1 //===-- ARMFrameLowering.cpp - ARM Frame Information ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the ARM implementation of TargetFrameLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMFrameLowering.h" 15 #include "ARMBaseInstrInfo.h" 16 #include "ARMBaseRegisterInfo.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "llvm/ADT/BitVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/RegisterScavenging.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/MC/MCContext.h" 41 #include "llvm/MC/MCDwarf.h" 42 #include "llvm/MC/MCRegisterInfo.h" 43 #include "llvm/Support/CodeGen.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/MathExtras.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetInstrInfo.h" 51 #include "llvm/Target/TargetMachine.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Target/TargetRegisterInfo.h" 54 #include "llvm/Target/TargetSubtargetInfo.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstddef> 58 #include <cstdint> 59 #include <iterator> 60 #include <utility> 61 #include <vector> 62 63 #define DEBUG_TYPE "arm-frame-lowering" 64 65 using namespace llvm; 66 67 static cl::opt<bool> 68 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 69 cl::desc("Align ARM NEON spills in prolog and epilog")); 70 71 static MachineBasicBlock::iterator 72 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 73 unsigned NumAlignedDPRCS2Regs); 74 75 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 76 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, 4), 77 STI(sti) {} 78 79 bool ARMFrameLowering::noFramePointerElim(const MachineFunction &MF) const { 80 // iOS always has a FP for backtracking, force other targets to keep their FP 81 // when doing FastISel. The emitted code is currently superior, and in cases 82 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 83 return TargetFrameLowering::noFramePointerElim(MF) || 84 MF.getSubtarget<ARMSubtarget>().useFastISel(); 85 } 86 87 /// hasFP - Return true if the specified function should have a dedicated frame 88 /// pointer register. This is true if the function has variable sized allocas 89 /// or if frame pointer elimination is disabled. 90 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { 91 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 92 const MachineFrameInfo &MFI = MF.getFrameInfo(); 93 94 // ABI-required frame pointer. 95 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 96 return true; 97 98 // Frame pointer required for use within this function. 99 return (RegInfo->needsStackRealignment(MF) || 100 MFI.hasVarSizedObjects() || 101 MFI.isFrameAddressTaken()); 102 } 103 104 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 105 /// not required, we reserve argument space for call sites in the function 106 /// immediately on entry to the current function. This eliminates the need for 107 /// add/sub sp brackets around call sites. Returns true if the call frame is 108 /// included as part of the stack frame. 109 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 110 const MachineFrameInfo &MFI = MF.getFrameInfo(); 111 unsigned CFSize = MFI.getMaxCallFrameSize(); 112 // It's not always a good idea to include the call frame as part of the 113 // stack frame. ARM (especially Thumb) has small immediate offset to 114 // address the stack frame. So a large call frame can cause poor codegen 115 // and may even makes it impossible to scavenge a register. 116 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 117 return false; 118 119 return !MFI.hasVarSizedObjects(); 120 } 121 122 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 123 /// call frame pseudos can be simplified. Unlike most targets, having a FP 124 /// is not sufficient here since we still may reference some objects via SP 125 /// even when FP is available in Thumb2 mode. 126 bool 127 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 128 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 129 } 130 131 static bool isCSRestore(MachineInstr &MI, const ARMBaseInstrInfo &TII, 132 const MCPhysReg *CSRegs) { 133 // Integer spill area is handled with "pop". 134 if (isPopOpcode(MI.getOpcode())) { 135 // The first two operands are predicates. The last two are 136 // imp-def and imp-use of SP. Check everything in between. 137 for (int i = 5, e = MI.getNumOperands(); i != e; ++i) 138 if (!isCalleeSavedRegister(MI.getOperand(i).getReg(), CSRegs)) 139 return false; 140 return true; 141 } 142 if ((MI.getOpcode() == ARM::LDR_POST_IMM || 143 MI.getOpcode() == ARM::LDR_POST_REG || 144 MI.getOpcode() == ARM::t2LDR_POST) && 145 isCalleeSavedRegister(MI.getOperand(0).getReg(), CSRegs) && 146 MI.getOperand(1).getReg() == ARM::SP) 147 return true; 148 149 return false; 150 } 151 152 static void emitRegPlusImmediate( 153 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 154 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 155 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 156 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 157 if (isARM) 158 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 159 Pred, PredReg, TII, MIFlags); 160 else 161 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 162 Pred, PredReg, TII, MIFlags); 163 } 164 165 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 166 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 167 const ARMBaseInstrInfo &TII, int NumBytes, 168 unsigned MIFlags = MachineInstr::NoFlags, 169 ARMCC::CondCodes Pred = ARMCC::AL, 170 unsigned PredReg = 0) { 171 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 172 MIFlags, Pred, PredReg); 173 } 174 175 static int sizeOfSPAdjustment(const MachineInstr &MI) { 176 int RegSize; 177 switch (MI.getOpcode()) { 178 case ARM::VSTMDDB_UPD: 179 RegSize = 8; 180 break; 181 case ARM::STMDB_UPD: 182 case ARM::t2STMDB_UPD: 183 RegSize = 4; 184 break; 185 case ARM::t2STR_PRE: 186 case ARM::STR_PRE_IMM: 187 return 4; 188 default: 189 llvm_unreachable("Unknown push or pop like instruction"); 190 } 191 192 int count = 0; 193 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 194 // pred) so the list starts at 4. 195 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 196 count += RegSize; 197 return count; 198 } 199 200 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 201 size_t StackSizeInBytes) { 202 const MachineFrameInfo &MFI = MF.getFrameInfo(); 203 const Function *F = MF.getFunction(); 204 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 205 if (F->hasFnAttribute("stack-probe-size")) 206 F->getFnAttribute("stack-probe-size") 207 .getValueAsString() 208 .getAsInteger(0, StackProbeSize); 209 return StackSizeInBytes >= StackProbeSize; 210 } 211 212 namespace { 213 214 struct StackAdjustingInsts { 215 struct InstInfo { 216 MachineBasicBlock::iterator I; 217 unsigned SPAdjust; 218 bool BeforeFPSet; 219 }; 220 221 SmallVector<InstInfo, 4> Insts; 222 223 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 224 bool BeforeFPSet = false) { 225 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 226 Insts.push_back(Info); 227 } 228 229 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 230 auto Info = 231 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 232 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 233 Info->SPAdjust += ExtraBytes; 234 } 235 236 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 237 const ARMBaseInstrInfo &TII, bool HasFP) { 238 MachineFunction &MF = *MBB.getParent(); 239 unsigned CFAOffset = 0; 240 for (auto &Info : Insts) { 241 if (HasFP && !Info.BeforeFPSet) 242 return; 243 244 CFAOffset -= Info.SPAdjust; 245 unsigned CFIIndex = MF.addFrameInst( 246 MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset)); 247 BuildMI(MBB, std::next(Info.I), dl, 248 TII.get(TargetOpcode::CFI_INSTRUCTION)) 249 .addCFIIndex(CFIIndex) 250 .setMIFlags(MachineInstr::FrameSetup); 251 } 252 } 253 }; 254 255 } // end anonymous namespace 256 257 /// Emit an instruction sequence that will align the address in 258 /// register Reg by zero-ing out the lower bits. For versions of the 259 /// architecture that support Neon, this must be done in a single 260 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 261 /// single instruction. That function only gets called when optimizing 262 /// spilling of D registers on a core with the Neon instruction set 263 /// present. 264 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 265 const TargetInstrInfo &TII, 266 MachineBasicBlock &MBB, 267 MachineBasicBlock::iterator MBBI, 268 const DebugLoc &DL, const unsigned Reg, 269 const unsigned Alignment, 270 const bool MustBeSingleInstruction) { 271 const ARMSubtarget &AST = 272 static_cast<const ARMSubtarget &>(MF.getSubtarget()); 273 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 274 const unsigned AlignMask = Alignment - 1; 275 const unsigned NrBitsToZero = countTrailingZeros(Alignment); 276 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 277 if (!AFI->isThumbFunction()) { 278 // if the BFC instruction is available, use that to zero the lower 279 // bits: 280 // bfc Reg, #0, log2(Alignment) 281 // otherwise use BIC, if the mask to zero the required number of bits 282 // can be encoded in the bic immediate field 283 // bic Reg, Reg, Alignment-1 284 // otherwise, emit 285 // lsr Reg, Reg, log2(Alignment) 286 // lsl Reg, Reg, log2(Alignment) 287 if (CanUseBFC) { 288 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 289 .addReg(Reg, RegState::Kill) 290 .addImm(~AlignMask) 291 .add(predOps(ARMCC::AL)); 292 } else if (AlignMask <= 255) { 293 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 294 .addReg(Reg, RegState::Kill) 295 .addImm(AlignMask) 296 .add(predOps(ARMCC::AL)) 297 .add(condCodeOp()); 298 } else { 299 assert(!MustBeSingleInstruction && 300 "Shouldn't call emitAligningInstructions demanding a single " 301 "instruction to be emitted for large stack alignment for a target " 302 "without BFC."); 303 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 304 .addReg(Reg, RegState::Kill) 305 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 306 .add(predOps(ARMCC::AL)) 307 .add(condCodeOp()); 308 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 309 .addReg(Reg, RegState::Kill) 310 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 311 .add(predOps(ARMCC::AL)) 312 .add(condCodeOp()); 313 } 314 } else { 315 // Since this is only reached for Thumb-2 targets, the BFC instruction 316 // should always be available. 317 assert(CanUseBFC); 318 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 319 .addReg(Reg, RegState::Kill) 320 .addImm(~AlignMask) 321 .add(predOps(ARMCC::AL)); 322 } 323 } 324 325 /// We need the offset of the frame pointer relative to other MachineFrameInfo 326 /// offsets which are encoded relative to SP at function begin. 327 /// See also emitPrologue() for how the FP is set up. 328 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet 329 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use 330 /// this to produce a conservative estimate that we check in an assert() later. 331 static int getMaxFPOffset(const Function &F, const ARMFunctionInfo &AFI) { 332 // This is a conservative estimation: Assume the frame pointer being r7 and 333 // pc("r15") up to r8 getting spilled before (= 8 registers). 334 return -AFI.getArgRegsSaveSize() - (8 * 4); 335 } 336 337 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 338 MachineBasicBlock &MBB) const { 339 MachineBasicBlock::iterator MBBI = MBB.begin(); 340 MachineFrameInfo &MFI = MF.getFrameInfo(); 341 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 342 MachineModuleInfo &MMI = MF.getMMI(); 343 MCContext &Context = MMI.getContext(); 344 const TargetMachine &TM = MF.getTarget(); 345 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 346 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 347 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 348 assert(!AFI->isThumb1OnlyFunction() && 349 "This emitPrologue does not support Thumb1!"); 350 bool isARM = !AFI->isThumbFunction(); 351 unsigned Align = STI.getFrameLowering()->getStackAlignment(); 352 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 353 unsigned NumBytes = MFI.getStackSize(); 354 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 355 356 // Debug location must be unknown since the first debug location is used 357 // to determine the end of the prologue. 358 DebugLoc dl; 359 360 unsigned FramePtr = RegInfo->getFrameRegister(MF); 361 362 // Determine the sizes of each callee-save spill areas and record which frame 363 // belongs to which callee-save spill areas. 364 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 365 int FramePtrSpillFI = 0; 366 int D8SpillFI = 0; 367 368 // All calls are tail calls in GHC calling conv, and functions have no 369 // prologue/epilogue. 370 if (MF.getFunction()->getCallingConv() == CallingConv::GHC) 371 return; 372 373 StackAdjustingInsts DefCFAOffsetCandidates; 374 bool HasFP = hasFP(MF); 375 376 // Allocate the vararg register save area. 377 if (ArgRegsSaveSize) { 378 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 379 MachineInstr::FrameSetup); 380 DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true); 381 } 382 383 if (!AFI->hasStackFrame() && 384 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 385 if (NumBytes - ArgRegsSaveSize != 0) { 386 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize), 387 MachineInstr::FrameSetup); 388 DefCFAOffsetCandidates.addInst(std::prev(MBBI), 389 NumBytes - ArgRegsSaveSize, true); 390 } 391 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 392 return; 393 } 394 395 // Determine spill area sizes. 396 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 397 unsigned Reg = CSI[i].getReg(); 398 int FI = CSI[i].getFrameIdx(); 399 switch (Reg) { 400 case ARM::R8: 401 case ARM::R9: 402 case ARM::R10: 403 case ARM::R11: 404 case ARM::R12: 405 if (STI.splitFramePushPop(MF)) { 406 GPRCS2Size += 4; 407 break; 408 } 409 LLVM_FALLTHROUGH; 410 case ARM::R0: 411 case ARM::R1: 412 case ARM::R2: 413 case ARM::R3: 414 case ARM::R4: 415 case ARM::R5: 416 case ARM::R6: 417 case ARM::R7: 418 case ARM::LR: 419 if (Reg == FramePtr) 420 FramePtrSpillFI = FI; 421 GPRCS1Size += 4; 422 break; 423 default: 424 // This is a DPR. Exclude the aligned DPRCS2 spills. 425 if (Reg == ARM::D8) 426 D8SpillFI = FI; 427 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) 428 DPRCSSize += 8; 429 } 430 } 431 432 // Move past area 1. 433 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 434 if (GPRCS1Size > 0) { 435 GPRCS1Push = LastPush = MBBI++; 436 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); 437 } 438 439 // Determine starting offsets of spill areas. 440 unsigned GPRCS1Offset = NumBytes - ArgRegsSaveSize - GPRCS1Size; 441 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 442 unsigned DPRAlign = DPRCSSize ? std::min(8U, Align) : 4U; 443 unsigned DPRGapSize = (GPRCS1Size + GPRCS2Size + ArgRegsSaveSize) % DPRAlign; 444 unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 445 int FramePtrOffsetInPush = 0; 446 if (HasFP) { 447 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); 448 assert(getMaxFPOffset(*MF.getFunction(), *AFI) <= FPOffset && 449 "Max FP estimation is wrong"); 450 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize; 451 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 452 NumBytes); 453 } 454 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 455 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 456 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 457 458 // Move past area 2. 459 if (GPRCS2Size > 0) { 460 GPRCS2Push = LastPush = MBBI++; 461 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 462 } 463 464 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 465 // .cfi_offset operations will reflect that. 466 if (DPRGapSize) { 467 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 468 if (LastPush != MBB.end() && 469 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 470 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 471 else { 472 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 473 MachineInstr::FrameSetup); 474 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); 475 } 476 } 477 478 // Move past area 3. 479 if (DPRCSSize > 0) { 480 // Since vpush register list cannot have gaps, there may be multiple vpush 481 // instructions in the prologue. 482 while (MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 483 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); 484 LastPush = MBBI++; 485 } 486 } 487 488 // Move past the aligned DPRCS2 area. 489 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 490 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 491 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 492 // leaves the stack pointer pointing to the DPRCS2 area. 493 // 494 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 495 NumBytes += MFI.getObjectOffset(D8SpillFI); 496 } else 497 NumBytes = DPRCSOffset; 498 499 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 500 uint32_t NumWords = NumBytes >> 2; 501 502 if (NumWords < 65536) 503 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 504 .addImm(NumWords) 505 .setMIFlags(MachineInstr::FrameSetup) 506 .add(predOps(ARMCC::AL)); 507 else 508 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4) 509 .addImm(NumWords) 510 .setMIFlags(MachineInstr::FrameSetup); 511 512 switch (TM.getCodeModel()) { 513 case CodeModel::Small: 514 case CodeModel::Medium: 515 case CodeModel::Default: 516 case CodeModel::Kernel: 517 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 518 .add(predOps(ARMCC::AL)) 519 .addExternalSymbol("__chkstk") 520 .addReg(ARM::R4, RegState::Implicit) 521 .setMIFlags(MachineInstr::FrameSetup); 522 break; 523 case CodeModel::Large: 524 case CodeModel::JITDefault: 525 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 526 .addExternalSymbol("__chkstk") 527 .setMIFlags(MachineInstr::FrameSetup); 528 529 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 530 .add(predOps(ARMCC::AL)) 531 .addReg(ARM::R12, RegState::Kill) 532 .addReg(ARM::R4, RegState::Implicit) 533 .setMIFlags(MachineInstr::FrameSetup); 534 break; 535 } 536 537 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 538 .addReg(ARM::SP, RegState::Kill) 539 .addReg(ARM::R4, RegState::Kill) 540 .setMIFlags(MachineInstr::FrameSetup) 541 .add(predOps(ARMCC::AL)) 542 .add(condCodeOp()); 543 NumBytes = 0; 544 } 545 546 if (NumBytes) { 547 // Adjust SP after all the callee-save spills. 548 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 549 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 550 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 551 else { 552 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 553 MachineInstr::FrameSetup); 554 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 555 } 556 557 if (HasFP && isARM) 558 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 559 // Note it's not safe to do this in Thumb2 mode because it would have 560 // taken two instructions: 561 // mov sp, r7 562 // sub sp, #24 563 // If an interrupt is taken between the two instructions, then sp is in 564 // an inconsistent state (pointing to the middle of callee-saved area). 565 // The interrupt handler can end up clobbering the registers. 566 AFI->setShouldRestoreSPFromFP(true); 567 } 568 569 // Set FP to point to the stack slot that contains the previous FP. 570 // For iOS, FP is R7, which has now been stored in spill area 1. 571 // Otherwise, if this is not iOS, all the callee-saved registers go 572 // into spill area 1, including the FP in R11. In either case, it 573 // is in area one and the adjustment needs to take place just after 574 // that push. 575 if (HasFP) { 576 MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push); 577 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); 578 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, 579 dl, TII, FramePtr, ARM::SP, 580 PushSize + FramePtrOffsetInPush, 581 MachineInstr::FrameSetup); 582 if (FramePtrOffsetInPush + PushSize != 0) { 583 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa( 584 nullptr, MRI->getDwarfRegNum(FramePtr, true), 585 -(ArgRegsSaveSize - FramePtrOffsetInPush))); 586 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 587 .addCFIIndex(CFIIndex) 588 .setMIFlags(MachineInstr::FrameSetup); 589 } else { 590 unsigned CFIIndex = 591 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 592 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 593 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 594 .addCFIIndex(CFIIndex) 595 .setMIFlags(MachineInstr::FrameSetup); 596 } 597 } 598 599 // Now that the prologue's actual instructions are finalised, we can insert 600 // the necessary DWARF cf instructions to describe the situation. Start by 601 // recording where each register ended up: 602 if (GPRCS1Size > 0) { 603 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push); 604 int CFIIndex; 605 for (const auto &Entry : CSI) { 606 unsigned Reg = Entry.getReg(); 607 int FI = Entry.getFrameIdx(); 608 switch (Reg) { 609 case ARM::R8: 610 case ARM::R9: 611 case ARM::R10: 612 case ARM::R11: 613 case ARM::R12: 614 if (STI.splitFramePushPop(MF)) 615 break; 616 LLVM_FALLTHROUGH; 617 case ARM::R0: 618 case ARM::R1: 619 case ARM::R2: 620 case ARM::R3: 621 case ARM::R4: 622 case ARM::R5: 623 case ARM::R6: 624 case ARM::R7: 625 case ARM::LR: 626 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 627 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI))); 628 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 629 .addCFIIndex(CFIIndex) 630 .setMIFlags(MachineInstr::FrameSetup); 631 break; 632 } 633 } 634 } 635 636 if (GPRCS2Size > 0) { 637 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push); 638 for (const auto &Entry : CSI) { 639 unsigned Reg = Entry.getReg(); 640 int FI = Entry.getFrameIdx(); 641 switch (Reg) { 642 case ARM::R8: 643 case ARM::R9: 644 case ARM::R10: 645 case ARM::R11: 646 case ARM::R12: 647 if (STI.splitFramePushPop(MF)) { 648 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 649 unsigned Offset = MFI.getObjectOffset(FI); 650 unsigned CFIIndex = MF.addFrameInst( 651 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 652 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 653 .addCFIIndex(CFIIndex) 654 .setMIFlags(MachineInstr::FrameSetup); 655 } 656 break; 657 } 658 } 659 } 660 661 if (DPRCSSize > 0) { 662 // Since vpush register list cannot have gaps, there may be multiple vpush 663 // instructions in the prologue. 664 MachineBasicBlock::iterator Pos = std::next(LastPush); 665 for (const auto &Entry : CSI) { 666 unsigned Reg = Entry.getReg(); 667 int FI = Entry.getFrameIdx(); 668 if ((Reg >= ARM::D0 && Reg <= ARM::D31) && 669 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) { 670 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 671 unsigned Offset = MFI.getObjectOffset(FI); 672 unsigned CFIIndex = MF.addFrameInst( 673 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 674 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 675 .addCFIIndex(CFIIndex) 676 .setMIFlags(MachineInstr::FrameSetup); 677 } 678 } 679 } 680 681 // Now we can emit descriptions of where the canonical frame address was 682 // throughout the process. If we have a frame pointer, it takes over the job 683 // half-way through, so only the first few .cfi_def_cfa_offset instructions 684 // actually get emitted. 685 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 686 687 if (STI.isTargetELF() && hasFP(MF)) 688 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 689 AFI->getFramePtrSpillOffset()); 690 691 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 692 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 693 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 694 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 695 696 // If we need dynamic stack realignment, do it here. Be paranoid and make 697 // sure if we also have VLAs, we have a base pointer for frame access. 698 // If aligned NEON registers were spilled, the stack has already been 699 // realigned. 700 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) { 701 unsigned MaxAlign = MFI.getMaxAlignment(); 702 assert(!AFI->isThumb1OnlyFunction()); 703 if (!AFI->isThumbFunction()) { 704 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 705 false); 706 } else { 707 // We cannot use sp as source/dest register here, thus we're using r4 to 708 // perform the calculations. We're emitting the following sequence: 709 // mov r4, sp 710 // -- use emitAligningInstructions to produce best sequence to zero 711 // -- out lower bits in r4 712 // mov sp, r4 713 // FIXME: It will be better just to find spare register here. 714 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 715 .addReg(ARM::SP, RegState::Kill) 716 .add(predOps(ARMCC::AL)); 717 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 718 false); 719 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 720 .addReg(ARM::R4, RegState::Kill) 721 .add(predOps(ARMCC::AL)); 722 } 723 724 AFI->setShouldRestoreSPFromFP(true); 725 } 726 727 // If we need a base pointer, set it up here. It's whatever the value 728 // of the stack pointer is at this point. Any variable size objects 729 // will be allocated after this, so we can still use the base pointer 730 // to reference locals. 731 // FIXME: Clarify FrameSetup flags here. 732 if (RegInfo->hasBasePointer(MF)) { 733 if (isARM) 734 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 735 .addReg(ARM::SP) 736 .add(predOps(ARMCC::AL)) 737 .add(condCodeOp()); 738 else 739 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 740 .addReg(ARM::SP) 741 .add(predOps(ARMCC::AL)); 742 } 743 744 // If the frame has variable sized objects then the epilogue must restore 745 // the sp from fp. We can assume there's an FP here since hasFP already 746 // checks for hasVarSizedObjects. 747 if (MFI.hasVarSizedObjects()) 748 AFI->setShouldRestoreSPFromFP(true); 749 } 750 751 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 752 MachineBasicBlock &MBB) const { 753 MachineFrameInfo &MFI = MF.getFrameInfo(); 754 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 755 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 756 const ARMBaseInstrInfo &TII = 757 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 758 assert(!AFI->isThumb1OnlyFunction() && 759 "This emitEpilogue does not support Thumb1!"); 760 bool isARM = !AFI->isThumbFunction(); 761 762 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 763 int NumBytes = (int)MFI.getStackSize(); 764 unsigned FramePtr = RegInfo->getFrameRegister(MF); 765 766 // All calls are tail calls in GHC calling conv, and functions have no 767 // prologue/epilogue. 768 if (MF.getFunction()->getCallingConv() == CallingConv::GHC) 769 return; 770 771 // First put ourselves on the first (from top) terminator instructions. 772 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 773 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 774 775 if (!AFI->hasStackFrame()) { 776 if (NumBytes - ArgRegsSaveSize != 0) 777 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize); 778 } else { 779 // Unwind MBBI to point to first LDR / VLDRD. 780 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 781 if (MBBI != MBB.begin()) { 782 do { 783 --MBBI; 784 } while (MBBI != MBB.begin() && isCSRestore(*MBBI, TII, CSRegs)); 785 if (!isCSRestore(*MBBI, TII, CSRegs)) 786 ++MBBI; 787 } 788 789 // Move SP to start of FP callee save spill area. 790 NumBytes -= (ArgRegsSaveSize + 791 AFI->getGPRCalleeSavedArea1Size() + 792 AFI->getGPRCalleeSavedArea2Size() + 793 AFI->getDPRCalleeSavedGapSize() + 794 AFI->getDPRCalleeSavedAreaSize()); 795 796 // Reset SP based on frame pointer only if the stack frame extends beyond 797 // frame pointer stack slot or target is ELF and the function has FP. 798 if (AFI->shouldRestoreSPFromFP()) { 799 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 800 if (NumBytes) { 801 if (isARM) 802 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 803 ARMCC::AL, 0, TII); 804 else { 805 // It's not possible to restore SP from FP in a single instruction. 806 // For iOS, this looks like: 807 // mov sp, r7 808 // sub sp, #24 809 // This is bad, if an interrupt is taken after the mov, sp is in an 810 // inconsistent state. 811 // Use the first callee-saved register as a scratch register. 812 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 813 "No scratch register to restore SP from FP!"); 814 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 815 ARMCC::AL, 0, TII); 816 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 817 .addReg(ARM::R4) 818 .add(predOps(ARMCC::AL)); 819 } 820 } else { 821 // Thumb2 or ARM. 822 if (isARM) 823 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 824 .addReg(FramePtr) 825 .add(predOps(ARMCC::AL)) 826 .add(condCodeOp()); 827 else 828 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 829 .addReg(FramePtr) 830 .add(predOps(ARMCC::AL)); 831 } 832 } else if (NumBytes && 833 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 834 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes); 835 836 // Increment past our save areas. 837 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { 838 MBBI++; 839 // Since vpop register list cannot have gaps, there may be multiple vpop 840 // instructions in the epilogue. 841 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 842 MBBI++; 843 } 844 if (AFI->getDPRCalleeSavedGapSize()) { 845 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 846 "unexpected DPR alignment gap"); 847 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize()); 848 } 849 850 if (AFI->getGPRCalleeSavedArea2Size()) MBBI++; 851 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 852 } 853 854 if (ArgRegsSaveSize) 855 emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize); 856 } 857 858 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 859 /// debug info. It's the same as what we use for resolving the code-gen 860 /// references for now. FIXME: This can go wrong when references are 861 /// SP-relative and simple call frames aren't used. 862 int 863 ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 864 unsigned &FrameReg) const { 865 return ResolveFrameIndexReference(MF, FI, FrameReg, 0); 866 } 867 868 int 869 ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 870 int FI, unsigned &FrameReg, 871 int SPAdj) const { 872 const MachineFrameInfo &MFI = MF.getFrameInfo(); 873 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 874 MF.getSubtarget().getRegisterInfo()); 875 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 876 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 877 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 878 bool isFixed = MFI.isFixedObjectIndex(FI); 879 880 FrameReg = ARM::SP; 881 Offset += SPAdj; 882 883 // SP can move around if there are allocas. We may also lose track of SP 884 // when emergency spilling inside a non-reserved call frame setup. 885 bool hasMovingSP = !hasReservedCallFrame(MF); 886 887 // When dynamically realigning the stack, use the frame pointer for 888 // parameters, and the stack/base pointer for locals. 889 if (RegInfo->needsStackRealignment(MF)) { 890 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 891 if (isFixed) { 892 FrameReg = RegInfo->getFrameRegister(MF); 893 Offset = FPOffset; 894 } else if (hasMovingSP) { 895 assert(RegInfo->hasBasePointer(MF) && 896 "VLAs and dynamic stack alignment, but missing base pointer!"); 897 FrameReg = RegInfo->getBaseRegister(); 898 } 899 return Offset; 900 } 901 902 // If there is a frame pointer, use it when we can. 903 if (hasFP(MF) && AFI->hasStackFrame()) { 904 // Use frame pointer to reference fixed objects. Use it for locals if 905 // there are VLAs (and thus the SP isn't reliable as a base). 906 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 907 FrameReg = RegInfo->getFrameRegister(MF); 908 return FPOffset; 909 } else if (hasMovingSP) { 910 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 911 if (AFI->isThumb2Function()) { 912 // Try to use the frame pointer if we can, else use the base pointer 913 // since it's available. This is handy for the emergency spill slot, in 914 // particular. 915 if (FPOffset >= -255 && FPOffset < 0) { 916 FrameReg = RegInfo->getFrameRegister(MF); 917 return FPOffset; 918 } 919 } 920 } else if (AFI->isThumb2Function()) { 921 // Use add <rd>, sp, #<imm8> 922 // ldr <rd>, [sp, #<imm8>] 923 // if at all possible to save space. 924 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 925 return Offset; 926 // In Thumb2 mode, the negative offset is very limited. Try to avoid 927 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 928 if (FPOffset >= -255 && FPOffset < 0) { 929 FrameReg = RegInfo->getFrameRegister(MF); 930 return FPOffset; 931 } 932 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 933 // Otherwise, use SP or FP, whichever is closer to the stack slot. 934 FrameReg = RegInfo->getFrameRegister(MF); 935 return FPOffset; 936 } 937 } 938 // Use the base pointer if we have one. 939 if (RegInfo->hasBasePointer(MF)) 940 FrameReg = RegInfo->getBaseRegister(); 941 return Offset; 942 } 943 944 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 945 MachineBasicBlock::iterator MI, 946 const std::vector<CalleeSavedInfo> &CSI, 947 unsigned StmOpc, unsigned StrOpc, 948 bool NoGap, 949 bool(*Func)(unsigned, bool), 950 unsigned NumAlignedDPRCS2Regs, 951 unsigned MIFlags) const { 952 MachineFunction &MF = *MBB.getParent(); 953 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 954 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 955 956 DebugLoc DL; 957 958 typedef std::pair<unsigned, bool> RegAndKill; 959 SmallVector<RegAndKill, 4> Regs; 960 unsigned i = CSI.size(); 961 while (i != 0) { 962 unsigned LastReg = 0; 963 for (; i != 0; --i) { 964 unsigned Reg = CSI[i-1].getReg(); 965 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 966 967 // D-registers in the aligned area DPRCS2 are NOT spilled here. 968 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 969 continue; 970 971 bool isLiveIn = MF.getRegInfo().isLiveIn(Reg); 972 if (!isLiveIn) 973 MBB.addLiveIn(Reg); 974 // If NoGap is true, push consecutive registers and then leave the rest 975 // for other instructions. e.g. 976 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 977 if (NoGap && LastReg && LastReg != Reg-1) 978 break; 979 LastReg = Reg; 980 // Do not set a kill flag on values that are also marked as live-in. This 981 // happens with the @llvm-returnaddress intrinsic and with arguments 982 // passed in callee saved registers. 983 // Omitting the kill flags is conservatively correct even if the live-in 984 // is not used after all. 985 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 986 } 987 988 if (Regs.empty()) 989 continue; 990 991 std::sort(Regs.begin(), Regs.end(), [&](const RegAndKill &LHS, 992 const RegAndKill &RHS) { 993 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 994 }); 995 996 if (Regs.size() > 1 || StrOpc== 0) { 997 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 998 .addReg(ARM::SP) 999 .setMIFlags(MIFlags) 1000 .add(predOps(ARMCC::AL)); 1001 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1002 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 1003 } else if (Regs.size() == 1) { 1004 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 1005 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 1006 .addReg(ARM::SP) 1007 .setMIFlags(MIFlags) 1008 .addImm(-4) 1009 .add(predOps(ARMCC::AL)); 1010 } 1011 Regs.clear(); 1012 1013 // Put any subsequent vpush instructions before this one: they will refer to 1014 // higher register numbers so need to be pushed first in order to preserve 1015 // monotonicity. 1016 if (MI != MBB.begin()) 1017 --MI; 1018 } 1019 } 1020 1021 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1022 MachineBasicBlock::iterator MI, 1023 const std::vector<CalleeSavedInfo> &CSI, 1024 unsigned LdmOpc, unsigned LdrOpc, 1025 bool isVarArg, bool NoGap, 1026 bool(*Func)(unsigned, bool), 1027 unsigned NumAlignedDPRCS2Regs) const { 1028 MachineFunction &MF = *MBB.getParent(); 1029 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1030 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1031 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1032 DebugLoc DL; 1033 bool isTailCall = false; 1034 bool isInterrupt = false; 1035 bool isTrap = false; 1036 if (MBB.end() != MI) { 1037 DL = MI->getDebugLoc(); 1038 unsigned RetOpcode = MI->getOpcode(); 1039 isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri); 1040 isInterrupt = 1041 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1042 isTrap = 1043 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1044 RetOpcode == ARM::tTRAP; 1045 } 1046 1047 SmallVector<unsigned, 4> Regs; 1048 unsigned i = CSI.size(); 1049 while (i != 0) { 1050 unsigned LastReg = 0; 1051 bool DeleteRet = false; 1052 for (; i != 0; --i) { 1053 unsigned Reg = CSI[i-1].getReg(); 1054 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1055 1056 // The aligned reloads from area DPRCS2 are not inserted here. 1057 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1058 continue; 1059 1060 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1061 !isTrap && STI.hasV5TOps()) { 1062 if (MBB.succ_empty()) { 1063 Reg = ARM::PC; 1064 DeleteRet = true; 1065 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1066 } else 1067 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1068 // Fold the return instruction into the LDM. 1069 } 1070 1071 // If NoGap is true, pop consecutive registers and then leave the rest 1072 // for other instructions. e.g. 1073 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1074 if (NoGap && LastReg && LastReg != Reg-1) 1075 break; 1076 1077 LastReg = Reg; 1078 Regs.push_back(Reg); 1079 } 1080 1081 if (Regs.empty()) 1082 continue; 1083 1084 std::sort(Regs.begin(), Regs.end(), [&](unsigned LHS, unsigned RHS) { 1085 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1086 }); 1087 1088 if (Regs.size() > 1 || LdrOpc == 0) { 1089 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1090 .addReg(ARM::SP) 1091 .add(predOps(ARMCC::AL)); 1092 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1093 MIB.addReg(Regs[i], getDefRegState(true)); 1094 if (DeleteRet && MI != MBB.end()) { 1095 MIB.copyImplicitOps(*MI); 1096 MI->eraseFromParent(); 1097 } 1098 MI = MIB; 1099 } else if (Regs.size() == 1) { 1100 // If we adjusted the reg to PC from LR above, switch it back here. We 1101 // only do that for LDM. 1102 if (Regs[0] == ARM::PC) 1103 Regs[0] = ARM::LR; 1104 MachineInstrBuilder MIB = 1105 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1106 .addReg(ARM::SP, RegState::Define) 1107 .addReg(ARM::SP); 1108 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1109 // that refactoring is complete (eventually). 1110 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1111 MIB.addReg(0); 1112 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1113 } else 1114 MIB.addImm(4); 1115 MIB.add(predOps(ARMCC::AL)); 1116 } 1117 Regs.clear(); 1118 1119 // Put any subsequent vpop instructions after this one: they will refer to 1120 // higher register numbers so need to be popped afterwards. 1121 if (MI != MBB.end()) 1122 ++MI; 1123 } 1124 } 1125 1126 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1127 /// starting from d8. Also insert stack realignment code and leave the stack 1128 /// pointer pointing to the d8 spill slot. 1129 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1130 MachineBasicBlock::iterator MI, 1131 unsigned NumAlignedDPRCS2Regs, 1132 const std::vector<CalleeSavedInfo> &CSI, 1133 const TargetRegisterInfo *TRI) { 1134 MachineFunction &MF = *MBB.getParent(); 1135 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1136 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1137 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1138 MachineFrameInfo &MFI = MF.getFrameInfo(); 1139 1140 // Mark the D-register spill slots as properly aligned. Since MFI computes 1141 // stack slot layout backwards, this can actually mean that the d-reg stack 1142 // slot offsets can be wrong. The offset for d8 will always be correct. 1143 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 1144 unsigned DNum = CSI[i].getReg() - ARM::D8; 1145 if (DNum > NumAlignedDPRCS2Regs - 1) 1146 continue; 1147 int FI = CSI[i].getFrameIdx(); 1148 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1149 // registers will be 8-byte aligned. 1150 MFI.setObjectAlignment(FI, DNum % 2 ? 8 : 16); 1151 1152 // The stack slot for D8 needs to be maximally aligned because this is 1153 // actually the point where we align the stack pointer. MachineFrameInfo 1154 // computes all offsets relative to the incoming stack pointer which is a 1155 // bit weird when realigning the stack. Any extra padding for this 1156 // over-alignment is not realized because the code inserted below adjusts 1157 // the stack pointer by numregs * 8 before aligning the stack pointer. 1158 if (DNum == 0) 1159 MFI.setObjectAlignment(FI, MFI.getMaxAlignment()); 1160 } 1161 1162 // Move the stack pointer to the d8 spill slot, and align it at the same 1163 // time. Leave the stack slot address in the scratch register r4. 1164 // 1165 // sub r4, sp, #numregs * 8 1166 // bic r4, r4, #align - 1 1167 // mov sp, r4 1168 // 1169 bool isThumb = AFI->isThumbFunction(); 1170 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1171 AFI->setShouldRestoreSPFromFP(true); 1172 1173 // sub r4, sp, #numregs * 8 1174 // The immediate is <= 64, so it doesn't need any special encoding. 1175 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1176 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1177 .addReg(ARM::SP) 1178 .addImm(8 * NumAlignedDPRCS2Regs) 1179 .add(predOps(ARMCC::AL)) 1180 .add(condCodeOp()); 1181 1182 unsigned MaxAlign = MF.getFrameInfo().getMaxAlignment(); 1183 // We must set parameter MustBeSingleInstruction to true, since 1184 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1185 // stack alignment. Luckily, this can always be done since all ARM 1186 // architecture versions that support Neon also support the BFC 1187 // instruction. 1188 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1189 1190 // mov sp, r4 1191 // The stack pointer must be adjusted before spilling anything, otherwise 1192 // the stack slots could be clobbered by an interrupt handler. 1193 // Leave r4 live, it is used below. 1194 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1195 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1196 .addReg(ARM::R4) 1197 .add(predOps(ARMCC::AL)); 1198 if (!isThumb) 1199 MIB.add(condCodeOp()); 1200 1201 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1202 // r4 holds the stack slot address. 1203 unsigned NextReg = ARM::D8; 1204 1205 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1206 // The writeback is only needed when emitting two vst1.64 instructions. 1207 if (NumAlignedDPRCS2Regs >= 6) { 1208 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1209 &ARM::QQPRRegClass); 1210 MBB.addLiveIn(SupReg); 1211 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1212 .addReg(ARM::R4, RegState::Kill) 1213 .addImm(16) 1214 .addReg(NextReg) 1215 .addReg(SupReg, RegState::ImplicitKill) 1216 .add(predOps(ARMCC::AL)); 1217 NextReg += 4; 1218 NumAlignedDPRCS2Regs -= 4; 1219 } 1220 1221 // We won't modify r4 beyond this point. It currently points to the next 1222 // register to be spilled. 1223 unsigned R4BaseReg = NextReg; 1224 1225 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1226 if (NumAlignedDPRCS2Regs >= 4) { 1227 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1228 &ARM::QQPRRegClass); 1229 MBB.addLiveIn(SupReg); 1230 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1231 .addReg(ARM::R4) 1232 .addImm(16) 1233 .addReg(NextReg) 1234 .addReg(SupReg, RegState::ImplicitKill) 1235 .add(predOps(ARMCC::AL)); 1236 NextReg += 4; 1237 NumAlignedDPRCS2Regs -= 4; 1238 } 1239 1240 // 16-byte aligned vst1.64 with 2 d-regs. 1241 if (NumAlignedDPRCS2Regs >= 2) { 1242 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1243 &ARM::QPRRegClass); 1244 MBB.addLiveIn(SupReg); 1245 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1246 .addReg(ARM::R4) 1247 .addImm(16) 1248 .addReg(SupReg) 1249 .add(predOps(ARMCC::AL)); 1250 NextReg += 2; 1251 NumAlignedDPRCS2Regs -= 2; 1252 } 1253 1254 // Finally, use a vanilla vstr.64 for the odd last register. 1255 if (NumAlignedDPRCS2Regs) { 1256 MBB.addLiveIn(NextReg); 1257 // vstr.64 uses addrmode5 which has an offset scale of 4. 1258 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1259 .addReg(NextReg) 1260 .addReg(ARM::R4) 1261 .addImm((NextReg - R4BaseReg) * 2) 1262 .add(predOps(ARMCC::AL)); 1263 } 1264 1265 // The last spill instruction inserted should kill the scratch register r4. 1266 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1267 } 1268 1269 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1270 /// iterator to the following instruction. 1271 static MachineBasicBlock::iterator 1272 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1273 unsigned NumAlignedDPRCS2Regs) { 1274 // sub r4, sp, #numregs * 8 1275 // bic r4, r4, #align - 1 1276 // mov sp, r4 1277 ++MI; ++MI; ++MI; 1278 assert(MI->mayStore() && "Expecting spill instruction"); 1279 1280 // These switches all fall through. 1281 switch(NumAlignedDPRCS2Regs) { 1282 case 7: 1283 ++MI; 1284 assert(MI->mayStore() && "Expecting spill instruction"); 1285 default: 1286 ++MI; 1287 assert(MI->mayStore() && "Expecting spill instruction"); 1288 case 1: 1289 case 2: 1290 case 4: 1291 assert(MI->killsRegister(ARM::R4) && "Missed kill flag"); 1292 ++MI; 1293 } 1294 return MI; 1295 } 1296 1297 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1298 /// starting from d8. These instructions are assumed to execute while the 1299 /// stack is still aligned, unlike the code inserted by emitPopInst. 1300 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1301 MachineBasicBlock::iterator MI, 1302 unsigned NumAlignedDPRCS2Regs, 1303 const std::vector<CalleeSavedInfo> &CSI, 1304 const TargetRegisterInfo *TRI) { 1305 MachineFunction &MF = *MBB.getParent(); 1306 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1307 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1308 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1309 1310 // Find the frame index assigned to d8. 1311 int D8SpillFI = 0; 1312 for (unsigned i = 0, e = CSI.size(); i != e; ++i) 1313 if (CSI[i].getReg() == ARM::D8) { 1314 D8SpillFI = CSI[i].getFrameIdx(); 1315 break; 1316 } 1317 1318 // Materialize the address of the d8 spill slot into the scratch register r4. 1319 // This can be fairly complicated if the stack frame is large, so just use 1320 // the normal frame index elimination mechanism to do it. This code runs as 1321 // the initial part of the epilog where the stack and base pointers haven't 1322 // been changed yet. 1323 bool isThumb = AFI->isThumbFunction(); 1324 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1325 1326 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 1327 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1328 .addFrameIndex(D8SpillFI) 1329 .addImm(0) 1330 .add(predOps(ARMCC::AL)) 1331 .add(condCodeOp()); 1332 1333 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 1334 unsigned NextReg = ARM::D8; 1335 1336 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 1337 if (NumAlignedDPRCS2Regs >= 6) { 1338 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1339 &ARM::QQPRRegClass); 1340 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 1341 .addReg(ARM::R4, RegState::Define) 1342 .addReg(ARM::R4, RegState::Kill) 1343 .addImm(16) 1344 .addReg(SupReg, RegState::ImplicitDefine) 1345 .add(predOps(ARMCC::AL)); 1346 NextReg += 4; 1347 NumAlignedDPRCS2Regs -= 4; 1348 } 1349 1350 // We won't modify r4 beyond this point. It currently points to the next 1351 // register to be spilled. 1352 unsigned R4BaseReg = NextReg; 1353 1354 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 1355 if (NumAlignedDPRCS2Regs >= 4) { 1356 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1357 &ARM::QQPRRegClass); 1358 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 1359 .addReg(ARM::R4) 1360 .addImm(16) 1361 .addReg(SupReg, RegState::ImplicitDefine) 1362 .add(predOps(ARMCC::AL)); 1363 NextReg += 4; 1364 NumAlignedDPRCS2Regs -= 4; 1365 } 1366 1367 // 16-byte aligned vld1.64 with 2 d-regs. 1368 if (NumAlignedDPRCS2Regs >= 2) { 1369 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1370 &ARM::QPRRegClass); 1371 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 1372 .addReg(ARM::R4) 1373 .addImm(16) 1374 .add(predOps(ARMCC::AL)); 1375 NextReg += 2; 1376 NumAlignedDPRCS2Regs -= 2; 1377 } 1378 1379 // Finally, use a vanilla vldr.64 for the remaining odd register. 1380 if (NumAlignedDPRCS2Regs) 1381 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 1382 .addReg(ARM::R4) 1383 .addImm(2 * (NextReg - R4BaseReg)) 1384 .add(predOps(ARMCC::AL)); 1385 1386 // Last store kills r4. 1387 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1388 } 1389 1390 bool ARMFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB, 1391 MachineBasicBlock::iterator MI, 1392 const std::vector<CalleeSavedInfo> &CSI, 1393 const TargetRegisterInfo *TRI) const { 1394 if (CSI.empty()) 1395 return false; 1396 1397 MachineFunction &MF = *MBB.getParent(); 1398 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1399 1400 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 1401 unsigned PushOneOpc = AFI->isThumbFunction() ? 1402 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 1403 unsigned FltOpc = ARM::VSTMDDB_UPD; 1404 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1405 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0, 1406 MachineInstr::FrameSetup); 1407 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0, 1408 MachineInstr::FrameSetup); 1409 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 1410 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 1411 1412 // The code above does not insert spill code for the aligned DPRCS2 registers. 1413 // The stack realignment code will be inserted between the push instructions 1414 // and these spills. 1415 if (NumAlignedDPRCS2Regs) 1416 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1417 1418 return true; 1419 } 1420 1421 bool ARMFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, 1422 MachineBasicBlock::iterator MI, 1423 const std::vector<CalleeSavedInfo> &CSI, 1424 const TargetRegisterInfo *TRI) const { 1425 if (CSI.empty()) 1426 return false; 1427 1428 MachineFunction &MF = *MBB.getParent(); 1429 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1430 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 1431 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1432 1433 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 1434 // registers. Do that here instead. 1435 if (NumAlignedDPRCS2Regs) 1436 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1437 1438 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1439 unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM; 1440 unsigned FltOpc = ARM::VLDMDIA_UPD; 1441 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 1442 NumAlignedDPRCS2Regs); 1443 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1444 &isARMArea2Register, 0); 1445 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1446 &isARMArea1Register, 0); 1447 1448 return true; 1449 } 1450 1451 // FIXME: Make generic? 1452 static unsigned GetFunctionSizeInBytes(const MachineFunction &MF, 1453 const ARMBaseInstrInfo &TII) { 1454 unsigned FnSize = 0; 1455 for (auto &MBB : MF) { 1456 for (auto &MI : MBB) 1457 FnSize += TII.getInstSizeInBytes(MI); 1458 } 1459 return FnSize; 1460 } 1461 1462 /// estimateRSStackSizeLimit - Look at each instruction that references stack 1463 /// frames and return the stack size limit beyond which some of these 1464 /// instructions will require a scratch register during their expansion later. 1465 // FIXME: Move to TII? 1466 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 1467 const TargetFrameLowering *TFI) { 1468 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1469 unsigned Limit = (1 << 12) - 1; 1470 for (auto &MBB : MF) { 1471 for (auto &MI : MBB) { 1472 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1473 if (!MI.getOperand(i).isFI()) 1474 continue; 1475 1476 // When using ADDri to get the address of a stack object, 255 is the 1477 // largest offset guaranteed to fit in the immediate offset. 1478 if (MI.getOpcode() == ARM::ADDri) { 1479 Limit = std::min(Limit, (1U << 8) - 1); 1480 break; 1481 } 1482 1483 // Otherwise check the addressing mode. 1484 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 1485 case ARMII::AddrMode3: 1486 case ARMII::AddrModeT2_i8: 1487 Limit = std::min(Limit, (1U << 8) - 1); 1488 break; 1489 case ARMII::AddrMode5: 1490 case ARMII::AddrModeT2_i8s4: 1491 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 1492 break; 1493 case ARMII::AddrModeT2_i12: 1494 // i12 supports only positive offset so these will be converted to 1495 // i8 opcodes. See llvm::rewriteT2FrameIndex. 1496 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 1497 Limit = std::min(Limit, (1U << 8) - 1); 1498 break; 1499 case ARMII::AddrMode4: 1500 case ARMII::AddrMode6: 1501 // Addressing modes 4 & 6 (load/store) instructions can't encode an 1502 // immediate offset for stack references. 1503 return 0; 1504 default: 1505 break; 1506 } 1507 break; // At most one FI per instruction 1508 } 1509 } 1510 } 1511 1512 return Limit; 1513 } 1514 1515 // In functions that realign the stack, it can be an advantage to spill the 1516 // callee-saved vector registers after realigning the stack. The vst1 and vld1 1517 // instructions take alignment hints that can improve performance. 1518 // 1519 static void 1520 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 1521 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 1522 if (!SpillAlignedNEONRegs) 1523 return; 1524 1525 // Naked functions don't spill callee-saved registers. 1526 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 1527 return; 1528 1529 // We are planning to use NEON instructions vst1 / vld1. 1530 if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON()) 1531 return; 1532 1533 // Don't bother if the default stack alignment is sufficiently high. 1534 if (MF.getSubtarget().getFrameLowering()->getStackAlignment() >= 8) 1535 return; 1536 1537 // Aligned spills require stack realignment. 1538 if (!static_cast<const ARMBaseRegisterInfo *>( 1539 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 1540 return; 1541 1542 // We always spill contiguous d-registers starting from d8. Count how many 1543 // needs spilling. The register allocator will almost always use the 1544 // callee-saved registers in order, but it can happen that there are holes in 1545 // the range. Registers above the hole will be spilled to the standard DPRCS 1546 // area. 1547 unsigned NumSpills = 0; 1548 for (; NumSpills < 8; ++NumSpills) 1549 if (!SavedRegs.test(ARM::D8 + NumSpills)) 1550 break; 1551 1552 // Don't do this for just one d-register. It's not worth it. 1553 if (NumSpills < 2) 1554 return; 1555 1556 // Spill the first NumSpills D-registers after realigning the stack. 1557 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 1558 1559 // A scratch register is required for the vst1 / vld1 instructions. 1560 SavedRegs.set(ARM::R4); 1561 } 1562 1563 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 1564 BitVector &SavedRegs, 1565 RegScavenger *RS) const { 1566 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1567 // This tells PEI to spill the FP as if it is any other callee-save register 1568 // to take advantage the eliminateFrameIndex machinery. This also ensures it 1569 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 1570 // to combine multiple loads / stores. 1571 bool CanEliminateFrame = true; 1572 bool CS1Spilled = false; 1573 bool LRSpilled = false; 1574 unsigned NumGPRSpills = 0; 1575 unsigned NumFPRSpills = 0; 1576 SmallVector<unsigned, 4> UnspilledCS1GPRs; 1577 SmallVector<unsigned, 4> UnspilledCS2GPRs; 1578 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1579 MF.getSubtarget().getRegisterInfo()); 1580 const ARMBaseInstrInfo &TII = 1581 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1582 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1583 MachineFrameInfo &MFI = MF.getFrameInfo(); 1584 MachineRegisterInfo &MRI = MF.getRegInfo(); 1585 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1586 (void)TRI; // Silence unused warning in non-assert builds. 1587 unsigned FramePtr = RegInfo->getFrameRegister(MF); 1588 1589 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 1590 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 1591 // since it's not always possible to restore sp from fp in a single 1592 // instruction. 1593 // FIXME: It will be better just to find spare register here. 1594 if (AFI->isThumb2Function() && 1595 (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF))) 1596 SavedRegs.set(ARM::R4); 1597 1598 if (AFI->isThumb1OnlyFunction()) { 1599 // Spill LR if Thumb1 function uses variable length argument lists. 1600 if (AFI->getArgRegsSaveSize() > 0) 1601 SavedRegs.set(ARM::LR); 1602 1603 // Spill R4 if Thumb1 epilogue has to restore SP from FP. We don't know 1604 // for sure what the stack size will be, but for this, an estimate is good 1605 // enough. If there anything changes it, it'll be a spill, which implies 1606 // we've used all the registers and so R4 is already used, so not marking 1607 // it here will be OK. 1608 // FIXME: It will be better just to find spare register here. 1609 unsigned StackSize = MFI.estimateStackSize(MF); 1610 if (MFI.hasVarSizedObjects() || StackSize > 508) 1611 SavedRegs.set(ARM::R4); 1612 } 1613 1614 // See if we can spill vector registers to aligned stack. 1615 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 1616 1617 // Spill the BasePtr if it's used. 1618 if (RegInfo->hasBasePointer(MF)) 1619 SavedRegs.set(RegInfo->getBaseRegister()); 1620 1621 // Don't spill FP if the frame can be eliminated. This is determined 1622 // by scanning the callee-save registers to see if any is modified. 1623 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 1624 for (unsigned i = 0; CSRegs[i]; ++i) { 1625 unsigned Reg = CSRegs[i]; 1626 bool Spilled = false; 1627 if (SavedRegs.test(Reg)) { 1628 Spilled = true; 1629 CanEliminateFrame = false; 1630 } 1631 1632 if (!ARM::GPRRegClass.contains(Reg)) { 1633 if (Spilled) { 1634 if (ARM::SPRRegClass.contains(Reg)) 1635 NumFPRSpills++; 1636 else if (ARM::DPRRegClass.contains(Reg)) 1637 NumFPRSpills += 2; 1638 else if (ARM::QPRRegClass.contains(Reg)) 1639 NumFPRSpills += 4; 1640 } 1641 continue; 1642 } 1643 1644 if (Spilled) { 1645 NumGPRSpills++; 1646 1647 if (!STI.splitFramePushPop(MF)) { 1648 if (Reg == ARM::LR) 1649 LRSpilled = true; 1650 CS1Spilled = true; 1651 continue; 1652 } 1653 1654 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 1655 switch (Reg) { 1656 case ARM::LR: 1657 LRSpilled = true; 1658 LLVM_FALLTHROUGH; 1659 case ARM::R0: case ARM::R1: 1660 case ARM::R2: case ARM::R3: 1661 case ARM::R4: case ARM::R5: 1662 case ARM::R6: case ARM::R7: 1663 CS1Spilled = true; 1664 break; 1665 default: 1666 break; 1667 } 1668 } else { 1669 if (!STI.splitFramePushPop(MF)) { 1670 UnspilledCS1GPRs.push_back(Reg); 1671 continue; 1672 } 1673 1674 switch (Reg) { 1675 case ARM::R0: case ARM::R1: 1676 case ARM::R2: case ARM::R3: 1677 case ARM::R4: case ARM::R5: 1678 case ARM::R6: case ARM::R7: 1679 case ARM::LR: 1680 UnspilledCS1GPRs.push_back(Reg); 1681 break; 1682 default: 1683 UnspilledCS2GPRs.push_back(Reg); 1684 break; 1685 } 1686 } 1687 } 1688 1689 bool ForceLRSpill = false; 1690 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 1691 unsigned FnSize = GetFunctionSizeInBytes(MF, TII); 1692 // Force LR to be spilled if the Thumb function size is > 2048. This enables 1693 // use of BL to implement far jump. If it turns out that it's not needed 1694 // then the branch fix up path will undo it. 1695 if (FnSize >= (1 << 11)) { 1696 CanEliminateFrame = false; 1697 ForceLRSpill = true; 1698 } 1699 } 1700 1701 // If any of the stack slot references may be out of range of an immediate 1702 // offset, make sure a register (or a spill slot) is available for the 1703 // register scavenger. Note that if we're indexing off the frame pointer, the 1704 // effective stack size is 4 bytes larger since the FP points to the stack 1705 // slot of the previous FP. Also, if we have variable sized objects in the 1706 // function, stack slot references will often be negative, and some of 1707 // our instructions are positive-offset only, so conservatively consider 1708 // that case to want a spill slot (or register) as well. Similarly, if 1709 // the function adjusts the stack pointer during execution and the 1710 // adjustments aren't already part of our stack size estimate, our offset 1711 // calculations may be off, so be conservative. 1712 // FIXME: We could add logic to be more precise about negative offsets 1713 // and which instructions will need a scratch register for them. Is it 1714 // worth the effort and added fragility? 1715 unsigned EstimatedStackSize = 1716 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 1717 1718 // Determine biggest (positive) SP offset in MachineFrameInfo. 1719 int MaxFixedOffset = 0; 1720 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 1721 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); 1722 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); 1723 } 1724 1725 bool HasFP = hasFP(MF); 1726 if (HasFP) { 1727 if (AFI->hasStackFrame()) 1728 EstimatedStackSize += 4; 1729 } else { 1730 // If FP is not used, SP will be used to access arguments, so count the 1731 // size of arguments into the estimation. 1732 EstimatedStackSize += MaxFixedOffset; 1733 } 1734 EstimatedStackSize += 16; // For possible paddings. 1735 1736 unsigned EstimatedRSStackSizeLimit = estimateRSStackSizeLimit(MF, this); 1737 int MaxFPOffset = getMaxFPOffset(*MF.getFunction(), *AFI); 1738 bool BigFrameOffsets = EstimatedStackSize >= EstimatedRSStackSizeLimit || 1739 MFI.hasVarSizedObjects() || 1740 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)) || 1741 // For large argument stacks fp relative addressed may overflow. 1742 (HasFP && (MaxFixedOffset - MaxFPOffset) >= (int)EstimatedRSStackSizeLimit); 1743 bool ExtraCSSpill = false; 1744 if (BigFrameOffsets || 1745 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 1746 AFI->setHasStackFrame(true); 1747 1748 if (HasFP) { 1749 SavedRegs.set(FramePtr); 1750 // If the frame pointer is required by the ABI, also spill LR so that we 1751 // emit a complete frame record. 1752 if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) { 1753 SavedRegs.set(ARM::LR); 1754 LRSpilled = true; 1755 NumGPRSpills++; 1756 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 1757 if (LRPos != UnspilledCS1GPRs.end()) 1758 UnspilledCS1GPRs.erase(LRPos); 1759 } 1760 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 1761 if (FPPos != UnspilledCS1GPRs.end()) 1762 UnspilledCS1GPRs.erase(FPPos); 1763 NumGPRSpills++; 1764 if (FramePtr == ARM::R7) 1765 CS1Spilled = true; 1766 } 1767 1768 if (AFI->isThumb1OnlyFunction()) { 1769 // For Thumb1-only targets, we need some low registers when we save and 1770 // restore the high registers (which aren't allocatable, but could be 1771 // used by inline assembly) because the push/pop instructions can not 1772 // access high registers. If necessary, we might need to push more low 1773 // registers to ensure that there is at least one free that can be used 1774 // for the saving & restoring, and preferably we should ensure that as 1775 // many as are needed are available so that fewer push/pop instructions 1776 // are required. 1777 1778 // Low registers which are not currently pushed, but could be (r4-r7). 1779 SmallVector<unsigned, 4> AvailableRegs; 1780 1781 // Unused argument registers (r0-r3) can be clobbered in the prologue for 1782 // free. 1783 int EntryRegDeficit = 0; 1784 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 1785 if (!MF.getRegInfo().isLiveIn(Reg)) { 1786 --EntryRegDeficit; 1787 DEBUG(dbgs() << PrintReg(Reg, TRI) 1788 << " is unused argument register, EntryRegDeficit = " 1789 << EntryRegDeficit << "\n"); 1790 } 1791 } 1792 1793 // Unused return registers can be clobbered in the epilogue for free. 1794 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 1795 DEBUG(dbgs() << AFI->getReturnRegsCount() 1796 << " return regs used, ExitRegDeficit = " << ExitRegDeficit 1797 << "\n"); 1798 1799 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 1800 DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 1801 1802 // r4-r6 can be used in the prologue if they are pushed by the first push 1803 // instruction. 1804 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 1805 if (SavedRegs.test(Reg)) { 1806 --RegDeficit; 1807 DEBUG(dbgs() << PrintReg(Reg, TRI) 1808 << " is saved low register, RegDeficit = " << RegDeficit 1809 << "\n"); 1810 } else { 1811 AvailableRegs.push_back(Reg); 1812 DEBUG(dbgs() 1813 << PrintReg(Reg, TRI) 1814 << " is non-saved low register, adding to AvailableRegs\n"); 1815 } 1816 } 1817 1818 // r7 can be used if it is not being used as the frame pointer. 1819 if (!HasFP) { 1820 if (SavedRegs.test(ARM::R7)) { 1821 --RegDeficit; 1822 DEBUG(dbgs() << "%R7 is saved low register, RegDeficit = " 1823 << RegDeficit << "\n"); 1824 } else { 1825 AvailableRegs.push_back(ARM::R7); 1826 DEBUG(dbgs() 1827 << "%R7 is non-saved low register, adding to AvailableRegs\n"); 1828 } 1829 } 1830 1831 // Each of r8-r11 needs to be copied to a low register, then pushed. 1832 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 1833 if (SavedRegs.test(Reg)) { 1834 ++RegDeficit; 1835 DEBUG(dbgs() << PrintReg(Reg, TRI) 1836 << " is saved high register, RegDeficit = " << RegDeficit 1837 << "\n"); 1838 } 1839 } 1840 1841 // LR can only be used by PUSH, not POP, and can't be used at all if the 1842 // llvm.returnaddress intrinsic is used. This is only worth doing if we 1843 // are more limited at function entry than exit. 1844 if ((EntryRegDeficit > ExitRegDeficit) && 1845 !(MF.getRegInfo().isLiveIn(ARM::LR) && 1846 MF.getFrameInfo().isReturnAddressTaken())) { 1847 if (SavedRegs.test(ARM::LR)) { 1848 --RegDeficit; 1849 DEBUG(dbgs() << "%LR is saved register, RegDeficit = " << RegDeficit 1850 << "\n"); 1851 } else { 1852 AvailableRegs.push_back(ARM::LR); 1853 DEBUG(dbgs() << "%LR is not saved, adding to AvailableRegs\n"); 1854 } 1855 } 1856 1857 // If there are more high registers that need pushing than low registers 1858 // available, push some more low registers so that we can use fewer push 1859 // instructions. This might not reduce RegDeficit all the way to zero, 1860 // because we can only guarantee that r4-r6 are available, but r8-r11 may 1861 // need saving. 1862 DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 1863 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 1864 unsigned Reg = AvailableRegs.pop_back_val(); 1865 DEBUG(dbgs() << "Spilling " << PrintReg(Reg, TRI) 1866 << " to make up reg deficit\n"); 1867 SavedRegs.set(Reg); 1868 NumGPRSpills++; 1869 CS1Spilled = true; 1870 ExtraCSSpill = true; 1871 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 1872 if (Reg == ARM::LR) 1873 LRSpilled = true; 1874 } 1875 DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit << "\n"); 1876 } 1877 1878 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 1879 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 1880 if (!LRSpilled && CS1Spilled) { 1881 SavedRegs.set(ARM::LR); 1882 NumGPRSpills++; 1883 SmallVectorImpl<unsigned>::iterator LRPos; 1884 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 1885 if (LRPos != UnspilledCS1GPRs.end()) 1886 UnspilledCS1GPRs.erase(LRPos); 1887 1888 ForceLRSpill = false; 1889 ExtraCSSpill = true; 1890 } 1891 1892 // If stack and double are 8-byte aligned and we are spilling an odd number 1893 // of GPRs, spill one extra callee save GPR so we won't have to pad between 1894 // the integer and double callee save areas. 1895 DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 1896 unsigned TargetAlign = getStackAlignment(); 1897 if (TargetAlign >= 8 && (NumGPRSpills & 1)) { 1898 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 1899 for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) { 1900 unsigned Reg = UnspilledCS1GPRs[i]; 1901 // Don't spill high register if the function is thumb. In the case of 1902 // Windows on ARM, accept R11 (frame pointer) 1903 if (!AFI->isThumbFunction() || 1904 (STI.isTargetWindows() && Reg == ARM::R11) || 1905 isARMLowRegister(Reg) || Reg == ARM::LR) { 1906 SavedRegs.set(Reg); 1907 DEBUG(dbgs() << "Spilling " << PrintReg(Reg, TRI) 1908 << " to make up alignment\n"); 1909 if (!MRI.isReserved(Reg)) 1910 ExtraCSSpill = true; 1911 break; 1912 } 1913 } 1914 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 1915 unsigned Reg = UnspilledCS2GPRs.front(); 1916 SavedRegs.set(Reg); 1917 DEBUG(dbgs() << "Spilling " << PrintReg(Reg, TRI) 1918 << " to make up alignment\n"); 1919 if (!MRI.isReserved(Reg)) 1920 ExtraCSSpill = true; 1921 } 1922 } 1923 1924 // Estimate if we might need to scavenge a register at some point in order 1925 // to materialize a stack offset. If so, either spill one additional 1926 // callee-saved register or reserve a special spill slot to facilitate 1927 // register scavenging. Thumb1 needs a spill slot for stack pointer 1928 // adjustments also, even when the frame itself is small. 1929 if (BigFrameOffsets && !ExtraCSSpill) { 1930 // If any non-reserved CS register isn't spilled, just spill one or two 1931 // extra. That should take care of it! 1932 unsigned NumExtras = TargetAlign / 4; 1933 SmallVector<unsigned, 2> Extras; 1934 while (NumExtras && !UnspilledCS1GPRs.empty()) { 1935 unsigned Reg = UnspilledCS1GPRs.back(); 1936 UnspilledCS1GPRs.pop_back(); 1937 if (!MRI.isReserved(Reg) && 1938 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg) || 1939 Reg == ARM::LR)) { 1940 Extras.push_back(Reg); 1941 NumExtras--; 1942 } 1943 } 1944 // For non-Thumb1 functions, also check for hi-reg CS registers 1945 if (!AFI->isThumb1OnlyFunction()) { 1946 while (NumExtras && !UnspilledCS2GPRs.empty()) { 1947 unsigned Reg = UnspilledCS2GPRs.back(); 1948 UnspilledCS2GPRs.pop_back(); 1949 if (!MRI.isReserved(Reg)) { 1950 Extras.push_back(Reg); 1951 NumExtras--; 1952 } 1953 } 1954 } 1955 if (Extras.size() && NumExtras == 0) { 1956 for (unsigned i = 0, e = Extras.size(); i != e; ++i) { 1957 SavedRegs.set(Extras[i]); 1958 } 1959 } else if (!AFI->isThumb1OnlyFunction()) { 1960 // note: Thumb1 functions spill to R12, not the stack. Reserve a slot 1961 // closest to SP or frame pointer. 1962 assert(RS && "Register scavenging not provided"); 1963 const TargetRegisterClass *RC = &ARM::GPRRegClass; 1964 RS->addScavengingFrameIndex(MFI.CreateStackObject(RC->getSize(), 1965 RC->getAlignment(), 1966 false)); 1967 } 1968 } 1969 } 1970 1971 if (ForceLRSpill) { 1972 SavedRegs.set(ARM::LR); 1973 AFI->setLRIsSpilledForFarJump(true); 1974 } 1975 } 1976 1977 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 1978 MachineFunction &MF, MachineBasicBlock &MBB, 1979 MachineBasicBlock::iterator I) const { 1980 const ARMBaseInstrInfo &TII = 1981 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1982 if (!hasReservedCallFrame(MF)) { 1983 // If we have alloca, convert as follows: 1984 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 1985 // ADJCALLSTACKUP -> add, sp, sp, amount 1986 MachineInstr &Old = *I; 1987 DebugLoc dl = Old.getDebugLoc(); 1988 unsigned Amount = TII.getFrameSize(Old); 1989 if (Amount != 0) { 1990 // We need to keep the stack aligned properly. To do this, we round the 1991 // amount of space needed for the outgoing arguments up to the next 1992 // alignment boundary. 1993 Amount = alignSPAdjust(Amount); 1994 1995 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1996 assert(!AFI->isThumb1OnlyFunction() && 1997 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 1998 bool isARM = !AFI->isThumbFunction(); 1999 2000 // Replace the pseudo instruction with a new instruction... 2001 unsigned Opc = Old.getOpcode(); 2002 int PIdx = Old.findFirstPredOperandIdx(); 2003 ARMCC::CondCodes Pred = 2004 (PIdx == -1) ? ARMCC::AL 2005 : (ARMCC::CondCodes)Old.getOperand(PIdx).getImm(); 2006 unsigned PredReg = TII.getFramePred(Old); 2007 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 2008 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 2009 Pred, PredReg); 2010 } else { 2011 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 2012 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 2013 Pred, PredReg); 2014 } 2015 } 2016 } 2017 return MBB.erase(I); 2018 } 2019 2020 /// Get the minimum constant for ARM that is greater than or equal to the 2021 /// argument. In ARM, constants can have any value that can be produced by 2022 /// rotating an 8-bit value to the right by an even number of bits within a 2023 /// 32-bit word. 2024 static uint32_t alignToARMConstant(uint32_t Value) { 2025 unsigned Shifted = 0; 2026 2027 if (Value == 0) 2028 return 0; 2029 2030 while (!(Value & 0xC0000000)) { 2031 Value = Value << 2; 2032 Shifted += 2; 2033 } 2034 2035 bool Carry = (Value & 0x00FFFFFF); 2036 Value = ((Value & 0xFF000000) >> 24) + Carry; 2037 2038 if (Value & 0x0000100) 2039 Value = Value & 0x000001FC; 2040 2041 if (Shifted > 24) 2042 Value = Value >> (Shifted - 24); 2043 else 2044 Value = Value << (24 - Shifted); 2045 2046 return Value; 2047 } 2048 2049 // The stack limit in the TCB is set to this many bytes above the actual 2050 // stack limit. 2051 static const uint64_t kSplitStackAvailable = 256; 2052 2053 // Adjust the function prologue to enable split stacks. This currently only 2054 // supports android and linux. 2055 // 2056 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 2057 // must be well defined in order to allow for consistent implementations of the 2058 // __morestack helper function. The ABI is also not a normal ABI in that it 2059 // doesn't follow the normal calling conventions because this allows the 2060 // prologue of each function to be optimized further. 2061 // 2062 // Currently, the ABI looks like (when calling __morestack) 2063 // 2064 // * r4 holds the minimum stack size requested for this function call 2065 // * r5 holds the stack size of the arguments to the function 2066 // * the beginning of the function is 3 instructions after the call to 2067 // __morestack 2068 // 2069 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 2070 // place the arguments on to the new stack, and the 3-instruction knowledge to 2071 // jump directly to the body of the function when working on the new stack. 2072 // 2073 // An old (and possibly no longer compatible) implementation of __morestack for 2074 // ARM can be found at [1]. 2075 // 2076 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 2077 void ARMFrameLowering::adjustForSegmentedStacks( 2078 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2079 unsigned Opcode; 2080 unsigned CFIIndex; 2081 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 2082 bool Thumb = ST->isThumb(); 2083 2084 // Sadly, this currently doesn't support varargs, platforms other than 2085 // android/linux. Note that thumb1/thumb2 are support for android/linux. 2086 if (MF.getFunction()->isVarArg()) 2087 report_fatal_error("Segmented stacks do not support vararg functions."); 2088 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 2089 report_fatal_error("Segmented stacks not supported on this platform."); 2090 2091 MachineFrameInfo &MFI = MF.getFrameInfo(); 2092 MachineModuleInfo &MMI = MF.getMMI(); 2093 MCContext &Context = MMI.getContext(); 2094 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 2095 const ARMBaseInstrInfo &TII = 2096 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2097 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 2098 DebugLoc DL; 2099 2100 uint64_t StackSize = MFI.getStackSize(); 2101 2102 // Do not generate a prologue for functions with a stack of size zero 2103 if (StackSize == 0) 2104 return; 2105 2106 // Use R4 and R5 as scratch registers. 2107 // We save R4 and R5 before use and restore them before leaving the function. 2108 unsigned ScratchReg0 = ARM::R4; 2109 unsigned ScratchReg1 = ARM::R5; 2110 uint64_t AlignedStackSize; 2111 2112 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 2113 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 2114 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 2115 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 2116 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 2117 2118 // Grab everything that reaches PrologueMBB to update there liveness as well. 2119 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 2120 SmallVector<MachineBasicBlock *, 2> WalkList; 2121 WalkList.push_back(&PrologueMBB); 2122 2123 do { 2124 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 2125 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 2126 if (BeforePrologueRegion.insert(PredBB).second) 2127 WalkList.push_back(PredBB); 2128 } 2129 } while (!WalkList.empty()); 2130 2131 // The order in that list is important. 2132 // The blocks will all be inserted before PrologueMBB using that order. 2133 // Therefore the block that should appear first in the CFG should appear 2134 // first in the list. 2135 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 2136 PostStackMBB}; 2137 2138 for (MachineBasicBlock *B : AddedBlocks) 2139 BeforePrologueRegion.insert(B); 2140 2141 for (const auto &LI : PrologueMBB.liveins()) { 2142 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 2143 PredBB->addLiveIn(LI); 2144 } 2145 2146 // Remove the newly added blocks from the list, since we know 2147 // we do not have to do the following updates for them. 2148 for (MachineBasicBlock *B : AddedBlocks) { 2149 BeforePrologueRegion.erase(B); 2150 MF.insert(PrologueMBB.getIterator(), B); 2151 } 2152 2153 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 2154 // Make sure the LiveIns are still sorted and unique. 2155 MBB->sortUniqueLiveIns(); 2156 // Replace the edges to PrologueMBB by edges to the sequences 2157 // we are about to add. 2158 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 2159 } 2160 2161 // The required stack size that is aligned to ARM constant criterion. 2162 AlignedStackSize = alignToARMConstant(StackSize); 2163 2164 // When the frame size is less than 256 we just compare the stack 2165 // boundary directly to the value of the stack pointer, per gcc. 2166 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 2167 2168 // We will use two of the callee save registers as scratch registers so we 2169 // need to save those registers onto the stack. 2170 // We will use SR0 to hold stack limit and SR1 to hold the stack size 2171 // requested and arguments for __morestack(). 2172 // SR0: Scratch Register #0 2173 // SR1: Scratch Register #1 2174 // push {SR0, SR1} 2175 if (Thumb) { 2176 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 2177 .add(predOps(ARMCC::AL)) 2178 .addReg(ScratchReg0) 2179 .addReg(ScratchReg1); 2180 } else { 2181 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 2182 .addReg(ARM::SP, RegState::Define) 2183 .addReg(ARM::SP) 2184 .add(predOps(ARMCC::AL)) 2185 .addReg(ScratchReg0) 2186 .addReg(ScratchReg1); 2187 } 2188 2189 // Emit the relevant DWARF information about the change in stack pointer as 2190 // well as where to find both r4 and r5 (the callee-save registers) 2191 CFIIndex = 2192 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -8)); 2193 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2194 .addCFIIndex(CFIIndex); 2195 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2196 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 2197 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2198 .addCFIIndex(CFIIndex); 2199 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2200 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 2201 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2202 .addCFIIndex(CFIIndex); 2203 2204 // mov SR1, sp 2205 if (Thumb) { 2206 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 2207 .addReg(ARM::SP) 2208 .add(predOps(ARMCC::AL)); 2209 } else if (CompareStackPointer) { 2210 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 2211 .addReg(ARM::SP) 2212 .add(predOps(ARMCC::AL)) 2213 .add(condCodeOp()); 2214 } 2215 2216 // sub SR1, sp, #StackSize 2217 if (!CompareStackPointer && Thumb) { 2218 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 2219 .add(condCodeOp()) 2220 .addReg(ScratchReg1) 2221 .addImm(AlignedStackSize) 2222 .add(predOps(ARMCC::AL)); 2223 } else if (!CompareStackPointer) { 2224 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 2225 .addReg(ARM::SP) 2226 .addImm(AlignedStackSize) 2227 .add(predOps(ARMCC::AL)) 2228 .add(condCodeOp()); 2229 } 2230 2231 if (Thumb && ST->isThumb1Only()) { 2232 unsigned PCLabelId = ARMFI->createPICLabelUId(); 2233 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 2234 MF.getFunction()->getContext(), "__STACK_LIMIT", PCLabelId, 0); 2235 MachineConstantPool *MCP = MF.getConstantPool(); 2236 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, 4); 2237 2238 // ldr SR0, [pc, offset(STACK_LIMIT)] 2239 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 2240 .addConstantPoolIndex(CPI) 2241 .add(predOps(ARMCC::AL)); 2242 2243 // ldr SR0, [SR0] 2244 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 2245 .addReg(ScratchReg0) 2246 .addImm(0) 2247 .add(predOps(ARMCC::AL)); 2248 } else { 2249 // Get TLS base address from the coprocessor 2250 // mrc p15, #0, SR0, c13, c0, #3 2251 BuildMI(McrMBB, DL, TII.get(ARM::MRC), ScratchReg0) 2252 .addImm(15) 2253 .addImm(0) 2254 .addImm(13) 2255 .addImm(0) 2256 .addImm(3) 2257 .add(predOps(ARMCC::AL)); 2258 2259 // Use the last tls slot on android and a private field of the TCP on linux. 2260 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 2261 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 2262 2263 // Get the stack limit from the right offset 2264 // ldr SR0, [sr0, #4 * TlsOffset] 2265 BuildMI(GetMBB, DL, TII.get(ARM::LDRi12), ScratchReg0) 2266 .addReg(ScratchReg0) 2267 .addImm(4 * TlsOffset) 2268 .add(predOps(ARMCC::AL)); 2269 } 2270 2271 // Compare stack limit with stack size requested. 2272 // cmp SR0, SR1 2273 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 2274 BuildMI(GetMBB, DL, TII.get(Opcode)) 2275 .addReg(ScratchReg0) 2276 .addReg(ScratchReg1) 2277 .add(predOps(ARMCC::AL)); 2278 2279 // This jump is taken if StackLimit < SP - stack required. 2280 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 2281 BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB) 2282 .addImm(ARMCC::LO) 2283 .addReg(ARM::CPSR); 2284 2285 2286 // Calling __morestack(StackSize, Size of stack arguments). 2287 // __morestack knows that the stack size requested is in SR0(r4) 2288 // and amount size of stack arguments is in SR1(r5). 2289 2290 // Pass first argument for the __morestack by Scratch Register #0. 2291 // The amount size of stack required 2292 if (Thumb) { 2293 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 2294 .add(condCodeOp()) 2295 .addImm(AlignedStackSize) 2296 .add(predOps(ARMCC::AL)); 2297 } else { 2298 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 2299 .addImm(AlignedStackSize) 2300 .add(predOps(ARMCC::AL)) 2301 .add(condCodeOp()); 2302 } 2303 // Pass second argument for the __morestack by Scratch Register #1. 2304 // The amount size of stack consumed to save function arguments. 2305 if (Thumb) { 2306 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 2307 .add(condCodeOp()) 2308 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2309 .add(predOps(ARMCC::AL)); 2310 } else { 2311 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 2312 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2313 .add(predOps(ARMCC::AL)) 2314 .add(condCodeOp()); 2315 } 2316 2317 // push {lr} - Save return address of this function. 2318 if (Thumb) { 2319 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 2320 .add(predOps(ARMCC::AL)) 2321 .addReg(ARM::LR); 2322 } else { 2323 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 2324 .addReg(ARM::SP, RegState::Define) 2325 .addReg(ARM::SP) 2326 .add(predOps(ARMCC::AL)) 2327 .addReg(ARM::LR); 2328 } 2329 2330 // Emit the DWARF info about the change in stack as well as where to find the 2331 // previous link register 2332 CFIIndex = 2333 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -12)); 2334 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2335 .addCFIIndex(CFIIndex); 2336 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2337 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 2338 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2339 .addCFIIndex(CFIIndex); 2340 2341 // Call __morestack(). 2342 if (Thumb) { 2343 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 2344 .add(predOps(ARMCC::AL)) 2345 .addExternalSymbol("__morestack"); 2346 } else { 2347 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 2348 .addExternalSymbol("__morestack"); 2349 } 2350 2351 // pop {lr} - Restore return address of this original function. 2352 if (Thumb) { 2353 if (ST->isThumb1Only()) { 2354 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2355 .add(predOps(ARMCC::AL)) 2356 .addReg(ScratchReg0); 2357 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 2358 .addReg(ScratchReg0) 2359 .add(predOps(ARMCC::AL)); 2360 } else { 2361 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 2362 .addReg(ARM::LR, RegState::Define) 2363 .addReg(ARM::SP, RegState::Define) 2364 .addReg(ARM::SP) 2365 .addImm(4) 2366 .add(predOps(ARMCC::AL)); 2367 } 2368 } else { 2369 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2370 .addReg(ARM::SP, RegState::Define) 2371 .addReg(ARM::SP) 2372 .add(predOps(ARMCC::AL)) 2373 .addReg(ARM::LR); 2374 } 2375 2376 // Restore SR0 and SR1 in case of __morestack() was called. 2377 // __morestack() will skip PostStackMBB block so we need to restore 2378 // scratch registers from here. 2379 // pop {SR0, SR1} 2380 if (Thumb) { 2381 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2382 .add(predOps(ARMCC::AL)) 2383 .addReg(ScratchReg0) 2384 .addReg(ScratchReg1); 2385 } else { 2386 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2387 .addReg(ARM::SP, RegState::Define) 2388 .addReg(ARM::SP) 2389 .add(predOps(ARMCC::AL)) 2390 .addReg(ScratchReg0) 2391 .addReg(ScratchReg1); 2392 } 2393 2394 // Update the CFA offset now that we've popped 2395 CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); 2396 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2397 .addCFIIndex(CFIIndex); 2398 2399 // bx lr - Return from this function. 2400 Opcode = Thumb ? ARM::tBX_RET : ARM::BX_RET; 2401 BuildMI(AllocMBB, DL, TII.get(Opcode)).add(predOps(ARMCC::AL)); 2402 2403 // Restore SR0 and SR1 in case of __morestack() was not called. 2404 // pop {SR0, SR1} 2405 if (Thumb) { 2406 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 2407 .add(predOps(ARMCC::AL)) 2408 .addReg(ScratchReg0) 2409 .addReg(ScratchReg1); 2410 } else { 2411 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 2412 .addReg(ARM::SP, RegState::Define) 2413 .addReg(ARM::SP) 2414 .add(predOps(ARMCC::AL)) 2415 .addReg(ScratchReg0) 2416 .addReg(ScratchReg1); 2417 } 2418 2419 // Update the CFA offset now that we've popped 2420 CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); 2421 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2422 .addCFIIndex(CFIIndex); 2423 2424 // Tell debuggers that r4 and r5 are now the same as they were in the 2425 // previous function, that they're the "Same Value". 2426 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2427 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 2428 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2429 .addCFIIndex(CFIIndex); 2430 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2431 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 2432 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2433 .addCFIIndex(CFIIndex); 2434 2435 // Organizing MBB lists 2436 PostStackMBB->addSuccessor(&PrologueMBB); 2437 2438 AllocMBB->addSuccessor(PostStackMBB); 2439 2440 GetMBB->addSuccessor(PostStackMBB); 2441 GetMBB->addSuccessor(AllocMBB); 2442 2443 McrMBB->addSuccessor(GetMBB); 2444 2445 PrevStackMBB->addSuccessor(McrMBB); 2446 2447 #ifdef EXPENSIVE_CHECKS 2448 MF.verify(); 2449 #endif 2450 } 2451