 1225 assert(FPOffsetAfterPush == 0); 1226 1227 // Emit the MOV or ADD to set up the frame pointer register. 1228 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII, 1229 FramePtr, ARM::SP, FPOffsetAfterPush, 1230 MachineInstr::FrameSetup); 1231 1232 if (!NeedsWinCFI) { 1233 // Emit DWARF info to find the CFA using the frame pointer from this 1234 // point onward. 1235 if (FPOffsetAfterPush != 0) { 1236 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( 1237 nullptr, MRI->getDwarfRegNum(FramePtr, true), 1238 -MFI.getObjectOffset(FramePtrSpillFI))); 1239 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1240 .addCFIIndex(CFIIndex) 1241 .setMIFlags(MachineInstr::FrameSetup); 1242 } else { 1243 unsigned CFIIndex = 1244 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 1245 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 1246 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1247 .addCFIIndex(CFIIndex) 1248 .setMIFlags(MachineInstr::FrameSetup); 1249 } 1250 } 1251 } 1252 1253 // Emit a SEH opcode indicating the prologue end. The rest of the prologue 1254 // instructions below don't need to be replayed to unwind the stack. 1255 if (NeedsWinCFI && MBBI != MBB.begin()) { 1256 MachineBasicBlock::iterator End = MBBI; 1257 if (HasFP && PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) 1258 End = AfterPush; 1259 insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup); 1260 BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd)) 1261 .setMIFlag(MachineInstr::FrameSetup); 1262 MF.setHasWinCFI(true); 1263 } 1264 1265 // Now that the prologue's actual instructions are finalised, we can insert 1266 // the necessary DWARF cf instructions to describe the situation. Start by 1267 // recording where each register ended up: 1268 if (!NeedsWinCFI) { 1269 for (const auto &Entry : reverse(CSI)) { 1270 Register Reg = Entry.getReg(); 1271 int FI = Entry.getFrameIdx(); 1272 MachineBasicBlock::iterator CFIPos; 1273 switch (getSpillArea(Reg, PushPopSplit, AFI->getNumAlignedDPRCS2Regs(), 1274 RegInfo)) { 1275 case SpillArea::GPRCS1: 1276 CFIPos = std::next(GPRCS1Push); 1277 break; 1278 case SpillArea::GPRCS2: 1279 CFIPos = std::next(GPRCS2Push); 1280 break; 1281 case SpillArea::DPRCS1: 1282 CFIPos = std::next(LastPush); 1283 break; 1284 case SpillArea::FPCXT: 1285 case SpillArea::DPRCS2: 1286 // FPCXT and DPRCS2 are not represented in the DWARF info. 1287 break; 1288 } 1289 1290 if (CFIPos.isValid()) { 1291 int CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1292 nullptr, 1293 MRI->getDwarfRegNum(Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, 1294 true), 1295 MFI.getObjectOffset(FI))); 1296 BuildMI(MBB, CFIPos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1297 .addCFIIndex(CFIIndex) 1298 .setMIFlags(MachineInstr::FrameSetup); 1299 } 1300 } 1301 } 1302 1303 // Now we can emit descriptions of where the canonical frame address was 1304 // throughout the process. If we have a frame pointer, it takes over the job 1305 // half-way through, so only the first few .cfi_def_cfa_offset instructions 1306 // actually get emitted. 1307 if (!NeedsWinCFI) { 1308 LLVM_DEBUG(DefCFAOffsetCandidates.dump()); 1309 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 1310 } 1311 1312 if (STI.isTargetELF() && hasFP(MF)) 1313 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 1314 AFI->getFramePtrSpillOffset()); 1315 1316 AFI->setFPCXTSaveAreaSize(FPCXTSaveSize); 1317 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 1318 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 1319 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 1320 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 1321 1322 // If we need dynamic stack realignment, do it here. Be paranoid and make 1323 // sure if we also have VLAs, we have a base pointer for frame access. 1324 // If aligned NEON registers were spilled, the stack has already been 1325 // realigned. 1326 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) { 1327 Align MaxAlign = MFI.getMaxAlign(); 1328 assert(!AFI->isThumb1OnlyFunction()); 1329 if (!AFI->isThumbFunction()) { 1330 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 1331 false); 1332 } else { 1333 // We cannot use sp as source/dest register here, thus we're using r4 to 1334 // perform the calculations. We're emitting the following sequence: 1335 // mov r4, sp 1336 // -- use emitAligningInstructions to produce best sequence to zero 1337 // -- out lower bits in r4 1338 // mov sp, r4 1339 // FIXME: It will be better just to find spare register here. 1340 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 1341 .addReg(ARM::SP, RegState::Kill) 1342 .add(predOps(ARMCC::AL)); 1343 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 1344 false); 1345 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1346 .addReg(ARM::R4, RegState::Kill) 1347 .add(predOps(ARMCC::AL)); 1348 } 1349 1350 AFI->setShouldRestoreSPFromFP(true); 1351 } 1352 1353 // If we need a base pointer, set it up here. It's whatever the value 1354 // of the stack pointer is at this point. Any variable size objects 1355 // will be allocated after this, so we can still use the base pointer 1356 // to reference locals. 1357 // FIXME: Clarify FrameSetup flags here. 1358 if (RegInfo->hasBasePointer(MF)) { 1359 if (isARM) 1360 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 1361 .addReg(ARM::SP) 1362 .add(predOps(ARMCC::AL)) 1363 .add(condCodeOp()); 1364 else 1365 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 1366 .addReg(ARM::SP) 1367 .add(predOps(ARMCC::AL)); 1368 } 1369 1370 // If the frame has variable sized objects then the epilogue must restore 1371 // the sp from fp. We can assume there's an FP here since hasFP already 1372 // checks for hasVarSizedObjects. 1373 if (MFI.hasVarSizedObjects()) 1374 AFI->setShouldRestoreSPFromFP(true); 1375 } 1376 1377 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 1378 MachineBasicBlock &MBB) const { 1379 MachineFrameInfo &MFI = MF.getFrameInfo(); 1380 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1381 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 1382 const ARMBaseInstrInfo &TII = 1383 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1384 assert(!AFI->isThumb1OnlyFunction() && 1385 "This emitEpilogue does not support Thumb1!"); 1386 bool isARM = !AFI->isThumbFunction(); 1387 ARMSubtarget::PushPopSplitVariation PushPopSplit = 1388 STI.getPushPopSplitVariation(MF); 1389 1390 LLVM_DEBUG(dbgs() << "Emitting epilogue for " << MF.getName() << "\n"); 1391 1392 // Amount of stack space we reserved next to incoming args for either 1393 // varargs registers or stack arguments in tail calls made by this function. 1394 unsigned ReservedArgStack = AFI->getArgRegsSaveSize(); 1395 1396 // How much of the stack used by incoming arguments this function is expected 1397 // to restore in this particular epilogue. 1398 int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB); 1399 int NumBytes = (int)MFI.getStackSize(); 1400 Register FramePtr = RegInfo->getFrameRegister(MF); 1401 1402 // All calls are tail calls in GHC calling conv, and functions have no 1403 // prologue/epilogue. 1404 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 1405 return; 1406 1407 // First put ourselves on the first (from top) terminator instructions. 1408 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1409 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1410 1411 MachineBasicBlock::iterator RangeStart; 1412 if (!AFI->hasStackFrame()) { 1413 if (MF.hasWinCFI()) { 1414 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart)) 1415 .setMIFlag(MachineInstr::FrameDestroy); 1416 RangeStart = initMBBRange(MBB, MBBI); 1417 } 1418 1419 if (NumBytes + IncomingArgStackToRestore != 0) 1420 emitSPUpdate(isARM, MBB, MBBI, dl, TII, 1421 NumBytes + IncomingArgStackToRestore, 1422 MachineInstr::FrameDestroy); 1423 } else { 1424 // Unwind MBBI to point to first LDR / VLDRD. 1425 if (MBBI != MBB.begin()) { 1426 do { 1427 --MBBI; 1428 } while (MBBI != MBB.begin() && 1429 MBBI->getFlag(MachineInstr::FrameDestroy)); 1430 if (!MBBI->getFlag(MachineInstr::FrameDestroy)) 1431 ++MBBI; 1432 } 1433 1434 if (MF.hasWinCFI()) { 1435 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart)) 1436 .setMIFlag(MachineInstr::FrameDestroy); 1437 RangeStart = initMBBRange(MBB, MBBI); 1438 } 1439 1440 // Move SP to start of FP callee save spill area. 1441 NumBytes -= (ReservedArgStack + 1442 AFI->getFPCXTSaveAreaSize() + 1443 AFI->getGPRCalleeSavedArea1Size() + 1444 AFI->getGPRCalleeSavedArea2Size() + 1445 AFI->getDPRCalleeSavedGapSize() + 1446 AFI->getDPRCalleeSavedAreaSize()); 1447 1448 // Reset SP based on frame pointer only if the stack frame extends beyond 1449 // frame pointer stack slot or target is ELF and the function has FP. 1450 if (AFI->shouldRestoreSPFromFP()) { 1451 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 1452 if (NumBytes) { 1453 if (isARM) 1454 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 1455 ARMCC::AL, 0, TII, 1456 MachineInstr::FrameDestroy); 1457 else { 1458 // It's not possible to restore SP from FP in a single instruction. 1459 // For iOS, this looks like: 1460 // mov sp, r7 1461 // sub sp, #24 1462 // This is bad, if an interrupt is taken after the mov, sp is in an 1463 // inconsistent state. 1464 // Use the first callee-saved register as a scratch register. 1465 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 1466 "No scratch register to restore SP from FP!"); 1467 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 1468 ARMCC::AL, 0, TII, MachineInstr::FrameDestroy); 1469 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1470 .addReg(ARM::R4) 1471 .add(predOps(ARMCC::AL)) 1472 .setMIFlag(MachineInstr::FrameDestroy); 1473 } 1474 } else { 1475 // Thumb2 or ARM. 1476 if (isARM) 1477 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 1478 .addReg(FramePtr) 1479 .add(predOps(ARMCC::AL)) 1480 .add(condCodeOp()) 1481 .setMIFlag(MachineInstr::FrameDestroy); 1482 else 1483 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1484 .addReg(FramePtr) 1485 .add(predOps(ARMCC::AL)) 1486 .setMIFlag(MachineInstr::FrameDestroy); 1487 } 1488 } else if (NumBytes && 1489 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 1490 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes, 1491 MachineInstr::FrameDestroy); 1492 1493 // Increment past our save areas. 1494 if (AFI->getGPRCalleeSavedArea2Size() && 1495 PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) 1496 MBBI++; 1497 1498 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { 1499 MBBI++; 1500 // Since vpop register list cannot have gaps, there may be multiple vpop 1501 // instructions in the epilogue. 1502 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 1503 MBBI++; 1504 } 1505 if (AFI->getDPRCalleeSavedGapSize()) { 1506 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 1507 "unexpected DPR alignment gap"); 1508 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(), 1509 MachineInstr::FrameDestroy); 1510 } 1511 1512 if (AFI->getGPRCalleeSavedArea2Size() && 1513 PushPopSplit != ARMSubtarget::SplitR11WindowsSEH) 1514 MBBI++; 1515 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 1516 1517 if (ReservedArgStack || IncomingArgStackToRestore) { 1518 assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 && 1519 "attempting to restore negative stack amount"); 1520 emitSPUpdate(isARM, MBB, MBBI, dl, TII, 1521 ReservedArgStack + IncomingArgStackToRestore, 1522 MachineInstr::FrameDestroy); 1523 } 1524 1525 // Validate PAC, It should have been already popped into R12. For CMSE entry 1526 // function, the validation instruction is emitted during expansion of the 1527 // tBXNS_RET, since the validation must use the value of SP at function 1528 // entry, before saving, resp. after restoring, FPCXTNS. 1529 if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction()) 1530 BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT)); 1531 } 1532 1533 if (MF.hasWinCFI()) { 1534 insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy); 1535 BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd)) 1536 .setMIFlag(MachineInstr::FrameDestroy); 1537 } 1538 } 1539 1540 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 1541 /// debug info. It's the same as what we use for resolving the code-gen 1542 /// references for now. FIXME: This can go wrong when references are 1543 /// SP-relative and simple call frames aren't used. 1544 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, 1545 int FI, 1546 Register &FrameReg) const { 1547 return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0)); 1548 } 1549 1550 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 1551 int FI, Register &FrameReg, 1552 int SPAdj) const { 1553 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1554 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1555 MF.getSubtarget().getRegisterInfo()); 1556 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1557 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 1558 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 1559 bool isFixed = MFI.isFixedObjectIndex(FI); 1560 1561 FrameReg = ARM::SP; 1562 Offset += SPAdj; 1563 1564 // SP can move around if there are allocas. We may also lose track of SP 1565 // when emergency spilling inside a non-reserved call frame setup. 1566 bool hasMovingSP = !hasReservedCallFrame(MF); 1567 1568 // When dynamically realigning the stack, use the frame pointer for 1569 // parameters, and the stack/base pointer for locals. 1570 if (RegInfo->hasStackRealignment(MF)) { 1571 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 1572 if (isFixed) { 1573 FrameReg = RegInfo->getFrameRegister(MF); 1574 Offset = FPOffset; 1575 } else if (hasMovingSP) { 1576 assert(RegInfo->hasBasePointer(MF) && 1577 "VLAs and dynamic stack alignment, but missing base pointer!"); 1578 FrameReg = RegInfo->getBaseRegister(); 1579 Offset -= SPAdj; 1580 } 1581 return Offset; 1582 } 1583 1584 // If there is a frame pointer, use it when we can. 1585 if (hasFP(MF) && AFI->hasStackFrame()) { 1586 // Use frame pointer to reference fixed objects. Use it for locals if 1587 // there are VLAs (and thus the SP isn't reliable as a base). 1588 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 1589 FrameReg = RegInfo->getFrameRegister(MF); 1590 return FPOffset; 1591 } else if (hasMovingSP) { 1592 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 1593 if (AFI->isThumb2Function()) { 1594 // Try to use the frame pointer if we can, else use the base pointer 1595 // since it's available. This is handy for the emergency spill slot, in 1596 // particular. 1597 if (FPOffset >= -255 && FPOffset < 0) { 1598 FrameReg = RegInfo->getFrameRegister(MF); 1599 return FPOffset; 1600 } 1601 } 1602 } else if (AFI->isThumbFunction()) { 1603 // Prefer SP to base pointer, if the offset is suitably aligned and in 1604 // range as the effective range of the immediate offset is bigger when 1605 // basing off SP. 1606 // Use add <rd>, sp, #<imm8> 1607 // ldr <rd>, [sp, #<imm8>] 1608 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 1609 return Offset; 1610 // In Thumb2 mode, the negative offset is very limited. Try to avoid 1611 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 1612 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) { 1613 FrameReg = RegInfo->getFrameRegister(MF); 1614 return FPOffset; 1615 } 1616 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 1617 // Otherwise, use SP or FP, whichever is closer to the stack slot. 1618 FrameReg = RegInfo->getFrameRegister(MF); 1619 return FPOffset; 1620 } 1621 } 1622 // Use the base pointer if we have one. 1623 // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper? 1624 // That can happen if we forced a base pointer for a large call frame. 1625 if (RegInfo->hasBasePointer(MF)) { 1626 FrameReg = RegInfo->getBaseRegister(); 1627 Offset -= SPAdj; 1628 } 1629 return Offset; 1630 } 1631 1632 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 1633 MachineBasicBlock::iterator MI, 1634 ArrayRef<CalleeSavedInfo> CSI, 1635 unsigned StmOpc, unsigned StrOpc, 1636 bool NoGap, 1637 function_ref<bool(unsigned)> Func) const { 1638 MachineFunction &MF = *MBB.getParent(); 1639 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1640 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1641 1642 DebugLoc DL; 1643 1644 using RegAndKill = std::pair<unsigned, bool>; 1645 1646 SmallVector<RegAndKill, 4> Regs; 1647 unsigned i = CSI.size(); 1648 while (i != 0) { 1649 unsigned LastReg = 0; 1650 for (; i != 0; --i) { 1651 Register Reg = CSI[i-1].getReg(); 1652 if (!Func(Reg)) 1653 continue; 1654 1655 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1656 bool isLiveIn = MRI.isLiveIn(Reg); 1657 if (!isLiveIn && !MRI.isReserved(Reg)) 1658 MBB.addLiveIn(Reg); 1659 // If NoGap is true, push consecutive registers and then leave the rest 1660 // for other instructions. e.g. 1661 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 1662 if (NoGap && LastReg && LastReg != Reg-1) 1663 break; 1664 LastReg = Reg; 1665 // Do not set a kill flag on values that are also marked as live-in. This 1666 // happens with the @llvm-returnaddress intrinsic and with arguments 1667 // passed in callee saved registers. 1668 // Omitting the kill flags is conservatively correct even if the live-in 1669 // is not used after all. 1670 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 1671 } 1672 1673 if (Regs.empty()) 1674 continue; 1675 1676 llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) { 1677 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 1678 }); 1679 1680 if (Regs.size() > 1 || StrOpc== 0) { 1681 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 1682 .addReg(ARM::SP) 1683 .setMIFlags(MachineInstr::FrameSetup) 1684 .add(predOps(ARMCC::AL)); 1685 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1686 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 1687 } else if (Regs.size() == 1) { 1688 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 1689 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 1690 .addReg(ARM::SP) 1691 .setMIFlags(MachineInstr::FrameSetup) 1692 .addImm(-4) 1693 .add(predOps(ARMCC::AL)); 1694 } 1695 Regs.clear(); 1696 1697 // Put any subsequent vpush instructions before this one: they will refer to 1698 // higher register numbers so need to be pushed first in order to preserve 1699 // monotonicity. 1700 if (MI != MBB.begin()) 1701 --MI; 1702 } 1703 } 1704 1705 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1706 MachineBasicBlock::iterator MI, 1707 MutableArrayRef<CalleeSavedInfo> CSI, 1708 unsigned LdmOpc, unsigned LdrOpc, 1709 bool isVarArg, bool NoGap, 1710 function_ref<bool(unsigned)> Func) const { 1711 MachineFunction &MF = *MBB.getParent(); 1712 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1713 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1714 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1715 bool hasPAC = AFI->shouldSignReturnAddress(); 1716 DebugLoc DL; 1717 bool isTailCall = false; 1718 bool isInterrupt = false; 1719 bool isTrap = false; 1720 bool isCmseEntry = false; 1721 ARMSubtarget::PushPopSplitVariation PushPopSplit = 1722 STI.getPushPopSplitVariation(MF); 1723 if (MBB.end() != MI) { 1724 DL = MI->getDebugLoc(); 1725 unsigned RetOpcode = MI->getOpcode(); 1726 isTailCall = 1727 (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri || 1728 RetOpcode == ARM::TCRETURNrinotr12); 1729 isInterrupt = 1730 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1731 isTrap = 1732 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1733 RetOpcode == ARM::tTRAP; 1734 isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET); 1735 } 1736 1737 SmallVector<unsigned, 4> Regs; 1738 unsigned i = CSI.size(); 1739 while (i != 0) { 1740 unsigned LastReg = 0; 1741 bool DeleteRet = false; 1742 for (; i != 0; --i) { 1743 CalleeSavedInfo &Info = CSI[i-1]; 1744 Register Reg = Info.getReg(); 1745 if (!Func(Reg)) 1746 continue; 1747 1748 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1749 !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 && 1750 STI.hasV5TOps() && MBB.succ_empty() && !hasPAC && 1751 (PushPopSplit != ARMSubtarget::SplitR11WindowsSEH && 1752 PushPopSplit != ARMSubtarget::SplitR11AAPCSSignRA)) { 1753 Reg = ARM::PC; 1754 // Fold the return instruction into the LDM. 1755 DeleteRet = true; 1756 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1757 } 1758 1759 // If NoGap is true, pop consecutive registers and then leave the rest 1760 // for other instructions. e.g. 1761 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1762 if (NoGap && LastReg && LastReg != Reg-1) 1763 break; 1764 1765 LastReg = Reg; 1766 Regs.push_back(Reg); 1767 } 1768 1769 if (Regs.empty()) 1770 continue; 1771 1772 llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) { 1773 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1774 }); 1775 1776 if (Regs.size() > 1 || LdrOpc == 0) { 1777 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1778 .addReg(ARM::SP) 1779 .add(predOps(ARMCC::AL)) 1780 .setMIFlags(MachineInstr::FrameDestroy); 1781 for (unsigned Reg : Regs) 1782 MIB.addReg(Reg, getDefRegState(true)); 1783 if (DeleteRet) { 1784 if (MI != MBB.end()) { 1785 MIB.copyImplicitOps(*MI); 1786 MI->eraseFromParent(); 1787 } 1788 } 1789 MI = MIB; 1790 } else if (Regs.size() == 1) { 1791 // If we adjusted the reg to PC from LR above, switch it back here. We 1792 // only do that for LDM. 1793 if (Regs[0] == ARM::PC) 1794 Regs[0] = ARM::LR; 1795 MachineInstrBuilder MIB = 1796 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1797 .addReg(ARM::SP, RegState::Define) 1798 .addReg(ARM::SP) 1799 .setMIFlags(MachineInstr::FrameDestroy); 1800 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1801 // that refactoring is complete (eventually). 1802 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1803 MIB.addReg(0); 1804 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1805 } else 1806 MIB.addImm(4); 1807 MIB.add(predOps(ARMCC::AL)); 1808 } 1809 Regs.clear(); 1810 1811 // Put any subsequent vpop instructions after this one: they will refer to 1812 // higher register numbers so need to be popped afterwards. 1813 if (MI != MBB.end()) 1814 ++MI; 1815 } 1816 } 1817 1818 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1819 /// starting from d8. Also insert stack realignment code and leave the stack 1820 /// pointer pointing to the d8 spill slot. 1821 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1822 MachineBasicBlock::iterator MI, 1823 unsigned NumAlignedDPRCS2Regs, 1824 ArrayRef<CalleeSavedInfo> CSI, 1825 const TargetRegisterInfo *TRI) { 1826 MachineFunction &MF = *MBB.getParent(); 1827 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1828 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1829 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1830 MachineFrameInfo &MFI = MF.getFrameInfo(); 1831 1832 // Mark the D-register spill slots as properly aligned. Since MFI computes 1833 // stack slot layout backwards, this can actually mean that the d-reg stack 1834 // slot offsets can be wrong. The offset for d8 will always be correct. 1835 for (const CalleeSavedInfo &I : CSI) { 1836 unsigned DNum = I.getReg() - ARM::D8; 1837 if (DNum > NumAlignedDPRCS2Regs - 1) 1838 continue; 1839 int FI = I.getFrameIdx(); 1840 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1841 // registers will be 8-byte aligned. 1842 MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16)); 1843 1844 // The stack slot for D8 needs to be maximally aligned because this is 1845 // actually the point where we align the stack pointer. MachineFrameInfo 1846 // computes all offsets relative to the incoming stack pointer which is a 1847 // bit weird when realigning the stack. Any extra padding for this 1848 // over-alignment is not realized because the code inserted below adjusts 1849 // the stack pointer by numregs * 8 before aligning the stack pointer. 1850 if (DNum == 0) 1851 MFI.setObjectAlignment(FI, MFI.getMaxAlign()); 1852 } 1853 1854 // Move the stack pointer to the d8 spill slot, and align it at the same 1855 // time. Leave the stack slot address in the scratch register r4. 1856 // 1857 // sub r4, sp, #numregs * 8 1858 // bic r4, r4, #align - 1 1859 // mov sp, r4 1860 // 1861 bool isThumb = AFI->isThumbFunction(); 1862 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1863 AFI->setShouldRestoreSPFromFP(true); 1864 1865 // sub r4, sp, #numregs * 8 1866 // The immediate is <= 64, so it doesn't need any special encoding. 1867 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1868 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1869 .addReg(ARM::SP) 1870 .addImm(8 * NumAlignedDPRCS2Regs) 1871 .add(predOps(ARMCC::AL)) 1872 .add(condCodeOp()); 1873 1874 Align MaxAlign = MF.getFrameInfo().getMaxAlign(); 1875 // We must set parameter MustBeSingleInstruction to true, since 1876 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1877 // stack alignment. Luckily, this can always be done since all ARM 1878 // architecture versions that support Neon also support the BFC 1879 // instruction. 1880 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1881 1882 // mov sp, r4 1883 // The stack pointer must be adjusted before spilling anything, otherwise 1884 // the stack slots could be clobbered by an interrupt handler. 1885 // Leave r4 live, it is used below. 1886 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1887 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1888 .addReg(ARM::R4) 1889 .add(predOps(ARMCC::AL)); 1890 if (!isThumb) 1891 MIB.add(condCodeOp()); 1892 1893 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1894 // r4 holds the stack slot address. 1895 unsigned NextReg = ARM::D8; 1896 1897 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1898 // The writeback is only needed when emitting two vst1.64 instructions. 1899 if (NumAlignedDPRCS2Regs >= 6) { 1900 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1901 &ARM::QQPRRegClass); 1902 MBB.addLiveIn(SupReg); 1903 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1904 .addReg(ARM::R4, RegState::Kill) 1905 .addImm(16) 1906 .addReg(NextReg) 1907 .addReg(SupReg, RegState::ImplicitKill) 1908 .add(predOps(ARMCC::AL)); 1909 NextReg += 4; 1910 NumAlignedDPRCS2Regs -= 4; 1911 } 1912 1913 // We won't modify r4 beyond this point. It currently points to the next 1914 // register to be spilled. 1915 unsigned R4BaseReg = NextReg; 1916 1917 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1918 if (NumAlignedDPRCS2Regs >= 4) { 1919 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1920 &ARM::QQPRRegClass); 1921 MBB.addLiveIn(SupReg); 1922 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1923 .addReg(ARM::R4) 1924 .addImm(16) 1925 .addReg(NextReg) 1926 .addReg(SupReg, RegState::ImplicitKill) 1927 .add(predOps(ARMCC::AL)); 1928 NextReg += 4; 1929 NumAlignedDPRCS2Regs -= 4; 1930 } 1931 1932 // 16-byte aligned vst1.64 with 2 d-regs. 1933 if (NumAlignedDPRCS2Regs >= 2) { 1934 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1935 &ARM::QPRRegClass); 1936 MBB.addLiveIn(SupReg); 1937 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1938 .addReg(ARM::R4) 1939 .addImm(16) 1940 .addReg(SupReg) 1941 .add(predOps(ARMCC::AL)); 1942 NextReg += 2; 1943 NumAlignedDPRCS2Regs -= 2; 1944 } 1945 1946 // Finally, use a vanilla vstr.64 for the odd last register. 1947 if (NumAlignedDPRCS2Regs) { 1948 MBB.addLiveIn(NextReg); 1949 // vstr.64 uses addrmode5 which has an offset scale of 4. 1950 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1951 .addReg(NextReg) 1952 .addReg(ARM::R4) 1953 .addImm((NextReg - R4BaseReg) * 2) 1954 .add(predOps(ARMCC::AL)); 1955 } 1956 1957 // The last spill instruction inserted should kill the scratch register r4. 1958 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1959 } 1960 1961 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1962 /// iterator to the following instruction. 1963 static MachineBasicBlock::iterator 1964 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1965 unsigned NumAlignedDPRCS2Regs) { 1966 // sub r4, sp, #numregs * 8 1967 // bic r4, r4, #align - 1 1968 // mov sp, r4 1969 ++MI; ++MI; ++MI; 1970 assert(MI->mayStore() && "Expecting spill instruction"); 1971 1972 // These switches all fall through. 1973 switch(NumAlignedDPRCS2Regs) { 1974 case 7: 1975 ++MI; 1976 assert(MI->mayStore() && "Expecting spill instruction"); 1977 [[fallthrough]]; 1978 default: 1979 ++MI; 1980 assert(MI->mayStore() && "Expecting spill instruction"); 1981 [[fallthrough]]; 1982 case 1: 1983 case 2: 1984 case 4: 1985 assert(MI->killsRegister(ARM::R4, /*TRI=*/nullptr) && "Missed kill flag"); 1986 ++MI; 1987 } 1988 return MI; 1989 } 1990 1991 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1992 /// starting from d8. These instructions are assumed to execute while the 1993 /// stack is still aligned, unlike the code inserted by emitPopInst. 1994 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1995 MachineBasicBlock::iterator MI, 1996 unsigned NumAlignedDPRCS2Regs, 1997 ArrayRef<CalleeSavedInfo> CSI, 1998 const TargetRegisterInfo *TRI) { 1999 MachineFunction &MF = *MBB.getParent(); 2000 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2001 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 2002 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2003 2004 // Find the frame index assigned to d8. 2005 int D8SpillFI = 0; 2006 for (const CalleeSavedInfo &I : CSI) 2007 if (I.getReg() == ARM::D8) { 2008 D8SpillFI = I.getFrameIdx(); 2009 break; 2010 } 2011 2012 // Materialize the address of the d8 spill slot into the scratch register r4. 2013 // This can be fairly complicated if the stack frame is large, so just use 2014 // the normal frame index elimination mechanism to do it. This code runs as 2015 // the initial part of the epilog where the stack and base pointers haven't 2016 // been changed yet. 2017 bool isThumb = AFI->isThumbFunction(); 2018 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 2019 2020 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 2021 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 2022 .addFrameIndex(D8SpillFI) 2023 .addImm(0) 2024 .add(predOps(ARMCC::AL)) 2025 .add(condCodeOp()); 2026 2027 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 2028 unsigned NextReg = ARM::D8; 2029 2030 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 2031 if (NumAlignedDPRCS2Regs >= 6) { 2032 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 2033 &ARM::QQPRRegClass); 2034 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 2035 .addReg(ARM::R4, RegState::Define) 2036 .addReg(ARM::R4, RegState::Kill) 2037 .addImm(16) 2038 .addReg(SupReg, RegState::ImplicitDefine) 2039 .add(predOps(ARMCC::AL)); 2040 NextReg += 4; 2041 NumAlignedDPRCS2Regs -= 4; 2042 } 2043 2044 // We won't modify r4 beyond this point. It currently points to the next 2045 // register to be spilled. 2046 unsigned R4BaseReg = NextReg; 2047 2048 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 2049 if (NumAlignedDPRCS2Regs >= 4) { 2050 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 2051 &ARM::QQPRRegClass); 2052 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 2053 .addReg(ARM::R4) 2054 .addImm(16) 2055 .addReg(SupReg, RegState::ImplicitDefine) 2056 .add(predOps(ARMCC::AL)); 2057 NextReg += 4; 2058 NumAlignedDPRCS2Regs -= 4; 2059 } 2060 2061 // 16-byte aligned vld1.64 with 2 d-regs. 2062 if (NumAlignedDPRCS2Regs >= 2) { 2063 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 2064 &ARM::QPRRegClass); 2065 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 2066 .addReg(ARM::R4) 2067 .addImm(16) 2068 .add(predOps(ARMCC::AL)); 2069 NextReg += 2; 2070 NumAlignedDPRCS2Regs -= 2; 2071 } 2072 2073 // Finally, use a vanilla vldr.64 for the remaining odd register. 2074 if (NumAlignedDPRCS2Regs) 2075 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 2076 .addReg(ARM::R4) 2077 .addImm(2 * (NextReg - R4BaseReg)) 2078 .add(predOps(ARMCC::AL)); 2079 2080 // Last store kills r4. 2081 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 2082 } 2083 2084 bool ARMFrameLowering::spillCalleeSavedRegisters( 2085 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2086 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2087 if (CSI.empty()) 2088 return false; 2089 2090 MachineFunction &MF = *MBB.getParent(); 2091 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2092 ARMSubtarget::PushPopSplitVariation PushPopSplit = 2093 STI.getPushPopSplitVariation(MF); 2094 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 2095 2096 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 2097 unsigned PushOneOpc = AFI->isThumbFunction() ? 2098 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 2099 unsigned FltOpc = ARM::VSTMDDB_UPD; 2100 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 2101 // Compute PAC in R12. 2102 if (AFI->shouldSignReturnAddress()) { 2103 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC)) 2104 .setMIFlags(MachineInstr::FrameSetup); 2105 } 2106 // Save the non-secure floating point context. 2107 if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) { 2108 return C.getReg() == ARM::FPCXTNS; 2109 })) { 2110 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre), 2111 ARM::SP) 2112 .addReg(ARM::SP) 2113 .addImm(-4) 2114 .add(predOps(ARMCC::AL)); 2115 } 2116 2117 auto CheckRegArea = [PushPopSplit, NumAlignedDPRCS2Regs, 2118 RegInfo](unsigned Reg, SpillArea TestArea) { 2119 return getSpillArea(Reg, PushPopSplit, NumAlignedDPRCS2Regs, RegInfo) == 2120 TestArea; 2121 }; 2122 auto IsGPRCS1 = [&CheckRegArea](unsigned Reg) { 2123 return CheckRegArea(Reg, SpillArea::GPRCS1); 2124 }; 2125 auto IsGPRCS2 = [&CheckRegArea](unsigned Reg) { 2126 return CheckRegArea(Reg, SpillArea::GPRCS2); 2127 }; 2128 auto IsDPRCS1 = [&CheckRegArea](unsigned Reg) { 2129 return CheckRegArea(Reg, SpillArea::DPRCS1); 2130 }; 2131 2132 // Windows SEH requires the floating-point registers to be pushed between the 2133 // two blocks of GPRs in some situations. In all other cases, they are pushed 2134 // below the GPRs. 2135 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 2136 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS1); 2137 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, IsDPRCS1); 2138 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS2); 2139 } else { 2140 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS1); 2141 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS2); 2142 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, IsDPRCS1); 2143 } 2144 2145 // The code above does not insert spill code for the aligned DPRCS2 registers. 2146 // The stack realignment code will be inserted between the push instructions 2147 // and these spills. 2148 if (NumAlignedDPRCS2Regs) 2149 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 2150 2151 return true; 2152 } 2153 2154 bool ARMFrameLowering::restoreCalleeSavedRegisters( 2155 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2156 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2157 if (CSI.empty()) 2158 return false; 2159 2160 MachineFunction &MF = *MBB.getParent(); 2161 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2162 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 2163 2164 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 2165 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 2166 ARMSubtarget::PushPopSplitVariation PushPopSplit = 2167 STI.getPushPopSplitVariation(MF); 2168 2169 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 2170 // registers. Do that here instead. 2171 if (NumAlignedDPRCS2Regs) 2172 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 2173 2174 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 2175 unsigned LdrOpc = 2176 AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; 2177 unsigned FltOpc = ARM::VLDMDIA_UPD; 2178 2179 auto CheckRegArea = [PushPopSplit, NumAlignedDPRCS2Regs, 2180 RegInfo](unsigned Reg, SpillArea TestArea) { 2181 return getSpillArea(Reg, PushPopSplit, NumAlignedDPRCS2Regs, RegInfo) == 2182 TestArea; 2183 }; 2184 auto IsGPRCS1 = [&CheckRegArea](unsigned Reg) { 2185 return CheckRegArea(Reg, SpillArea::GPRCS1); 2186 }; 2187 auto IsGPRCS2 = [&CheckRegArea](unsigned Reg) { 2188 return CheckRegArea(Reg, SpillArea::GPRCS2); 2189 }; 2190 auto IsDPRCS1 = [&CheckRegArea](unsigned Reg) { 2191 return CheckRegArea(Reg, SpillArea::DPRCS1); 2192 }; 2193 2194 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 2195 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS2); 2196 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, IsDPRCS1); 2197 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS1); 2198 } else { 2199 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, IsDPRCS1); 2200 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS2); 2201 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS1); 2202 } 2203 2204 return true; 2205 } 2206 2207 // FIXME: Make generic? 2208 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF, 2209 const ARMBaseInstrInfo &TII) { 2210 unsigned FnSize = 0; 2211 for (auto &MBB : MF) { 2212 for (auto &MI : MBB) 2213 FnSize += TII.getInstSizeInBytes(MI); 2214 } 2215 if (MF.getJumpTableInfo()) 2216 for (auto &Table: MF.getJumpTableInfo()->getJumpTables()) 2217 FnSize += Table.MBBs.size() * 4; 2218 FnSize += MF.getConstantPool()->getConstants().size() * 4; 2219 return FnSize; 2220 } 2221 2222 /// estimateRSStackSizeLimit - Look at each instruction that references stack 2223 /// frames and return the stack size limit beyond which some of these 2224 /// instructions will require a scratch register during their expansion later. 2225 // FIXME: Move to TII? 2226 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 2227 const TargetFrameLowering *TFI, 2228 bool &HasNonSPFrameIndex) { 2229 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2230 const ARMBaseInstrInfo &TII = 2231 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2232 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2233 unsigned Limit = (1 << 12) - 1; 2234 for (auto &MBB : MF) { 2235 for (auto &MI : MBB) { 2236 if (MI.isDebugInstr()) 2237 continue; 2238 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 2239 if (!MI.getOperand(i).isFI()) 2240 continue; 2241 2242 // When using ADDri to get the address of a stack object, 255 is the 2243 // largest offset guaranteed to fit in the immediate offset. 2244 if (MI.getOpcode() == ARM::ADDri) { 2245 Limit = std::min(Limit, (1U << 8) - 1); 2246 break; 2247 } 2248 // t2ADDri will not require an extra register, it can reuse the 2249 // destination. 2250 if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12) 2251 break; 2252 2253 const MCInstrDesc &MCID = MI.getDesc(); 2254 const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF); 2255 if (RegClass && !RegClass->contains(ARM::SP)) 2256 HasNonSPFrameIndex = true; 2257 2258 // Otherwise check the addressing mode. 2259 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 2260 case ARMII::AddrMode_i12: 2261 case ARMII::AddrMode2: 2262 // Default 12 bit limit. 2263 break; 2264 case ARMII::AddrMode3: 2265 case ARMII::AddrModeT2_i8neg: 2266 Limit = std::min(Limit, (1U << 8) - 1); 2267 break; 2268 case ARMII::AddrMode5FP16: 2269 Limit = std::min(Limit, ((1U << 8) - 1) * 2); 2270 break; 2271 case ARMII::AddrMode5: 2272 case ARMII::AddrModeT2_i8s4: 2273 case ARMII::AddrModeT2_ldrex: 2274 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 2275 break; 2276 case ARMII::AddrModeT2_i12: 2277 // i12 supports only positive offset so these will be converted to 2278 // i8 opcodes. See llvm::rewriteT2FrameIndex. 2279 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 2280 Limit = std::min(Limit, (1U << 8) - 1); 2281 break; 2282 case ARMII::AddrMode4: 2283 case ARMII::AddrMode6: 2284 // Addressing modes 4 & 6 (load/store) instructions can't encode an 2285 // immediate offset for stack references. 2286 return 0; 2287 case ARMII::AddrModeT2_i7: 2288 Limit = std::min(Limit, ((1U << 7) - 1) * 1); 2289 break; 2290 case ARMII::AddrModeT2_i7s2: 2291 Limit = std::min(Limit, ((1U << 7) - 1) * 2); 2292 break; 2293 case ARMII::AddrModeT2_i7s4: 2294 Limit = std::min(Limit, ((1U << 7) - 1) * 4); 2295 break; 2296 default: 2297 llvm_unreachable("Unhandled addressing mode in stack size limit calculation"); 2298 } 2299 break; // At most one FI per instruction 2300 } 2301 } 2302 } 2303 2304 return Limit; 2305 } 2306 2307 // In functions that realign the stack, it can be an advantage to spill the 2308 // callee-saved vector registers after realigning the stack. The vst1 and vld1 2309 // instructions take alignment hints that can improve performance. 2310 static void 2311 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 2312 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 2313 if (!SpillAlignedNEONRegs) 2314 return; 2315 2316 // Naked functions don't spill callee-saved registers. 2317 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 2318 return; 2319 2320 // We are planning to use NEON instructions vst1 / vld1. 2321 if (!MF.getSubtarget<ARMSubtarget>().hasNEON()) 2322 return; 2323 2324 // Don't bother if the default stack alignment is sufficiently high. 2325 if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8)) 2326 return; 2327 2328 // Aligned spills require stack realignment. 2329 if (!static_cast<const ARMBaseRegisterInfo *>( 2330 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 2331 return; 2332 2333 // We always spill contiguous d-registers starting from d8. Count how many 2334 // needs spilling. The register allocator will almost always use the 2335 // callee-saved registers in order, but it can happen that there are holes in 2336 // the range. Registers above the hole will be spilled to the standard DPRCS 2337 // area. 2338 unsigned NumSpills = 0; 2339 for (; NumSpills < 8; ++NumSpills) 2340 if (!SavedRegs.test(ARM::D8 + NumSpills)) 2341 break; 2342 2343 // Don't do this for just one d-register. It's not worth it. 2344 if (NumSpills < 2) 2345 return; 2346 2347 // Spill the first NumSpills D-registers after realigning the stack. 2348 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 2349 2350 // A scratch register is required for the vst1 / vld1 instructions. 2351 SavedRegs.set(ARM::R4); 2352 } 2353 2354 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2355 // For CMSE entry functions, we want to save the FPCXT_NS immediately 2356 // upon function entry (resp. restore it immmediately before return) 2357 if (STI.hasV8_1MMainlineOps() && 2358 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) 2359 return false; 2360 2361 // We are disabling shrinkwrapping for now when PAC is enabled, as 2362 // shrinkwrapping can cause clobbering of r12 when the PAC code is 2363 // generated. A follow-up patch will fix this in a more performant manner. 2364 if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress( 2365 true /* SpillsLR */)) 2366 return false; 2367 2368 return true; 2369 } 2370 2371 bool ARMFrameLowering::requiresAAPCSFrameRecord( 2372 const MachineFunction &MF) const { 2373 const auto &Subtarget = MF.getSubtarget<ARMSubtarget>(); 2374 return Subtarget.createAAPCSFrameChain() && hasFP(MF); 2375 } 2376 2377 // Thumb1 may require a spill when storing to a frame index through FP (or any 2378 // access with execute-only), for cases where FP is a high register (R11). This 2379 // scans the function for cases where this may happen. 2380 static bool canSpillOnFrameIndexAccess(const MachineFunction &MF, 2381 const TargetFrameLowering &TFI) { 2382 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2383 if (!AFI->isThumb1OnlyFunction()) 2384 return false; 2385 2386 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 2387 for (const auto &MBB : MF) 2388 for (const auto &MI : MBB) 2389 if (MI.getOpcode() == ARM::tSTRspi || MI.getOpcode() == ARM::tSTRi || 2390 STI.genExecuteOnly()) 2391 for (const auto &Op : MI.operands()) 2392 if (Op.isFI()) { 2393 Register Reg; 2394 TFI.getFrameIndexReference(MF, Op.getIndex(), Reg); 2395 if (ARM::hGPRRegClass.contains(Reg) && Reg != ARM::SP) 2396 return true; 2397 } 2398 return false; 2399 } 2400 2401 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 2402 BitVector &SavedRegs, 2403 RegScavenger *RS) const { 2404 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2405 // This tells PEI to spill the FP as if it is any other callee-save register 2406 // to take advantage the eliminateFrameIndex machinery. This also ensures it 2407 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 2408 // to combine multiple loads / stores. 2409 bool CanEliminateFrame = !(requiresAAPCSFrameRecord(MF) && hasFP(MF)) && 2410 !MF.getTarget().Options.DisableFramePointerElim(MF); 2411 bool CS1Spilled = false; 2412 bool LRSpilled = false; 2413 unsigned NumGPRSpills = 0; 2414 unsigned NumFPRSpills = 0; 2415 SmallVector<unsigned, 4> UnspilledCS1GPRs; 2416 SmallVector<unsigned, 4> UnspilledCS2GPRs; 2417 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 2418 MF.getSubtarget().getRegisterInfo()); 2419 const ARMBaseInstrInfo &TII = 2420 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2421 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2422 MachineFrameInfo &MFI = MF.getFrameInfo(); 2423 MachineRegisterInfo &MRI = MF.getRegInfo(); 2424 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2425 (void)TRI; // Silence unused warning in non-assert builds. 2426 Register FramePtr = RegInfo->getFrameRegister(MF); 2427 ARMSubtarget::PushPopSplitVariation PushPopSplit = 2428 STI.getPushPopSplitVariation(MF); 2429 2430 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 2431 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 2432 // since it's not always possible to restore sp from fp in a single 2433 // instruction. 2434 // FIXME: It will be better just to find spare register here. 2435 if (AFI->isThumb2Function() && 2436 (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))) 2437 SavedRegs.set(ARM::R4); 2438 2439 // If a stack probe will be emitted, spill R4 and LR, since they are 2440 // clobbered by the stack probe call. 2441 // This estimate should be a safe, conservative estimate. The actual 2442 // stack probe is enabled based on the size of the local objects; 2443 // this estimate also includes the varargs store size. 2444 if (STI.isTargetWindows() && 2445 WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) { 2446 SavedRegs.set(ARM::R4); 2447 SavedRegs.set(ARM::LR); 2448 } 2449 2450 if (AFI->isThumb1OnlyFunction()) { 2451 // Spill LR if Thumb1 function uses variable length argument lists. 2452 if (AFI->getArgRegsSaveSize() > 0) 2453 SavedRegs.set(ARM::LR); 2454 2455 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function 2456 // requires stack alignment. We don't know for sure what the stack size 2457 // will be, but for this, an estimate is good enough. If there anything 2458 // changes it, it'll be a spill, which implies we've used all the registers 2459 // and so R4 is already used, so not marking it here will be OK. 2460 // FIXME: It will be better just to find spare register here. 2461 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) || 2462 MFI.estimateStackSize(MF) > 508) 2463 SavedRegs.set(ARM::R4); 2464 } 2465 2466 // See if we can spill vector registers to aligned stack. 2467 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 2468 2469 // Spill the BasePtr if it's used. 2470 if (RegInfo->hasBasePointer(MF)) 2471 SavedRegs.set(RegInfo->getBaseRegister()); 2472 2473 // On v8.1-M.Main CMSE entry functions save/restore FPCXT. 2474 if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction()) 2475 CanEliminateFrame = false; 2476 2477 // When return address signing is enabled R12 is treated as callee-saved. 2478 if (AFI->shouldSignReturnAddress()) 2479 CanEliminateFrame = false; 2480 2481 // Don't spill FP if the frame can be eliminated. This is determined 2482 // by scanning the callee-save registers to see if any is modified. 2483 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 2484 for (unsigned i = 0; CSRegs[i]; ++i) { 2485 unsigned Reg = CSRegs[i]; 2486 bool Spilled = false; 2487 if (SavedRegs.test(Reg)) { 2488 Spilled = true; 2489 CanEliminateFrame = false; 2490 } 2491 2492 if (!ARM::GPRRegClass.contains(Reg)) { 2493 if (Spilled) { 2494 if (ARM::SPRRegClass.contains(Reg)) 2495 NumFPRSpills++; 2496 else if (ARM::DPRRegClass.contains(Reg)) 2497 NumFPRSpills += 2; 2498 else if (ARM::QPRRegClass.contains(Reg)) 2499 NumFPRSpills += 4; 2500 } 2501 continue; 2502 } 2503 2504 if (Spilled) { 2505 NumGPRSpills++; 2506 2507 if (PushPopSplit != ARMSubtarget::SplitR7) { 2508 if (Reg == ARM::LR) 2509 LRSpilled = true; 2510 CS1Spilled = true; 2511 continue; 2512 } 2513 2514 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 2515 switch (Reg) { 2516 case ARM::LR: 2517 LRSpilled = true; 2518 [[fallthrough]]; 2519 case ARM::R0: case ARM::R1: 2520 case ARM::R2: case ARM::R3: 2521 case ARM::R4: case ARM::R5: 2522 case ARM::R6: case ARM::R7: 2523 CS1Spilled = true; 2524 break; 2525 default: 2526 break; 2527 } 2528 } else { 2529 if (PushPopSplit != ARMSubtarget::SplitR7) { 2530 UnspilledCS1GPRs.push_back(Reg); 2531 continue; 2532 } 2533 2534 switch (Reg) { 2535 case ARM::R0: case ARM::R1: 2536 case ARM::R2: case ARM::R3: 2537 case ARM::R4: case ARM::R5: 2538 case ARM::R6: case ARM::R7: 2539 case ARM::LR: 2540 UnspilledCS1GPRs.push_back(Reg); 2541 break; 2542 default: 2543 UnspilledCS2GPRs.push_back(Reg); 2544 break; 2545 } 2546 } 2547 } 2548 2549 bool ForceLRSpill = false; 2550 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 2551 unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII); 2552 // Force LR to be spilled if the Thumb function size is > 2048. This enables 2553 // use of BL to implement far jump. 2554 if (FnSize >= (1 << 11)) { 2555 CanEliminateFrame = false; 2556 ForceLRSpill = true; 2557 } 2558 } 2559 2560 // If any of the stack slot references may be out of range of an immediate 2561 // offset, make sure a register (or a spill slot) is available for the 2562 // register scavenger. Note that if we're indexing off the frame pointer, the 2563 // effective stack size is 4 bytes larger since the FP points to the stack 2564 // slot of the previous FP. Also, if we have variable sized objects in the 2565 // function, stack slot references will often be negative, and some of 2566 // our instructions are positive-offset only, so conservatively consider 2567 // that case to want a spill slot (or register) as well. Similarly, if 2568 // the function adjusts the stack pointer during execution and the 2569 // adjustments aren't already part of our stack size estimate, our offset 2570 // calculations may be off, so be conservative. 2571 // FIXME: We could add logic to be more precise about negative offsets 2572 // and which instructions will need a scratch register for them. Is it 2573 // worth the effort and added fragility? 2574 unsigned EstimatedStackSize = 2575 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 2576 2577 // Determine biggest (positive) SP offset in MachineFrameInfo. 2578 int MaxFixedOffset = 0; 2579 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 2580 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); 2581 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); 2582 } 2583 2584 bool HasFP = hasFP(MF); 2585 if (HasFP) { 2586 if (AFI->hasStackFrame()) 2587 EstimatedStackSize += 4; 2588 } else { 2589 // If FP is not used, SP will be used to access arguments, so count the 2590 // size of arguments into the estimation. 2591 EstimatedStackSize += MaxFixedOffset; 2592 } 2593 EstimatedStackSize += 16; // For possible paddings. 2594 2595 unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit; 2596 bool HasNonSPFrameIndex = false; 2597 if (AFI->isThumb1OnlyFunction()) { 2598 // For Thumb1, don't bother to iterate over the function. The only 2599 // instruction that requires an emergency spill slot is a store to a 2600 // frame index. 2601 // 2602 // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned 2603 // immediate. tSTRi, which is used for bp- and fp-relative accesses, has 2604 // a 5-bit unsigned immediate. 2605 // 2606 // We could try to check if the function actually contains a tSTRspi 2607 // that might need the spill slot, but it's not really important. 2608 // Functions with VLAs or extremely large call frames are rare, and 2609 // if a function is allocating more than 1KB of stack, an extra 4-byte 2610 // slot probably isn't relevant. 2611 // 2612 // A special case is the scenario where r11 is used as FP, where accesses 2613 // to a frame index will require its value to be moved into a low reg. 2614 // This is handled later on, once we are able to determine if we have any 2615 // fp-relative accesses. 2616 if (RegInfo->hasBasePointer(MF)) 2617 EstimatedRSStackSizeLimit = (1U << 5) * 4; 2618 else 2619 EstimatedRSStackSizeLimit = (1U << 8) * 4; 2620 EstimatedRSFixedSizeLimit = (1U << 5) * 4; 2621 } else { 2622 EstimatedRSStackSizeLimit = 2623 estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex); 2624 EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit; 2625 } 2626 // Final estimate of whether sp or bp-relative accesses might require 2627 // scavenging. 2628 bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit; 2629 2630 // If the stack pointer moves and we don't have a base pointer, the 2631 // estimate logic doesn't work. The actual offsets might be larger when 2632 // we're constructing a call frame, or we might need to use negative 2633 // offsets from fp. 2634 bool HasMovingSP = MFI.hasVarSizedObjects() || 2635 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)); 2636 bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP; 2637 2638 // If we have a frame pointer, we assume arguments will be accessed 2639 // relative to the frame pointer. Check whether fp-relative accesses to 2640 // arguments require scavenging. 2641 // 2642 // We could do slightly better on Thumb1; in some cases, an sp-relative 2643 // offset would be legal even though an fp-relative offset is not. 2644 int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF); 2645 bool HasLargeArgumentList = 2646 HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit; 2647 2648 bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP || 2649 HasLargeArgumentList || HasNonSPFrameIndex; 2650 LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit 2651 << "; EstimatedStack: " << EstimatedStackSize 2652 << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset 2653 << "; BigFrameOffsets: " << BigFrameOffsets << "\n"); 2654 if (BigFrameOffsets || 2655 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 2656 AFI->setHasStackFrame(true); 2657 2658 if (HasFP) { 2659 SavedRegs.set(FramePtr); 2660 // If the frame pointer is required by the ABI, also spill LR so that we 2661 // emit a complete frame record. 2662 if ((requiresAAPCSFrameRecord(MF) || 2663 MF.getTarget().Options.DisableFramePointerElim(MF)) && 2664 !LRSpilled) { 2665 SavedRegs.set(ARM::LR); 2666 LRSpilled = true; 2667 NumGPRSpills++; 2668 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 2669 if (LRPos != UnspilledCS1GPRs.end()) 2670 UnspilledCS1GPRs.erase(LRPos); 2671 } 2672 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 2673 if (FPPos != UnspilledCS1GPRs.end()) 2674 UnspilledCS1GPRs.erase(FPPos); 2675 NumGPRSpills++; 2676 if (FramePtr == ARM::R7) 2677 CS1Spilled = true; 2678 } 2679 2680 // This is the number of extra spills inserted for callee-save GPRs which 2681 // would not otherwise be used by the function. When greater than zero it 2682 // guaranteees that it is possible to scavenge a register to hold the 2683 // address of a stack slot. On Thumb1, the register must be a valid operand 2684 // to tSTRi, i.e. r4-r7. For other subtargets, this is any GPR, i.e. r4-r11 2685 // or lr. 2686 // 2687 // If we don't insert a spill, we instead allocate an emergency spill 2688 // slot, which can be used by scavenging to spill an arbitrary register. 2689 // 2690 // We currently don't try to figure out whether any specific instruction 2691 // requires scavening an additional register. 2692 unsigned NumExtraCSSpill = 0; 2693 2694 if (AFI->isThumb1OnlyFunction()) { 2695 // For Thumb1-only targets, we need some low registers when we save and 2696 // restore the high registers (which aren't allocatable, but could be 2697 // used by inline assembly) because the push/pop instructions can not 2698 // access high registers. If necessary, we might need to push more low 2699 // registers to ensure that there is at least one free that can be used 2700 // for the saving & restoring, and preferably we should ensure that as 2701 // many as are needed are available so that fewer push/pop instructions 2702 // are required. 2703 2704 // Low registers which are not currently pushed, but could be (r4-r7). 2705 SmallVector<unsigned, 4> AvailableRegs; 2706 2707 // Unused argument registers (r0-r3) can be clobbered in the prologue for 2708 // free. 2709 int EntryRegDeficit = 0; 2710 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 2711 if (!MF.getRegInfo().isLiveIn(Reg)) { 2712 --EntryRegDeficit; 2713 LLVM_DEBUG(dbgs() 2714 << printReg(Reg, TRI) 2715 << " is unused argument register, EntryRegDeficit = " 2716 << EntryRegDeficit << "\n"); 2717 } 2718 } 2719 2720 // Unused return registers can be clobbered in the epilogue for free. 2721 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 2722 LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount() 2723 << " return regs used, ExitRegDeficit = " 2724 << ExitRegDeficit << "\n"); 2725 2726 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 2727 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 2728 2729 // r4-r6 can be used in the prologue if they are pushed by the first push 2730 // instruction. 2731 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 2732 if (SavedRegs.test(Reg)) { 2733 --RegDeficit; 2734 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2735 << " is saved low register, RegDeficit = " 2736 << RegDeficit << "\n"); 2737 } else { 2738 AvailableRegs.push_back(Reg); 2739 LLVM_DEBUG( 2740 dbgs() 2741 << printReg(Reg, TRI) 2742 << " is non-saved low register, adding to AvailableRegs\n"); 2743 } 2744 } 2745 2746 // r7 can be used if it is not being used as the frame pointer. 2747 if (!HasFP || FramePtr != ARM::R7) { 2748 if (SavedRegs.test(ARM::R7)) { 2749 --RegDeficit; 2750 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = " 2751 << RegDeficit << "\n"); 2752 } else { 2753 AvailableRegs.push_back(ARM::R7); 2754 LLVM_DEBUG( 2755 dbgs() 2756 << "%r7 is non-saved low register, adding to AvailableRegs\n"); 2757 } 2758 } 2759 2760 // Each of r8-r11 needs to be copied to a low register, then pushed. 2761 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 2762 if (SavedRegs.test(Reg)) { 2763 ++RegDeficit; 2764 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2765 << " is saved high register, RegDeficit = " 2766 << RegDeficit << "\n"); 2767 } 2768 } 2769 2770 // LR can only be used by PUSH, not POP, and can't be used at all if the 2771 // llvm.returnaddress intrinsic is used. This is only worth doing if we 2772 // are more limited at function entry than exit. 2773 if ((EntryRegDeficit > ExitRegDeficit) && 2774 !(MF.getRegInfo().isLiveIn(ARM::LR) && 2775 MF.getFrameInfo().isReturnAddressTaken())) { 2776 if (SavedRegs.test(ARM::LR)) { 2777 --RegDeficit; 2778 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = " 2779 << RegDeficit << "\n"); 2780 } else { 2781 AvailableRegs.push_back(ARM::LR); 2782 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n"); 2783 } 2784 } 2785 2786 // If there are more high registers that need pushing than low registers 2787 // available, push some more low registers so that we can use fewer push 2788 // instructions. This might not reduce RegDeficit all the way to zero, 2789 // because we can only guarantee that r4-r6 are available, but r8-r11 may 2790 // need saving. 2791 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 2792 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 2793 unsigned Reg = AvailableRegs.pop_back_val(); 2794 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2795 << " to make up reg deficit\n"); 2796 SavedRegs.set(Reg); 2797 NumGPRSpills++; 2798 CS1Spilled = true; 2799 assert(!MRI.isReserved(Reg) && "Should not be reserved"); 2800 if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg)) 2801 NumExtraCSSpill++; 2802 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 2803 if (Reg == ARM::LR) 2804 LRSpilled = true; 2805 } 2806 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit 2807 << "\n"); 2808 } 2809 2810 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to 2811 // restore LR in that case. 2812 bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall(); 2813 2814 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 2815 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 2816 if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) { 2817 SavedRegs.set(ARM::LR); 2818 NumGPRSpills++; 2819 SmallVectorImpl<unsigned>::iterator LRPos; 2820 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 2821 if (LRPos != UnspilledCS1GPRs.end()) 2822 UnspilledCS1GPRs.erase(LRPos); 2823 2824 ForceLRSpill = false; 2825 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) && 2826 !AFI->isThumb1OnlyFunction()) 2827 NumExtraCSSpill++; 2828 } 2829 2830 // If stack and double are 8-byte aligned and we are spilling an odd number 2831 // of GPRs, spill one extra callee save GPR so we won't have to pad between 2832 // the integer and double callee save areas. 2833 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 2834 const Align TargetAlign = getStackAlign(); 2835 if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) { 2836 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 2837 for (unsigned Reg : UnspilledCS1GPRs) { 2838 // Don't spill high register if the function is thumb. In the case of 2839 // Windows on ARM, accept R11 (frame pointer) 2840 if (!AFI->isThumbFunction() || 2841 (STI.isTargetWindows() && Reg == ARM::R11) || 2842 isARMLowRegister(Reg) || 2843 (Reg == ARM::LR && !ExpensiveLRRestore)) { 2844 SavedRegs.set(Reg); 2845 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2846 << " to make up alignment\n"); 2847 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) && 2848 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction())) 2849 NumExtraCSSpill++; 2850 break; 2851 } 2852 } 2853 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 2854 unsigned Reg = UnspilledCS2GPRs.front(); 2855 SavedRegs.set(Reg); 2856 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2857 << " to make up alignment\n"); 2858 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 2859 NumExtraCSSpill++; 2860 } 2861 } 2862 2863 // Estimate if we might need to scavenge registers at some point in order 2864 // to materialize a stack offset. If so, either spill one additional 2865 // callee-saved register or reserve a special spill slot to facilitate 2866 // register scavenging. Thumb1 needs a spill slot for stack pointer 2867 // adjustments and for frame index accesses when FP is high register, 2868 // even when the frame itself is small. 2869 unsigned RegsNeeded = 0; 2870 if (BigFrameOffsets || canSpillOnFrameIndexAccess(MF, *this)) { 2871 RegsNeeded++; 2872 // With thumb1 execute-only we may need an additional register for saving 2873 // and restoring the CPSR. 2874 if (AFI->isThumb1OnlyFunction() && STI.genExecuteOnly() && !STI.useMovt()) 2875 RegsNeeded++; 2876 } 2877 2878 if (RegsNeeded > NumExtraCSSpill) { 2879 // If any non-reserved CS register isn't spilled, just spill one or two 2880 // extra. That should take care of it! 2881 unsigned NumExtras = TargetAlign.value() / 4; 2882 SmallVector<unsigned, 2> Extras; 2883 while (NumExtras && !UnspilledCS1GPRs.empty()) { 2884 unsigned Reg = UnspilledCS1GPRs.pop_back_val(); 2885 if (!MRI.isReserved(Reg) && 2886 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) { 2887 Extras.push_back(Reg); 2888 NumExtras--; 2889 } 2890 } 2891 // For non-Thumb1 functions, also check for hi-reg CS registers 2892 if (!AFI->isThumb1OnlyFunction()) { 2893 while (NumExtras && !UnspilledCS2GPRs.empty()) { 2894 unsigned Reg = UnspilledCS2GPRs.pop_back_val(); 2895 if (!MRI.isReserved(Reg)) { 2896 Extras.push_back(Reg); 2897 NumExtras--; 2898 } 2899 } 2900 } 2901 if (NumExtras == 0) { 2902 for (unsigned Reg : Extras) { 2903 SavedRegs.set(Reg); 2904 if (!MRI.isPhysRegUsed(Reg)) 2905 NumExtraCSSpill++; 2906 } 2907 } 2908 while ((RegsNeeded > NumExtraCSSpill) && RS) { 2909 // Reserve a slot closest to SP or frame pointer. 2910 LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n"); 2911 const TargetRegisterClass &RC = ARM::GPRRegClass; 2912 unsigned Size = TRI->getSpillSize(RC); 2913 Align Alignment = TRI->getSpillAlign(RC); 2914 RS->addScavengingFrameIndex( 2915 MFI.CreateStackObject(Size, Alignment, false)); 2916 --RegsNeeded; 2917 } 2918 } 2919 } 2920 2921 if (ForceLRSpill) 2922 SavedRegs.set(ARM::LR); 2923 AFI->setLRIsSpilled(SavedRegs.test(ARM::LR)); 2924 } 2925 2926 void ARMFrameLowering::updateLRRestored(MachineFunction &MF) { 2927 MachineFrameInfo &MFI = MF.getFrameInfo(); 2928 if (!MFI.isCalleeSavedInfoValid()) 2929 return; 2930 2931 // Check if all terminators do not implicitly use LR. Then we can 'restore' LR 2932 // into PC so it is not live out of the return block: Clear the Restored bit 2933 // in that case. 2934 for (CalleeSavedInfo &Info : MFI.getCalleeSavedInfo()) { 2935 if (Info.getReg() != ARM::LR) 2936 continue; 2937 if (all_of(MF, [](const MachineBasicBlock &MBB) { 2938 return all_of(MBB.terminators(), [](const MachineInstr &Term) { 2939 return !Term.isReturn() || Term.getOpcode() == ARM::LDMIA_RET || 2940 Term.getOpcode() == ARM::t2LDMIA_RET || 2941 Term.getOpcode() == ARM::tPOP_RET; 2942 }); 2943 })) { 2944 Info.setRestored(false); 2945 break; 2946 } 2947 } 2948 } 2949 2950 void ARMFrameLowering::processFunctionBeforeFrameFinalized( 2951 MachineFunction &MF, RegScavenger *RS) const { 2952 TargetFrameLowering::processFunctionBeforeFrameFinalized(MF, RS); 2953 updateLRRestored(MF); 2954 } 2955 2956 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF, 2957 BitVector &SavedRegs) const { 2958 TargetFrameLowering::getCalleeSaves(MF, SavedRegs); 2959 2960 // If we have the "returned" parameter attribute which guarantees that we 2961 // return the value which was passed in r0 unmodified (e.g. C++ 'structors), 2962 // record that fact for IPRA. 2963 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2964 if (AFI->getPreservesR0()) 2965 SavedRegs.set(ARM::R0); 2966 } 2967 2968 bool ARMFrameLowering::assignCalleeSavedSpillSlots( 2969 MachineFunction &MF, const TargetRegisterInfo *TRI, 2970 std::vector<CalleeSavedInfo> &CSI) const { 2971 // For CMSE entry functions, handle floating-point context as if it was a 2972 // callee-saved register. 2973 if (STI.hasV8_1MMainlineOps() && 2974 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) { 2975 CSI.emplace_back(ARM::FPCXTNS); 2976 CSI.back().setRestored(false); 2977 } 2978 2979 // For functions, which sign their return address, upon function entry, the 2980 // return address PAC is computed in R12. Treat R12 as a callee-saved register 2981 // in this case. 2982 const auto &AFI = *MF.getInfo<ARMFunctionInfo>(); 2983 if (AFI.shouldSignReturnAddress()) { 2984 // The order of register must match the order we push them, because the 2985 // PEI assigns frame indices in that order. That order depends on the 2986 // PushPopSplitVariation, there are only two cases which we use with return 2987 // address signing: 2988 switch (STI.getPushPopSplitVariation(MF)) { 2989 case ARMSubtarget::SplitR7: 2990 // LR, R7, R6, R5, R4, <R12>, R11, R10, R9, R8, D15-D8 2991 CSI.insert(find_if(CSI, 2992 [=](const auto &CS) { 2993 Register Reg = CS.getReg(); 2994 return Reg == ARM::R10 || Reg == ARM::R11 || 2995 Reg == ARM::R8 || Reg == ARM::R9 || 2996 ARM::DPRRegClass.contains(Reg); 2997 }), 2998 CalleeSavedInfo(ARM::R12)); 2999 break; 3000 case ARMSubtarget::SplitR11AAPCSSignRA: 3001 // With SplitR11AAPCSSignRA, R12 will always be the highest-addressed CSR 3002 // on the stack. 3003 CSI.insert(CSI.begin(), CalleeSavedInfo(ARM::R12)); 3004 break; 3005 case ARMSubtarget::NoSplit: 3006 assert(!MF.getTarget().Options.DisableFramePointerElim(MF) && 3007 "ABI-required frame pointers need a CSR split when signing return " 3008 "address."); 3009 CSI.insert(find_if(CSI, 3010 [=](const auto &CS) { 3011 Register Reg = CS.getReg(); 3012 return Reg != ARM::LR; 3013 }), 3014 CalleeSavedInfo(ARM::R12)); 3015 break; 3016 default: 3017 llvm_unreachable("Unexpected CSR split with return address signing"); 3018 } 3019 } 3020 3021 return false; 3022 } 3023 3024 const TargetFrameLowering::SpillSlot * 3025 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const { 3026 static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}}; 3027 NumEntries = std::size(FixedSpillOffsets); 3028 return FixedSpillOffsets; 3029 } 3030 3031 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 3032 MachineFunction &MF, MachineBasicBlock &MBB, 3033 MachineBasicBlock::iterator I) const { 3034 const ARMBaseInstrInfo &TII = 3035 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 3036 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 3037 bool isARM = !AFI->isThumbFunction(); 3038 DebugLoc dl = I->getDebugLoc(); 3039 unsigned Opc = I->getOpcode(); 3040 bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode(); 3041 unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; 3042 3043 assert(!AFI->isThumb1OnlyFunction() && 3044 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 3045 3046 int PIdx = I->findFirstPredOperandIdx(); 3047 ARMCC::CondCodes Pred = (PIdx == -1) 3048 ? ARMCC::AL 3049 : (ARMCC::CondCodes)I->getOperand(PIdx).getImm(); 3050 unsigned PredReg = TII.getFramePred(*I); 3051 3052 if (!hasReservedCallFrame(MF)) { 3053 // Bail early if the callee is expected to do the adjustment. 3054 if (IsDestroy && CalleePopAmount != -1U) 3055 return MBB.erase(I); 3056 3057 // If we have alloca, convert as follows: 3058 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 3059 // ADJCALLSTACKUP -> add, sp, sp, amount 3060 unsigned Amount = TII.getFrameSize(*I); 3061 if (Amount != 0) { 3062 // We need to keep the stack aligned properly. To do this, we round the 3063 // amount of space needed for the outgoing arguments up to the next 3064 // alignment boundary. 3065 Amount = alignSPAdjust(Amount); 3066 3067 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 3068 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 3069 Pred, PredReg); 3070 } else { 3071 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 3072 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 3073 Pred, PredReg); 3074 } 3075 } 3076 } else if (CalleePopAmount != -1U) { 3077 // If the calling convention demands that the callee pops arguments from the 3078 // stack, we want to add it back if we have a reserved call frame. 3079 emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount, 3080 MachineInstr::NoFlags, Pred, PredReg); 3081 } 3082 return MBB.erase(I); 3083 } 3084 3085 /// Get the minimum constant for ARM that is greater than or equal to the 3086 /// argument. In ARM, constants can have any value that can be produced by 3087 /// rotating an 8-bit value to the right by an even number of bits within a 3088 /// 32-bit word. 3089 static uint32_t alignToARMConstant(uint32_t Value) { 3090 unsigned Shifted = 0; 3091 3092 if (Value == 0) 3093 return 0; 3094 3095 while (!(Value & 0xC0000000)) { 3096 Value = Value << 2; 3097 Shifted += 2; 3098 } 3099 3100 bool Carry = (Value & 0x00FFFFFF); 3101 Value = ((Value & 0xFF000000) >> 24) + Carry; 3102 3103 if (Value & 0x0000100) 3104 Value = Value & 0x000001FC; 3105 3106 if (Shifted > 24) 3107 Value = Value >> (Shifted - 24); 3108 else 3109 Value = Value << (24 - Shifted); 3110 3111 return Value; 3112 } 3113 3114 // The stack limit in the TCB is set to this many bytes above the actual 3115 // stack limit. 3116 static const uint64_t kSplitStackAvailable = 256; 3117 3118 // Adjust the function prologue to enable split stacks. This currently only 3119 // supports android and linux. 3120 // 3121 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 3122 // must be well defined in order to allow for consistent implementations of the 3123 // __morestack helper function. The ABI is also not a normal ABI in that it 3124 // doesn't follow the normal calling conventions because this allows the 3125 // prologue of each function to be optimized further. 3126 // 3127 // Currently, the ABI looks like (when calling __morestack) 3128 // 3129 // * r4 holds the minimum stack size requested for this function call 3130 // * r5 holds the stack size of the arguments to the function 3131 // * the beginning of the function is 3 instructions after the call to 3132 // __morestack 3133 // 3134 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 3135 // place the arguments on to the new stack, and the 3-instruction knowledge to 3136 // jump directly to the body of the function when working on the new stack. 3137 // 3138 // An old (and possibly no longer compatible) implementation of __morestack for 3139 // ARM can be found at [1]. 3140 // 3141 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 3142 void ARMFrameLowering::adjustForSegmentedStacks( 3143 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3144 unsigned Opcode; 3145 unsigned CFIIndex; 3146 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 3147 bool Thumb = ST->isThumb(); 3148 bool Thumb2 = ST->isThumb2(); 3149 3150 // Sadly, this currently doesn't support varargs, platforms other than 3151 // android/linux. Note that thumb1/thumb2 are support for android/linux. 3152 if (MF.getFunction().isVarArg()) 3153 report_fatal_error("Segmented stacks do not support vararg functions."); 3154 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 3155 report_fatal_error("Segmented stacks not supported on this platform."); 3156 3157 MachineFrameInfo &MFI = MF.getFrameInfo(); 3158 MCContext &Context = MF.getContext(); 3159 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 3160 const ARMBaseInstrInfo &TII = 3161 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 3162 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 3163 DebugLoc DL; 3164 3165 if (!MFI.needsSplitStackProlog()) 3166 return; 3167 3168 uint64_t StackSize = MFI.getStackSize(); 3169 3170 // Use R4 and R5 as scratch registers. 3171 // We save R4 and R5 before use and restore them before leaving the function. 3172 unsigned ScratchReg0 = ARM::R4; 3173 unsigned ScratchReg1 = ARM::R5; 3174 unsigned MovOp = ST->useMovt() ? ARM::t2MOVi32imm : ARM::tMOVi32imm; 3175 uint64_t AlignedStackSize; 3176 3177 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 3178 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 3179 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 3180 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 3181 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 3182 3183 // Grab everything that reaches PrologueMBB to update there liveness as well. 3184 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 3185 SmallVector<MachineBasicBlock *, 2> WalkList; 3186 WalkList.push_back(&PrologueMBB); 3187 3188 do { 3189 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 3190 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 3191 if (BeforePrologueRegion.insert(PredBB).second) 3192 WalkList.push_back(PredBB); 3193 } 3194 } while (!WalkList.empty()); 3195 3196 // The order in that list is important. 3197 // The blocks will all be inserted before PrologueMBB using that order. 3198 // Therefore the block that should appear first in the CFG should appear 3199 // first in the list. 3200 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 3201 PostStackMBB}; 3202 3203 for (MachineBasicBlock *B : AddedBlocks) 3204 BeforePrologueRegion.insert(B); 3205 3206 for (const auto &LI : PrologueMBB.liveins()) { 3207 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 3208 PredBB->addLiveIn(LI); 3209 } 3210 3211 // Remove the newly added blocks from the list, since we know 3212 // we do not have to do the following updates for them. 3213 for (MachineBasicBlock *B : AddedBlocks) { 3214 BeforePrologueRegion.erase(B); 3215 MF.insert(PrologueMBB.getIterator(), B); 3216 } 3217 3218 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 3219 // Make sure the LiveIns are still sorted and unique. 3220 MBB->sortUniqueLiveIns(); 3221 // Replace the edges to PrologueMBB by edges to the sequences 3222 // we are about to add, but only update for immediate predecessors. 3223 if (MBB->isSuccessor(&PrologueMBB)) 3224 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 3225 } 3226 3227 // The required stack size that is aligned to ARM constant criterion. 3228 AlignedStackSize = alignToARMConstant(StackSize); 3229 3230 // When the frame size is less than 256 we just compare the stack 3231 // boundary directly to the value of the stack pointer, per gcc. 3232 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 3233 3234 // We will use two of the callee save registers as scratch registers so we 3235 // need to save those registers onto the stack. 3236 // We will use SR0 to hold stack limit and SR1 to hold the stack size 3237 // requested and arguments for __morestack(). 3238 // SR0: Scratch Register #0 3239 // SR1: Scratch Register #1 3240 // push {SR0, SR1} 3241 if (Thumb) { 3242 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 3243 .add(predOps(ARMCC::AL)) 3244 .addReg(ScratchReg0) 3245 .addReg(ScratchReg1); 3246 } else { 3247 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 3248 .addReg(ARM::SP, RegState::Define) 3249 .addReg(ARM::SP) 3250 .add(predOps(ARMCC::AL)) 3251 .addReg(ScratchReg0) 3252 .addReg(ScratchReg1); 3253 } 3254 3255 // Emit the relevant DWARF information about the change in stack pointer as 3256 // well as where to find both r4 and r5 (the callee-save registers) 3257 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3258 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8)); 3259 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3260 .addCFIIndex(CFIIndex); 3261 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3262 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 3263 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3264 .addCFIIndex(CFIIndex); 3265 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3266 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 3267 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3268 .addCFIIndex(CFIIndex); 3269 } 3270 3271 // mov SR1, sp 3272 if (Thumb) { 3273 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 3274 .addReg(ARM::SP) 3275 .add(predOps(ARMCC::AL)); 3276 } else if (CompareStackPointer) { 3277 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 3278 .addReg(ARM::SP) 3279 .add(predOps(ARMCC::AL)) 3280 .add(condCodeOp()); 3281 } 3282 3283 // sub SR1, sp, #StackSize 3284 if (!CompareStackPointer && Thumb) { 3285 if (AlignedStackSize < 256) { 3286 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 3287 .add(condCodeOp()) 3288 .addReg(ScratchReg1) 3289 .addImm(AlignedStackSize) 3290 .add(predOps(ARMCC::AL)); 3291 } else { 3292 if (Thumb2 || ST->genExecuteOnly()) { 3293 BuildMI(McrMBB, DL, TII.get(MovOp), ScratchReg0) 3294 .addImm(AlignedStackSize); 3295 } else { 3296 auto MBBI = McrMBB->end(); 3297 auto RegInfo = STI.getRegisterInfo(); 3298 RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0, 3299 AlignedStackSize); 3300 } 3301 BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1) 3302 .add(condCodeOp()) 3303 .addReg(ScratchReg1) 3304 .addReg(ScratchReg0) 3305 .add(predOps(ARMCC::AL)); 3306 } 3307 } else if (!CompareStackPointer) { 3308 if (AlignedStackSize < 256) { 3309 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 3310 .addReg(ARM::SP) 3311 .addImm(AlignedStackSize) 3312 .add(predOps(ARMCC::AL)) 3313 .add(condCodeOp()); 3314 } else { 3315 auto MBBI = McrMBB->end(); 3316 auto RegInfo = STI.getRegisterInfo(); 3317 RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0, 3318 AlignedStackSize); 3319 BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1) 3320 .addReg(ARM::SP) 3321 .addReg(ScratchReg0) 3322 .add(predOps(ARMCC::AL)) 3323 .add(condCodeOp()); 3324 } 3325 } 3326 3327 if (Thumb && ST->isThumb1Only()) { 3328 if (ST->genExecuteOnly()) { 3329 BuildMI(GetMBB, DL, TII.get(MovOp), ScratchReg0) 3330 .addExternalSymbol("__STACK_LIMIT"); 3331 } else { 3332 unsigned PCLabelId = ARMFI->createPICLabelUId(); 3333 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 3334 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0); 3335 MachineConstantPool *MCP = MF.getConstantPool(); 3336 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4)); 3337 3338 // ldr SR0, [pc, offset(STACK_LIMIT)] 3339 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 3340 .addConstantPoolIndex(CPI) 3341 .add(predOps(ARMCC::AL)); 3342 } 3343 3344 // ldr SR0, [SR0] 3345 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 3346 .addReg(ScratchReg0) 3347 .addImm(0) 3348 .add(predOps(ARMCC::AL)); 3349 } else { 3350 // Get TLS base address from the coprocessor 3351 // mrc p15, #0, SR0, c13, c0, #3 3352 BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC), 3353 ScratchReg0) 3354 .addImm(15) 3355 .addImm(0) 3356 .addImm(13) 3357 .addImm(0) 3358 .addImm(3) 3359 .add(predOps(ARMCC::AL)); 3360 3361 // Use the last tls slot on android and a private field of the TCP on linux. 3362 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 3363 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 3364 3365 // Get the stack limit from the right offset 3366 // ldr SR0, [sr0, #4 * TlsOffset] 3367 BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12), 3368 ScratchReg0) 3369 .addReg(ScratchReg0) 3370 .addImm(4 * TlsOffset) 3371 .add(predOps(ARMCC::AL)); 3372 } 3373 3374 // Compare stack limit with stack size requested. 3375 // cmp SR0, SR1 3376 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 3377 BuildMI(GetMBB, DL, TII.get(Opcode)) 3378 .addReg(ScratchReg0) 3379 .addReg(ScratchReg1) 3380 .add(predOps(ARMCC::AL)); 3381 3382 // This jump is taken if StackLimit <= SP - stack required. 3383 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 3384 BuildMI(GetMBB, DL, TII.get(Opcode)) 3385 .addMBB(PostStackMBB) 3386 .addImm(ARMCC::LS) 3387 .addReg(ARM::CPSR); 3388 3389 // Calling __morestack(StackSize, Size of stack arguments). 3390 // __morestack knows that the stack size requested is in SR0(r4) 3391 // and amount size of stack arguments is in SR1(r5). 3392 3393 // Pass first argument for the __morestack by Scratch Register #0. 3394 // The amount size of stack required 3395 if (Thumb) { 3396 if (AlignedStackSize < 256) { 3397 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 3398 .add(condCodeOp()) 3399 .addImm(AlignedStackSize) 3400 .add(predOps(ARMCC::AL)); 3401 } else { 3402 if (Thumb2 || ST->genExecuteOnly()) { 3403 BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg0) 3404 .addImm(AlignedStackSize); 3405 } else { 3406 auto MBBI = AllocMBB->end(); 3407 auto RegInfo = STI.getRegisterInfo(); 3408 RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0, 3409 AlignedStackSize); 3410 } 3411 } 3412 } else { 3413 if (AlignedStackSize < 256) { 3414 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 3415 .addImm(AlignedStackSize) 3416 .add(predOps(ARMCC::AL)) 3417 .add(condCodeOp()); 3418 } else { 3419 auto MBBI = AllocMBB->end(); 3420 auto RegInfo = STI.getRegisterInfo(); 3421 RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0, 3422 AlignedStackSize); 3423 } 3424 } 3425 3426 // Pass second argument for the __morestack by Scratch Register #1. 3427 // The amount size of stack consumed to save function arguments. 3428 if (Thumb) { 3429 if (ARMFI->getArgumentStackSize() < 256) { 3430 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 3431 .add(condCodeOp()) 3432 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 3433 .add(predOps(ARMCC::AL)); 3434 } else { 3435 if (Thumb2 || ST->genExecuteOnly()) { 3436 BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg1) 3437 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())); 3438 } else { 3439 auto MBBI = AllocMBB->end(); 3440 auto RegInfo = STI.getRegisterInfo(); 3441 RegInfo->emitLoadConstPool( 3442 *AllocMBB, MBBI, DL, ScratchReg1, 0, 3443 alignToARMConstant(ARMFI->getArgumentStackSize())); 3444 } 3445 } 3446 } else { 3447 if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) { 3448 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 3449 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 3450 .add(predOps(ARMCC::AL)) 3451 .add(condCodeOp()); 3452 } else { 3453 auto MBBI = AllocMBB->end(); 3454 auto RegInfo = STI.getRegisterInfo(); 3455 RegInfo->emitLoadConstPool( 3456 *AllocMBB, MBBI, DL, ScratchReg1, 0, 3457 alignToARMConstant(ARMFI->getArgumentStackSize())); 3458 } 3459 } 3460 3461 // push {lr} - Save return address of this function. 3462 if (Thumb) { 3463 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 3464 .add(predOps(ARMCC::AL)) 3465 .addReg(ARM::LR); 3466 } else { 3467 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 3468 .addReg(ARM::SP, RegState::Define) 3469 .addReg(ARM::SP) 3470 .add(predOps(ARMCC::AL)) 3471 .addReg(ARM::LR); 3472 } 3473 3474 // Emit the DWARF info about the change in stack as well as where to find the 3475 // previous link register 3476 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3477 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12)); 3478 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3479 .addCFIIndex(CFIIndex); 3480 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3481 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 3482 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3483 .addCFIIndex(CFIIndex); 3484 } 3485 3486 // Call __morestack(). 3487 if (Thumb) { 3488 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 3489 .add(predOps(ARMCC::AL)) 3490 .addExternalSymbol("__morestack"); 3491 } else { 3492 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 3493 .addExternalSymbol("__morestack"); 3494 } 3495 3496 // pop {lr} - Restore return address of this original function. 3497 if (Thumb) { 3498 if (ST->isThumb1Only()) { 3499 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 3500 .add(predOps(ARMCC::AL)) 3501 .addReg(ScratchReg0); 3502 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 3503 .addReg(ScratchReg0) 3504 .add(predOps(ARMCC::AL)); 3505 } else { 3506 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 3507 .addReg(ARM::LR, RegState::Define) 3508 .addReg(ARM::SP, RegState::Define) 3509 .addReg(ARM::SP) 3510 .addImm(4) 3511 .add(predOps(ARMCC::AL)); 3512 } 3513 } else { 3514 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 3515 .addReg(ARM::SP, RegState::Define) 3516 .addReg(ARM::SP) 3517 .add(predOps(ARMCC::AL)) 3518 .addReg(ARM::LR); 3519 } 3520 3521 // Restore SR0 and SR1 in case of __morestack() was called. 3522 // __morestack() will skip PostStackMBB block so we need to restore 3523 // scratch registers from here. 3524 // pop {SR0, SR1} 3525 if (Thumb) { 3526 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 3527 .add(predOps(ARMCC::AL)) 3528 .addReg(ScratchReg0) 3529 .addReg(ScratchReg1); 3530 } else { 3531 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 3532 .addReg(ARM::SP, RegState::Define) 3533 .addReg(ARM::SP) 3534 .add(predOps(ARMCC::AL)) 3535 .addReg(ScratchReg0) 3536 .addReg(ScratchReg1); 3537 } 3538 3539 // Update the CFA offset now that we've popped 3540 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3541 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 3542 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3543 .addCFIIndex(CFIIndex); 3544 } 3545 3546 // Return from this function. 3547 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL)); 3548 3549 // Restore SR0 and SR1 in case of __morestack() was not called. 3550 // pop {SR0, SR1} 3551 if (Thumb) { 3552 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 3553 .add(predOps(ARMCC::AL)) 3554 .addReg(ScratchReg0) 3555 .addReg(ScratchReg1); 3556 } else { 3557 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 3558 .addReg(ARM::SP, RegState::Define) 3559 .addReg(ARM::SP) 3560 .add(predOps(ARMCC::AL)) 3561 .addReg(ScratchReg0) 3562 .addReg(ScratchReg1); 3563 } 3564 3565 // Update the CFA offset now that we've popped 3566 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3567 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 3568 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3569 .addCFIIndex(CFIIndex); 3570 3571 // Tell debuggers that r4 and r5 are now the same as they were in the 3572 // previous function, that they're the "Same Value". 3573 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 3574 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 3575 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3576 .addCFIIndex(CFIIndex); 3577 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 3578 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 3579 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3580 .addCFIIndex(CFIIndex); 3581 } 3582 3583 // Organizing MBB lists 3584 PostStackMBB->addSuccessor(&PrologueMBB); 3585 3586 AllocMBB->addSuccessor(PostStackMBB); 3587 3588 GetMBB->addSuccessor(PostStackMBB); 3589 GetMBB->addSuccessor(AllocMBB); 3590 3591 McrMBB->addSuccessor(GetMBB); 3592 3593 PrevStackMBB->addSuccessor(McrMBB); 3594 3595 #ifdef EXPENSIVE_CHECKS 3596 MF.verify(); 3597 #endif 3598 } 3599