1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the ARM implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 // 13 // This file contains the ARM implementation of TargetFrameLowering class. 14 // 15 // On ARM, stack frames are structured as follows: 16 // 17 // The stack grows downward. 18 // 19 // All of the individual frame areas on the frame below are optional, i.e. it's 20 // possible to create a function so that the particular area isn't present 21 // in the frame. 22 // 23 // At function entry, the "frame" looks as follows: 24 // 25 // | | Higher address 26 // |-----------------------------------| 27 // | | 28 // | arguments passed on the stack | 29 // | | 30 // |-----------------------------------| <- sp 31 // | | Lower address 32 // 33 // 34 // After the prologue has run, the frame has the following general structure. 35 // Technically the last frame area (VLAs) doesn't get created until in the 36 // main function body, after the prologue is run. However, it's depicted here 37 // for completeness. 38 // 39 // | | Higher address 40 // |-----------------------------------| 41 // | | 42 // | arguments passed on the stack | 43 // | | 44 // |-----------------------------------| <- (sp at function entry) 45 // | | 46 // | varargs from registers | 47 // | | 48 // |-----------------------------------| 49 // | | 50 // | prev_lr | 51 // | prev_fp | 52 // | (a.k.a. "frame record") | 53 // | | 54 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11) 55 // | | 56 // | callee-saved gpr registers | 57 // | | 58 // |-----------------------------------| 59 // | | 60 // | callee-saved fp/simd regs | 61 // | | 62 // |-----------------------------------| 63 // |.empty.space.to.make.part.below....| 64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at 65 // |.the.standard.8-byte.alignment.....| compile time; if present) 66 // |-----------------------------------| 67 // | | 68 // | local variables of fixed size | 69 // | including spill slots | 70 // |-----------------------------------| <- base pointer (not defined by ABI, 71 // |.variable-sized.local.variables....| LLVM chooses r6) 72 // |.(VLAs)............................| (size of this area is unknown at 73 // |...................................| compile time) 74 // |-----------------------------------| <- sp 75 // | | Lower address 76 // 77 // 78 // To access the data in a frame, at-compile time, a constant offset must be 79 // computable from one of the pointers (fp, bp, sp) to access it. The size 80 // of the areas with a dotted background cannot be computed at compile-time 81 // if they are present, making it required to have all three of fp, bp and 82 // sp to be set up to be able to access all contents in the frame areas, 83 // assuming all of the frame areas are non-empty. 84 // 85 // For most functions, some of the frame areas are empty. For those functions, 86 // it may not be necessary to set up fp or bp: 87 // * A base pointer is definitely needed when there are both VLAs and local 88 // variables with more-than-default alignment requirements. 89 // * A frame pointer is definitely needed when there are local variables with 90 // more-than-default alignment requirements. 91 // 92 // In some cases when a base pointer is not strictly needed, it is generated 93 // anyway when offsets from the frame pointer to access local variables become 94 // so large that the offset can't be encoded in the immediate fields of loads 95 // or stores. 96 // 97 // The frame pointer might be chosen to be r7 or r11, depending on the target 98 // architecture and operating system. See ARMSubtarget::getFramePointerReg for 99 // details. 100 // 101 // Outgoing function arguments must be at the bottom of the stack frame when 102 // calling another function. If we do not have variable-sized stack objects, we 103 // can allocate a "reserved call frame" area at the bottom of the local 104 // variable area, large enough for all outgoing calls. If we do have VLAs, then 105 // the stack pointer must be decremented and incremented around each call to 106 // make space for the arguments below the VLAs. 107 // 108 //===----------------------------------------------------------------------===// 109 110 #include "ARMFrameLowering.h" 111 #include "ARMBaseInstrInfo.h" 112 #include "ARMBaseRegisterInfo.h" 113 #include "ARMConstantPoolValue.h" 114 #include "ARMMachineFunctionInfo.h" 115 #include "ARMSubtarget.h" 116 #include "MCTargetDesc/ARMAddressingModes.h" 117 #include "MCTargetDesc/ARMBaseInfo.h" 118 #include "Utils/ARMBaseInfo.h" 119 #include "llvm/ADT/BitVector.h" 120 #include "llvm/ADT/STLExtras.h" 121 #include "llvm/ADT/SmallPtrSet.h" 122 #include "llvm/ADT/SmallVector.h" 123 #include "llvm/CodeGen/MachineBasicBlock.h" 124 #include "llvm/CodeGen/MachineConstantPool.h" 125 #include "llvm/CodeGen/MachineFrameInfo.h" 126 #include "llvm/CodeGen/MachineFunction.h" 127 #include "llvm/CodeGen/MachineInstr.h" 128 #include "llvm/CodeGen/MachineInstrBuilder.h" 129 #include "llvm/CodeGen/MachineJumpTableInfo.h" 130 #include "llvm/CodeGen/MachineModuleInfo.h" 131 #include "llvm/CodeGen/MachineOperand.h" 132 #include "llvm/CodeGen/MachineRegisterInfo.h" 133 #include "llvm/CodeGen/RegisterScavenging.h" 134 #include "llvm/CodeGen/TargetInstrInfo.h" 135 #include "llvm/CodeGen/TargetOpcodes.h" 136 #include "llvm/CodeGen/TargetRegisterInfo.h" 137 #include "llvm/CodeGen/TargetSubtargetInfo.h" 138 #include "llvm/IR/Attributes.h" 139 #include "llvm/IR/CallingConv.h" 140 #include "llvm/IR/DebugLoc.h" 141 #include "llvm/IR/Function.h" 142 #include "llvm/MC/MCAsmInfo.h" 143 #include "llvm/MC/MCContext.h" 144 #include "llvm/MC/MCDwarf.h" 145 #include "llvm/MC/MCInstrDesc.h" 146 #include "llvm/MC/MCRegisterInfo.h" 147 #include "llvm/Support/CodeGen.h" 148 #include "llvm/Support/CommandLine.h" 149 #include "llvm/Support/Compiler.h" 150 #include "llvm/Support/Debug.h" 151 #include "llvm/Support/ErrorHandling.h" 152 #include "llvm/Support/MathExtras.h" 153 #include "llvm/Support/raw_ostream.h" 154 #include "llvm/Target/TargetMachine.h" 155 #include "llvm/Target/TargetOptions.h" 156 #include <algorithm> 157 #include <cassert> 158 #include <cstddef> 159 #include <cstdint> 160 #include <iterator> 161 #include <utility> 162 #include <vector> 163 164 #define DEBUG_TYPE "arm-frame-lowering" 165 166 using namespace llvm; 167 168 static cl::opt<bool> 169 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 170 cl::desc("Align ARM NEON spills in prolog and epilog")); 171 172 static MachineBasicBlock::iterator 173 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 174 unsigned NumAlignedDPRCS2Regs); 175 176 enum class SpillArea { 177 GPRCS1, 178 GPRCS2, 179 DPRCS1, 180 DPRCS2, 181 FPCXT, 182 }; 183 184 /// Get the spill area that Reg should be saved into in the prologue. 185 SpillArea getSpillArea(Register Reg, 186 ARMSubtarget::PushPopSplitVariation Variation, 187 unsigned NumAlignedDPRCS2Regs, 188 const ARMBaseRegisterInfo *RegInfo) { 189 // NoSplit: 190 // push {r0-r12, lr} GPRCS1 191 // vpush {r8-d15} DPRCS1 192 // 193 // SplitR7: 194 // push {r0-r7, lr} GPRCS1 195 // push {r8-r12} GPRCS2 196 // vpush {r8-d15} DPRCS1 197 // 198 // SplitR11WindowsSEH: 199 // push {r0-r10, r12} GPRCS1 200 // vpush {r8-d15} DPRCS1 201 // push {r11, lr} GPRCS2 202 203 // If FPCXTNS is spilled (for CMSE secure entryfunctions), it is always at 204 // the top of the stack frame. 205 // The DPRCS2 region is used for ABIs which only guarantee 4-byte alignment 206 // of SP. If used, it will be below the other save areas, after the stack has 207 // been re-aligned. 208 209 switch (Reg) { 210 default: 211 dbgs() << "Don't know where to spill " << printReg(Reg, RegInfo) << "\n"; 212 llvm_unreachable("Don't know where to spill this register"); 213 break; 214 215 case ARM::FPCXTNS: 216 return SpillArea::FPCXT; 217 218 case ARM::R0: 219 case ARM::R1: 220 case ARM::R2: 221 case ARM::R3: 222 case ARM::R4: 223 case ARM::R5: 224 case ARM::R6: 225 case ARM::R7: 226 return SpillArea::GPRCS1; 227 228 case ARM::R8: 229 case ARM::R9: 230 case ARM::R10: 231 if (Variation == ARMSubtarget::SplitR7) 232 return SpillArea::GPRCS2; 233 else 234 return SpillArea::GPRCS1; 235 236 case ARM::R11: 237 if (Variation == ARMSubtarget::NoSplit) 238 return SpillArea::GPRCS1; 239 else 240 return SpillArea::GPRCS2; 241 242 case ARM::R12: 243 if (Variation == ARMSubtarget::SplitR7) 244 return SpillArea::GPRCS2; 245 else 246 return SpillArea::GPRCS1; 247 248 case ARM::LR: 249 if (Variation == ARMSubtarget::SplitR11WindowsSEH) 250 return SpillArea::GPRCS2; 251 else 252 return SpillArea::GPRCS1; 253 254 case ARM::D0: 255 case ARM::D1: 256 case ARM::D2: 257 case ARM::D3: 258 case ARM::D4: 259 case ARM::D5: 260 case ARM::D6: 261 case ARM::D7: 262 return SpillArea::DPRCS1; 263 264 case ARM::D8: 265 case ARM::D9: 266 case ARM::D10: 267 case ARM::D11: 268 case ARM::D12: 269 case ARM::D13: 270 case ARM::D14: 271 case ARM::D15: 272 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 273 return SpillArea::DPRCS2; 274 else 275 return SpillArea::DPRCS1; 276 277 case ARM::D16: 278 case ARM::D17: 279 case ARM::D18: 280 case ARM::D19: 281 case ARM::D20: 282 case ARM::D21: 283 case ARM::D22: 284 case ARM::D23: 285 case ARM::D24: 286 case ARM::D25: 287 case ARM::D26: 288 case ARM::D27: 289 case ARM::D28: 290 case ARM::D29: 291 case ARM::D30: 292 case ARM::D31: 293 return SpillArea::DPRCS1; 294 } 295 } 296 297 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 298 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)), 299 STI(sti) {} 300 301 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const { 302 // iOS always has a FP for backtracking, force other targets to keep their FP 303 // when doing FastISel. The emitted code is currently superior, and in cases 304 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 305 return MF.getSubtarget<ARMSubtarget>().useFastISel(); 306 } 307 308 /// Returns true if the target can safely skip saving callee-saved registers 309 /// for noreturn nounwind functions. 310 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const { 311 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) && 312 MF.getFunction().hasFnAttribute(Attribute::NoUnwind) && 313 !MF.getFunction().hasFnAttribute(Attribute::UWTable)); 314 315 // Frame pointer and link register are not treated as normal CSR, thus we 316 // can always skip CSR saves for nonreturning functions. 317 return true; 318 } 319 320 /// hasFP - Return true if the specified function should have a dedicated frame 321 /// pointer register. This is true if the function has variable sized allocas 322 /// or if frame pointer elimination is disabled. 323 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { 324 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 325 const MachineFrameInfo &MFI = MF.getFrameInfo(); 326 327 // ABI-required frame pointer. 328 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 329 return true; 330 331 // Frame pointer required for use within this function. 332 return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 333 MFI.isFrameAddressTaken()); 334 } 335 336 /// isFPReserved - Return true if the frame pointer register should be 337 /// considered a reserved register on the scope of the specified function. 338 bool ARMFrameLowering::isFPReserved(const MachineFunction &MF) const { 339 return hasFP(MF) || MF.getTarget().Options.FramePointerIsReserved(MF); 340 } 341 342 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 343 /// not required, we reserve argument space for call sites in the function 344 /// immediately on entry to the current function. This eliminates the need for 345 /// add/sub sp brackets around call sites. Returns true if the call frame is 346 /// included as part of the stack frame. 347 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 348 const MachineFrameInfo &MFI = MF.getFrameInfo(); 349 unsigned CFSize = MFI.getMaxCallFrameSize(); 350 // It's not always a good idea to include the call frame as part of the 351 // stack frame. ARM (especially Thumb) has small immediate offset to 352 // address the stack frame. So a large call frame can cause poor codegen 353 // and may even makes it impossible to scavenge a register. 354 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 355 return false; 356 357 return !MFI.hasVarSizedObjects(); 358 } 359 360 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 361 /// call frame pseudos can be simplified. Unlike most targets, having a FP 362 /// is not sufficient here since we still may reference some objects via SP 363 /// even when FP is available in Thumb2 mode. 364 bool 365 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 366 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 367 } 368 369 // Returns how much of the incoming argument stack area we should clean up in an 370 // epilogue. For the C calling convention this will be 0, for guaranteed tail 371 // call conventions it can be positive (a normal return or a tail call to a 372 // function that uses less stack space for arguments) or negative (for a tail 373 // call to a function that needs more stack space than us for arguments). 374 static int getArgumentStackToRestore(MachineFunction &MF, 375 MachineBasicBlock &MBB) { 376 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 377 bool IsTailCallReturn = false; 378 if (MBB.end() != MBBI) { 379 unsigned RetOpcode = MBBI->getOpcode(); 380 IsTailCallReturn = RetOpcode == ARM::TCRETURNdi || 381 RetOpcode == ARM::TCRETURNri || 382 RetOpcode == ARM::TCRETURNrinotr12; 383 } 384 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 385 386 int ArgumentPopSize = 0; 387 if (IsTailCallReturn) { 388 MachineOperand &StackAdjust = MBBI->getOperand(1); 389 390 // For a tail-call in a callee-pops-arguments environment, some or all of 391 // the stack may actually be in use for the call's arguments, this is 392 // calculated during LowerCall and consumed here... 393 ArgumentPopSize = StackAdjust.getImm(); 394 } else { 395 // ... otherwise the amount to pop is *all* of the argument space, 396 // conveniently stored in the MachineFunctionInfo by 397 // LowerFormalArguments. This will, of course, be zero for the C calling 398 // convention. 399 ArgumentPopSize = AFI->getArgumentStackToRestore(); 400 } 401 402 return ArgumentPopSize; 403 } 404 405 static bool needsWinCFI(const MachineFunction &MF) { 406 const Function &F = MF.getFunction(); 407 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 408 F.needsUnwindTableEntry(); 409 } 410 411 // Given a load or a store instruction, generate an appropriate unwinding SEH 412 // code on Windows. 413 static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI, 414 const TargetInstrInfo &TII, 415 unsigned Flags) { 416 unsigned Opc = MBBI->getOpcode(); 417 MachineBasicBlock *MBB = MBBI->getParent(); 418 MachineFunction &MF = *MBB->getParent(); 419 DebugLoc DL = MBBI->getDebugLoc(); 420 MachineInstrBuilder MIB; 421 const ARMSubtarget &Subtarget = MF.getSubtarget<ARMSubtarget>(); 422 const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 423 424 Flags |= MachineInstr::NoMerge; 425 426 switch (Opc) { 427 default: 428 report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc)); 429 break; 430 case ARM::t2ADDri: // add.w r11, sp, #xx 431 case ARM::t2ADDri12: // add.w r11, sp, #xx 432 case ARM::t2MOVTi16: // movt r4, #xx 433 case ARM::tBL: // bl __chkstk 434 // These are harmless if used for just setting up a frame pointer, 435 // but that frame pointer can't be relied upon for unwinding, unless 436 // set up with SEH_SaveSP. 437 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 438 .addImm(/*Wide=*/1) 439 .setMIFlags(Flags); 440 break; 441 442 case ARM::t2MOVi16: { // mov(w) r4, #xx 443 bool Wide = MBBI->getOperand(1).getImm() >= 256; 444 if (!Wide) { 445 MachineInstrBuilder NewInstr = 446 BuildMI(MF, DL, TII.get(ARM::tMOVi8)).setMIFlags(MBBI->getFlags()); 447 NewInstr.add(MBBI->getOperand(0)); 448 NewInstr.add(t1CondCodeOp(/*isDead=*/true)); 449 for (MachineOperand &MO : llvm::drop_begin(MBBI->operands())) 450 NewInstr.add(MO); 451 MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr); 452 MBB->erase(MBBI); 453 MBBI = NewMBBI; 454 } 455 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)).addImm(Wide).setMIFlags(Flags); 456 break; 457 } 458 459 case ARM::tBLXr: // blx r12 (__chkstk) 460 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 461 .addImm(/*Wide=*/0) 462 .setMIFlags(Flags); 463 break; 464 465 case ARM::t2MOVi32imm: // movw+movt 466 // This pseudo instruction expands into two mov instructions. If the 467 // second operand is a symbol reference, this will stay as two wide 468 // instructions, movw+movt. If they're immediates, the first one can 469 // end up as a narrow mov though. 470 // As two SEH instructions are appended here, they won't get interleaved 471 // between the two final movw/movt instructions, but it doesn't make any 472 // practical difference. 473 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 474 .addImm(/*Wide=*/1) 475 .setMIFlags(Flags); 476 MBB->insertAfter(MBBI, MIB); 477 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 478 .addImm(/*Wide=*/1) 479 .setMIFlags(Flags); 480 break; 481 482 case ARM::t2STR_PRE: 483 if (MBBI->getOperand(0).getReg() == ARM::SP && 484 MBBI->getOperand(2).getReg() == ARM::SP && 485 MBBI->getOperand(3).getImm() == -4) { 486 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 487 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs)) 488 .addImm(1ULL << Reg) 489 .addImm(/*Wide=*/1) 490 .setMIFlags(Flags); 491 } else { 492 report_fatal_error("No matching SEH Opcode for t2STR_PRE"); 493 } 494 break; 495 496 case ARM::t2LDR_POST: 497 if (MBBI->getOperand(1).getReg() == ARM::SP && 498 MBBI->getOperand(2).getReg() == ARM::SP && 499 MBBI->getOperand(3).getImm() == 4) { 500 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 501 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs)) 502 .addImm(1ULL << Reg) 503 .addImm(/*Wide=*/1) 504 .setMIFlags(Flags); 505 } else { 506 report_fatal_error("No matching SEH Opcode for t2LDR_POST"); 507 } 508 break; 509 510 case ARM::t2LDMIA_RET: 511 case ARM::t2LDMIA_UPD: 512 case ARM::t2STMDB_UPD: { 513 unsigned Mask = 0; 514 bool Wide = false; 515 for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) { 516 const MachineOperand &MO = MBBI->getOperand(i); 517 if (!MO.isReg() || MO.isImplicit()) 518 continue; 519 unsigned Reg = RegInfo->getSEHRegNum(MO.getReg()); 520 if (Reg == 15) 521 Reg = 14; 522 if (Reg >= 8 && Reg <= 13) 523 Wide = true; 524 else if (Opc == ARM::t2LDMIA_UPD && Reg == 14) 525 Wide = true; 526 Mask |= 1 << Reg; 527 } 528 if (!Wide) { 529 unsigned NewOpc; 530 switch (Opc) { 531 case ARM::t2LDMIA_RET: 532 NewOpc = ARM::tPOP_RET; 533 break; 534 case ARM::t2LDMIA_UPD: 535 NewOpc = ARM::tPOP; 536 break; 537 case ARM::t2STMDB_UPD: 538 NewOpc = ARM::tPUSH; 539 break; 540 default: 541 llvm_unreachable(""); 542 } 543 MachineInstrBuilder NewInstr = 544 BuildMI(MF, DL, TII.get(NewOpc)).setMIFlags(MBBI->getFlags()); 545 for (unsigned i = 2, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) 546 NewInstr.add(MBBI->getOperand(i)); 547 MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr); 548 MBB->erase(MBBI); 549 MBBI = NewMBBI; 550 } 551 unsigned SEHOpc = 552 (Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs; 553 MIB = BuildMI(MF, DL, TII.get(SEHOpc)) 554 .addImm(Mask) 555 .addImm(Wide ? 1 : 0) 556 .setMIFlags(Flags); 557 break; 558 } 559 case ARM::VSTMDDB_UPD: 560 case ARM::VLDMDIA_UPD: { 561 int First = -1, Last = 0; 562 for (const MachineOperand &MO : llvm::drop_begin(MBBI->operands(), 4)) { 563 unsigned Reg = RegInfo->getSEHRegNum(MO.getReg()); 564 if (First == -1) 565 First = Reg; 566 Last = Reg; 567 } 568 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs)) 569 .addImm(First) 570 .addImm(Last) 571 .setMIFlags(Flags); 572 break; 573 } 574 case ARM::tSUBspi: 575 case ARM::tADDspi: 576 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc)) 577 .addImm(MBBI->getOperand(2).getImm() * 4) 578 .addImm(/*Wide=*/0) 579 .setMIFlags(Flags); 580 break; 581 case ARM::t2SUBspImm: 582 case ARM::t2SUBspImm12: 583 case ARM::t2ADDspImm: 584 case ARM::t2ADDspImm12: 585 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc)) 586 .addImm(MBBI->getOperand(2).getImm()) 587 .addImm(/*Wide=*/1) 588 .setMIFlags(Flags); 589 break; 590 591 case ARM::tMOVr: 592 if (MBBI->getOperand(1).getReg() == ARM::SP && 593 (Flags & MachineInstr::FrameSetup)) { 594 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 595 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP)) 596 .addImm(Reg) 597 .setMIFlags(Flags); 598 } else if (MBBI->getOperand(0).getReg() == ARM::SP && 599 (Flags & MachineInstr::FrameDestroy)) { 600 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 601 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP)) 602 .addImm(Reg) 603 .setMIFlags(Flags); 604 } else { 605 report_fatal_error("No SEH Opcode for MOV"); 606 } 607 break; 608 609 case ARM::tBX_RET: 610 case ARM::TCRETURNri: 611 case ARM::TCRETURNrinotr12: 612 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret)) 613 .addImm(/*Wide=*/0) 614 .setMIFlags(Flags); 615 break; 616 617 case ARM::TCRETURNdi: 618 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret)) 619 .addImm(/*Wide=*/1) 620 .setMIFlags(Flags); 621 break; 622 } 623 return MBB->insertAfter(MBBI, MIB); 624 } 625 626 static MachineBasicBlock::iterator 627 initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) { 628 if (MBBI == MBB.begin()) 629 return MachineBasicBlock::iterator(); 630 return std::prev(MBBI); 631 } 632 633 static void insertSEHRange(MachineBasicBlock &MBB, 634 MachineBasicBlock::iterator Start, 635 const MachineBasicBlock::iterator &End, 636 const ARMBaseInstrInfo &TII, unsigned MIFlags) { 637 if (Start.isValid()) 638 Start = std::next(Start); 639 else 640 Start = MBB.begin(); 641 642 for (auto MI = Start; MI != End;) { 643 auto Next = std::next(MI); 644 // Check if this instruction already has got a SEH opcode added. In that 645 // case, don't do this generic mapping. 646 if (Next != End && isSEHInstruction(*Next)) { 647 MI = std::next(Next); 648 while (MI != End && isSEHInstruction(*MI)) 649 ++MI; 650 continue; 651 } 652 insertSEH(MI, TII, MIFlags); 653 MI = Next; 654 } 655 } 656 657 static void emitRegPlusImmediate( 658 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 659 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 660 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 661 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 662 if (isARM) 663 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 664 Pred, PredReg, TII, MIFlags); 665 else 666 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 667 Pred, PredReg, TII, MIFlags); 668 } 669 670 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 671 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 672 const ARMBaseInstrInfo &TII, int NumBytes, 673 unsigned MIFlags = MachineInstr::NoFlags, 674 ARMCC::CondCodes Pred = ARMCC::AL, 675 unsigned PredReg = 0) { 676 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 677 MIFlags, Pred, PredReg); 678 } 679 680 static int sizeOfSPAdjustment(const MachineInstr &MI) { 681 int RegSize; 682 switch (MI.getOpcode()) { 683 case ARM::VSTMDDB_UPD: 684 RegSize = 8; 685 break; 686 case ARM::STMDB_UPD: 687 case ARM::t2STMDB_UPD: 688 RegSize = 4; 689 break; 690 case ARM::t2STR_PRE: 691 case ARM::STR_PRE_IMM: 692 return 4; 693 default: 694 llvm_unreachable("Unknown push or pop like instruction"); 695 } 696 697 int count = 0; 698 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 699 // pred) so the list starts at 4. 700 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 701 count += RegSize; 702 return count; 703 } 704 705 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 706 size_t StackSizeInBytes) { 707 const MachineFrameInfo &MFI = MF.getFrameInfo(); 708 const Function &F = MF.getFunction(); 709 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 710 711 StackProbeSize = 712 F.getFnAttributeAsParsedInteger("stack-probe-size", StackProbeSize); 713 return (StackSizeInBytes >= StackProbeSize) && 714 !F.hasFnAttribute("no-stack-arg-probe"); 715 } 716 717 namespace { 718 719 struct StackAdjustingInsts { 720 struct InstInfo { 721 MachineBasicBlock::iterator I; 722 unsigned SPAdjust; 723 bool BeforeFPSet; 724 725 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 726 void dump() { 727 dbgs() << " " << (BeforeFPSet ? "before-fp " : " ") 728 << "sp-adjust=" << SPAdjust; 729 I->dump(); 730 } 731 #endif 732 }; 733 734 SmallVector<InstInfo, 4> Insts; 735 736 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 737 bool BeforeFPSet = false) { 738 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 739 Insts.push_back(Info); 740 } 741 742 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 743 auto Info = 744 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 745 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 746 Info->SPAdjust += ExtraBytes; 747 } 748 749 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 750 const ARMBaseInstrInfo &TII, bool HasFP) { 751 MachineFunction &MF = *MBB.getParent(); 752 unsigned CFAOffset = 0; 753 for (auto &Info : Insts) { 754 if (HasFP && !Info.BeforeFPSet) 755 return; 756 757 CFAOffset += Info.SPAdjust; 758 unsigned CFIIndex = MF.addFrameInst( 759 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset)); 760 BuildMI(MBB, std::next(Info.I), dl, 761 TII.get(TargetOpcode::CFI_INSTRUCTION)) 762 .addCFIIndex(CFIIndex) 763 .setMIFlags(MachineInstr::FrameSetup); 764 } 765 } 766 767 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 768 void dump() { 769 dbgs() << "StackAdjustingInsts:\n"; 770 for (auto &Info : Insts) 771 Info.dump(); 772 } 773 #endif 774 }; 775 776 } // end anonymous namespace 777 778 /// Emit an instruction sequence that will align the address in 779 /// register Reg by zero-ing out the lower bits. For versions of the 780 /// architecture that support Neon, this must be done in a single 781 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 782 /// single instruction. That function only gets called when optimizing 783 /// spilling of D registers on a core with the Neon instruction set 784 /// present. 785 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 786 const TargetInstrInfo &TII, 787 MachineBasicBlock &MBB, 788 MachineBasicBlock::iterator MBBI, 789 const DebugLoc &DL, const unsigned Reg, 790 const Align Alignment, 791 const bool MustBeSingleInstruction) { 792 const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>(); 793 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 794 const unsigned AlignMask = Alignment.value() - 1U; 795 const unsigned NrBitsToZero = Log2(Alignment); 796 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 797 if (!AFI->isThumbFunction()) { 798 // if the BFC instruction is available, use that to zero the lower 799 // bits: 800 // bfc Reg, #0, log2(Alignment) 801 // otherwise use BIC, if the mask to zero the required number of bits 802 // can be encoded in the bic immediate field 803 // bic Reg, Reg, Alignment-1 804 // otherwise, emit 805 // lsr Reg, Reg, log2(Alignment) 806 // lsl Reg, Reg, log2(Alignment) 807 if (CanUseBFC) { 808 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 809 .addReg(Reg, RegState::Kill) 810 .addImm(~AlignMask) 811 .add(predOps(ARMCC::AL)); 812 } else if (AlignMask <= 255) { 813 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 814 .addReg(Reg, RegState::Kill) 815 .addImm(AlignMask) 816 .add(predOps(ARMCC::AL)) 817 .add(condCodeOp()); 818 } else { 819 assert(!MustBeSingleInstruction && 820 "Shouldn't call emitAligningInstructions demanding a single " 821 "instruction to be emitted for large stack alignment for a target " 822 "without BFC."); 823 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 824 .addReg(Reg, RegState::Kill) 825 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 826 .add(predOps(ARMCC::AL)) 827 .add(condCodeOp()); 828 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 829 .addReg(Reg, RegState::Kill) 830 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 831 .add(predOps(ARMCC::AL)) 832 .add(condCodeOp()); 833 } 834 } else { 835 // Since this is only reached for Thumb-2 targets, the BFC instruction 836 // should always be available. 837 assert(CanUseBFC); 838 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 839 .addReg(Reg, RegState::Kill) 840 .addImm(~AlignMask) 841 .add(predOps(ARMCC::AL)); 842 } 843 } 844 845 /// We need the offset of the frame pointer relative to other MachineFrameInfo 846 /// offsets which are encoded relative to SP at function begin. 847 /// See also emitPrologue() for how the FP is set up. 848 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet 849 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use 850 /// this to produce a conservative estimate that we check in an assert() later. 851 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI, 852 const MachineFunction &MF) { 853 ARMSubtarget::PushPopSplitVariation PushPopSplit = 854 STI.getPushPopSplitVariation(MF); 855 // For Thumb1, push.w isn't available, so the first push will always push 856 // r7 and lr onto the stack first. 857 if (AFI.isThumb1OnlyFunction()) 858 return -AFI.getArgRegsSaveSize() - (2 * 4); 859 // This is a conservative estimation: Assume the frame pointer being r7 and 860 // pc("r15") up to r8 getting spilled before (= 8 registers). 861 int MaxRegBytes = 8 * 4; 862 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 863 // Here, r11 can be stored below all of r4-r15 plus d8-d15. 864 MaxRegBytes = 11 * 4 + 8 * 8; 865 } 866 int FPCXTSaveSize = 867 (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0; 868 return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes; 869 } 870 871 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 872 MachineBasicBlock &MBB) const { 873 MachineBasicBlock::iterator MBBI = MBB.begin(); 874 MachineFrameInfo &MFI = MF.getFrameInfo(); 875 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 876 MCContext &Context = MF.getContext(); 877 const TargetMachine &TM = MF.getTarget(); 878 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 879 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 880 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 881 assert(!AFI->isThumb1OnlyFunction() && 882 "This emitPrologue does not support Thumb1!"); 883 bool isARM = !AFI->isThumbFunction(); 884 Align Alignment = STI.getFrameLowering()->getStackAlign(); 885 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 886 unsigned NumBytes = MFI.getStackSize(); 887 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 888 int FPCXTSaveSize = 0; 889 bool NeedsWinCFI = needsWinCFI(MF); 890 ARMSubtarget::PushPopSplitVariation PushPopSplit = 891 STI.getPushPopSplitVariation(MF); 892 893 LLVM_DEBUG(dbgs() << "Emitting prologue for " << MF.getName() << "\n"); 894 895 // Debug location must be unknown since the first debug location is used 896 // to determine the end of the prologue. 897 DebugLoc dl; 898 899 Register FramePtr = RegInfo->getFrameRegister(MF); 900 901 // Determine the sizes of each callee-save spill areas and record which frame 902 // belongs to which callee-save spill areas. 903 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 904 int FramePtrSpillFI = 0; 905 int D8SpillFI = 0; 906 907 // All calls are tail calls in GHC calling conv, and functions have no 908 // prologue/epilogue. 909 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 910 return; 911 912 StackAdjustingInsts DefCFAOffsetCandidates; 913 bool HasFP = hasFP(MF); 914 915 if (!AFI->hasStackFrame() && 916 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 917 if (NumBytes != 0) { 918 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 919 MachineInstr::FrameSetup); 920 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true); 921 } 922 if (!NeedsWinCFI) 923 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 924 if (NeedsWinCFI && MBBI != MBB.begin()) { 925 insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup); 926 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd)) 927 .setMIFlag(MachineInstr::FrameSetup); 928 MF.setHasWinCFI(true); 929 } 930 return; 931 } 932 933 // Determine spill area sizes, and some important frame indices. 934 for (const CalleeSavedInfo &I : CSI) { 935 Register Reg = I.getReg(); 936 int FI = I.getFrameIdx(); 937 938 if (Reg == FramePtr) 939 FramePtrSpillFI = FI; 940 if (Reg == ARM::D8) 941 D8SpillFI = FI; 942 943 switch (getSpillArea(Reg, PushPopSplit, AFI->getNumAlignedDPRCS2Regs(), 944 RegInfo)) { 945 case SpillArea::FPCXT: 946 FPCXTSaveSize += 4; 947 break; 948 case SpillArea::GPRCS1: 949 GPRCS1Size += 4; 950 break; 951 case SpillArea::GPRCS2: 952 GPRCS2Size += 4; 953 break; 954 case SpillArea::DPRCS1: 955 DPRCSSize += 8; 956 break; 957 case SpillArea::DPRCS2: 958 break; 959 } 960 } 961 962 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 963 964 // Move past the PAC computation. 965 if (AFI->shouldSignReturnAddress()) 966 LastPush = MBBI++; 967 968 // Move past FPCXT area. 969 if (FPCXTSaveSize > 0) { 970 LastPush = MBBI++; 971 DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true); 972 } 973 974 // Allocate the vararg register save area. 975 if (ArgRegsSaveSize) { 976 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 977 MachineInstr::FrameSetup); 978 LastPush = std::prev(MBBI); 979 DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, true); 980 } 981 982 // Move past area 1. 983 if (GPRCS1Size > 0) { 984 GPRCS1Push = LastPush = MBBI++; 985 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); 986 } 987 988 // Determine starting offsets of spill areas. These offsets are all positive 989 // offsets from the bottom of the lowest-addressed callee-save area 990 // (excluding DPRCS2, which is th the re-aligned stack region) to the bottom 991 // of the spill area in question. 992 unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize; 993 unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size; 994 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 995 Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4); 996 unsigned DPRGapSize = GPRCS1Size + FPCXTSaveSize + ArgRegsSaveSize; 997 if (PushPopSplit != ARMSubtarget::SplitR11WindowsSEH) { 998 DPRGapSize += GPRCS2Size; 999 } 1000 DPRGapSize %= DPRAlign.value(); 1001 1002 unsigned DPRCSOffset; 1003 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 1004 DPRCSOffset = GPRCS1Offset - DPRGapSize - DPRCSSize; 1005 GPRCS2Offset = DPRCSOffset - GPRCS2Size; 1006 } else { 1007 DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 1008 } 1009 int FramePtrOffsetInPush = 0; 1010 if (HasFP) { 1011 // Offset from the CFA to the saved frame pointer, will be negative. 1012 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); 1013 LLVM_DEBUG(dbgs() << "FramePtrSpillFI: " << FramePtrSpillFI 1014 << ", FPOffset: " << FPOffset << "\n"); 1015 assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset && 1016 "Max FP estimation is wrong"); 1017 // Offset from the top of the GPRCS1 area to the saved frame pointer, will 1018 // be negative. 1019 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize; 1020 LLVM_DEBUG(dbgs() << "FramePtrOffsetInPush=" << FramePtrOffsetInPush 1021 << ", FramePtrSpillOffset=" 1022 << (MFI.getObjectOffset(FramePtrSpillFI) + NumBytes) 1023 << "\n"); 1024 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 1025 NumBytes); 1026 } 1027 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 1028 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 1029 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 1030 1031 // Move GPRCS2, unless using SplitR11WindowsSEH, in which case it will be 1032 // after DPRCS1. 1033 if (GPRCS2Size > 0 && PushPopSplit != ARMSubtarget::SplitR11WindowsSEH) { 1034 GPRCS2Push = LastPush = MBBI++; 1035 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 1036 } 1037 1038 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 1039 // .cfi_offset operations will reflect that. 1040 if (DPRGapSize) { 1041 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 1042 if (LastPush != MBB.end() && 1043 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 1044 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 1045 else { 1046 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 1047 MachineInstr::FrameSetup); 1048 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); 1049 } 1050 } 1051 1052 // Move past DPRCS1. 1053 if (DPRCSSize > 0) { 1054 // Since vpush register list cannot have gaps, there may be multiple vpush 1055 // instructions in the prologue. 1056 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 1057 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); 1058 LastPush = MBBI++; 1059 } 1060 } 1061 1062 // Move past the aligned DPRCS2 area. 1063 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 1064 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 1065 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 1066 // leaves the stack pointer pointing to the DPRCS2 area. 1067 // 1068 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 1069 NumBytes += MFI.getObjectOffset(D8SpillFI); 1070 } else 1071 NumBytes = DPRCSOffset; 1072 1073 // Move GPRCS2, if using using SplitR11WindowsSEH. 1074 if (GPRCS2Size > 0 && PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 1075 GPRCS2Push = LastPush = MBBI++; 1076 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 1077 } 1078 1079 bool NeedsWinCFIStackAlloc = NeedsWinCFI; 1080 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH && HasFP) 1081 NeedsWinCFIStackAlloc = false; 1082 1083 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 1084 uint32_t NumWords = NumBytes >> 2; 1085 1086 if (NumWords < 65536) { 1087 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 1088 .addImm(NumWords) 1089 .setMIFlags(MachineInstr::FrameSetup) 1090 .add(predOps(ARMCC::AL)); 1091 } else { 1092 // Split into two instructions here, instead of using t2MOVi32imm, 1093 // to allow inserting accurate SEH instructions (including accurate 1094 // instruction size for each of them). 1095 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 1096 .addImm(NumWords & 0xffff) 1097 .setMIFlags(MachineInstr::FrameSetup) 1098 .add(predOps(ARMCC::AL)); 1099 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4) 1100 .addReg(ARM::R4) 1101 .addImm(NumWords >> 16) 1102 .setMIFlags(MachineInstr::FrameSetup) 1103 .add(predOps(ARMCC::AL)); 1104 } 1105 1106 switch (TM.getCodeModel()) { 1107 case CodeModel::Tiny: 1108 llvm_unreachable("Tiny code model not available on ARM."); 1109 case CodeModel::Small: 1110 case CodeModel::Medium: 1111 case CodeModel::Kernel: 1112 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 1113 .add(predOps(ARMCC::AL)) 1114 .addExternalSymbol("__chkstk") 1115 .addReg(ARM::R4, RegState::Implicit) 1116 .setMIFlags(MachineInstr::FrameSetup); 1117 break; 1118 case CodeModel::Large: 1119 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 1120 .addExternalSymbol("__chkstk") 1121 .setMIFlags(MachineInstr::FrameSetup); 1122 1123 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 1124 .add(predOps(ARMCC::AL)) 1125 .addReg(ARM::R12, RegState::Kill) 1126 .addReg(ARM::R4, RegState::Implicit) 1127 .setMIFlags(MachineInstr::FrameSetup); 1128 break; 1129 } 1130 1131 MachineInstrBuilder Instr, SEH; 1132 Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 1133 .addReg(ARM::SP, RegState::Kill) 1134 .addReg(ARM::R4, RegState::Kill) 1135 .setMIFlags(MachineInstr::FrameSetup) 1136 .add(predOps(ARMCC::AL)) 1137 .add(condCodeOp()); 1138 if (NeedsWinCFIStackAlloc) { 1139 SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc)) 1140 .addImm(NumBytes) 1141 .addImm(/*Wide=*/1) 1142 .setMIFlags(MachineInstr::FrameSetup); 1143 MBB.insertAfter(Instr, SEH); 1144 } 1145 NumBytes = 0; 1146 } 1147 1148 if (NumBytes) { 1149 // Adjust SP after all the callee-save spills. 1150 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 1151 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 1152 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 1153 else { 1154 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 1155 MachineInstr::FrameSetup); 1156 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 1157 } 1158 1159 if (HasFP && isARM) 1160 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 1161 // Note it's not safe to do this in Thumb2 mode because it would have 1162 // taken two instructions: 1163 // mov sp, r7 1164 // sub sp, #24 1165 // If an interrupt is taken between the two instructions, then sp is in 1166 // an inconsistent state (pointing to the middle of callee-saved area). 1167 // The interrupt handler can end up clobbering the registers. 1168 AFI->setShouldRestoreSPFromFP(true); 1169 } 1170 1171 // Set FP to point to the stack slot that contains the previous FP. 1172 // For iOS, FP is R7, which has now been stored in spill area 1. 1173 // Otherwise, if this is not iOS, all the callee-saved registers go 1174 // into spill area 1, including the FP in R11. In either case, it 1175 // is in area one and the adjustment needs to take place just after 1176 // that push. 1177 // FIXME: The above is not necessary true when PACBTI is enabled. 1178 // AAPCS requires use of R11, and PACBTI gets in the way of regular pushes, 1179 // so FP ends up on area two. 1180 MachineBasicBlock::iterator AfterPush; 1181 if (HasFP) { 1182 AfterPush = std::next(GPRCS1Push); 1183 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); 1184 int FPOffset = PushSize + FramePtrOffsetInPush; 1185 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 1186 AfterPush = std::next(GPRCS2Push); 1187 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII, 1188 FramePtr, ARM::SP, 0, MachineInstr::FrameSetup); 1189 } else { 1190 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII, 1191 FramePtr, ARM::SP, FPOffset, 1192 MachineInstr::FrameSetup); 1193 } 1194 if (!NeedsWinCFI) { 1195 if (FramePtrOffsetInPush + PushSize != 0) { 1196 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( 1197 nullptr, MRI->getDwarfRegNum(FramePtr, true), 1198 FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush)); 1199 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1200 .addCFIIndex(CFIIndex) 1201 .setMIFlags(MachineInstr::FrameSetup); 1202 } else { 1203 unsigned CFIIndex = 1204 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 1205 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 1206 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1207 .addCFIIndex(CFIIndex) 1208 .setMIFlags(MachineInstr::FrameSetup); 1209 } 1210 } 1211 } 1212 1213 // Emit a SEH opcode indicating the prologue end. The rest of the prologue 1214 // instructions below don't need to be replayed to unwind the stack. 1215 if (NeedsWinCFI && MBBI != MBB.begin()) { 1216 MachineBasicBlock::iterator End = MBBI; 1217 if (HasFP && PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) 1218 End = AfterPush; 1219 insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup); 1220 BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd)) 1221 .setMIFlag(MachineInstr::FrameSetup); 1222 MF.setHasWinCFI(true); 1223 } 1224 1225 // Now that the prologue's actual instructions are finalised, we can insert 1226 // the necessary DWARF cf instructions to describe the situation. Start by 1227 // recording where each register ended up: 1228 if (!NeedsWinCFI) { 1229 for (const auto &Entry : reverse(CSI)) { 1230 Register Reg = Entry.getReg(); 1231 int FI = Entry.getFrameIdx(); 1232 MachineBasicBlock::iterator CFIPos; 1233 switch (getSpillArea(Reg, PushPopSplit, AFI->getNumAlignedDPRCS2Regs(), 1234 RegInfo)) { 1235 case SpillArea::GPRCS1: 1236 CFIPos = std::next(GPRCS1Push); 1237 break; 1238 case SpillArea::GPRCS2: 1239 CFIPos = std::next(GPRCS2Push); 1240 break; 1241 case SpillArea::DPRCS1: 1242 CFIPos = std::next(LastPush); 1243 break; 1244 case SpillArea::FPCXT: 1245 case SpillArea::DPRCS2: 1246 // FPCXT and DPRCS2 are not represented in the DWARF info. 1247 break; 1248 } 1249 1250 if (CFIPos.isValid()) { 1251 int CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1252 nullptr, 1253 MRI->getDwarfRegNum(Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, 1254 true), 1255 MFI.getObjectOffset(FI))); 1256 BuildMI(MBB, CFIPos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1257 .addCFIIndex(CFIIndex) 1258 .setMIFlags(MachineInstr::FrameSetup); 1259 } 1260 } 1261 } 1262 1263 // Now we can emit descriptions of where the canonical frame address was 1264 // throughout the process. If we have a frame pointer, it takes over the job 1265 // half-way through, so only the first few .cfi_def_cfa_offset instructions 1266 // actually get emitted. 1267 if (!NeedsWinCFI) { 1268 LLVM_DEBUG(DefCFAOffsetCandidates.dump()); 1269 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 1270 } 1271 1272 if (STI.isTargetELF() && hasFP(MF)) 1273 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 1274 AFI->getFramePtrSpillOffset()); 1275 1276 AFI->setFPCXTSaveAreaSize(FPCXTSaveSize); 1277 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 1278 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 1279 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 1280 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 1281 1282 // If we need dynamic stack realignment, do it here. Be paranoid and make 1283 // sure if we also have VLAs, we have a base pointer for frame access. 1284 // If aligned NEON registers were spilled, the stack has already been 1285 // realigned. 1286 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) { 1287 Align MaxAlign = MFI.getMaxAlign(); 1288 assert(!AFI->isThumb1OnlyFunction()); 1289 if (!AFI->isThumbFunction()) { 1290 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 1291 false); 1292 } else { 1293 // We cannot use sp as source/dest register here, thus we're using r4 to 1294 // perform the calculations. We're emitting the following sequence: 1295 // mov r4, sp 1296 // -- use emitAligningInstructions to produce best sequence to zero 1297 // -- out lower bits in r4 1298 // mov sp, r4 1299 // FIXME: It will be better just to find spare register here. 1300 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 1301 .addReg(ARM::SP, RegState::Kill) 1302 .add(predOps(ARMCC::AL)); 1303 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 1304 false); 1305 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1306 .addReg(ARM::R4, RegState::Kill) 1307 .add(predOps(ARMCC::AL)); 1308 } 1309 1310 AFI->setShouldRestoreSPFromFP(true); 1311 } 1312 1313 // If we need a base pointer, set it up here. It's whatever the value 1314 // of the stack pointer is at this point. Any variable size objects 1315 // will be allocated after this, so we can still use the base pointer 1316 // to reference locals. 1317 // FIXME: Clarify FrameSetup flags here. 1318 if (RegInfo->hasBasePointer(MF)) { 1319 if (isARM) 1320 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 1321 .addReg(ARM::SP) 1322 .add(predOps(ARMCC::AL)) 1323 .add(condCodeOp()); 1324 else 1325 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 1326 .addReg(ARM::SP) 1327 .add(predOps(ARMCC::AL)); 1328 } 1329 1330 // If the frame has variable sized objects then the epilogue must restore 1331 // the sp from fp. We can assume there's an FP here since hasFP already 1332 // checks for hasVarSizedObjects. 1333 if (MFI.hasVarSizedObjects()) 1334 AFI->setShouldRestoreSPFromFP(true); 1335 } 1336 1337 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 1338 MachineBasicBlock &MBB) const { 1339 MachineFrameInfo &MFI = MF.getFrameInfo(); 1340 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1341 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 1342 const ARMBaseInstrInfo &TII = 1343 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1344 assert(!AFI->isThumb1OnlyFunction() && 1345 "This emitEpilogue does not support Thumb1!"); 1346 bool isARM = !AFI->isThumbFunction(); 1347 ARMSubtarget::PushPopSplitVariation PushPopSplit = 1348 STI.getPushPopSplitVariation(MF); 1349 1350 LLVM_DEBUG(dbgs() << "Emitting epilogue for " << MF.getName() << "\n"); 1351 1352 // Amount of stack space we reserved next to incoming args for either 1353 // varargs registers or stack arguments in tail calls made by this function. 1354 unsigned ReservedArgStack = AFI->getArgRegsSaveSize(); 1355 1356 // How much of the stack used by incoming arguments this function is expected 1357 // to restore in this particular epilogue. 1358 int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB); 1359 int NumBytes = (int)MFI.getStackSize(); 1360 Register FramePtr = RegInfo->getFrameRegister(MF); 1361 1362 // All calls are tail calls in GHC calling conv, and functions have no 1363 // prologue/epilogue. 1364 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 1365 return; 1366 1367 // First put ourselves on the first (from top) terminator instructions. 1368 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1369 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1370 1371 MachineBasicBlock::iterator RangeStart; 1372 if (!AFI->hasStackFrame()) { 1373 if (MF.hasWinCFI()) { 1374 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart)) 1375 .setMIFlag(MachineInstr::FrameDestroy); 1376 RangeStart = initMBBRange(MBB, MBBI); 1377 } 1378 1379 if (NumBytes + IncomingArgStackToRestore != 0) 1380 emitSPUpdate(isARM, MBB, MBBI, dl, TII, 1381 NumBytes + IncomingArgStackToRestore, 1382 MachineInstr::FrameDestroy); 1383 } else { 1384 // Unwind MBBI to point to first LDR / VLDRD. 1385 if (MBBI != MBB.begin()) { 1386 do { 1387 --MBBI; 1388 } while (MBBI != MBB.begin() && 1389 MBBI->getFlag(MachineInstr::FrameDestroy)); 1390 if (!MBBI->getFlag(MachineInstr::FrameDestroy)) 1391 ++MBBI; 1392 } 1393 1394 if (MF.hasWinCFI()) { 1395 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart)) 1396 .setMIFlag(MachineInstr::FrameDestroy); 1397 RangeStart = initMBBRange(MBB, MBBI); 1398 } 1399 1400 // Move SP to start of FP callee save spill area. 1401 NumBytes -= (ReservedArgStack + 1402 AFI->getFPCXTSaveAreaSize() + 1403 AFI->getGPRCalleeSavedArea1Size() + 1404 AFI->getGPRCalleeSavedArea2Size() + 1405 AFI->getDPRCalleeSavedGapSize() + 1406 AFI->getDPRCalleeSavedAreaSize()); 1407 1408 // Reset SP based on frame pointer only if the stack frame extends beyond 1409 // frame pointer stack slot or target is ELF and the function has FP. 1410 if (AFI->shouldRestoreSPFromFP()) { 1411 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 1412 if (NumBytes) { 1413 if (isARM) 1414 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 1415 ARMCC::AL, 0, TII, 1416 MachineInstr::FrameDestroy); 1417 else { 1418 // It's not possible to restore SP from FP in a single instruction. 1419 // For iOS, this looks like: 1420 // mov sp, r7 1421 // sub sp, #24 1422 // This is bad, if an interrupt is taken after the mov, sp is in an 1423 // inconsistent state. 1424 // Use the first callee-saved register as a scratch register. 1425 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 1426 "No scratch register to restore SP from FP!"); 1427 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 1428 ARMCC::AL, 0, TII, MachineInstr::FrameDestroy); 1429 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1430 .addReg(ARM::R4) 1431 .add(predOps(ARMCC::AL)) 1432 .setMIFlag(MachineInstr::FrameDestroy); 1433 } 1434 } else { 1435 // Thumb2 or ARM. 1436 if (isARM) 1437 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 1438 .addReg(FramePtr) 1439 .add(predOps(ARMCC::AL)) 1440 .add(condCodeOp()) 1441 .setMIFlag(MachineInstr::FrameDestroy); 1442 else 1443 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1444 .addReg(FramePtr) 1445 .add(predOps(ARMCC::AL)) 1446 .setMIFlag(MachineInstr::FrameDestroy); 1447 } 1448 } else if (NumBytes && 1449 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 1450 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes, 1451 MachineInstr::FrameDestroy); 1452 1453 // Increment past our save areas. 1454 if (AFI->getGPRCalleeSavedArea2Size() && 1455 PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) 1456 MBBI++; 1457 1458 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { 1459 MBBI++; 1460 // Since vpop register list cannot have gaps, there may be multiple vpop 1461 // instructions in the epilogue. 1462 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 1463 MBBI++; 1464 } 1465 if (AFI->getDPRCalleeSavedGapSize()) { 1466 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 1467 "unexpected DPR alignment gap"); 1468 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(), 1469 MachineInstr::FrameDestroy); 1470 } 1471 1472 if (AFI->getGPRCalleeSavedArea2Size() && 1473 PushPopSplit != ARMSubtarget::SplitR11WindowsSEH) 1474 MBBI++; 1475 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 1476 1477 if (ReservedArgStack || IncomingArgStackToRestore) { 1478 assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 && 1479 "attempting to restore negative stack amount"); 1480 emitSPUpdate(isARM, MBB, MBBI, dl, TII, 1481 ReservedArgStack + IncomingArgStackToRestore, 1482 MachineInstr::FrameDestroy); 1483 } 1484 1485 // Validate PAC, It should have been already popped into R12. For CMSE entry 1486 // function, the validation instruction is emitted during expansion of the 1487 // tBXNS_RET, since the validation must use the value of SP at function 1488 // entry, before saving, resp. after restoring, FPCXTNS. 1489 if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction()) 1490 BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT)); 1491 } 1492 1493 if (MF.hasWinCFI()) { 1494 insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy); 1495 BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd)) 1496 .setMIFlag(MachineInstr::FrameDestroy); 1497 } 1498 } 1499 1500 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 1501 /// debug info. It's the same as what we use for resolving the code-gen 1502 /// references for now. FIXME: This can go wrong when references are 1503 /// SP-relative and simple call frames aren't used. 1504 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, 1505 int FI, 1506 Register &FrameReg) const { 1507 return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0)); 1508 } 1509 1510 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 1511 int FI, Register &FrameReg, 1512 int SPAdj) const { 1513 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1514 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1515 MF.getSubtarget().getRegisterInfo()); 1516 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1517 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 1518 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 1519 bool isFixed = MFI.isFixedObjectIndex(FI); 1520 1521 FrameReg = ARM::SP; 1522 Offset += SPAdj; 1523 1524 // SP can move around if there are allocas. We may also lose track of SP 1525 // when emergency spilling inside a non-reserved call frame setup. 1526 bool hasMovingSP = !hasReservedCallFrame(MF); 1527 1528 // When dynamically realigning the stack, use the frame pointer for 1529 // parameters, and the stack/base pointer for locals. 1530 if (RegInfo->hasStackRealignment(MF)) { 1531 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 1532 if (isFixed) { 1533 FrameReg = RegInfo->getFrameRegister(MF); 1534 Offset = FPOffset; 1535 } else if (hasMovingSP) { 1536 assert(RegInfo->hasBasePointer(MF) && 1537 "VLAs and dynamic stack alignment, but missing base pointer!"); 1538 FrameReg = RegInfo->getBaseRegister(); 1539 Offset -= SPAdj; 1540 } 1541 return Offset; 1542 } 1543 1544 // If there is a frame pointer, use it when we can. 1545 if (hasFP(MF) && AFI->hasStackFrame()) { 1546 // Use frame pointer to reference fixed objects. Use it for locals if 1547 // there are VLAs (and thus the SP isn't reliable as a base). 1548 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 1549 FrameReg = RegInfo->getFrameRegister(MF); 1550 return FPOffset; 1551 } else if (hasMovingSP) { 1552 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 1553 if (AFI->isThumb2Function()) { 1554 // Try to use the frame pointer if we can, else use the base pointer 1555 // since it's available. This is handy for the emergency spill slot, in 1556 // particular. 1557 if (FPOffset >= -255 && FPOffset < 0) { 1558 FrameReg = RegInfo->getFrameRegister(MF); 1559 return FPOffset; 1560 } 1561 } 1562 } else if (AFI->isThumbFunction()) { 1563 // Prefer SP to base pointer, if the offset is suitably aligned and in 1564 // range as the effective range of the immediate offset is bigger when 1565 // basing off SP. 1566 // Use add <rd>, sp, #<imm8> 1567 // ldr <rd>, [sp, #<imm8>] 1568 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 1569 return Offset; 1570 // In Thumb2 mode, the negative offset is very limited. Try to avoid 1571 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 1572 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) { 1573 FrameReg = RegInfo->getFrameRegister(MF); 1574 return FPOffset; 1575 } 1576 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 1577 // Otherwise, use SP or FP, whichever is closer to the stack slot. 1578 FrameReg = RegInfo->getFrameRegister(MF); 1579 return FPOffset; 1580 } 1581 } 1582 // Use the base pointer if we have one. 1583 // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper? 1584 // That can happen if we forced a base pointer for a large call frame. 1585 if (RegInfo->hasBasePointer(MF)) { 1586 FrameReg = RegInfo->getBaseRegister(); 1587 Offset -= SPAdj; 1588 } 1589 return Offset; 1590 } 1591 1592 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 1593 MachineBasicBlock::iterator MI, 1594 ArrayRef<CalleeSavedInfo> CSI, 1595 unsigned StmOpc, unsigned StrOpc, 1596 bool NoGap, 1597 function_ref<bool(unsigned)> Func) const { 1598 MachineFunction &MF = *MBB.getParent(); 1599 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1600 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1601 1602 DebugLoc DL; 1603 1604 using RegAndKill = std::pair<unsigned, bool>; 1605 1606 SmallVector<RegAndKill, 4> Regs; 1607 unsigned i = CSI.size(); 1608 while (i != 0) { 1609 unsigned LastReg = 0; 1610 for (; i != 0; --i) { 1611 Register Reg = CSI[i-1].getReg(); 1612 if (!Func(Reg)) 1613 continue; 1614 1615 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1616 bool isLiveIn = MRI.isLiveIn(Reg); 1617 if (!isLiveIn && !MRI.isReserved(Reg)) 1618 MBB.addLiveIn(Reg); 1619 // If NoGap is true, push consecutive registers and then leave the rest 1620 // for other instructions. e.g. 1621 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 1622 if (NoGap && LastReg && LastReg != Reg-1) 1623 break; 1624 LastReg = Reg; 1625 // Do not set a kill flag on values that are also marked as live-in. This 1626 // happens with the @llvm-returnaddress intrinsic and with arguments 1627 // passed in callee saved registers. 1628 // Omitting the kill flags is conservatively correct even if the live-in 1629 // is not used after all. 1630 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 1631 } 1632 1633 if (Regs.empty()) 1634 continue; 1635 1636 llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) { 1637 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 1638 }); 1639 1640 if (Regs.size() > 1 || StrOpc== 0) { 1641 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 1642 .addReg(ARM::SP) 1643 .setMIFlags(MachineInstr::FrameSetup) 1644 .add(predOps(ARMCC::AL)); 1645 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1646 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 1647 } else if (Regs.size() == 1) { 1648 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 1649 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 1650 .addReg(ARM::SP) 1651 .setMIFlags(MachineInstr::FrameSetup) 1652 .addImm(-4) 1653 .add(predOps(ARMCC::AL)); 1654 } 1655 Regs.clear(); 1656 1657 // Put any subsequent vpush instructions before this one: they will refer to 1658 // higher register numbers so need to be pushed first in order to preserve 1659 // monotonicity. 1660 if (MI != MBB.begin()) 1661 --MI; 1662 } 1663 } 1664 1665 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1666 MachineBasicBlock::iterator MI, 1667 MutableArrayRef<CalleeSavedInfo> CSI, 1668 unsigned LdmOpc, unsigned LdrOpc, 1669 bool isVarArg, bool NoGap, 1670 function_ref<bool(unsigned)> Func) const { 1671 MachineFunction &MF = *MBB.getParent(); 1672 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1673 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1674 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1675 bool hasPAC = AFI->shouldSignReturnAddress(); 1676 DebugLoc DL; 1677 bool isTailCall = false; 1678 bool isInterrupt = false; 1679 bool isTrap = false; 1680 bool isCmseEntry = false; 1681 ARMSubtarget::PushPopSplitVariation PushPopSplit = 1682 STI.getPushPopSplitVariation(MF); 1683 if (MBB.end() != MI) { 1684 DL = MI->getDebugLoc(); 1685 unsigned RetOpcode = MI->getOpcode(); 1686 isTailCall = 1687 (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri || 1688 RetOpcode == ARM::TCRETURNrinotr12); 1689 isInterrupt = 1690 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1691 isTrap = 1692 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1693 RetOpcode == ARM::tTRAP; 1694 isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET); 1695 } 1696 1697 SmallVector<unsigned, 4> Regs; 1698 unsigned i = CSI.size(); 1699 while (i != 0) { 1700 unsigned LastReg = 0; 1701 bool DeleteRet = false; 1702 for (; i != 0; --i) { 1703 CalleeSavedInfo &Info = CSI[i-1]; 1704 Register Reg = Info.getReg(); 1705 if (!Func(Reg)) 1706 continue; 1707 1708 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1709 !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 && 1710 STI.hasV5TOps() && MBB.succ_empty() && !hasPAC && 1711 PushPopSplit != ARMSubtarget::SplitR11WindowsSEH) { 1712 Reg = ARM::PC; 1713 // Fold the return instruction into the LDM. 1714 DeleteRet = true; 1715 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1716 } 1717 1718 // If NoGap is true, pop consecutive registers and then leave the rest 1719 // for other instructions. e.g. 1720 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1721 if (NoGap && LastReg && LastReg != Reg-1) 1722 break; 1723 1724 LastReg = Reg; 1725 Regs.push_back(Reg); 1726 } 1727 1728 if (Regs.empty()) 1729 continue; 1730 1731 llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) { 1732 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1733 }); 1734 1735 if (Regs.size() > 1 || LdrOpc == 0) { 1736 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1737 .addReg(ARM::SP) 1738 .add(predOps(ARMCC::AL)) 1739 .setMIFlags(MachineInstr::FrameDestroy); 1740 for (unsigned Reg : Regs) 1741 MIB.addReg(Reg, getDefRegState(true)); 1742 if (DeleteRet) { 1743 if (MI != MBB.end()) { 1744 MIB.copyImplicitOps(*MI); 1745 MI->eraseFromParent(); 1746 } 1747 } 1748 MI = MIB; 1749 } else if (Regs.size() == 1) { 1750 // If we adjusted the reg to PC from LR above, switch it back here. We 1751 // only do that for LDM. 1752 if (Regs[0] == ARM::PC) 1753 Regs[0] = ARM::LR; 1754 MachineInstrBuilder MIB = 1755 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1756 .addReg(ARM::SP, RegState::Define) 1757 .addReg(ARM::SP) 1758 .setMIFlags(MachineInstr::FrameDestroy); 1759 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1760 // that refactoring is complete (eventually). 1761 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1762 MIB.addReg(0); 1763 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1764 } else 1765 MIB.addImm(4); 1766 MIB.add(predOps(ARMCC::AL)); 1767 } 1768 Regs.clear(); 1769 1770 // Put any subsequent vpop instructions after this one: they will refer to 1771 // higher register numbers so need to be popped afterwards. 1772 if (MI != MBB.end()) 1773 ++MI; 1774 } 1775 } 1776 1777 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1778 /// starting from d8. Also insert stack realignment code and leave the stack 1779 /// pointer pointing to the d8 spill slot. 1780 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1781 MachineBasicBlock::iterator MI, 1782 unsigned NumAlignedDPRCS2Regs, 1783 ArrayRef<CalleeSavedInfo> CSI, 1784 const TargetRegisterInfo *TRI) { 1785 MachineFunction &MF = *MBB.getParent(); 1786 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1787 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1788 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1789 MachineFrameInfo &MFI = MF.getFrameInfo(); 1790 1791 // Mark the D-register spill slots as properly aligned. Since MFI computes 1792 // stack slot layout backwards, this can actually mean that the d-reg stack 1793 // slot offsets can be wrong. The offset for d8 will always be correct. 1794 for (const CalleeSavedInfo &I : CSI) { 1795 unsigned DNum = I.getReg() - ARM::D8; 1796 if (DNum > NumAlignedDPRCS2Regs - 1) 1797 continue; 1798 int FI = I.getFrameIdx(); 1799 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1800 // registers will be 8-byte aligned. 1801 MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16)); 1802 1803 // The stack slot for D8 needs to be maximally aligned because this is 1804 // actually the point where we align the stack pointer. MachineFrameInfo 1805 // computes all offsets relative to the incoming stack pointer which is a 1806 // bit weird when realigning the stack. Any extra padding for this 1807 // over-alignment is not realized because the code inserted below adjusts 1808 // the stack pointer by numregs * 8 before aligning the stack pointer. 1809 if (DNum == 0) 1810 MFI.setObjectAlignment(FI, MFI.getMaxAlign()); 1811 } 1812 1813 // Move the stack pointer to the d8 spill slot, and align it at the same 1814 // time. Leave the stack slot address in the scratch register r4. 1815 // 1816 // sub r4, sp, #numregs * 8 1817 // bic r4, r4, #align - 1 1818 // mov sp, r4 1819 // 1820 bool isThumb = AFI->isThumbFunction(); 1821 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1822 AFI->setShouldRestoreSPFromFP(true); 1823 1824 // sub r4, sp, #numregs * 8 1825 // The immediate is <= 64, so it doesn't need any special encoding. 1826 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1827 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1828 .addReg(ARM::SP) 1829 .addImm(8 * NumAlignedDPRCS2Regs) 1830 .add(predOps(ARMCC::AL)) 1831 .add(condCodeOp()); 1832 1833 Align MaxAlign = MF.getFrameInfo().getMaxAlign(); 1834 // We must set parameter MustBeSingleInstruction to true, since 1835 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1836 // stack alignment. Luckily, this can always be done since all ARM 1837 // architecture versions that support Neon also support the BFC 1838 // instruction. 1839 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1840 1841 // mov sp, r4 1842 // The stack pointer must be adjusted before spilling anything, otherwise 1843 // the stack slots could be clobbered by an interrupt handler. 1844 // Leave r4 live, it is used below. 1845 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1846 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1847 .addReg(ARM::R4) 1848 .add(predOps(ARMCC::AL)); 1849 if (!isThumb) 1850 MIB.add(condCodeOp()); 1851 1852 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1853 // r4 holds the stack slot address. 1854 unsigned NextReg = ARM::D8; 1855 1856 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1857 // The writeback is only needed when emitting two vst1.64 instructions. 1858 if (NumAlignedDPRCS2Regs >= 6) { 1859 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1860 &ARM::QQPRRegClass); 1861 MBB.addLiveIn(SupReg); 1862 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1863 .addReg(ARM::R4, RegState::Kill) 1864 .addImm(16) 1865 .addReg(NextReg) 1866 .addReg(SupReg, RegState::ImplicitKill) 1867 .add(predOps(ARMCC::AL)); 1868 NextReg += 4; 1869 NumAlignedDPRCS2Regs -= 4; 1870 } 1871 1872 // We won't modify r4 beyond this point. It currently points to the next 1873 // register to be spilled. 1874 unsigned R4BaseReg = NextReg; 1875 1876 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1877 if (NumAlignedDPRCS2Regs >= 4) { 1878 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1879 &ARM::QQPRRegClass); 1880 MBB.addLiveIn(SupReg); 1881 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1882 .addReg(ARM::R4) 1883 .addImm(16) 1884 .addReg(NextReg) 1885 .addReg(SupReg, RegState::ImplicitKill) 1886 .add(predOps(ARMCC::AL)); 1887 NextReg += 4; 1888 NumAlignedDPRCS2Regs -= 4; 1889 } 1890 1891 // 16-byte aligned vst1.64 with 2 d-regs. 1892 if (NumAlignedDPRCS2Regs >= 2) { 1893 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1894 &ARM::QPRRegClass); 1895 MBB.addLiveIn(SupReg); 1896 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1897 .addReg(ARM::R4) 1898 .addImm(16) 1899 .addReg(SupReg) 1900 .add(predOps(ARMCC::AL)); 1901 NextReg += 2; 1902 NumAlignedDPRCS2Regs -= 2; 1903 } 1904 1905 // Finally, use a vanilla vstr.64 for the odd last register. 1906 if (NumAlignedDPRCS2Regs) { 1907 MBB.addLiveIn(NextReg); 1908 // vstr.64 uses addrmode5 which has an offset scale of 4. 1909 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1910 .addReg(NextReg) 1911 .addReg(ARM::R4) 1912 .addImm((NextReg - R4BaseReg) * 2) 1913 .add(predOps(ARMCC::AL)); 1914 } 1915 1916 // The last spill instruction inserted should kill the scratch register r4. 1917 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1918 } 1919 1920 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1921 /// iterator to the following instruction. 1922 static MachineBasicBlock::iterator 1923 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1924 unsigned NumAlignedDPRCS2Regs) { 1925 // sub r4, sp, #numregs * 8 1926 // bic r4, r4, #align - 1 1927 // mov sp, r4 1928 ++MI; ++MI; ++MI; 1929 assert(MI->mayStore() && "Expecting spill instruction"); 1930 1931 // These switches all fall through. 1932 switch(NumAlignedDPRCS2Regs) { 1933 case 7: 1934 ++MI; 1935 assert(MI->mayStore() && "Expecting spill instruction"); 1936 [[fallthrough]]; 1937 default: 1938 ++MI; 1939 assert(MI->mayStore() && "Expecting spill instruction"); 1940 [[fallthrough]]; 1941 case 1: 1942 case 2: 1943 case 4: 1944 assert(MI->killsRegister(ARM::R4, /*TRI=*/nullptr) && "Missed kill flag"); 1945 ++MI; 1946 } 1947 return MI; 1948 } 1949 1950 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1951 /// starting from d8. These instructions are assumed to execute while the 1952 /// stack is still aligned, unlike the code inserted by emitPopInst. 1953 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1954 MachineBasicBlock::iterator MI, 1955 unsigned NumAlignedDPRCS2Regs, 1956 ArrayRef<CalleeSavedInfo> CSI, 1957 const TargetRegisterInfo *TRI) { 1958 MachineFunction &MF = *MBB.getParent(); 1959 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1960 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1961 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1962 1963 // Find the frame index assigned to d8. 1964 int D8SpillFI = 0; 1965 for (const CalleeSavedInfo &I : CSI) 1966 if (I.getReg() == ARM::D8) { 1967 D8SpillFI = I.getFrameIdx(); 1968 break; 1969 } 1970 1971 // Materialize the address of the d8 spill slot into the scratch register r4. 1972 // This can be fairly complicated if the stack frame is large, so just use 1973 // the normal frame index elimination mechanism to do it. This code runs as 1974 // the initial part of the epilog where the stack and base pointers haven't 1975 // been changed yet. 1976 bool isThumb = AFI->isThumbFunction(); 1977 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1978 1979 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 1980 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1981 .addFrameIndex(D8SpillFI) 1982 .addImm(0) 1983 .add(predOps(ARMCC::AL)) 1984 .add(condCodeOp()); 1985 1986 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 1987 unsigned NextReg = ARM::D8; 1988 1989 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 1990 if (NumAlignedDPRCS2Regs >= 6) { 1991 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1992 &ARM::QQPRRegClass); 1993 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 1994 .addReg(ARM::R4, RegState::Define) 1995 .addReg(ARM::R4, RegState::Kill) 1996 .addImm(16) 1997 .addReg(SupReg, RegState::ImplicitDefine) 1998 .add(predOps(ARMCC::AL)); 1999 NextReg += 4; 2000 NumAlignedDPRCS2Regs -= 4; 2001 } 2002 2003 // We won't modify r4 beyond this point. It currently points to the next 2004 // register to be spilled. 2005 unsigned R4BaseReg = NextReg; 2006 2007 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 2008 if (NumAlignedDPRCS2Regs >= 4) { 2009 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 2010 &ARM::QQPRRegClass); 2011 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 2012 .addReg(ARM::R4) 2013 .addImm(16) 2014 .addReg(SupReg, RegState::ImplicitDefine) 2015 .add(predOps(ARMCC::AL)); 2016 NextReg += 4; 2017 NumAlignedDPRCS2Regs -= 4; 2018 } 2019 2020 // 16-byte aligned vld1.64 with 2 d-regs. 2021 if (NumAlignedDPRCS2Regs >= 2) { 2022 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 2023 &ARM::QPRRegClass); 2024 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 2025 .addReg(ARM::R4) 2026 .addImm(16) 2027 .add(predOps(ARMCC::AL)); 2028 NextReg += 2; 2029 NumAlignedDPRCS2Regs -= 2; 2030 } 2031 2032 // Finally, use a vanilla vldr.64 for the remaining odd register. 2033 if (NumAlignedDPRCS2Regs) 2034 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 2035 .addReg(ARM::R4) 2036 .addImm(2 * (NextReg - R4BaseReg)) 2037 .add(predOps(ARMCC::AL)); 2038 2039 // Last store kills r4. 2040 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 2041 } 2042 2043 bool ARMFrameLowering::spillCalleeSavedRegisters( 2044 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2045 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2046 if (CSI.empty()) 2047 return false; 2048 2049 MachineFunction &MF = *MBB.getParent(); 2050 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2051 ARMSubtarget::PushPopSplitVariation PushPopSplit = 2052 STI.getPushPopSplitVariation(MF); 2053 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 2054 2055 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 2056 unsigned PushOneOpc = AFI->isThumbFunction() ? 2057 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 2058 unsigned FltOpc = ARM::VSTMDDB_UPD; 2059 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 2060 // Compute PAC in R12. 2061 if (AFI->shouldSignReturnAddress()) { 2062 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC)) 2063 .setMIFlags(MachineInstr::FrameSetup); 2064 } 2065 // Save the non-secure floating point context. 2066 if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) { 2067 return C.getReg() == ARM::FPCXTNS; 2068 })) { 2069 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre), 2070 ARM::SP) 2071 .addReg(ARM::SP) 2072 .addImm(-4) 2073 .add(predOps(ARMCC::AL)); 2074 } 2075 2076 auto CheckRegArea = [PushPopSplit, NumAlignedDPRCS2Regs, 2077 RegInfo](unsigned Reg, SpillArea TestArea) { 2078 return getSpillArea(Reg, PushPopSplit, NumAlignedDPRCS2Regs, RegInfo) == 2079 TestArea; 2080 }; 2081 auto IsGPRCS1 = [&CheckRegArea](unsigned Reg) { 2082 return CheckRegArea(Reg, SpillArea::GPRCS1); 2083 }; 2084 auto IsGPRCS2 = [&CheckRegArea](unsigned Reg) { 2085 return CheckRegArea(Reg, SpillArea::GPRCS2); 2086 }; 2087 auto IsDPRCS1 = [&CheckRegArea](unsigned Reg) { 2088 return CheckRegArea(Reg, SpillArea::DPRCS1); 2089 }; 2090 2091 // Windows SEH requires the floating-point registers to be pushed between the 2092 // two blocks of GPRs in some situations. In all other cases, they are pushed 2093 // below the GPRs. 2094 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 2095 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS1); 2096 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, IsDPRCS1); 2097 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS2); 2098 } else { 2099 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS1); 2100 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS2); 2101 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, IsDPRCS1); 2102 } 2103 2104 // The code above does not insert spill code for the aligned DPRCS2 registers. 2105 // The stack realignment code will be inserted between the push instructions 2106 // and these spills. 2107 if (NumAlignedDPRCS2Regs) 2108 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 2109 2110 return true; 2111 } 2112 2113 bool ARMFrameLowering::restoreCalleeSavedRegisters( 2114 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2115 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2116 if (CSI.empty()) 2117 return false; 2118 2119 MachineFunction &MF = *MBB.getParent(); 2120 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2121 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 2122 2123 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 2124 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 2125 ARMSubtarget::PushPopSplitVariation PushPopSplit = 2126 STI.getPushPopSplitVariation(MF); 2127 2128 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 2129 // registers. Do that here instead. 2130 if (NumAlignedDPRCS2Regs) 2131 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 2132 2133 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 2134 unsigned LdrOpc = 2135 AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; 2136 unsigned FltOpc = ARM::VLDMDIA_UPD; 2137 2138 auto CheckRegArea = [PushPopSplit, NumAlignedDPRCS2Regs, 2139 RegInfo](unsigned Reg, SpillArea TestArea) { 2140 return getSpillArea(Reg, PushPopSplit, NumAlignedDPRCS2Regs, RegInfo) == 2141 TestArea; 2142 }; 2143 auto IsGPRCS1 = [&CheckRegArea](unsigned Reg) { 2144 return CheckRegArea(Reg, SpillArea::GPRCS1); 2145 }; 2146 auto IsGPRCS2 = [&CheckRegArea](unsigned Reg) { 2147 return CheckRegArea(Reg, SpillArea::GPRCS2); 2148 }; 2149 auto IsDPRCS1 = [&CheckRegArea](unsigned Reg) { 2150 return CheckRegArea(Reg, SpillArea::DPRCS1); 2151 }; 2152 2153 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 2154 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS2); 2155 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, IsDPRCS1); 2156 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS1); 2157 } else { 2158 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, IsDPRCS1); 2159 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS2); 2160 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS1); 2161 } 2162 2163 return true; 2164 } 2165 2166 // FIXME: Make generic? 2167 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF, 2168 const ARMBaseInstrInfo &TII) { 2169 unsigned FnSize = 0; 2170 for (auto &MBB : MF) { 2171 for (auto &MI : MBB) 2172 FnSize += TII.getInstSizeInBytes(MI); 2173 } 2174 if (MF.getJumpTableInfo()) 2175 for (auto &Table: MF.getJumpTableInfo()->getJumpTables()) 2176 FnSize += Table.MBBs.size() * 4; 2177 FnSize += MF.getConstantPool()->getConstants().size() * 4; 2178 return FnSize; 2179 } 2180 2181 /// estimateRSStackSizeLimit - Look at each instruction that references stack 2182 /// frames and return the stack size limit beyond which some of these 2183 /// instructions will require a scratch register during their expansion later. 2184 // FIXME: Move to TII? 2185 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 2186 const TargetFrameLowering *TFI, 2187 bool &HasNonSPFrameIndex) { 2188 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2189 const ARMBaseInstrInfo &TII = 2190 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2191 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2192 unsigned Limit = (1 << 12) - 1; 2193 for (auto &MBB : MF) { 2194 for (auto &MI : MBB) { 2195 if (MI.isDebugInstr()) 2196 continue; 2197 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 2198 if (!MI.getOperand(i).isFI()) 2199 continue; 2200 2201 // When using ADDri to get the address of a stack object, 255 is the 2202 // largest offset guaranteed to fit in the immediate offset. 2203 if (MI.getOpcode() == ARM::ADDri) { 2204 Limit = std::min(Limit, (1U << 8) - 1); 2205 break; 2206 } 2207 // t2ADDri will not require an extra register, it can reuse the 2208 // destination. 2209 if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12) 2210 break; 2211 2212 const MCInstrDesc &MCID = MI.getDesc(); 2213 const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF); 2214 if (RegClass && !RegClass->contains(ARM::SP)) 2215 HasNonSPFrameIndex = true; 2216 2217 // Otherwise check the addressing mode. 2218 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 2219 case ARMII::AddrMode_i12: 2220 case ARMII::AddrMode2: 2221 // Default 12 bit limit. 2222 break; 2223 case ARMII::AddrMode3: 2224 case ARMII::AddrModeT2_i8neg: 2225 Limit = std::min(Limit, (1U << 8) - 1); 2226 break; 2227 case ARMII::AddrMode5FP16: 2228 Limit = std::min(Limit, ((1U << 8) - 1) * 2); 2229 break; 2230 case ARMII::AddrMode5: 2231 case ARMII::AddrModeT2_i8s4: 2232 case ARMII::AddrModeT2_ldrex: 2233 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 2234 break; 2235 case ARMII::AddrModeT2_i12: 2236 // i12 supports only positive offset so these will be converted to 2237 // i8 opcodes. See llvm::rewriteT2FrameIndex. 2238 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 2239 Limit = std::min(Limit, (1U << 8) - 1); 2240 break; 2241 case ARMII::AddrMode4: 2242 case ARMII::AddrMode6: 2243 // Addressing modes 4 & 6 (load/store) instructions can't encode an 2244 // immediate offset for stack references. 2245 return 0; 2246 case ARMII::AddrModeT2_i7: 2247 Limit = std::min(Limit, ((1U << 7) - 1) * 1); 2248 break; 2249 case ARMII::AddrModeT2_i7s2: 2250 Limit = std::min(Limit, ((1U << 7) - 1) * 2); 2251 break; 2252 case ARMII::AddrModeT2_i7s4: 2253 Limit = std::min(Limit, ((1U << 7) - 1) * 4); 2254 break; 2255 default: 2256 llvm_unreachable("Unhandled addressing mode in stack size limit calculation"); 2257 } 2258 break; // At most one FI per instruction 2259 } 2260 } 2261 } 2262 2263 return Limit; 2264 } 2265 2266 // In functions that realign the stack, it can be an advantage to spill the 2267 // callee-saved vector registers after realigning the stack. The vst1 and vld1 2268 // instructions take alignment hints that can improve performance. 2269 static void 2270 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 2271 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 2272 if (!SpillAlignedNEONRegs) 2273 return; 2274 2275 // Naked functions don't spill callee-saved registers. 2276 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 2277 return; 2278 2279 // We are planning to use NEON instructions vst1 / vld1. 2280 if (!MF.getSubtarget<ARMSubtarget>().hasNEON()) 2281 return; 2282 2283 // Don't bother if the default stack alignment is sufficiently high. 2284 if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8)) 2285 return; 2286 2287 // Aligned spills require stack realignment. 2288 if (!static_cast<const ARMBaseRegisterInfo *>( 2289 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 2290 return; 2291 2292 // We always spill contiguous d-registers starting from d8. Count how many 2293 // needs spilling. The register allocator will almost always use the 2294 // callee-saved registers in order, but it can happen that there are holes in 2295 // the range. Registers above the hole will be spilled to the standard DPRCS 2296 // area. 2297 unsigned NumSpills = 0; 2298 for (; NumSpills < 8; ++NumSpills) 2299 if (!SavedRegs.test(ARM::D8 + NumSpills)) 2300 break; 2301 2302 // Don't do this for just one d-register. It's not worth it. 2303 if (NumSpills < 2) 2304 return; 2305 2306 // Spill the first NumSpills D-registers after realigning the stack. 2307 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 2308 2309 // A scratch register is required for the vst1 / vld1 instructions. 2310 SavedRegs.set(ARM::R4); 2311 } 2312 2313 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2314 // For CMSE entry functions, we want to save the FPCXT_NS immediately 2315 // upon function entry (resp. restore it immmediately before return) 2316 if (STI.hasV8_1MMainlineOps() && 2317 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) 2318 return false; 2319 2320 // We are disabling shrinkwrapping for now when PAC is enabled, as 2321 // shrinkwrapping can cause clobbering of r12 when the PAC code is 2322 // generated. A follow-up patch will fix this in a more performant manner. 2323 if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress( 2324 true /* SpillsLR */)) 2325 return false; 2326 2327 return true; 2328 } 2329 2330 bool ARMFrameLowering::requiresAAPCSFrameRecord( 2331 const MachineFunction &MF) const { 2332 const auto &Subtarget = MF.getSubtarget<ARMSubtarget>(); 2333 return Subtarget.createAAPCSFrameChain() && hasFP(MF); 2334 } 2335 2336 // Thumb1 may require a spill when storing to a frame index through FP (or any 2337 // access with execute-only), for cases where FP is a high register (R11). This 2338 // scans the function for cases where this may happen. 2339 static bool canSpillOnFrameIndexAccess(const MachineFunction &MF, 2340 const TargetFrameLowering &TFI) { 2341 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2342 if (!AFI->isThumb1OnlyFunction()) 2343 return false; 2344 2345 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 2346 for (const auto &MBB : MF) 2347 for (const auto &MI : MBB) 2348 if (MI.getOpcode() == ARM::tSTRspi || MI.getOpcode() == ARM::tSTRi || 2349 STI.genExecuteOnly()) 2350 for (const auto &Op : MI.operands()) 2351 if (Op.isFI()) { 2352 Register Reg; 2353 TFI.getFrameIndexReference(MF, Op.getIndex(), Reg); 2354 if (ARM::hGPRRegClass.contains(Reg) && Reg != ARM::SP) 2355 return true; 2356 } 2357 return false; 2358 } 2359 2360 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 2361 BitVector &SavedRegs, 2362 RegScavenger *RS) const { 2363 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2364 // This tells PEI to spill the FP as if it is any other callee-save register 2365 // to take advantage the eliminateFrameIndex machinery. This also ensures it 2366 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 2367 // to combine multiple loads / stores. 2368 bool CanEliminateFrame = !(requiresAAPCSFrameRecord(MF) && hasFP(MF)); 2369 bool CS1Spilled = false; 2370 bool LRSpilled = false; 2371 unsigned NumGPRSpills = 0; 2372 unsigned NumFPRSpills = 0; 2373 SmallVector<unsigned, 4> UnspilledCS1GPRs; 2374 SmallVector<unsigned, 4> UnspilledCS2GPRs; 2375 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 2376 MF.getSubtarget().getRegisterInfo()); 2377 const ARMBaseInstrInfo &TII = 2378 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2379 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2380 MachineFrameInfo &MFI = MF.getFrameInfo(); 2381 MachineRegisterInfo &MRI = MF.getRegInfo(); 2382 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2383 (void)TRI; // Silence unused warning in non-assert builds. 2384 Register FramePtr = RegInfo->getFrameRegister(MF); 2385 ARMSubtarget::PushPopSplitVariation PushPopSplit = 2386 STI.getPushPopSplitVariation(MF); 2387 2388 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 2389 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 2390 // since it's not always possible to restore sp from fp in a single 2391 // instruction. 2392 // FIXME: It will be better just to find spare register here. 2393 if (AFI->isThumb2Function() && 2394 (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))) 2395 SavedRegs.set(ARM::R4); 2396 2397 // If a stack probe will be emitted, spill R4 and LR, since they are 2398 // clobbered by the stack probe call. 2399 // This estimate should be a safe, conservative estimate. The actual 2400 // stack probe is enabled based on the size of the local objects; 2401 // this estimate also includes the varargs store size. 2402 if (STI.isTargetWindows() && 2403 WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) { 2404 SavedRegs.set(ARM::R4); 2405 SavedRegs.set(ARM::LR); 2406 } 2407 2408 if (AFI->isThumb1OnlyFunction()) { 2409 // Spill LR if Thumb1 function uses variable length argument lists. 2410 if (AFI->getArgRegsSaveSize() > 0) 2411 SavedRegs.set(ARM::LR); 2412 2413 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function 2414 // requires stack alignment. We don't know for sure what the stack size 2415 // will be, but for this, an estimate is good enough. If there anything 2416 // changes it, it'll be a spill, which implies we've used all the registers 2417 // and so R4 is already used, so not marking it here will be OK. 2418 // FIXME: It will be better just to find spare register here. 2419 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) || 2420 MFI.estimateStackSize(MF) > 508) 2421 SavedRegs.set(ARM::R4); 2422 } 2423 2424 // See if we can spill vector registers to aligned stack. 2425 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 2426 2427 // Spill the BasePtr if it's used. 2428 if (RegInfo->hasBasePointer(MF)) 2429 SavedRegs.set(RegInfo->getBaseRegister()); 2430 2431 // On v8.1-M.Main CMSE entry functions save/restore FPCXT. 2432 if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction()) 2433 CanEliminateFrame = false; 2434 2435 // When return address signing is enabled R12 is treated as callee-saved. 2436 if (AFI->shouldSignReturnAddress()) 2437 CanEliminateFrame = false; 2438 2439 // Don't spill FP if the frame can be eliminated. This is determined 2440 // by scanning the callee-save registers to see if any is modified. 2441 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 2442 for (unsigned i = 0; CSRegs[i]; ++i) { 2443 unsigned Reg = CSRegs[i]; 2444 bool Spilled = false; 2445 if (SavedRegs.test(Reg)) { 2446 Spilled = true; 2447 CanEliminateFrame = false; 2448 } 2449 2450 if (!ARM::GPRRegClass.contains(Reg)) { 2451 if (Spilled) { 2452 if (ARM::SPRRegClass.contains(Reg)) 2453 NumFPRSpills++; 2454 else if (ARM::DPRRegClass.contains(Reg)) 2455 NumFPRSpills += 2; 2456 else if (ARM::QPRRegClass.contains(Reg)) 2457 NumFPRSpills += 4; 2458 } 2459 continue; 2460 } 2461 2462 if (Spilled) { 2463 NumGPRSpills++; 2464 2465 if (PushPopSplit != ARMSubtarget::SplitR7) { 2466 if (Reg == ARM::LR) 2467 LRSpilled = true; 2468 CS1Spilled = true; 2469 continue; 2470 } 2471 2472 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 2473 switch (Reg) { 2474 case ARM::LR: 2475 LRSpilled = true; 2476 [[fallthrough]]; 2477 case ARM::R0: case ARM::R1: 2478 case ARM::R2: case ARM::R3: 2479 case ARM::R4: case ARM::R5: 2480 case ARM::R6: case ARM::R7: 2481 CS1Spilled = true; 2482 break; 2483 default: 2484 break; 2485 } 2486 } else { 2487 if (PushPopSplit != ARMSubtarget::SplitR7) { 2488 UnspilledCS1GPRs.push_back(Reg); 2489 continue; 2490 } 2491 2492 switch (Reg) { 2493 case ARM::R0: case ARM::R1: 2494 case ARM::R2: case ARM::R3: 2495 case ARM::R4: case ARM::R5: 2496 case ARM::R6: case ARM::R7: 2497 case ARM::LR: 2498 UnspilledCS1GPRs.push_back(Reg); 2499 break; 2500 default: 2501 UnspilledCS2GPRs.push_back(Reg); 2502 break; 2503 } 2504 } 2505 } 2506 2507 bool ForceLRSpill = false; 2508 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 2509 unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII); 2510 // Force LR to be spilled if the Thumb function size is > 2048. This enables 2511 // use of BL to implement far jump. 2512 if (FnSize >= (1 << 11)) { 2513 CanEliminateFrame = false; 2514 ForceLRSpill = true; 2515 } 2516 } 2517 2518 // If any of the stack slot references may be out of range of an immediate 2519 // offset, make sure a register (or a spill slot) is available for the 2520 // register scavenger. Note that if we're indexing off the frame pointer, the 2521 // effective stack size is 4 bytes larger since the FP points to the stack 2522 // slot of the previous FP. Also, if we have variable sized objects in the 2523 // function, stack slot references will often be negative, and some of 2524 // our instructions are positive-offset only, so conservatively consider 2525 // that case to want a spill slot (or register) as well. Similarly, if 2526 // the function adjusts the stack pointer during execution and the 2527 // adjustments aren't already part of our stack size estimate, our offset 2528 // calculations may be off, so be conservative. 2529 // FIXME: We could add logic to be more precise about negative offsets 2530 // and which instructions will need a scratch register for them. Is it 2531 // worth the effort and added fragility? 2532 unsigned EstimatedStackSize = 2533 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 2534 2535 // Determine biggest (positive) SP offset in MachineFrameInfo. 2536 int MaxFixedOffset = 0; 2537 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 2538 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); 2539 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); 2540 } 2541 2542 bool HasFP = hasFP(MF); 2543 if (HasFP) { 2544 if (AFI->hasStackFrame()) 2545 EstimatedStackSize += 4; 2546 } else { 2547 // If FP is not used, SP will be used to access arguments, so count the 2548 // size of arguments into the estimation. 2549 EstimatedStackSize += MaxFixedOffset; 2550 } 2551 EstimatedStackSize += 16; // For possible paddings. 2552 2553 unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit; 2554 bool HasNonSPFrameIndex = false; 2555 if (AFI->isThumb1OnlyFunction()) { 2556 // For Thumb1, don't bother to iterate over the function. The only 2557 // instruction that requires an emergency spill slot is a store to a 2558 // frame index. 2559 // 2560 // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned 2561 // immediate. tSTRi, which is used for bp- and fp-relative accesses, has 2562 // a 5-bit unsigned immediate. 2563 // 2564 // We could try to check if the function actually contains a tSTRspi 2565 // that might need the spill slot, but it's not really important. 2566 // Functions with VLAs or extremely large call frames are rare, and 2567 // if a function is allocating more than 1KB of stack, an extra 4-byte 2568 // slot probably isn't relevant. 2569 // 2570 // A special case is the scenario where r11 is used as FP, where accesses 2571 // to a frame index will require its value to be moved into a low reg. 2572 // This is handled later on, once we are able to determine if we have any 2573 // fp-relative accesses. 2574 if (RegInfo->hasBasePointer(MF)) 2575 EstimatedRSStackSizeLimit = (1U << 5) * 4; 2576 else 2577 EstimatedRSStackSizeLimit = (1U << 8) * 4; 2578 EstimatedRSFixedSizeLimit = (1U << 5) * 4; 2579 } else { 2580 EstimatedRSStackSizeLimit = 2581 estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex); 2582 EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit; 2583 } 2584 // Final estimate of whether sp or bp-relative accesses might require 2585 // scavenging. 2586 bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit; 2587 2588 // If the stack pointer moves and we don't have a base pointer, the 2589 // estimate logic doesn't work. The actual offsets might be larger when 2590 // we're constructing a call frame, or we might need to use negative 2591 // offsets from fp. 2592 bool HasMovingSP = MFI.hasVarSizedObjects() || 2593 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)); 2594 bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP; 2595 2596 // If we have a frame pointer, we assume arguments will be accessed 2597 // relative to the frame pointer. Check whether fp-relative accesses to 2598 // arguments require scavenging. 2599 // 2600 // We could do slightly better on Thumb1; in some cases, an sp-relative 2601 // offset would be legal even though an fp-relative offset is not. 2602 int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF); 2603 bool HasLargeArgumentList = 2604 HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit; 2605 2606 bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP || 2607 HasLargeArgumentList || HasNonSPFrameIndex; 2608 LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit 2609 << "; EstimatedStack: " << EstimatedStackSize 2610 << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset 2611 << "; BigFrameOffsets: " << BigFrameOffsets << "\n"); 2612 if (BigFrameOffsets || 2613 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 2614 AFI->setHasStackFrame(true); 2615 2616 if (HasFP) { 2617 SavedRegs.set(FramePtr); 2618 // If the frame pointer is required by the ABI, also spill LR so that we 2619 // emit a complete frame record. 2620 if ((requiresAAPCSFrameRecord(MF) || 2621 MF.getTarget().Options.DisableFramePointerElim(MF)) && 2622 !LRSpilled) { 2623 SavedRegs.set(ARM::LR); 2624 LRSpilled = true; 2625 NumGPRSpills++; 2626 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 2627 if (LRPos != UnspilledCS1GPRs.end()) 2628 UnspilledCS1GPRs.erase(LRPos); 2629 } 2630 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 2631 if (FPPos != UnspilledCS1GPRs.end()) 2632 UnspilledCS1GPRs.erase(FPPos); 2633 NumGPRSpills++; 2634 if (FramePtr == ARM::R7) 2635 CS1Spilled = true; 2636 } 2637 2638 // This is the number of extra spills inserted for callee-save GPRs which 2639 // would not otherwise be used by the function. When greater than zero it 2640 // guaranteees that it is possible to scavenge a register to hold the 2641 // address of a stack slot. On Thumb1, the register must be a valid operand 2642 // to tSTRi, i.e. r4-r7. For other subtargets, this is any GPR, i.e. r4-r11 2643 // or lr. 2644 // 2645 // If we don't insert a spill, we instead allocate an emergency spill 2646 // slot, which can be used by scavenging to spill an arbitrary register. 2647 // 2648 // We currently don't try to figure out whether any specific instruction 2649 // requires scavening an additional register. 2650 unsigned NumExtraCSSpill = 0; 2651 2652 if (AFI->isThumb1OnlyFunction()) { 2653 // For Thumb1-only targets, we need some low registers when we save and 2654 // restore the high registers (which aren't allocatable, but could be 2655 // used by inline assembly) because the push/pop instructions can not 2656 // access high registers. If necessary, we might need to push more low 2657 // registers to ensure that there is at least one free that can be used 2658 // for the saving & restoring, and preferably we should ensure that as 2659 // many as are needed are available so that fewer push/pop instructions 2660 // are required. 2661 2662 // Low registers which are not currently pushed, but could be (r4-r7). 2663 SmallVector<unsigned, 4> AvailableRegs; 2664 2665 // Unused argument registers (r0-r3) can be clobbered in the prologue for 2666 // free. 2667 int EntryRegDeficit = 0; 2668 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 2669 if (!MF.getRegInfo().isLiveIn(Reg)) { 2670 --EntryRegDeficit; 2671 LLVM_DEBUG(dbgs() 2672 << printReg(Reg, TRI) 2673 << " is unused argument register, EntryRegDeficit = " 2674 << EntryRegDeficit << "\n"); 2675 } 2676 } 2677 2678 // Unused return registers can be clobbered in the epilogue for free. 2679 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 2680 LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount() 2681 << " return regs used, ExitRegDeficit = " 2682 << ExitRegDeficit << "\n"); 2683 2684 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 2685 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 2686 2687 // r4-r6 can be used in the prologue if they are pushed by the first push 2688 // instruction. 2689 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 2690 if (SavedRegs.test(Reg)) { 2691 --RegDeficit; 2692 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2693 << " is saved low register, RegDeficit = " 2694 << RegDeficit << "\n"); 2695 } else { 2696 AvailableRegs.push_back(Reg); 2697 LLVM_DEBUG( 2698 dbgs() 2699 << printReg(Reg, TRI) 2700 << " is non-saved low register, adding to AvailableRegs\n"); 2701 } 2702 } 2703 2704 // r7 can be used if it is not being used as the frame pointer. 2705 if (!HasFP || FramePtr != ARM::R7) { 2706 if (SavedRegs.test(ARM::R7)) { 2707 --RegDeficit; 2708 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = " 2709 << RegDeficit << "\n"); 2710 } else { 2711 AvailableRegs.push_back(ARM::R7); 2712 LLVM_DEBUG( 2713 dbgs() 2714 << "%r7 is non-saved low register, adding to AvailableRegs\n"); 2715 } 2716 } 2717 2718 // Each of r8-r11 needs to be copied to a low register, then pushed. 2719 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 2720 if (SavedRegs.test(Reg)) { 2721 ++RegDeficit; 2722 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2723 << " is saved high register, RegDeficit = " 2724 << RegDeficit << "\n"); 2725 } 2726 } 2727 2728 // LR can only be used by PUSH, not POP, and can't be used at all if the 2729 // llvm.returnaddress intrinsic is used. This is only worth doing if we 2730 // are more limited at function entry than exit. 2731 if ((EntryRegDeficit > ExitRegDeficit) && 2732 !(MF.getRegInfo().isLiveIn(ARM::LR) && 2733 MF.getFrameInfo().isReturnAddressTaken())) { 2734 if (SavedRegs.test(ARM::LR)) { 2735 --RegDeficit; 2736 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = " 2737 << RegDeficit << "\n"); 2738 } else { 2739 AvailableRegs.push_back(ARM::LR); 2740 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n"); 2741 } 2742 } 2743 2744 // If there are more high registers that need pushing than low registers 2745 // available, push some more low registers so that we can use fewer push 2746 // instructions. This might not reduce RegDeficit all the way to zero, 2747 // because we can only guarantee that r4-r6 are available, but r8-r11 may 2748 // need saving. 2749 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 2750 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 2751 unsigned Reg = AvailableRegs.pop_back_val(); 2752 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2753 << " to make up reg deficit\n"); 2754 SavedRegs.set(Reg); 2755 NumGPRSpills++; 2756 CS1Spilled = true; 2757 assert(!MRI.isReserved(Reg) && "Should not be reserved"); 2758 if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg)) 2759 NumExtraCSSpill++; 2760 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 2761 if (Reg == ARM::LR) 2762 LRSpilled = true; 2763 } 2764 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit 2765 << "\n"); 2766 } 2767 2768 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to 2769 // restore LR in that case. 2770 bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall(); 2771 2772 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 2773 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 2774 if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) { 2775 SavedRegs.set(ARM::LR); 2776 NumGPRSpills++; 2777 SmallVectorImpl<unsigned>::iterator LRPos; 2778 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 2779 if (LRPos != UnspilledCS1GPRs.end()) 2780 UnspilledCS1GPRs.erase(LRPos); 2781 2782 ForceLRSpill = false; 2783 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) && 2784 !AFI->isThumb1OnlyFunction()) 2785 NumExtraCSSpill++; 2786 } 2787 2788 // If stack and double are 8-byte aligned and we are spilling an odd number 2789 // of GPRs, spill one extra callee save GPR so we won't have to pad between 2790 // the integer and double callee save areas. 2791 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 2792 const Align TargetAlign = getStackAlign(); 2793 if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) { 2794 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 2795 for (unsigned Reg : UnspilledCS1GPRs) { 2796 // Don't spill high register if the function is thumb. In the case of 2797 // Windows on ARM, accept R11 (frame pointer) 2798 if (!AFI->isThumbFunction() || 2799 (STI.isTargetWindows() && Reg == ARM::R11) || 2800 isARMLowRegister(Reg) || 2801 (Reg == ARM::LR && !ExpensiveLRRestore)) { 2802 SavedRegs.set(Reg); 2803 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2804 << " to make up alignment\n"); 2805 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) && 2806 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction())) 2807 NumExtraCSSpill++; 2808 break; 2809 } 2810 } 2811 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 2812 unsigned Reg = UnspilledCS2GPRs.front(); 2813 SavedRegs.set(Reg); 2814 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2815 << " to make up alignment\n"); 2816 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 2817 NumExtraCSSpill++; 2818 } 2819 } 2820 2821 // Estimate if we might need to scavenge registers at some point in order 2822 // to materialize a stack offset. If so, either spill one additional 2823 // callee-saved register or reserve a special spill slot to facilitate 2824 // register scavenging. Thumb1 needs a spill slot for stack pointer 2825 // adjustments and for frame index accesses when FP is high register, 2826 // even when the frame itself is small. 2827 unsigned RegsNeeded = 0; 2828 if (BigFrameOffsets || canSpillOnFrameIndexAccess(MF, *this)) { 2829 RegsNeeded++; 2830 // With thumb1 execute-only we may need an additional register for saving 2831 // and restoring the CPSR. 2832 if (AFI->isThumb1OnlyFunction() && STI.genExecuteOnly() && !STI.useMovt()) 2833 RegsNeeded++; 2834 } 2835 2836 if (RegsNeeded > NumExtraCSSpill) { 2837 // If any non-reserved CS register isn't spilled, just spill one or two 2838 // extra. That should take care of it! 2839 unsigned NumExtras = TargetAlign.value() / 4; 2840 SmallVector<unsigned, 2> Extras; 2841 while (NumExtras && !UnspilledCS1GPRs.empty()) { 2842 unsigned Reg = UnspilledCS1GPRs.pop_back_val(); 2843 if (!MRI.isReserved(Reg) && 2844 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) { 2845 Extras.push_back(Reg); 2846 NumExtras--; 2847 } 2848 } 2849 // For non-Thumb1 functions, also check for hi-reg CS registers 2850 if (!AFI->isThumb1OnlyFunction()) { 2851 while (NumExtras && !UnspilledCS2GPRs.empty()) { 2852 unsigned Reg = UnspilledCS2GPRs.pop_back_val(); 2853 if (!MRI.isReserved(Reg)) { 2854 Extras.push_back(Reg); 2855 NumExtras--; 2856 } 2857 } 2858 } 2859 if (NumExtras == 0) { 2860 for (unsigned Reg : Extras) { 2861 SavedRegs.set(Reg); 2862 if (!MRI.isPhysRegUsed(Reg)) 2863 NumExtraCSSpill++; 2864 } 2865 } 2866 while ((RegsNeeded > NumExtraCSSpill) && RS) { 2867 // Reserve a slot closest to SP or frame pointer. 2868 LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n"); 2869 const TargetRegisterClass &RC = ARM::GPRRegClass; 2870 unsigned Size = TRI->getSpillSize(RC); 2871 Align Alignment = TRI->getSpillAlign(RC); 2872 RS->addScavengingFrameIndex( 2873 MFI.CreateStackObject(Size, Alignment, false)); 2874 --RegsNeeded; 2875 } 2876 } 2877 } 2878 2879 if (ForceLRSpill) 2880 SavedRegs.set(ARM::LR); 2881 AFI->setLRIsSpilled(SavedRegs.test(ARM::LR)); 2882 } 2883 2884 void ARMFrameLowering::updateLRRestored(MachineFunction &MF) { 2885 MachineFrameInfo &MFI = MF.getFrameInfo(); 2886 if (!MFI.isCalleeSavedInfoValid()) 2887 return; 2888 2889 // Check if all terminators do not implicitly use LR. Then we can 'restore' LR 2890 // into PC so it is not live out of the return block: Clear the Restored bit 2891 // in that case. 2892 for (CalleeSavedInfo &Info : MFI.getCalleeSavedInfo()) { 2893 if (Info.getReg() != ARM::LR) 2894 continue; 2895 if (all_of(MF, [](const MachineBasicBlock &MBB) { 2896 return all_of(MBB.terminators(), [](const MachineInstr &Term) { 2897 return !Term.isReturn() || Term.getOpcode() == ARM::LDMIA_RET || 2898 Term.getOpcode() == ARM::t2LDMIA_RET || 2899 Term.getOpcode() == ARM::tPOP_RET; 2900 }); 2901 })) { 2902 Info.setRestored(false); 2903 break; 2904 } 2905 } 2906 } 2907 2908 void ARMFrameLowering::processFunctionBeforeFrameFinalized( 2909 MachineFunction &MF, RegScavenger *RS) const { 2910 TargetFrameLowering::processFunctionBeforeFrameFinalized(MF, RS); 2911 updateLRRestored(MF); 2912 } 2913 2914 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF, 2915 BitVector &SavedRegs) const { 2916 TargetFrameLowering::getCalleeSaves(MF, SavedRegs); 2917 2918 // If we have the "returned" parameter attribute which guarantees that we 2919 // return the value which was passed in r0 unmodified (e.g. C++ 'structors), 2920 // record that fact for IPRA. 2921 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2922 if (AFI->getPreservesR0()) 2923 SavedRegs.set(ARM::R0); 2924 } 2925 2926 bool ARMFrameLowering::assignCalleeSavedSpillSlots( 2927 MachineFunction &MF, const TargetRegisterInfo *TRI, 2928 std::vector<CalleeSavedInfo> &CSI) const { 2929 // For CMSE entry functions, handle floating-point context as if it was a 2930 // callee-saved register. 2931 if (STI.hasV8_1MMainlineOps() && 2932 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) { 2933 CSI.emplace_back(ARM::FPCXTNS); 2934 CSI.back().setRestored(false); 2935 } 2936 2937 // For functions, which sign their return address, upon function entry, the 2938 // return address PAC is computed in R12. Treat R12 as a callee-saved register 2939 // in this case. 2940 const auto &AFI = *MF.getInfo<ARMFunctionInfo>(); 2941 if (AFI.shouldSignReturnAddress()) { 2942 // The order of register must match the order we push them, because the 2943 // PEI assigns frame indices in that order. When compiling for return 2944 // address sign and authenication, we use split push, therefore the orders 2945 // we want are: 2946 // LR, R7, R6, R5, R4, <R12>, R11, R10, R9, R8, D15-D8 2947 CSI.insert(find_if(CSI, 2948 [=](const auto &CS) { 2949 Register Reg = CS.getReg(); 2950 return Reg == ARM::R10 || Reg == ARM::R11 || 2951 Reg == ARM::R8 || Reg == ARM::R9 || 2952 ARM::DPRRegClass.contains(Reg); 2953 }), 2954 CalleeSavedInfo(ARM::R12)); 2955 } 2956 2957 return false; 2958 } 2959 2960 const TargetFrameLowering::SpillSlot * 2961 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const { 2962 static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}}; 2963 NumEntries = std::size(FixedSpillOffsets); 2964 return FixedSpillOffsets; 2965 } 2966 2967 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 2968 MachineFunction &MF, MachineBasicBlock &MBB, 2969 MachineBasicBlock::iterator I) const { 2970 const ARMBaseInstrInfo &TII = 2971 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2972 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2973 bool isARM = !AFI->isThumbFunction(); 2974 DebugLoc dl = I->getDebugLoc(); 2975 unsigned Opc = I->getOpcode(); 2976 bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode(); 2977 unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; 2978 2979 assert(!AFI->isThumb1OnlyFunction() && 2980 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 2981 2982 int PIdx = I->findFirstPredOperandIdx(); 2983 ARMCC::CondCodes Pred = (PIdx == -1) 2984 ? ARMCC::AL 2985 : (ARMCC::CondCodes)I->getOperand(PIdx).getImm(); 2986 unsigned PredReg = TII.getFramePred(*I); 2987 2988 if (!hasReservedCallFrame(MF)) { 2989 // Bail early if the callee is expected to do the adjustment. 2990 if (IsDestroy && CalleePopAmount != -1U) 2991 return MBB.erase(I); 2992 2993 // If we have alloca, convert as follows: 2994 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 2995 // ADJCALLSTACKUP -> add, sp, sp, amount 2996 unsigned Amount = TII.getFrameSize(*I); 2997 if (Amount != 0) { 2998 // We need to keep the stack aligned properly. To do this, we round the 2999 // amount of space needed for the outgoing arguments up to the next 3000 // alignment boundary. 3001 Amount = alignSPAdjust(Amount); 3002 3003 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 3004 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 3005 Pred, PredReg); 3006 } else { 3007 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 3008 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 3009 Pred, PredReg); 3010 } 3011 } 3012 } else if (CalleePopAmount != -1U) { 3013 // If the calling convention demands that the callee pops arguments from the 3014 // stack, we want to add it back if we have a reserved call frame. 3015 emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount, 3016 MachineInstr::NoFlags, Pred, PredReg); 3017 } 3018 return MBB.erase(I); 3019 } 3020 3021 /// Get the minimum constant for ARM that is greater than or equal to the 3022 /// argument. In ARM, constants can have any value that can be produced by 3023 /// rotating an 8-bit value to the right by an even number of bits within a 3024 /// 32-bit word. 3025 static uint32_t alignToARMConstant(uint32_t Value) { 3026 unsigned Shifted = 0; 3027 3028 if (Value == 0) 3029 return 0; 3030 3031 while (!(Value & 0xC0000000)) { 3032 Value = Value << 2; 3033 Shifted += 2; 3034 } 3035 3036 bool Carry = (Value & 0x00FFFFFF); 3037 Value = ((Value & 0xFF000000) >> 24) + Carry; 3038 3039 if (Value & 0x0000100) 3040 Value = Value & 0x000001FC; 3041 3042 if (Shifted > 24) 3043 Value = Value >> (Shifted - 24); 3044 else 3045 Value = Value << (24 - Shifted); 3046 3047 return Value; 3048 } 3049 3050 // The stack limit in the TCB is set to this many bytes above the actual 3051 // stack limit. 3052 static const uint64_t kSplitStackAvailable = 256; 3053 3054 // Adjust the function prologue to enable split stacks. This currently only 3055 // supports android and linux. 3056 // 3057 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 3058 // must be well defined in order to allow for consistent implementations of the 3059 // __morestack helper function. The ABI is also not a normal ABI in that it 3060 // doesn't follow the normal calling conventions because this allows the 3061 // prologue of each function to be optimized further. 3062 // 3063 // Currently, the ABI looks like (when calling __morestack) 3064 // 3065 // * r4 holds the minimum stack size requested for this function call 3066 // * r5 holds the stack size of the arguments to the function 3067 // * the beginning of the function is 3 instructions after the call to 3068 // __morestack 3069 // 3070 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 3071 // place the arguments on to the new stack, and the 3-instruction knowledge to 3072 // jump directly to the body of the function when working on the new stack. 3073 // 3074 // An old (and possibly no longer compatible) implementation of __morestack for 3075 // ARM can be found at [1]. 3076 // 3077 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 3078 void ARMFrameLowering::adjustForSegmentedStacks( 3079 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3080 unsigned Opcode; 3081 unsigned CFIIndex; 3082 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 3083 bool Thumb = ST->isThumb(); 3084 bool Thumb2 = ST->isThumb2(); 3085 3086 // Sadly, this currently doesn't support varargs, platforms other than 3087 // android/linux. Note that thumb1/thumb2 are support for android/linux. 3088 if (MF.getFunction().isVarArg()) 3089 report_fatal_error("Segmented stacks do not support vararg functions."); 3090 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 3091 report_fatal_error("Segmented stacks not supported on this platform."); 3092 3093 MachineFrameInfo &MFI = MF.getFrameInfo(); 3094 MCContext &Context = MF.getContext(); 3095 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 3096 const ARMBaseInstrInfo &TII = 3097 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 3098 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 3099 DebugLoc DL; 3100 3101 if (!MFI.needsSplitStackProlog()) 3102 return; 3103 3104 uint64_t StackSize = MFI.getStackSize(); 3105 3106 // Use R4 and R5 as scratch registers. 3107 // We save R4 and R5 before use and restore them before leaving the function. 3108 unsigned ScratchReg0 = ARM::R4; 3109 unsigned ScratchReg1 = ARM::R5; 3110 unsigned MovOp = ST->useMovt() ? ARM::t2MOVi32imm : ARM::tMOVi32imm; 3111 uint64_t AlignedStackSize; 3112 3113 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 3114 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 3115 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 3116 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 3117 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 3118 3119 // Grab everything that reaches PrologueMBB to update there liveness as well. 3120 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 3121 SmallVector<MachineBasicBlock *, 2> WalkList; 3122 WalkList.push_back(&PrologueMBB); 3123 3124 do { 3125 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 3126 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 3127 if (BeforePrologueRegion.insert(PredBB).second) 3128 WalkList.push_back(PredBB); 3129 } 3130 } while (!WalkList.empty()); 3131 3132 // The order in that list is important. 3133 // The blocks will all be inserted before PrologueMBB using that order. 3134 // Therefore the block that should appear first in the CFG should appear 3135 // first in the list. 3136 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 3137 PostStackMBB}; 3138 3139 for (MachineBasicBlock *B : AddedBlocks) 3140 BeforePrologueRegion.insert(B); 3141 3142 for (const auto &LI : PrologueMBB.liveins()) { 3143 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 3144 PredBB->addLiveIn(LI); 3145 } 3146 3147 // Remove the newly added blocks from the list, since we know 3148 // we do not have to do the following updates for them. 3149 for (MachineBasicBlock *B : AddedBlocks) { 3150 BeforePrologueRegion.erase(B); 3151 MF.insert(PrologueMBB.getIterator(), B); 3152 } 3153 3154 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 3155 // Make sure the LiveIns are still sorted and unique. 3156 MBB->sortUniqueLiveIns(); 3157 // Replace the edges to PrologueMBB by edges to the sequences 3158 // we are about to add, but only update for immediate predecessors. 3159 if (MBB->isSuccessor(&PrologueMBB)) 3160 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 3161 } 3162 3163 // The required stack size that is aligned to ARM constant criterion. 3164 AlignedStackSize = alignToARMConstant(StackSize); 3165 3166 // When the frame size is less than 256 we just compare the stack 3167 // boundary directly to the value of the stack pointer, per gcc. 3168 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 3169 3170 // We will use two of the callee save registers as scratch registers so we 3171 // need to save those registers onto the stack. 3172 // We will use SR0 to hold stack limit and SR1 to hold the stack size 3173 // requested and arguments for __morestack(). 3174 // SR0: Scratch Register #0 3175 // SR1: Scratch Register #1 3176 // push {SR0, SR1} 3177 if (Thumb) { 3178 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 3179 .add(predOps(ARMCC::AL)) 3180 .addReg(ScratchReg0) 3181 .addReg(ScratchReg1); 3182 } else { 3183 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 3184 .addReg(ARM::SP, RegState::Define) 3185 .addReg(ARM::SP) 3186 .add(predOps(ARMCC::AL)) 3187 .addReg(ScratchReg0) 3188 .addReg(ScratchReg1); 3189 } 3190 3191 // Emit the relevant DWARF information about the change in stack pointer as 3192 // well as where to find both r4 and r5 (the callee-save registers) 3193 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3194 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8)); 3195 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3196 .addCFIIndex(CFIIndex); 3197 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3198 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 3199 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3200 .addCFIIndex(CFIIndex); 3201 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3202 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 3203 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3204 .addCFIIndex(CFIIndex); 3205 } 3206 3207 // mov SR1, sp 3208 if (Thumb) { 3209 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 3210 .addReg(ARM::SP) 3211 .add(predOps(ARMCC::AL)); 3212 } else if (CompareStackPointer) { 3213 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 3214 .addReg(ARM::SP) 3215 .add(predOps(ARMCC::AL)) 3216 .add(condCodeOp()); 3217 } 3218 3219 // sub SR1, sp, #StackSize 3220 if (!CompareStackPointer && Thumb) { 3221 if (AlignedStackSize < 256) { 3222 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 3223 .add(condCodeOp()) 3224 .addReg(ScratchReg1) 3225 .addImm(AlignedStackSize) 3226 .add(predOps(ARMCC::AL)); 3227 } else { 3228 if (Thumb2 || ST->genExecuteOnly()) { 3229 BuildMI(McrMBB, DL, TII.get(MovOp), ScratchReg0) 3230 .addImm(AlignedStackSize); 3231 } else { 3232 auto MBBI = McrMBB->end(); 3233 auto RegInfo = STI.getRegisterInfo(); 3234 RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0, 3235 AlignedStackSize); 3236 } 3237 BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1) 3238 .add(condCodeOp()) 3239 .addReg(ScratchReg1) 3240 .addReg(ScratchReg0) 3241 .add(predOps(ARMCC::AL)); 3242 } 3243 } else if (!CompareStackPointer) { 3244 if (AlignedStackSize < 256) { 3245 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 3246 .addReg(ARM::SP) 3247 .addImm(AlignedStackSize) 3248 .add(predOps(ARMCC::AL)) 3249 .add(condCodeOp()); 3250 } else { 3251 auto MBBI = McrMBB->end(); 3252 auto RegInfo = STI.getRegisterInfo(); 3253 RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0, 3254 AlignedStackSize); 3255 BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1) 3256 .addReg(ARM::SP) 3257 .addReg(ScratchReg0) 3258 .add(predOps(ARMCC::AL)) 3259 .add(condCodeOp()); 3260 } 3261 } 3262 3263 if (Thumb && ST->isThumb1Only()) { 3264 if (ST->genExecuteOnly()) { 3265 BuildMI(GetMBB, DL, TII.get(MovOp), ScratchReg0) 3266 .addExternalSymbol("__STACK_LIMIT"); 3267 } else { 3268 unsigned PCLabelId = ARMFI->createPICLabelUId(); 3269 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 3270 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0); 3271 MachineConstantPool *MCP = MF.getConstantPool(); 3272 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4)); 3273 3274 // ldr SR0, [pc, offset(STACK_LIMIT)] 3275 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 3276 .addConstantPoolIndex(CPI) 3277 .add(predOps(ARMCC::AL)); 3278 } 3279 3280 // ldr SR0, [SR0] 3281 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 3282 .addReg(ScratchReg0) 3283 .addImm(0) 3284 .add(predOps(ARMCC::AL)); 3285 } else { 3286 // Get TLS base address from the coprocessor 3287 // mrc p15, #0, SR0, c13, c0, #3 3288 BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC), 3289 ScratchReg0) 3290 .addImm(15) 3291 .addImm(0) 3292 .addImm(13) 3293 .addImm(0) 3294 .addImm(3) 3295 .add(predOps(ARMCC::AL)); 3296 3297 // Use the last tls slot on android and a private field of the TCP on linux. 3298 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 3299 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 3300 3301 // Get the stack limit from the right offset 3302 // ldr SR0, [sr0, #4 * TlsOffset] 3303 BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12), 3304 ScratchReg0) 3305 .addReg(ScratchReg0) 3306 .addImm(4 * TlsOffset) 3307 .add(predOps(ARMCC::AL)); 3308 } 3309 3310 // Compare stack limit with stack size requested. 3311 // cmp SR0, SR1 3312 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 3313 BuildMI(GetMBB, DL, TII.get(Opcode)) 3314 .addReg(ScratchReg0) 3315 .addReg(ScratchReg1) 3316 .add(predOps(ARMCC::AL)); 3317 3318 // This jump is taken if StackLimit <= SP - stack required. 3319 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 3320 BuildMI(GetMBB, DL, TII.get(Opcode)) 3321 .addMBB(PostStackMBB) 3322 .addImm(ARMCC::LS) 3323 .addReg(ARM::CPSR); 3324 3325 // Calling __morestack(StackSize, Size of stack arguments). 3326 // __morestack knows that the stack size requested is in SR0(r4) 3327 // and amount size of stack arguments is in SR1(r5). 3328 3329 // Pass first argument for the __morestack by Scratch Register #0. 3330 // The amount size of stack required 3331 if (Thumb) { 3332 if (AlignedStackSize < 256) { 3333 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 3334 .add(condCodeOp()) 3335 .addImm(AlignedStackSize) 3336 .add(predOps(ARMCC::AL)); 3337 } else { 3338 if (Thumb2 || ST->genExecuteOnly()) { 3339 BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg0) 3340 .addImm(AlignedStackSize); 3341 } else { 3342 auto MBBI = AllocMBB->end(); 3343 auto RegInfo = STI.getRegisterInfo(); 3344 RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0, 3345 AlignedStackSize); 3346 } 3347 } 3348 } else { 3349 if (AlignedStackSize < 256) { 3350 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 3351 .addImm(AlignedStackSize) 3352 .add(predOps(ARMCC::AL)) 3353 .add(condCodeOp()); 3354 } else { 3355 auto MBBI = AllocMBB->end(); 3356 auto RegInfo = STI.getRegisterInfo(); 3357 RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0, 3358 AlignedStackSize); 3359 } 3360 } 3361 3362 // Pass second argument for the __morestack by Scratch Register #1. 3363 // The amount size of stack consumed to save function arguments. 3364 if (Thumb) { 3365 if (ARMFI->getArgumentStackSize() < 256) { 3366 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 3367 .add(condCodeOp()) 3368 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 3369 .add(predOps(ARMCC::AL)); 3370 } else { 3371 if (Thumb2 || ST->genExecuteOnly()) { 3372 BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg1) 3373 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())); 3374 } else { 3375 auto MBBI = AllocMBB->end(); 3376 auto RegInfo = STI.getRegisterInfo(); 3377 RegInfo->emitLoadConstPool( 3378 *AllocMBB, MBBI, DL, ScratchReg1, 0, 3379 alignToARMConstant(ARMFI->getArgumentStackSize())); 3380 } 3381 } 3382 } else { 3383 if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) { 3384 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 3385 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 3386 .add(predOps(ARMCC::AL)) 3387 .add(condCodeOp()); 3388 } else { 3389 auto MBBI = AllocMBB->end(); 3390 auto RegInfo = STI.getRegisterInfo(); 3391 RegInfo->emitLoadConstPool( 3392 *AllocMBB, MBBI, DL, ScratchReg1, 0, 3393 alignToARMConstant(ARMFI->getArgumentStackSize())); 3394 } 3395 } 3396 3397 // push {lr} - Save return address of this function. 3398 if (Thumb) { 3399 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 3400 .add(predOps(ARMCC::AL)) 3401 .addReg(ARM::LR); 3402 } else { 3403 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 3404 .addReg(ARM::SP, RegState::Define) 3405 .addReg(ARM::SP) 3406 .add(predOps(ARMCC::AL)) 3407 .addReg(ARM::LR); 3408 } 3409 3410 // Emit the DWARF info about the change in stack as well as where to find the 3411 // previous link register 3412 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3413 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12)); 3414 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3415 .addCFIIndex(CFIIndex); 3416 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3417 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 3418 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3419 .addCFIIndex(CFIIndex); 3420 } 3421 3422 // Call __morestack(). 3423 if (Thumb) { 3424 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 3425 .add(predOps(ARMCC::AL)) 3426 .addExternalSymbol("__morestack"); 3427 } else { 3428 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 3429 .addExternalSymbol("__morestack"); 3430 } 3431 3432 // pop {lr} - Restore return address of this original function. 3433 if (Thumb) { 3434 if (ST->isThumb1Only()) { 3435 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 3436 .add(predOps(ARMCC::AL)) 3437 .addReg(ScratchReg0); 3438 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 3439 .addReg(ScratchReg0) 3440 .add(predOps(ARMCC::AL)); 3441 } else { 3442 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 3443 .addReg(ARM::LR, RegState::Define) 3444 .addReg(ARM::SP, RegState::Define) 3445 .addReg(ARM::SP) 3446 .addImm(4) 3447 .add(predOps(ARMCC::AL)); 3448 } 3449 } else { 3450 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 3451 .addReg(ARM::SP, RegState::Define) 3452 .addReg(ARM::SP) 3453 .add(predOps(ARMCC::AL)) 3454 .addReg(ARM::LR); 3455 } 3456 3457 // Restore SR0 and SR1 in case of __morestack() was called. 3458 // __morestack() will skip PostStackMBB block so we need to restore 3459 // scratch registers from here. 3460 // pop {SR0, SR1} 3461 if (Thumb) { 3462 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 3463 .add(predOps(ARMCC::AL)) 3464 .addReg(ScratchReg0) 3465 .addReg(ScratchReg1); 3466 } else { 3467 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 3468 .addReg(ARM::SP, RegState::Define) 3469 .addReg(ARM::SP) 3470 .add(predOps(ARMCC::AL)) 3471 .addReg(ScratchReg0) 3472 .addReg(ScratchReg1); 3473 } 3474 3475 // Update the CFA offset now that we've popped 3476 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3477 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 3478 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3479 .addCFIIndex(CFIIndex); 3480 } 3481 3482 // Return from this function. 3483 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL)); 3484 3485 // Restore SR0 and SR1 in case of __morestack() was not called. 3486 // pop {SR0, SR1} 3487 if (Thumb) { 3488 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 3489 .add(predOps(ARMCC::AL)) 3490 .addReg(ScratchReg0) 3491 .addReg(ScratchReg1); 3492 } else { 3493 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 3494 .addReg(ARM::SP, RegState::Define) 3495 .addReg(ARM::SP) 3496 .add(predOps(ARMCC::AL)) 3497 .addReg(ScratchReg0) 3498 .addReg(ScratchReg1); 3499 } 3500 3501 // Update the CFA offset now that we've popped 3502 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3503 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 3504 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3505 .addCFIIndex(CFIIndex); 3506 3507 // Tell debuggers that r4 and r5 are now the same as they were in the 3508 // previous function, that they're the "Same Value". 3509 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 3510 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 3511 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3512 .addCFIIndex(CFIIndex); 3513 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 3514 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 3515 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3516 .addCFIIndex(CFIIndex); 3517 } 3518 3519 // Organizing MBB lists 3520 PostStackMBB->addSuccessor(&PrologueMBB); 3521 3522 AllocMBB->addSuccessor(PostStackMBB); 3523 3524 GetMBB->addSuccessor(PostStackMBB); 3525 GetMBB->addSuccessor(AllocMBB); 3526 3527 McrMBB->addSuccessor(GetMBB); 3528 3529 PrevStackMBB->addSuccessor(McrMBB); 3530 3531 #ifdef EXPENSIVE_CHECKS 3532 MF.verify(); 3533 #endif 3534 } 3535