1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the ARM implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ARMFrameLowering.h" 14 #include "ARMBaseInstrInfo.h" 15 #include "ARMBaseRegisterInfo.h" 16 #include "ARMConstantPoolValue.h" 17 #include "ARMMachineFunctionInfo.h" 18 #include "ARMSubtarget.h" 19 #include "MCTargetDesc/ARMAddressingModes.h" 20 #include "MCTargetDesc/ARMBaseInfo.h" 21 #include "Utils/ARMBaseInfo.h" 22 #include "llvm/ADT/BitVector.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/RegisterScavenging.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetOpcodes.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/CallingConv.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/MC/MCContext.h" 46 #include "llvm/MC/MCDwarf.h" 47 #include "llvm/MC/MCInstrDesc.h" 48 #include "llvm/MC/MCRegisterInfo.h" 49 #include "llvm/Support/CodeGen.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Target/TargetMachine.h" 57 #include "llvm/Target/TargetOptions.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstddef> 61 #include <cstdint> 62 #include <iterator> 63 #include <utility> 64 #include <vector> 65 66 #define DEBUG_TYPE "arm-frame-lowering" 67 68 using namespace llvm; 69 70 static cl::opt<bool> 71 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 72 cl::desc("Align ARM NEON spills in prolog and epilog")); 73 74 static MachineBasicBlock::iterator 75 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 76 unsigned NumAlignedDPRCS2Regs); 77 78 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 79 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)), 80 STI(sti) {} 81 82 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const { 83 // iOS always has a FP for backtracking, force other targets to keep their FP 84 // when doing FastISel. The emitted code is currently superior, and in cases 85 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 86 return MF.getSubtarget<ARMSubtarget>().useFastISel(); 87 } 88 89 /// Returns true if the target can safely skip saving callee-saved registers 90 /// for noreturn nounwind functions. 91 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const { 92 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) && 93 MF.getFunction().hasFnAttribute(Attribute::NoUnwind) && 94 !MF.getFunction().hasFnAttribute(Attribute::UWTable)); 95 96 // Frame pointer and link register are not treated as normal CSR, thus we 97 // can always skip CSR saves for nonreturning functions. 98 return true; 99 } 100 101 /// hasFP - Return true if the specified function should have a dedicated frame 102 /// pointer register. This is true if the function has variable sized allocas 103 /// or if frame pointer elimination is disabled. 104 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { 105 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 106 const MachineFrameInfo &MFI = MF.getFrameInfo(); 107 108 // ABI-required frame pointer. 109 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 110 return true; 111 112 // Frame pointer required for use within this function. 113 return (RegInfo->needsStackRealignment(MF) || 114 MFI.hasVarSizedObjects() || 115 MFI.isFrameAddressTaken()); 116 } 117 118 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 119 /// not required, we reserve argument space for call sites in the function 120 /// immediately on entry to the current function. This eliminates the need for 121 /// add/sub sp brackets around call sites. Returns true if the call frame is 122 /// included as part of the stack frame. 123 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 124 const MachineFrameInfo &MFI = MF.getFrameInfo(); 125 unsigned CFSize = MFI.getMaxCallFrameSize(); 126 // It's not always a good idea to include the call frame as part of the 127 // stack frame. ARM (especially Thumb) has small immediate offset to 128 // address the stack frame. So a large call frame can cause poor codegen 129 // and may even makes it impossible to scavenge a register. 130 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 131 return false; 132 133 return !MFI.hasVarSizedObjects(); 134 } 135 136 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 137 /// call frame pseudos can be simplified. Unlike most targets, having a FP 138 /// is not sufficient here since we still may reference some objects via SP 139 /// even when FP is available in Thumb2 mode. 140 bool 141 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 142 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 143 } 144 145 static void emitRegPlusImmediate( 146 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 147 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 148 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 149 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 150 if (isARM) 151 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 152 Pred, PredReg, TII, MIFlags); 153 else 154 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 155 Pred, PredReg, TII, MIFlags); 156 } 157 158 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 159 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 160 const ARMBaseInstrInfo &TII, int NumBytes, 161 unsigned MIFlags = MachineInstr::NoFlags, 162 ARMCC::CondCodes Pred = ARMCC::AL, 163 unsigned PredReg = 0) { 164 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 165 MIFlags, Pred, PredReg); 166 } 167 168 static int sizeOfSPAdjustment(const MachineInstr &MI) { 169 int RegSize; 170 switch (MI.getOpcode()) { 171 case ARM::VSTMDDB_UPD: 172 RegSize = 8; 173 break; 174 case ARM::STMDB_UPD: 175 case ARM::t2STMDB_UPD: 176 RegSize = 4; 177 break; 178 case ARM::t2STR_PRE: 179 case ARM::STR_PRE_IMM: 180 return 4; 181 default: 182 llvm_unreachable("Unknown push or pop like instruction"); 183 } 184 185 int count = 0; 186 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 187 // pred) so the list starts at 4. 188 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 189 count += RegSize; 190 return count; 191 } 192 193 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 194 size_t StackSizeInBytes) { 195 const MachineFrameInfo &MFI = MF.getFrameInfo(); 196 const Function &F = MF.getFunction(); 197 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 198 if (F.hasFnAttribute("stack-probe-size")) 199 F.getFnAttribute("stack-probe-size") 200 .getValueAsString() 201 .getAsInteger(0, StackProbeSize); 202 return (StackSizeInBytes >= StackProbeSize) && 203 !F.hasFnAttribute("no-stack-arg-probe"); 204 } 205 206 namespace { 207 208 struct StackAdjustingInsts { 209 struct InstInfo { 210 MachineBasicBlock::iterator I; 211 unsigned SPAdjust; 212 bool BeforeFPSet; 213 }; 214 215 SmallVector<InstInfo, 4> Insts; 216 217 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 218 bool BeforeFPSet = false) { 219 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 220 Insts.push_back(Info); 221 } 222 223 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 224 auto Info = 225 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 226 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 227 Info->SPAdjust += ExtraBytes; 228 } 229 230 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 231 const ARMBaseInstrInfo &TII, bool HasFP) { 232 MachineFunction &MF = *MBB.getParent(); 233 unsigned CFAOffset = 0; 234 for (auto &Info : Insts) { 235 if (HasFP && !Info.BeforeFPSet) 236 return; 237 238 CFAOffset -= Info.SPAdjust; 239 unsigned CFIIndex = MF.addFrameInst( 240 MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset)); 241 BuildMI(MBB, std::next(Info.I), dl, 242 TII.get(TargetOpcode::CFI_INSTRUCTION)) 243 .addCFIIndex(CFIIndex) 244 .setMIFlags(MachineInstr::FrameSetup); 245 } 246 } 247 }; 248 249 } // end anonymous namespace 250 251 /// Emit an instruction sequence that will align the address in 252 /// register Reg by zero-ing out the lower bits. For versions of the 253 /// architecture that support Neon, this must be done in a single 254 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 255 /// single instruction. That function only gets called when optimizing 256 /// spilling of D registers on a core with the Neon instruction set 257 /// present. 258 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 259 const TargetInstrInfo &TII, 260 MachineBasicBlock &MBB, 261 MachineBasicBlock::iterator MBBI, 262 const DebugLoc &DL, const unsigned Reg, 263 const unsigned Alignment, 264 const bool MustBeSingleInstruction) { 265 const ARMSubtarget &AST = 266 static_cast<const ARMSubtarget &>(MF.getSubtarget()); 267 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 268 const unsigned AlignMask = Alignment - 1; 269 const unsigned NrBitsToZero = countTrailingZeros(Alignment); 270 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 271 if (!AFI->isThumbFunction()) { 272 // if the BFC instruction is available, use that to zero the lower 273 // bits: 274 // bfc Reg, #0, log2(Alignment) 275 // otherwise use BIC, if the mask to zero the required number of bits 276 // can be encoded in the bic immediate field 277 // bic Reg, Reg, Alignment-1 278 // otherwise, emit 279 // lsr Reg, Reg, log2(Alignment) 280 // lsl Reg, Reg, log2(Alignment) 281 if (CanUseBFC) { 282 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 283 .addReg(Reg, RegState::Kill) 284 .addImm(~AlignMask) 285 .add(predOps(ARMCC::AL)); 286 } else if (AlignMask <= 255) { 287 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 288 .addReg(Reg, RegState::Kill) 289 .addImm(AlignMask) 290 .add(predOps(ARMCC::AL)) 291 .add(condCodeOp()); 292 } else { 293 assert(!MustBeSingleInstruction && 294 "Shouldn't call emitAligningInstructions demanding a single " 295 "instruction to be emitted for large stack alignment for a target " 296 "without BFC."); 297 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 298 .addReg(Reg, RegState::Kill) 299 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 300 .add(predOps(ARMCC::AL)) 301 .add(condCodeOp()); 302 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 303 .addReg(Reg, RegState::Kill) 304 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 305 .add(predOps(ARMCC::AL)) 306 .add(condCodeOp()); 307 } 308 } else { 309 // Since this is only reached for Thumb-2 targets, the BFC instruction 310 // should always be available. 311 assert(CanUseBFC); 312 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 313 .addReg(Reg, RegState::Kill) 314 .addImm(~AlignMask) 315 .add(predOps(ARMCC::AL)); 316 } 317 } 318 319 /// We need the offset of the frame pointer relative to other MachineFrameInfo 320 /// offsets which are encoded relative to SP at function begin. 321 /// See also emitPrologue() for how the FP is set up. 322 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet 323 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use 324 /// this to produce a conservative estimate that we check in an assert() later. 325 static int getMaxFPOffset(const Function &F, const ARMFunctionInfo &AFI) { 326 // For Thumb1, push.w isn't available, so the first push will always push 327 // r7 and lr onto the stack first. 328 if (AFI.isThumb1OnlyFunction()) 329 return -AFI.getArgRegsSaveSize() - (2 * 4); 330 // This is a conservative estimation: Assume the frame pointer being r7 and 331 // pc("r15") up to r8 getting spilled before (= 8 registers). 332 return -AFI.getArgRegsSaveSize() - (8 * 4); 333 } 334 335 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 336 MachineBasicBlock &MBB) const { 337 MachineBasicBlock::iterator MBBI = MBB.begin(); 338 MachineFrameInfo &MFI = MF.getFrameInfo(); 339 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 340 MachineModuleInfo &MMI = MF.getMMI(); 341 MCContext &Context = MMI.getContext(); 342 const TargetMachine &TM = MF.getTarget(); 343 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 344 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 345 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 346 assert(!AFI->isThumb1OnlyFunction() && 347 "This emitPrologue does not support Thumb1!"); 348 bool isARM = !AFI->isThumbFunction(); 349 unsigned Align = STI.getFrameLowering()->getStackAlignment(); 350 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 351 unsigned NumBytes = MFI.getStackSize(); 352 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 353 354 // Debug location must be unknown since the first debug location is used 355 // to determine the end of the prologue. 356 DebugLoc dl; 357 358 Register FramePtr = RegInfo->getFrameRegister(MF); 359 360 // Determine the sizes of each callee-save spill areas and record which frame 361 // belongs to which callee-save spill areas. 362 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 363 int FramePtrSpillFI = 0; 364 int D8SpillFI = 0; 365 366 // All calls are tail calls in GHC calling conv, and functions have no 367 // prologue/epilogue. 368 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 369 return; 370 371 StackAdjustingInsts DefCFAOffsetCandidates; 372 bool HasFP = hasFP(MF); 373 374 // Allocate the vararg register save area. 375 if (ArgRegsSaveSize) { 376 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 377 MachineInstr::FrameSetup); 378 DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true); 379 } 380 381 if (!AFI->hasStackFrame() && 382 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 383 if (NumBytes - ArgRegsSaveSize != 0) { 384 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize), 385 MachineInstr::FrameSetup); 386 DefCFAOffsetCandidates.addInst(std::prev(MBBI), 387 NumBytes - ArgRegsSaveSize, true); 388 } 389 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 390 return; 391 } 392 393 // Determine spill area sizes. 394 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 395 unsigned Reg = CSI[i].getReg(); 396 int FI = CSI[i].getFrameIdx(); 397 switch (Reg) { 398 case ARM::R8: 399 case ARM::R9: 400 case ARM::R10: 401 case ARM::R11: 402 case ARM::R12: 403 if (STI.splitFramePushPop(MF)) { 404 GPRCS2Size += 4; 405 break; 406 } 407 LLVM_FALLTHROUGH; 408 case ARM::R0: 409 case ARM::R1: 410 case ARM::R2: 411 case ARM::R3: 412 case ARM::R4: 413 case ARM::R5: 414 case ARM::R6: 415 case ARM::R7: 416 case ARM::LR: 417 if (Reg == FramePtr) 418 FramePtrSpillFI = FI; 419 GPRCS1Size += 4; 420 break; 421 default: 422 // This is a DPR. Exclude the aligned DPRCS2 spills. 423 if (Reg == ARM::D8) 424 D8SpillFI = FI; 425 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) 426 DPRCSSize += 8; 427 } 428 } 429 430 // Move past area 1. 431 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 432 if (GPRCS1Size > 0) { 433 GPRCS1Push = LastPush = MBBI++; 434 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); 435 } 436 437 // Determine starting offsets of spill areas. 438 unsigned GPRCS1Offset = NumBytes - ArgRegsSaveSize - GPRCS1Size; 439 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 440 unsigned DPRAlign = DPRCSSize ? std::min(8U, Align) : 4U; 441 unsigned DPRGapSize = (GPRCS1Size + GPRCS2Size + ArgRegsSaveSize) % DPRAlign; 442 unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 443 int FramePtrOffsetInPush = 0; 444 if (HasFP) { 445 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); 446 assert(getMaxFPOffset(MF.getFunction(), *AFI) <= FPOffset && 447 "Max FP estimation is wrong"); 448 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize; 449 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 450 NumBytes); 451 } 452 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 453 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 454 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 455 456 // Move past area 2. 457 if (GPRCS2Size > 0) { 458 GPRCS2Push = LastPush = MBBI++; 459 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 460 } 461 462 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 463 // .cfi_offset operations will reflect that. 464 if (DPRGapSize) { 465 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 466 if (LastPush != MBB.end() && 467 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 468 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 469 else { 470 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 471 MachineInstr::FrameSetup); 472 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); 473 } 474 } 475 476 // Move past area 3. 477 if (DPRCSSize > 0) { 478 // Since vpush register list cannot have gaps, there may be multiple vpush 479 // instructions in the prologue. 480 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 481 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); 482 LastPush = MBBI++; 483 } 484 } 485 486 // Move past the aligned DPRCS2 area. 487 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 488 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 489 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 490 // leaves the stack pointer pointing to the DPRCS2 area. 491 // 492 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 493 NumBytes += MFI.getObjectOffset(D8SpillFI); 494 } else 495 NumBytes = DPRCSOffset; 496 497 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 498 uint32_t NumWords = NumBytes >> 2; 499 500 if (NumWords < 65536) 501 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 502 .addImm(NumWords) 503 .setMIFlags(MachineInstr::FrameSetup) 504 .add(predOps(ARMCC::AL)); 505 else 506 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4) 507 .addImm(NumWords) 508 .setMIFlags(MachineInstr::FrameSetup); 509 510 switch (TM.getCodeModel()) { 511 case CodeModel::Tiny: 512 llvm_unreachable("Tiny code model not available on ARM."); 513 case CodeModel::Small: 514 case CodeModel::Medium: 515 case CodeModel::Kernel: 516 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 517 .add(predOps(ARMCC::AL)) 518 .addExternalSymbol("__chkstk") 519 .addReg(ARM::R4, RegState::Implicit) 520 .setMIFlags(MachineInstr::FrameSetup); 521 break; 522 case CodeModel::Large: 523 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 524 .addExternalSymbol("__chkstk") 525 .setMIFlags(MachineInstr::FrameSetup); 526 527 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 528 .add(predOps(ARMCC::AL)) 529 .addReg(ARM::R12, RegState::Kill) 530 .addReg(ARM::R4, RegState::Implicit) 531 .setMIFlags(MachineInstr::FrameSetup); 532 break; 533 } 534 535 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 536 .addReg(ARM::SP, RegState::Kill) 537 .addReg(ARM::R4, RegState::Kill) 538 .setMIFlags(MachineInstr::FrameSetup) 539 .add(predOps(ARMCC::AL)) 540 .add(condCodeOp()); 541 NumBytes = 0; 542 } 543 544 if (NumBytes) { 545 // Adjust SP after all the callee-save spills. 546 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 547 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 548 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 549 else { 550 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 551 MachineInstr::FrameSetup); 552 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 553 } 554 555 if (HasFP && isARM) 556 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 557 // Note it's not safe to do this in Thumb2 mode because it would have 558 // taken two instructions: 559 // mov sp, r7 560 // sub sp, #24 561 // If an interrupt is taken between the two instructions, then sp is in 562 // an inconsistent state (pointing to the middle of callee-saved area). 563 // The interrupt handler can end up clobbering the registers. 564 AFI->setShouldRestoreSPFromFP(true); 565 } 566 567 // Set FP to point to the stack slot that contains the previous FP. 568 // For iOS, FP is R7, which has now been stored in spill area 1. 569 // Otherwise, if this is not iOS, all the callee-saved registers go 570 // into spill area 1, including the FP in R11. In either case, it 571 // is in area one and the adjustment needs to take place just after 572 // that push. 573 if (HasFP) { 574 MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push); 575 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); 576 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, 577 dl, TII, FramePtr, ARM::SP, 578 PushSize + FramePtrOffsetInPush, 579 MachineInstr::FrameSetup); 580 if (FramePtrOffsetInPush + PushSize != 0) { 581 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa( 582 nullptr, MRI->getDwarfRegNum(FramePtr, true), 583 -(ArgRegsSaveSize - FramePtrOffsetInPush))); 584 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 585 .addCFIIndex(CFIIndex) 586 .setMIFlags(MachineInstr::FrameSetup); 587 } else { 588 unsigned CFIIndex = 589 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 590 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 591 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 592 .addCFIIndex(CFIIndex) 593 .setMIFlags(MachineInstr::FrameSetup); 594 } 595 } 596 597 // Now that the prologue's actual instructions are finalised, we can insert 598 // the necessary DWARF cf instructions to describe the situation. Start by 599 // recording where each register ended up: 600 if (GPRCS1Size > 0) { 601 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push); 602 int CFIIndex; 603 for (const auto &Entry : CSI) { 604 unsigned Reg = Entry.getReg(); 605 int FI = Entry.getFrameIdx(); 606 switch (Reg) { 607 case ARM::R8: 608 case ARM::R9: 609 case ARM::R10: 610 case ARM::R11: 611 case ARM::R12: 612 if (STI.splitFramePushPop(MF)) 613 break; 614 LLVM_FALLTHROUGH; 615 case ARM::R0: 616 case ARM::R1: 617 case ARM::R2: 618 case ARM::R3: 619 case ARM::R4: 620 case ARM::R5: 621 case ARM::R6: 622 case ARM::R7: 623 case ARM::LR: 624 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 625 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI))); 626 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 627 .addCFIIndex(CFIIndex) 628 .setMIFlags(MachineInstr::FrameSetup); 629 break; 630 } 631 } 632 } 633 634 if (GPRCS2Size > 0) { 635 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push); 636 for (const auto &Entry : CSI) { 637 unsigned Reg = Entry.getReg(); 638 int FI = Entry.getFrameIdx(); 639 switch (Reg) { 640 case ARM::R8: 641 case ARM::R9: 642 case ARM::R10: 643 case ARM::R11: 644 case ARM::R12: 645 if (STI.splitFramePushPop(MF)) { 646 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 647 unsigned Offset = MFI.getObjectOffset(FI); 648 unsigned CFIIndex = MF.addFrameInst( 649 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 650 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 651 .addCFIIndex(CFIIndex) 652 .setMIFlags(MachineInstr::FrameSetup); 653 } 654 break; 655 } 656 } 657 } 658 659 if (DPRCSSize > 0) { 660 // Since vpush register list cannot have gaps, there may be multiple vpush 661 // instructions in the prologue. 662 MachineBasicBlock::iterator Pos = std::next(LastPush); 663 for (const auto &Entry : CSI) { 664 unsigned Reg = Entry.getReg(); 665 int FI = Entry.getFrameIdx(); 666 if ((Reg >= ARM::D0 && Reg <= ARM::D31) && 667 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) { 668 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 669 unsigned Offset = MFI.getObjectOffset(FI); 670 unsigned CFIIndex = MF.addFrameInst( 671 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 672 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 673 .addCFIIndex(CFIIndex) 674 .setMIFlags(MachineInstr::FrameSetup); 675 } 676 } 677 } 678 679 // Now we can emit descriptions of where the canonical frame address was 680 // throughout the process. If we have a frame pointer, it takes over the job 681 // half-way through, so only the first few .cfi_def_cfa_offset instructions 682 // actually get emitted. 683 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 684 685 if (STI.isTargetELF() && hasFP(MF)) 686 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 687 AFI->getFramePtrSpillOffset()); 688 689 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 690 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 691 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 692 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 693 694 // If we need dynamic stack realignment, do it here. Be paranoid and make 695 // sure if we also have VLAs, we have a base pointer for frame access. 696 // If aligned NEON registers were spilled, the stack has already been 697 // realigned. 698 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) { 699 unsigned MaxAlign = MFI.getMaxAlignment(); 700 assert(!AFI->isThumb1OnlyFunction()); 701 if (!AFI->isThumbFunction()) { 702 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 703 false); 704 } else { 705 // We cannot use sp as source/dest register here, thus we're using r4 to 706 // perform the calculations. We're emitting the following sequence: 707 // mov r4, sp 708 // -- use emitAligningInstructions to produce best sequence to zero 709 // -- out lower bits in r4 710 // mov sp, r4 711 // FIXME: It will be better just to find spare register here. 712 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 713 .addReg(ARM::SP, RegState::Kill) 714 .add(predOps(ARMCC::AL)); 715 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 716 false); 717 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 718 .addReg(ARM::R4, RegState::Kill) 719 .add(predOps(ARMCC::AL)); 720 } 721 722 AFI->setShouldRestoreSPFromFP(true); 723 } 724 725 // If we need a base pointer, set it up here. It's whatever the value 726 // of the stack pointer is at this point. Any variable size objects 727 // will be allocated after this, so we can still use the base pointer 728 // to reference locals. 729 // FIXME: Clarify FrameSetup flags here. 730 if (RegInfo->hasBasePointer(MF)) { 731 if (isARM) 732 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 733 .addReg(ARM::SP) 734 .add(predOps(ARMCC::AL)) 735 .add(condCodeOp()); 736 else 737 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 738 .addReg(ARM::SP) 739 .add(predOps(ARMCC::AL)); 740 } 741 742 // If the frame has variable sized objects then the epilogue must restore 743 // the sp from fp. We can assume there's an FP here since hasFP already 744 // checks for hasVarSizedObjects. 745 if (MFI.hasVarSizedObjects()) 746 AFI->setShouldRestoreSPFromFP(true); 747 } 748 749 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 750 MachineBasicBlock &MBB) const { 751 MachineFrameInfo &MFI = MF.getFrameInfo(); 752 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 753 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 754 const ARMBaseInstrInfo &TII = 755 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 756 assert(!AFI->isThumb1OnlyFunction() && 757 "This emitEpilogue does not support Thumb1!"); 758 bool isARM = !AFI->isThumbFunction(); 759 760 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 761 int NumBytes = (int)MFI.getStackSize(); 762 Register FramePtr = RegInfo->getFrameRegister(MF); 763 764 // All calls are tail calls in GHC calling conv, and functions have no 765 // prologue/epilogue. 766 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 767 return; 768 769 // First put ourselves on the first (from top) terminator instructions. 770 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 771 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 772 773 if (!AFI->hasStackFrame()) { 774 if (NumBytes - ArgRegsSaveSize != 0) 775 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize, 776 MachineInstr::FrameDestroy); 777 } else { 778 // Unwind MBBI to point to first LDR / VLDRD. 779 if (MBBI != MBB.begin()) { 780 do { 781 --MBBI; 782 } while (MBBI != MBB.begin() && 783 MBBI->getFlag(MachineInstr::FrameDestroy)); 784 if (!MBBI->getFlag(MachineInstr::FrameDestroy)) 785 ++MBBI; 786 } 787 788 // Move SP to start of FP callee save spill area. 789 NumBytes -= (ArgRegsSaveSize + 790 AFI->getGPRCalleeSavedArea1Size() + 791 AFI->getGPRCalleeSavedArea2Size() + 792 AFI->getDPRCalleeSavedGapSize() + 793 AFI->getDPRCalleeSavedAreaSize()); 794 795 // Reset SP based on frame pointer only if the stack frame extends beyond 796 // frame pointer stack slot or target is ELF and the function has FP. 797 if (AFI->shouldRestoreSPFromFP()) { 798 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 799 if (NumBytes) { 800 if (isARM) 801 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 802 ARMCC::AL, 0, TII, 803 MachineInstr::FrameDestroy); 804 else { 805 // It's not possible to restore SP from FP in a single instruction. 806 // For iOS, this looks like: 807 // mov sp, r7 808 // sub sp, #24 809 // This is bad, if an interrupt is taken after the mov, sp is in an 810 // inconsistent state. 811 // Use the first callee-saved register as a scratch register. 812 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 813 "No scratch register to restore SP from FP!"); 814 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 815 ARMCC::AL, 0, TII, MachineInstr::FrameDestroy); 816 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 817 .addReg(ARM::R4) 818 .add(predOps(ARMCC::AL)) 819 .setMIFlag(MachineInstr::FrameDestroy); 820 } 821 } else { 822 // Thumb2 or ARM. 823 if (isARM) 824 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 825 .addReg(FramePtr) 826 .add(predOps(ARMCC::AL)) 827 .add(condCodeOp()) 828 .setMIFlag(MachineInstr::FrameDestroy); 829 else 830 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 831 .addReg(FramePtr) 832 .add(predOps(ARMCC::AL)) 833 .setMIFlag(MachineInstr::FrameDestroy); 834 } 835 } else if (NumBytes && 836 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 837 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes, 838 MachineInstr::FrameDestroy); 839 840 // Increment past our save areas. 841 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { 842 MBBI++; 843 // Since vpop register list cannot have gaps, there may be multiple vpop 844 // instructions in the epilogue. 845 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 846 MBBI++; 847 } 848 if (AFI->getDPRCalleeSavedGapSize()) { 849 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 850 "unexpected DPR alignment gap"); 851 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(), 852 MachineInstr::FrameDestroy); 853 } 854 855 if (AFI->getGPRCalleeSavedArea2Size()) MBBI++; 856 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 857 } 858 859 if (ArgRegsSaveSize) 860 emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize, 861 MachineInstr::FrameDestroy); 862 } 863 864 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 865 /// debug info. It's the same as what we use for resolving the code-gen 866 /// references for now. FIXME: This can go wrong when references are 867 /// SP-relative and simple call frames aren't used. 868 int 869 ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 870 unsigned &FrameReg) const { 871 return ResolveFrameIndexReference(MF, FI, FrameReg, 0); 872 } 873 874 int 875 ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 876 int FI, unsigned &FrameReg, 877 int SPAdj) const { 878 const MachineFrameInfo &MFI = MF.getFrameInfo(); 879 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 880 MF.getSubtarget().getRegisterInfo()); 881 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 882 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 883 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 884 bool isFixed = MFI.isFixedObjectIndex(FI); 885 886 FrameReg = ARM::SP; 887 Offset += SPAdj; 888 889 // SP can move around if there are allocas. We may also lose track of SP 890 // when emergency spilling inside a non-reserved call frame setup. 891 bool hasMovingSP = !hasReservedCallFrame(MF); 892 893 // When dynamically realigning the stack, use the frame pointer for 894 // parameters, and the stack/base pointer for locals. 895 if (RegInfo->needsStackRealignment(MF)) { 896 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 897 if (isFixed) { 898 FrameReg = RegInfo->getFrameRegister(MF); 899 Offset = FPOffset; 900 } else if (hasMovingSP) { 901 assert(RegInfo->hasBasePointer(MF) && 902 "VLAs and dynamic stack alignment, but missing base pointer!"); 903 FrameReg = RegInfo->getBaseRegister(); 904 Offset -= SPAdj; 905 } 906 return Offset; 907 } 908 909 // If there is a frame pointer, use it when we can. 910 if (hasFP(MF) && AFI->hasStackFrame()) { 911 // Use frame pointer to reference fixed objects. Use it for locals if 912 // there are VLAs (and thus the SP isn't reliable as a base). 913 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 914 FrameReg = RegInfo->getFrameRegister(MF); 915 return FPOffset; 916 } else if (hasMovingSP) { 917 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 918 if (AFI->isThumb2Function()) { 919 // Try to use the frame pointer if we can, else use the base pointer 920 // since it's available. This is handy for the emergency spill slot, in 921 // particular. 922 if (FPOffset >= -255 && FPOffset < 0) { 923 FrameReg = RegInfo->getFrameRegister(MF); 924 return FPOffset; 925 } 926 } 927 } else if (AFI->isThumbFunction()) { 928 // Prefer SP to base pointer, if the offset is suitably aligned and in 929 // range as the effective range of the immediate offset is bigger when 930 // basing off SP. 931 // Use add <rd>, sp, #<imm8> 932 // ldr <rd>, [sp, #<imm8>] 933 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 934 return Offset; 935 // In Thumb2 mode, the negative offset is very limited. Try to avoid 936 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 937 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) { 938 FrameReg = RegInfo->getFrameRegister(MF); 939 return FPOffset; 940 } 941 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 942 // Otherwise, use SP or FP, whichever is closer to the stack slot. 943 FrameReg = RegInfo->getFrameRegister(MF); 944 return FPOffset; 945 } 946 } 947 // Use the base pointer if we have one. 948 // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper? 949 // That can happen if we forced a base pointer for a large call frame. 950 if (RegInfo->hasBasePointer(MF)) { 951 FrameReg = RegInfo->getBaseRegister(); 952 Offset -= SPAdj; 953 } 954 return Offset; 955 } 956 957 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 958 MachineBasicBlock::iterator MI, 959 ArrayRef<CalleeSavedInfo> CSI, 960 unsigned StmOpc, unsigned StrOpc, 961 bool NoGap, bool (*Func)(unsigned, bool), 962 unsigned NumAlignedDPRCS2Regs, 963 unsigned MIFlags) const { 964 MachineFunction &MF = *MBB.getParent(); 965 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 966 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 967 968 DebugLoc DL; 969 970 using RegAndKill = std::pair<unsigned, bool>; 971 972 SmallVector<RegAndKill, 4> Regs; 973 unsigned i = CSI.size(); 974 while (i != 0) { 975 unsigned LastReg = 0; 976 for (; i != 0; --i) { 977 unsigned Reg = CSI[i-1].getReg(); 978 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 979 980 // D-registers in the aligned area DPRCS2 are NOT spilled here. 981 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 982 continue; 983 984 const MachineRegisterInfo &MRI = MF.getRegInfo(); 985 bool isLiveIn = MRI.isLiveIn(Reg); 986 if (!isLiveIn && !MRI.isReserved(Reg)) 987 MBB.addLiveIn(Reg); 988 // If NoGap is true, push consecutive registers and then leave the rest 989 // for other instructions. e.g. 990 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 991 if (NoGap && LastReg && LastReg != Reg-1) 992 break; 993 LastReg = Reg; 994 // Do not set a kill flag on values that are also marked as live-in. This 995 // happens with the @llvm-returnaddress intrinsic and with arguments 996 // passed in callee saved registers. 997 // Omitting the kill flags is conservatively correct even if the live-in 998 // is not used after all. 999 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 1000 } 1001 1002 if (Regs.empty()) 1003 continue; 1004 1005 llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) { 1006 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 1007 }); 1008 1009 if (Regs.size() > 1 || StrOpc== 0) { 1010 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 1011 .addReg(ARM::SP) 1012 .setMIFlags(MIFlags) 1013 .add(predOps(ARMCC::AL)); 1014 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1015 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 1016 } else if (Regs.size() == 1) { 1017 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 1018 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 1019 .addReg(ARM::SP) 1020 .setMIFlags(MIFlags) 1021 .addImm(-4) 1022 .add(predOps(ARMCC::AL)); 1023 } 1024 Regs.clear(); 1025 1026 // Put any subsequent vpush instructions before this one: they will refer to 1027 // higher register numbers so need to be pushed first in order to preserve 1028 // monotonicity. 1029 if (MI != MBB.begin()) 1030 --MI; 1031 } 1032 } 1033 1034 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1035 MachineBasicBlock::iterator MI, 1036 MutableArrayRef<CalleeSavedInfo> CSI, 1037 unsigned LdmOpc, unsigned LdrOpc, 1038 bool isVarArg, bool NoGap, 1039 bool (*Func)(unsigned, bool), 1040 unsigned NumAlignedDPRCS2Regs) const { 1041 MachineFunction &MF = *MBB.getParent(); 1042 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1043 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1044 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1045 DebugLoc DL; 1046 bool isTailCall = false; 1047 bool isInterrupt = false; 1048 bool isTrap = false; 1049 if (MBB.end() != MI) { 1050 DL = MI->getDebugLoc(); 1051 unsigned RetOpcode = MI->getOpcode(); 1052 isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri); 1053 isInterrupt = 1054 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1055 isTrap = 1056 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1057 RetOpcode == ARM::tTRAP; 1058 } 1059 1060 SmallVector<unsigned, 4> Regs; 1061 unsigned i = CSI.size(); 1062 while (i != 0) { 1063 unsigned LastReg = 0; 1064 bool DeleteRet = false; 1065 for (; i != 0; --i) { 1066 CalleeSavedInfo &Info = CSI[i-1]; 1067 unsigned Reg = Info.getReg(); 1068 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1069 1070 // The aligned reloads from area DPRCS2 are not inserted here. 1071 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1072 continue; 1073 1074 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1075 !isTrap && STI.hasV5TOps()) { 1076 if (MBB.succ_empty()) { 1077 Reg = ARM::PC; 1078 // Fold the return instruction into the LDM. 1079 DeleteRet = true; 1080 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1081 // We 'restore' LR into PC so it is not live out of the return block: 1082 // Clear Restored bit. 1083 Info.setRestored(false); 1084 } else 1085 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1086 } 1087 1088 // If NoGap is true, pop consecutive registers and then leave the rest 1089 // for other instructions. e.g. 1090 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1091 if (NoGap && LastReg && LastReg != Reg-1) 1092 break; 1093 1094 LastReg = Reg; 1095 Regs.push_back(Reg); 1096 } 1097 1098 if (Regs.empty()) 1099 continue; 1100 1101 llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) { 1102 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1103 }); 1104 1105 if (Regs.size() > 1 || LdrOpc == 0) { 1106 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1107 .addReg(ARM::SP) 1108 .add(predOps(ARMCC::AL)) 1109 .setMIFlags(MachineInstr::FrameDestroy); 1110 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1111 MIB.addReg(Regs[i], getDefRegState(true)); 1112 if (DeleteRet) { 1113 if (MI != MBB.end()) { 1114 MIB.copyImplicitOps(*MI); 1115 MI->eraseFromParent(); 1116 } 1117 } 1118 MI = MIB; 1119 } else if (Regs.size() == 1) { 1120 // If we adjusted the reg to PC from LR above, switch it back here. We 1121 // only do that for LDM. 1122 if (Regs[0] == ARM::PC) 1123 Regs[0] = ARM::LR; 1124 MachineInstrBuilder MIB = 1125 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1126 .addReg(ARM::SP, RegState::Define) 1127 .addReg(ARM::SP) 1128 .setMIFlags(MachineInstr::FrameDestroy); 1129 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1130 // that refactoring is complete (eventually). 1131 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1132 MIB.addReg(0); 1133 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1134 } else 1135 MIB.addImm(4); 1136 MIB.add(predOps(ARMCC::AL)); 1137 } 1138 Regs.clear(); 1139 1140 // Put any subsequent vpop instructions after this one: they will refer to 1141 // higher register numbers so need to be popped afterwards. 1142 if (MI != MBB.end()) 1143 ++MI; 1144 } 1145 } 1146 1147 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1148 /// starting from d8. Also insert stack realignment code and leave the stack 1149 /// pointer pointing to the d8 spill slot. 1150 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1151 MachineBasicBlock::iterator MI, 1152 unsigned NumAlignedDPRCS2Regs, 1153 ArrayRef<CalleeSavedInfo> CSI, 1154 const TargetRegisterInfo *TRI) { 1155 MachineFunction &MF = *MBB.getParent(); 1156 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1157 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1158 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1159 MachineFrameInfo &MFI = MF.getFrameInfo(); 1160 1161 // Mark the D-register spill slots as properly aligned. Since MFI computes 1162 // stack slot layout backwards, this can actually mean that the d-reg stack 1163 // slot offsets can be wrong. The offset for d8 will always be correct. 1164 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 1165 unsigned DNum = CSI[i].getReg() - ARM::D8; 1166 if (DNum > NumAlignedDPRCS2Regs - 1) 1167 continue; 1168 int FI = CSI[i].getFrameIdx(); 1169 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1170 // registers will be 8-byte aligned. 1171 MFI.setObjectAlignment(FI, DNum % 2 ? 8 : 16); 1172 1173 // The stack slot for D8 needs to be maximally aligned because this is 1174 // actually the point where we align the stack pointer. MachineFrameInfo 1175 // computes all offsets relative to the incoming stack pointer which is a 1176 // bit weird when realigning the stack. Any extra padding for this 1177 // over-alignment is not realized because the code inserted below adjusts 1178 // the stack pointer by numregs * 8 before aligning the stack pointer. 1179 if (DNum == 0) 1180 MFI.setObjectAlignment(FI, MFI.getMaxAlignment()); 1181 } 1182 1183 // Move the stack pointer to the d8 spill slot, and align it at the same 1184 // time. Leave the stack slot address in the scratch register r4. 1185 // 1186 // sub r4, sp, #numregs * 8 1187 // bic r4, r4, #align - 1 1188 // mov sp, r4 1189 // 1190 bool isThumb = AFI->isThumbFunction(); 1191 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1192 AFI->setShouldRestoreSPFromFP(true); 1193 1194 // sub r4, sp, #numregs * 8 1195 // The immediate is <= 64, so it doesn't need any special encoding. 1196 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1197 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1198 .addReg(ARM::SP) 1199 .addImm(8 * NumAlignedDPRCS2Regs) 1200 .add(predOps(ARMCC::AL)) 1201 .add(condCodeOp()); 1202 1203 unsigned MaxAlign = MF.getFrameInfo().getMaxAlignment(); 1204 // We must set parameter MustBeSingleInstruction to true, since 1205 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1206 // stack alignment. Luckily, this can always be done since all ARM 1207 // architecture versions that support Neon also support the BFC 1208 // instruction. 1209 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1210 1211 // mov sp, r4 1212 // The stack pointer must be adjusted before spilling anything, otherwise 1213 // the stack slots could be clobbered by an interrupt handler. 1214 // Leave r4 live, it is used below. 1215 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1216 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1217 .addReg(ARM::R4) 1218 .add(predOps(ARMCC::AL)); 1219 if (!isThumb) 1220 MIB.add(condCodeOp()); 1221 1222 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1223 // r4 holds the stack slot address. 1224 unsigned NextReg = ARM::D8; 1225 1226 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1227 // The writeback is only needed when emitting two vst1.64 instructions. 1228 if (NumAlignedDPRCS2Regs >= 6) { 1229 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1230 &ARM::QQPRRegClass); 1231 MBB.addLiveIn(SupReg); 1232 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1233 .addReg(ARM::R4, RegState::Kill) 1234 .addImm(16) 1235 .addReg(NextReg) 1236 .addReg(SupReg, RegState::ImplicitKill) 1237 .add(predOps(ARMCC::AL)); 1238 NextReg += 4; 1239 NumAlignedDPRCS2Regs -= 4; 1240 } 1241 1242 // We won't modify r4 beyond this point. It currently points to the next 1243 // register to be spilled. 1244 unsigned R4BaseReg = NextReg; 1245 1246 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1247 if (NumAlignedDPRCS2Regs >= 4) { 1248 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1249 &ARM::QQPRRegClass); 1250 MBB.addLiveIn(SupReg); 1251 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1252 .addReg(ARM::R4) 1253 .addImm(16) 1254 .addReg(NextReg) 1255 .addReg(SupReg, RegState::ImplicitKill) 1256 .add(predOps(ARMCC::AL)); 1257 NextReg += 4; 1258 NumAlignedDPRCS2Regs -= 4; 1259 } 1260 1261 // 16-byte aligned vst1.64 with 2 d-regs. 1262 if (NumAlignedDPRCS2Regs >= 2) { 1263 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1264 &ARM::QPRRegClass); 1265 MBB.addLiveIn(SupReg); 1266 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1267 .addReg(ARM::R4) 1268 .addImm(16) 1269 .addReg(SupReg) 1270 .add(predOps(ARMCC::AL)); 1271 NextReg += 2; 1272 NumAlignedDPRCS2Regs -= 2; 1273 } 1274 1275 // Finally, use a vanilla vstr.64 for the odd last register. 1276 if (NumAlignedDPRCS2Regs) { 1277 MBB.addLiveIn(NextReg); 1278 // vstr.64 uses addrmode5 which has an offset scale of 4. 1279 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1280 .addReg(NextReg) 1281 .addReg(ARM::R4) 1282 .addImm((NextReg - R4BaseReg) * 2) 1283 .add(predOps(ARMCC::AL)); 1284 } 1285 1286 // The last spill instruction inserted should kill the scratch register r4. 1287 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1288 } 1289 1290 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1291 /// iterator to the following instruction. 1292 static MachineBasicBlock::iterator 1293 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1294 unsigned NumAlignedDPRCS2Regs) { 1295 // sub r4, sp, #numregs * 8 1296 // bic r4, r4, #align - 1 1297 // mov sp, r4 1298 ++MI; ++MI; ++MI; 1299 assert(MI->mayStore() && "Expecting spill instruction"); 1300 1301 // These switches all fall through. 1302 switch(NumAlignedDPRCS2Regs) { 1303 case 7: 1304 ++MI; 1305 assert(MI->mayStore() && "Expecting spill instruction"); 1306 LLVM_FALLTHROUGH; 1307 default: 1308 ++MI; 1309 assert(MI->mayStore() && "Expecting spill instruction"); 1310 LLVM_FALLTHROUGH; 1311 case 1: 1312 case 2: 1313 case 4: 1314 assert(MI->killsRegister(ARM::R4) && "Missed kill flag"); 1315 ++MI; 1316 } 1317 return MI; 1318 } 1319 1320 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1321 /// starting from d8. These instructions are assumed to execute while the 1322 /// stack is still aligned, unlike the code inserted by emitPopInst. 1323 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1324 MachineBasicBlock::iterator MI, 1325 unsigned NumAlignedDPRCS2Regs, 1326 ArrayRef<CalleeSavedInfo> CSI, 1327 const TargetRegisterInfo *TRI) { 1328 MachineFunction &MF = *MBB.getParent(); 1329 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1330 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1331 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1332 1333 // Find the frame index assigned to d8. 1334 int D8SpillFI = 0; 1335 for (unsigned i = 0, e = CSI.size(); i != e; ++i) 1336 if (CSI[i].getReg() == ARM::D8) { 1337 D8SpillFI = CSI[i].getFrameIdx(); 1338 break; 1339 } 1340 1341 // Materialize the address of the d8 spill slot into the scratch register r4. 1342 // This can be fairly complicated if the stack frame is large, so just use 1343 // the normal frame index elimination mechanism to do it. This code runs as 1344 // the initial part of the epilog where the stack and base pointers haven't 1345 // been changed yet. 1346 bool isThumb = AFI->isThumbFunction(); 1347 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1348 1349 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 1350 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1351 .addFrameIndex(D8SpillFI) 1352 .addImm(0) 1353 .add(predOps(ARMCC::AL)) 1354 .add(condCodeOp()); 1355 1356 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 1357 unsigned NextReg = ARM::D8; 1358 1359 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 1360 if (NumAlignedDPRCS2Regs >= 6) { 1361 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1362 &ARM::QQPRRegClass); 1363 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 1364 .addReg(ARM::R4, RegState::Define) 1365 .addReg(ARM::R4, RegState::Kill) 1366 .addImm(16) 1367 .addReg(SupReg, RegState::ImplicitDefine) 1368 .add(predOps(ARMCC::AL)); 1369 NextReg += 4; 1370 NumAlignedDPRCS2Regs -= 4; 1371 } 1372 1373 // We won't modify r4 beyond this point. It currently points to the next 1374 // register to be spilled. 1375 unsigned R4BaseReg = NextReg; 1376 1377 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 1378 if (NumAlignedDPRCS2Regs >= 4) { 1379 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1380 &ARM::QQPRRegClass); 1381 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 1382 .addReg(ARM::R4) 1383 .addImm(16) 1384 .addReg(SupReg, RegState::ImplicitDefine) 1385 .add(predOps(ARMCC::AL)); 1386 NextReg += 4; 1387 NumAlignedDPRCS2Regs -= 4; 1388 } 1389 1390 // 16-byte aligned vld1.64 with 2 d-regs. 1391 if (NumAlignedDPRCS2Regs >= 2) { 1392 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1393 &ARM::QPRRegClass); 1394 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 1395 .addReg(ARM::R4) 1396 .addImm(16) 1397 .add(predOps(ARMCC::AL)); 1398 NextReg += 2; 1399 NumAlignedDPRCS2Regs -= 2; 1400 } 1401 1402 // Finally, use a vanilla vldr.64 for the remaining odd register. 1403 if (NumAlignedDPRCS2Regs) 1404 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 1405 .addReg(ARM::R4) 1406 .addImm(2 * (NextReg - R4BaseReg)) 1407 .add(predOps(ARMCC::AL)); 1408 1409 // Last store kills r4. 1410 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1411 } 1412 1413 bool ARMFrameLowering::spillCalleeSavedRegisters( 1414 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 1415 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 1416 if (CSI.empty()) 1417 return false; 1418 1419 MachineFunction &MF = *MBB.getParent(); 1420 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1421 1422 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 1423 unsigned PushOneOpc = AFI->isThumbFunction() ? 1424 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 1425 unsigned FltOpc = ARM::VSTMDDB_UPD; 1426 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1427 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0, 1428 MachineInstr::FrameSetup); 1429 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0, 1430 MachineInstr::FrameSetup); 1431 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 1432 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 1433 1434 // The code above does not insert spill code for the aligned DPRCS2 registers. 1435 // The stack realignment code will be inserted between the push instructions 1436 // and these spills. 1437 if (NumAlignedDPRCS2Regs) 1438 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1439 1440 return true; 1441 } 1442 1443 bool ARMFrameLowering::restoreCalleeSavedRegisters( 1444 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 1445 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 1446 if (CSI.empty()) 1447 return false; 1448 1449 MachineFunction &MF = *MBB.getParent(); 1450 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1451 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 1452 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1453 1454 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 1455 // registers. Do that here instead. 1456 if (NumAlignedDPRCS2Regs) 1457 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1458 1459 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1460 unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM; 1461 unsigned FltOpc = ARM::VLDMDIA_UPD; 1462 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 1463 NumAlignedDPRCS2Regs); 1464 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1465 &isARMArea2Register, 0); 1466 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1467 &isARMArea1Register, 0); 1468 1469 return true; 1470 } 1471 1472 // FIXME: Make generic? 1473 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF, 1474 const ARMBaseInstrInfo &TII) { 1475 unsigned FnSize = 0; 1476 for (auto &MBB : MF) { 1477 for (auto &MI : MBB) 1478 FnSize += TII.getInstSizeInBytes(MI); 1479 } 1480 if (MF.getJumpTableInfo()) 1481 for (auto &Table: MF.getJumpTableInfo()->getJumpTables()) 1482 FnSize += Table.MBBs.size() * 4; 1483 FnSize += MF.getConstantPool()->getConstants().size() * 4; 1484 return FnSize; 1485 } 1486 1487 /// estimateRSStackSizeLimit - Look at each instruction that references stack 1488 /// frames and return the stack size limit beyond which some of these 1489 /// instructions will require a scratch register during their expansion later. 1490 // FIXME: Move to TII? 1491 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 1492 const TargetFrameLowering *TFI, 1493 bool &HasNonSPFrameIndex) { 1494 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1495 const ARMBaseInstrInfo &TII = 1496 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1497 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1498 unsigned Limit = (1 << 12) - 1; 1499 for (auto &MBB : MF) { 1500 for (auto &MI : MBB) { 1501 if (MI.isDebugInstr()) 1502 continue; 1503 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1504 if (!MI.getOperand(i).isFI()) 1505 continue; 1506 1507 // When using ADDri to get the address of a stack object, 255 is the 1508 // largest offset guaranteed to fit in the immediate offset. 1509 if (MI.getOpcode() == ARM::ADDri) { 1510 Limit = std::min(Limit, (1U << 8) - 1); 1511 break; 1512 } 1513 // t2ADDri will not require an extra register, it can reuse the 1514 // destination. 1515 if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12) 1516 break; 1517 1518 const MCInstrDesc &MCID = MI.getDesc(); 1519 const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF); 1520 if (RegClass && !RegClass->contains(ARM::SP)) 1521 HasNonSPFrameIndex = true; 1522 1523 // Otherwise check the addressing mode. 1524 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 1525 case ARMII::AddrMode_i12: 1526 case ARMII::AddrMode2: 1527 // Default 12 bit limit. 1528 break; 1529 case ARMII::AddrMode3: 1530 case ARMII::AddrModeT2_i8: 1531 Limit = std::min(Limit, (1U << 8) - 1); 1532 break; 1533 case ARMII::AddrMode5FP16: 1534 Limit = std::min(Limit, ((1U << 8) - 1) * 2); 1535 break; 1536 case ARMII::AddrMode5: 1537 case ARMII::AddrModeT2_i8s4: 1538 case ARMII::AddrModeT2_ldrex: 1539 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 1540 break; 1541 case ARMII::AddrModeT2_i12: 1542 // i12 supports only positive offset so these will be converted to 1543 // i8 opcodes. See llvm::rewriteT2FrameIndex. 1544 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 1545 Limit = std::min(Limit, (1U << 8) - 1); 1546 break; 1547 case ARMII::AddrMode4: 1548 case ARMII::AddrMode6: 1549 // Addressing modes 4 & 6 (load/store) instructions can't encode an 1550 // immediate offset for stack references. 1551 return 0; 1552 case ARMII::AddrModeT2_i7: 1553 Limit = std::min(Limit, ((1U << 7) - 1) * 1); 1554 break; 1555 case ARMII::AddrModeT2_i7s2: 1556 Limit = std::min(Limit, ((1U << 7) - 1) * 2); 1557 break; 1558 case ARMII::AddrModeT2_i7s4: 1559 Limit = std::min(Limit, ((1U << 7) - 1) * 4); 1560 break; 1561 default: 1562 llvm_unreachable("Unhandled addressing mode in stack size limit calculation"); 1563 } 1564 break; // At most one FI per instruction 1565 } 1566 } 1567 } 1568 1569 return Limit; 1570 } 1571 1572 // In functions that realign the stack, it can be an advantage to spill the 1573 // callee-saved vector registers after realigning the stack. The vst1 and vld1 1574 // instructions take alignment hints that can improve performance. 1575 static void 1576 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 1577 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 1578 if (!SpillAlignedNEONRegs) 1579 return; 1580 1581 // Naked functions don't spill callee-saved registers. 1582 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 1583 return; 1584 1585 // We are planning to use NEON instructions vst1 / vld1. 1586 if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON()) 1587 return; 1588 1589 // Don't bother if the default stack alignment is sufficiently high. 1590 if (MF.getSubtarget().getFrameLowering()->getStackAlignment() >= 8) 1591 return; 1592 1593 // Aligned spills require stack realignment. 1594 if (!static_cast<const ARMBaseRegisterInfo *>( 1595 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 1596 return; 1597 1598 // We always spill contiguous d-registers starting from d8. Count how many 1599 // needs spilling. The register allocator will almost always use the 1600 // callee-saved registers in order, but it can happen that there are holes in 1601 // the range. Registers above the hole will be spilled to the standard DPRCS 1602 // area. 1603 unsigned NumSpills = 0; 1604 for (; NumSpills < 8; ++NumSpills) 1605 if (!SavedRegs.test(ARM::D8 + NumSpills)) 1606 break; 1607 1608 // Don't do this for just one d-register. It's not worth it. 1609 if (NumSpills < 2) 1610 return; 1611 1612 // Spill the first NumSpills D-registers after realigning the stack. 1613 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 1614 1615 // A scratch register is required for the vst1 / vld1 instructions. 1616 SavedRegs.set(ARM::R4); 1617 } 1618 1619 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 1620 BitVector &SavedRegs, 1621 RegScavenger *RS) const { 1622 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1623 // This tells PEI to spill the FP as if it is any other callee-save register 1624 // to take advantage the eliminateFrameIndex machinery. This also ensures it 1625 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 1626 // to combine multiple loads / stores. 1627 bool CanEliminateFrame = true; 1628 bool CS1Spilled = false; 1629 bool LRSpilled = false; 1630 unsigned NumGPRSpills = 0; 1631 unsigned NumFPRSpills = 0; 1632 SmallVector<unsigned, 4> UnspilledCS1GPRs; 1633 SmallVector<unsigned, 4> UnspilledCS2GPRs; 1634 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1635 MF.getSubtarget().getRegisterInfo()); 1636 const ARMBaseInstrInfo &TII = 1637 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1638 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1639 MachineFrameInfo &MFI = MF.getFrameInfo(); 1640 MachineRegisterInfo &MRI = MF.getRegInfo(); 1641 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1642 (void)TRI; // Silence unused warning in non-assert builds. 1643 Register FramePtr = RegInfo->getFrameRegister(MF); 1644 1645 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 1646 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 1647 // since it's not always possible to restore sp from fp in a single 1648 // instruction. 1649 // FIXME: It will be better just to find spare register here. 1650 if (AFI->isThumb2Function() && 1651 (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF))) 1652 SavedRegs.set(ARM::R4); 1653 1654 // If a stack probe will be emitted, spill R4 and LR, since they are 1655 // clobbered by the stack probe call. 1656 // This estimate should be a safe, conservative estimate. The actual 1657 // stack probe is enabled based on the size of the local objects; 1658 // this estimate also includes the varargs store size. 1659 if (STI.isTargetWindows() && 1660 WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) { 1661 SavedRegs.set(ARM::R4); 1662 SavedRegs.set(ARM::LR); 1663 } 1664 1665 if (AFI->isThumb1OnlyFunction()) { 1666 // Spill LR if Thumb1 function uses variable length argument lists. 1667 if (AFI->getArgRegsSaveSize() > 0) 1668 SavedRegs.set(ARM::LR); 1669 1670 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function 1671 // requires stack alignment. We don't know for sure what the stack size 1672 // will be, but for this, an estimate is good enough. If there anything 1673 // changes it, it'll be a spill, which implies we've used all the registers 1674 // and so R4 is already used, so not marking it here will be OK. 1675 // FIXME: It will be better just to find spare register here. 1676 if (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF) || 1677 MFI.estimateStackSize(MF) > 508) 1678 SavedRegs.set(ARM::R4); 1679 } 1680 1681 // See if we can spill vector registers to aligned stack. 1682 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 1683 1684 // Spill the BasePtr if it's used. 1685 if (RegInfo->hasBasePointer(MF)) 1686 SavedRegs.set(RegInfo->getBaseRegister()); 1687 1688 // Don't spill FP if the frame can be eliminated. This is determined 1689 // by scanning the callee-save registers to see if any is modified. 1690 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 1691 for (unsigned i = 0; CSRegs[i]; ++i) { 1692 unsigned Reg = CSRegs[i]; 1693 bool Spilled = false; 1694 if (SavedRegs.test(Reg)) { 1695 Spilled = true; 1696 CanEliminateFrame = false; 1697 } 1698 1699 if (!ARM::GPRRegClass.contains(Reg)) { 1700 if (Spilled) { 1701 if (ARM::SPRRegClass.contains(Reg)) 1702 NumFPRSpills++; 1703 else if (ARM::DPRRegClass.contains(Reg)) 1704 NumFPRSpills += 2; 1705 else if (ARM::QPRRegClass.contains(Reg)) 1706 NumFPRSpills += 4; 1707 } 1708 continue; 1709 } 1710 1711 if (Spilled) { 1712 NumGPRSpills++; 1713 1714 if (!STI.splitFramePushPop(MF)) { 1715 if (Reg == ARM::LR) 1716 LRSpilled = true; 1717 CS1Spilled = true; 1718 continue; 1719 } 1720 1721 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 1722 switch (Reg) { 1723 case ARM::LR: 1724 LRSpilled = true; 1725 LLVM_FALLTHROUGH; 1726 case ARM::R0: case ARM::R1: 1727 case ARM::R2: case ARM::R3: 1728 case ARM::R4: case ARM::R5: 1729 case ARM::R6: case ARM::R7: 1730 CS1Spilled = true; 1731 break; 1732 default: 1733 break; 1734 } 1735 } else { 1736 if (!STI.splitFramePushPop(MF)) { 1737 UnspilledCS1GPRs.push_back(Reg); 1738 continue; 1739 } 1740 1741 switch (Reg) { 1742 case ARM::R0: case ARM::R1: 1743 case ARM::R2: case ARM::R3: 1744 case ARM::R4: case ARM::R5: 1745 case ARM::R6: case ARM::R7: 1746 case ARM::LR: 1747 UnspilledCS1GPRs.push_back(Reg); 1748 break; 1749 default: 1750 UnspilledCS2GPRs.push_back(Reg); 1751 break; 1752 } 1753 } 1754 } 1755 1756 bool ForceLRSpill = false; 1757 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 1758 unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII); 1759 // Force LR to be spilled if the Thumb function size is > 2048. This enables 1760 // use of BL to implement far jump. 1761 if (FnSize >= (1 << 11)) { 1762 CanEliminateFrame = false; 1763 ForceLRSpill = true; 1764 } 1765 } 1766 1767 // If any of the stack slot references may be out of range of an immediate 1768 // offset, make sure a register (or a spill slot) is available for the 1769 // register scavenger. Note that if we're indexing off the frame pointer, the 1770 // effective stack size is 4 bytes larger since the FP points to the stack 1771 // slot of the previous FP. Also, if we have variable sized objects in the 1772 // function, stack slot references will often be negative, and some of 1773 // our instructions are positive-offset only, so conservatively consider 1774 // that case to want a spill slot (or register) as well. Similarly, if 1775 // the function adjusts the stack pointer during execution and the 1776 // adjustments aren't already part of our stack size estimate, our offset 1777 // calculations may be off, so be conservative. 1778 // FIXME: We could add logic to be more precise about negative offsets 1779 // and which instructions will need a scratch register for them. Is it 1780 // worth the effort and added fragility? 1781 unsigned EstimatedStackSize = 1782 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 1783 1784 // Determine biggest (positive) SP offset in MachineFrameInfo. 1785 int MaxFixedOffset = 0; 1786 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 1787 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); 1788 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); 1789 } 1790 1791 bool HasFP = hasFP(MF); 1792 if (HasFP) { 1793 if (AFI->hasStackFrame()) 1794 EstimatedStackSize += 4; 1795 } else { 1796 // If FP is not used, SP will be used to access arguments, so count the 1797 // size of arguments into the estimation. 1798 EstimatedStackSize += MaxFixedOffset; 1799 } 1800 EstimatedStackSize += 16; // For possible paddings. 1801 1802 unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit; 1803 bool HasNonSPFrameIndex = false; 1804 if (AFI->isThumb1OnlyFunction()) { 1805 // For Thumb1, don't bother to iterate over the function. The only 1806 // instruction that requires an emergency spill slot is a store to a 1807 // frame index. 1808 // 1809 // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned 1810 // immediate. tSTRi, which is used for bp- and fp-relative accesses, has 1811 // a 5-bit unsigned immediate. 1812 // 1813 // We could try to check if the function actually contains a tSTRspi 1814 // that might need the spill slot, but it's not really important. 1815 // Functions with VLAs or extremely large call frames are rare, and 1816 // if a function is allocating more than 1KB of stack, an extra 4-byte 1817 // slot probably isn't relevant. 1818 if (RegInfo->hasBasePointer(MF)) 1819 EstimatedRSStackSizeLimit = (1U << 5) * 4; 1820 else 1821 EstimatedRSStackSizeLimit = (1U << 8) * 4; 1822 EstimatedRSFixedSizeLimit = (1U << 5) * 4; 1823 } else { 1824 EstimatedRSStackSizeLimit = 1825 estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex); 1826 EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit; 1827 } 1828 // Final estimate of whether sp or bp-relative accesses might require 1829 // scavenging. 1830 bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit; 1831 1832 // If the stack pointer moves and we don't have a base pointer, the 1833 // estimate logic doesn't work. The actual offsets might be larger when 1834 // we're constructing a call frame, or we might need to use negative 1835 // offsets from fp. 1836 bool HasMovingSP = MFI.hasVarSizedObjects() || 1837 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)); 1838 bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP; 1839 1840 // If we have a frame pointer, we assume arguments will be accessed 1841 // relative to the frame pointer. Check whether fp-relative accesses to 1842 // arguments require scavenging. 1843 // 1844 // We could do slightly better on Thumb1; in some cases, an sp-relative 1845 // offset would be legal even though an fp-relative offset is not. 1846 int MaxFPOffset = getMaxFPOffset(MF.getFunction(), *AFI); 1847 bool HasLargeArgumentList = 1848 HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit; 1849 1850 bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP || 1851 HasLargeArgumentList || HasNonSPFrameIndex; 1852 LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit 1853 << "; EstimatedStack: " << EstimatedStackSize 1854 << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset 1855 << "; BigFrameOffsets: " << BigFrameOffsets << "\n"); 1856 if (BigFrameOffsets || 1857 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 1858 AFI->setHasStackFrame(true); 1859 1860 if (HasFP) { 1861 SavedRegs.set(FramePtr); 1862 // If the frame pointer is required by the ABI, also spill LR so that we 1863 // emit a complete frame record. 1864 if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) { 1865 SavedRegs.set(ARM::LR); 1866 LRSpilled = true; 1867 NumGPRSpills++; 1868 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 1869 if (LRPos != UnspilledCS1GPRs.end()) 1870 UnspilledCS1GPRs.erase(LRPos); 1871 } 1872 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 1873 if (FPPos != UnspilledCS1GPRs.end()) 1874 UnspilledCS1GPRs.erase(FPPos); 1875 NumGPRSpills++; 1876 if (FramePtr == ARM::R7) 1877 CS1Spilled = true; 1878 } 1879 1880 // This is true when we inserted a spill for a callee-save GPR which is 1881 // not otherwise used by the function. This guaranteees it is possible 1882 // to scavenge a register to hold the address of a stack slot. On Thumb1, 1883 // the register must be a valid operand to tSTRi, i.e. r4-r7. For other 1884 // subtargets, this is any GPR, i.e. r4-r11 or lr. 1885 // 1886 // If we don't insert a spill, we instead allocate an emergency spill 1887 // slot, which can be used by scavenging to spill an arbitrary register. 1888 // 1889 // We currently don't try to figure out whether any specific instruction 1890 // requires scavening an additional register. 1891 bool ExtraCSSpill = false; 1892 1893 if (AFI->isThumb1OnlyFunction()) { 1894 // For Thumb1-only targets, we need some low registers when we save and 1895 // restore the high registers (which aren't allocatable, but could be 1896 // used by inline assembly) because the push/pop instructions can not 1897 // access high registers. If necessary, we might need to push more low 1898 // registers to ensure that there is at least one free that can be used 1899 // for the saving & restoring, and preferably we should ensure that as 1900 // many as are needed are available so that fewer push/pop instructions 1901 // are required. 1902 1903 // Low registers which are not currently pushed, but could be (r4-r7). 1904 SmallVector<unsigned, 4> AvailableRegs; 1905 1906 // Unused argument registers (r0-r3) can be clobbered in the prologue for 1907 // free. 1908 int EntryRegDeficit = 0; 1909 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 1910 if (!MF.getRegInfo().isLiveIn(Reg)) { 1911 --EntryRegDeficit; 1912 LLVM_DEBUG(dbgs() 1913 << printReg(Reg, TRI) 1914 << " is unused argument register, EntryRegDeficit = " 1915 << EntryRegDeficit << "\n"); 1916 } 1917 } 1918 1919 // Unused return registers can be clobbered in the epilogue for free. 1920 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 1921 LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount() 1922 << " return regs used, ExitRegDeficit = " 1923 << ExitRegDeficit << "\n"); 1924 1925 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 1926 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 1927 1928 // r4-r6 can be used in the prologue if they are pushed by the first push 1929 // instruction. 1930 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 1931 if (SavedRegs.test(Reg)) { 1932 --RegDeficit; 1933 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 1934 << " is saved low register, RegDeficit = " 1935 << RegDeficit << "\n"); 1936 } else { 1937 AvailableRegs.push_back(Reg); 1938 LLVM_DEBUG( 1939 dbgs() 1940 << printReg(Reg, TRI) 1941 << " is non-saved low register, adding to AvailableRegs\n"); 1942 } 1943 } 1944 1945 // r7 can be used if it is not being used as the frame pointer. 1946 if (!HasFP) { 1947 if (SavedRegs.test(ARM::R7)) { 1948 --RegDeficit; 1949 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = " 1950 << RegDeficit << "\n"); 1951 } else { 1952 AvailableRegs.push_back(ARM::R7); 1953 LLVM_DEBUG( 1954 dbgs() 1955 << "%r7 is non-saved low register, adding to AvailableRegs\n"); 1956 } 1957 } 1958 1959 // Each of r8-r11 needs to be copied to a low register, then pushed. 1960 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 1961 if (SavedRegs.test(Reg)) { 1962 ++RegDeficit; 1963 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 1964 << " is saved high register, RegDeficit = " 1965 << RegDeficit << "\n"); 1966 } 1967 } 1968 1969 // LR can only be used by PUSH, not POP, and can't be used at all if the 1970 // llvm.returnaddress intrinsic is used. This is only worth doing if we 1971 // are more limited at function entry than exit. 1972 if ((EntryRegDeficit > ExitRegDeficit) && 1973 !(MF.getRegInfo().isLiveIn(ARM::LR) && 1974 MF.getFrameInfo().isReturnAddressTaken())) { 1975 if (SavedRegs.test(ARM::LR)) { 1976 --RegDeficit; 1977 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = " 1978 << RegDeficit << "\n"); 1979 } else { 1980 AvailableRegs.push_back(ARM::LR); 1981 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n"); 1982 } 1983 } 1984 1985 // If there are more high registers that need pushing than low registers 1986 // available, push some more low registers so that we can use fewer push 1987 // instructions. This might not reduce RegDeficit all the way to zero, 1988 // because we can only guarantee that r4-r6 are available, but r8-r11 may 1989 // need saving. 1990 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 1991 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 1992 unsigned Reg = AvailableRegs.pop_back_val(); 1993 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 1994 << " to make up reg deficit\n"); 1995 SavedRegs.set(Reg); 1996 NumGPRSpills++; 1997 CS1Spilled = true; 1998 assert(!MRI.isReserved(Reg) && "Should not be reserved"); 1999 if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg)) 2000 ExtraCSSpill = true; 2001 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 2002 if (Reg == ARM::LR) 2003 LRSpilled = true; 2004 } 2005 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit 2006 << "\n"); 2007 } 2008 2009 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to 2010 // restore LR in that case. 2011 bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall(); 2012 2013 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 2014 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 2015 if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) { 2016 SavedRegs.set(ARM::LR); 2017 NumGPRSpills++; 2018 SmallVectorImpl<unsigned>::iterator LRPos; 2019 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 2020 if (LRPos != UnspilledCS1GPRs.end()) 2021 UnspilledCS1GPRs.erase(LRPos); 2022 2023 ForceLRSpill = false; 2024 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) && 2025 !AFI->isThumb1OnlyFunction()) 2026 ExtraCSSpill = true; 2027 } 2028 2029 // If stack and double are 8-byte aligned and we are spilling an odd number 2030 // of GPRs, spill one extra callee save GPR so we won't have to pad between 2031 // the integer and double callee save areas. 2032 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 2033 unsigned TargetAlign = getStackAlignment(); 2034 if (TargetAlign >= 8 && (NumGPRSpills & 1)) { 2035 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 2036 for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) { 2037 unsigned Reg = UnspilledCS1GPRs[i]; 2038 // Don't spill high register if the function is thumb. In the case of 2039 // Windows on ARM, accept R11 (frame pointer) 2040 if (!AFI->isThumbFunction() || 2041 (STI.isTargetWindows() && Reg == ARM::R11) || 2042 isARMLowRegister(Reg) || 2043 (Reg == ARM::LR && !ExpensiveLRRestore)) { 2044 SavedRegs.set(Reg); 2045 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2046 << " to make up alignment\n"); 2047 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) && 2048 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction())) 2049 ExtraCSSpill = true; 2050 break; 2051 } 2052 } 2053 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 2054 unsigned Reg = UnspilledCS2GPRs.front(); 2055 SavedRegs.set(Reg); 2056 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2057 << " to make up alignment\n"); 2058 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 2059 ExtraCSSpill = true; 2060 } 2061 } 2062 2063 // Estimate if we might need to scavenge a register at some point in order 2064 // to materialize a stack offset. If so, either spill one additional 2065 // callee-saved register or reserve a special spill slot to facilitate 2066 // register scavenging. Thumb1 needs a spill slot for stack pointer 2067 // adjustments also, even when the frame itself is small. 2068 if (BigFrameOffsets && !ExtraCSSpill) { 2069 // If any non-reserved CS register isn't spilled, just spill one or two 2070 // extra. That should take care of it! 2071 unsigned NumExtras = TargetAlign / 4; 2072 SmallVector<unsigned, 2> Extras; 2073 while (NumExtras && !UnspilledCS1GPRs.empty()) { 2074 unsigned Reg = UnspilledCS1GPRs.back(); 2075 UnspilledCS1GPRs.pop_back(); 2076 if (!MRI.isReserved(Reg) && 2077 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) { 2078 Extras.push_back(Reg); 2079 NumExtras--; 2080 } 2081 } 2082 // For non-Thumb1 functions, also check for hi-reg CS registers 2083 if (!AFI->isThumb1OnlyFunction()) { 2084 while (NumExtras && !UnspilledCS2GPRs.empty()) { 2085 unsigned Reg = UnspilledCS2GPRs.back(); 2086 UnspilledCS2GPRs.pop_back(); 2087 if (!MRI.isReserved(Reg)) { 2088 Extras.push_back(Reg); 2089 NumExtras--; 2090 } 2091 } 2092 } 2093 if (NumExtras == 0) { 2094 for (unsigned Reg : Extras) { 2095 SavedRegs.set(Reg); 2096 if (!MRI.isPhysRegUsed(Reg)) 2097 ExtraCSSpill = true; 2098 } 2099 } 2100 if (!ExtraCSSpill && RS) { 2101 // Reserve a slot closest to SP or frame pointer. 2102 LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n"); 2103 const TargetRegisterClass &RC = ARM::GPRRegClass; 2104 unsigned Size = TRI->getSpillSize(RC); 2105 unsigned Align = TRI->getSpillAlignment(RC); 2106 RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Align, false)); 2107 } 2108 } 2109 } 2110 2111 if (ForceLRSpill) 2112 SavedRegs.set(ARM::LR); 2113 AFI->setLRIsSpilled(SavedRegs.test(ARM::LR)); 2114 } 2115 2116 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF, 2117 BitVector &SavedRegs) const { 2118 TargetFrameLowering::getCalleeSaves(MF, SavedRegs); 2119 2120 // If we have the "returned" parameter attribute which guarantees that we 2121 // return the value which was passed in r0 unmodified (e.g. C++ 'structors), 2122 // record that fact for IPRA. 2123 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2124 if (AFI->getPreservesR0()) 2125 SavedRegs.set(ARM::R0); 2126 } 2127 2128 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 2129 MachineFunction &MF, MachineBasicBlock &MBB, 2130 MachineBasicBlock::iterator I) const { 2131 const ARMBaseInstrInfo &TII = 2132 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2133 if (!hasReservedCallFrame(MF)) { 2134 // If we have alloca, convert as follows: 2135 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 2136 // ADJCALLSTACKUP -> add, sp, sp, amount 2137 MachineInstr &Old = *I; 2138 DebugLoc dl = Old.getDebugLoc(); 2139 unsigned Amount = TII.getFrameSize(Old); 2140 if (Amount != 0) { 2141 // We need to keep the stack aligned properly. To do this, we round the 2142 // amount of space needed for the outgoing arguments up to the next 2143 // alignment boundary. 2144 Amount = alignSPAdjust(Amount); 2145 2146 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2147 assert(!AFI->isThumb1OnlyFunction() && 2148 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 2149 bool isARM = !AFI->isThumbFunction(); 2150 2151 // Replace the pseudo instruction with a new instruction... 2152 unsigned Opc = Old.getOpcode(); 2153 int PIdx = Old.findFirstPredOperandIdx(); 2154 ARMCC::CondCodes Pred = 2155 (PIdx == -1) ? ARMCC::AL 2156 : (ARMCC::CondCodes)Old.getOperand(PIdx).getImm(); 2157 unsigned PredReg = TII.getFramePred(Old); 2158 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 2159 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 2160 Pred, PredReg); 2161 } else { 2162 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 2163 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 2164 Pred, PredReg); 2165 } 2166 } 2167 } 2168 return MBB.erase(I); 2169 } 2170 2171 /// Get the minimum constant for ARM that is greater than or equal to the 2172 /// argument. In ARM, constants can have any value that can be produced by 2173 /// rotating an 8-bit value to the right by an even number of bits within a 2174 /// 32-bit word. 2175 static uint32_t alignToARMConstant(uint32_t Value) { 2176 unsigned Shifted = 0; 2177 2178 if (Value == 0) 2179 return 0; 2180 2181 while (!(Value & 0xC0000000)) { 2182 Value = Value << 2; 2183 Shifted += 2; 2184 } 2185 2186 bool Carry = (Value & 0x00FFFFFF); 2187 Value = ((Value & 0xFF000000) >> 24) + Carry; 2188 2189 if (Value & 0x0000100) 2190 Value = Value & 0x000001FC; 2191 2192 if (Shifted > 24) 2193 Value = Value >> (Shifted - 24); 2194 else 2195 Value = Value << (24 - Shifted); 2196 2197 return Value; 2198 } 2199 2200 // The stack limit in the TCB is set to this many bytes above the actual 2201 // stack limit. 2202 static const uint64_t kSplitStackAvailable = 256; 2203 2204 // Adjust the function prologue to enable split stacks. This currently only 2205 // supports android and linux. 2206 // 2207 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 2208 // must be well defined in order to allow for consistent implementations of the 2209 // __morestack helper function. The ABI is also not a normal ABI in that it 2210 // doesn't follow the normal calling conventions because this allows the 2211 // prologue of each function to be optimized further. 2212 // 2213 // Currently, the ABI looks like (when calling __morestack) 2214 // 2215 // * r4 holds the minimum stack size requested for this function call 2216 // * r5 holds the stack size of the arguments to the function 2217 // * the beginning of the function is 3 instructions after the call to 2218 // __morestack 2219 // 2220 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 2221 // place the arguments on to the new stack, and the 3-instruction knowledge to 2222 // jump directly to the body of the function when working on the new stack. 2223 // 2224 // An old (and possibly no longer compatible) implementation of __morestack for 2225 // ARM can be found at [1]. 2226 // 2227 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 2228 void ARMFrameLowering::adjustForSegmentedStacks( 2229 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2230 unsigned Opcode; 2231 unsigned CFIIndex; 2232 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 2233 bool Thumb = ST->isThumb(); 2234 2235 // Sadly, this currently doesn't support varargs, platforms other than 2236 // android/linux. Note that thumb1/thumb2 are support for android/linux. 2237 if (MF.getFunction().isVarArg()) 2238 report_fatal_error("Segmented stacks do not support vararg functions."); 2239 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 2240 report_fatal_error("Segmented stacks not supported on this platform."); 2241 2242 MachineFrameInfo &MFI = MF.getFrameInfo(); 2243 MachineModuleInfo &MMI = MF.getMMI(); 2244 MCContext &Context = MMI.getContext(); 2245 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 2246 const ARMBaseInstrInfo &TII = 2247 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2248 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 2249 DebugLoc DL; 2250 2251 uint64_t StackSize = MFI.getStackSize(); 2252 2253 // Do not generate a prologue for leaf functions with a stack of size zero. 2254 // For non-leaf functions we have to allow for the possibility that the 2255 // callis to a non-split function, as in PR37807. This function could also 2256 // take the address of a non-split function. When the linker tries to adjust 2257 // its non-existent prologue, it would fail with an error. Mark the object 2258 // file so that such failures are not errors. See this Go language bug-report 2259 // https://go-review.googlesource.com/c/go/+/148819/ 2260 if (StackSize == 0 && !MFI.hasTailCall()) { 2261 MF.getMMI().setHasNosplitStack(true); 2262 return; 2263 } 2264 2265 // Use R4 and R5 as scratch registers. 2266 // We save R4 and R5 before use and restore them before leaving the function. 2267 unsigned ScratchReg0 = ARM::R4; 2268 unsigned ScratchReg1 = ARM::R5; 2269 uint64_t AlignedStackSize; 2270 2271 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 2272 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 2273 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 2274 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 2275 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 2276 2277 // Grab everything that reaches PrologueMBB to update there liveness as well. 2278 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 2279 SmallVector<MachineBasicBlock *, 2> WalkList; 2280 WalkList.push_back(&PrologueMBB); 2281 2282 do { 2283 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 2284 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 2285 if (BeforePrologueRegion.insert(PredBB).second) 2286 WalkList.push_back(PredBB); 2287 } 2288 } while (!WalkList.empty()); 2289 2290 // The order in that list is important. 2291 // The blocks will all be inserted before PrologueMBB using that order. 2292 // Therefore the block that should appear first in the CFG should appear 2293 // first in the list. 2294 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 2295 PostStackMBB}; 2296 2297 for (MachineBasicBlock *B : AddedBlocks) 2298 BeforePrologueRegion.insert(B); 2299 2300 for (const auto &LI : PrologueMBB.liveins()) { 2301 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 2302 PredBB->addLiveIn(LI); 2303 } 2304 2305 // Remove the newly added blocks from the list, since we know 2306 // we do not have to do the following updates for them. 2307 for (MachineBasicBlock *B : AddedBlocks) { 2308 BeforePrologueRegion.erase(B); 2309 MF.insert(PrologueMBB.getIterator(), B); 2310 } 2311 2312 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 2313 // Make sure the LiveIns are still sorted and unique. 2314 MBB->sortUniqueLiveIns(); 2315 // Replace the edges to PrologueMBB by edges to the sequences 2316 // we are about to add. 2317 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 2318 } 2319 2320 // The required stack size that is aligned to ARM constant criterion. 2321 AlignedStackSize = alignToARMConstant(StackSize); 2322 2323 // When the frame size is less than 256 we just compare the stack 2324 // boundary directly to the value of the stack pointer, per gcc. 2325 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 2326 2327 // We will use two of the callee save registers as scratch registers so we 2328 // need to save those registers onto the stack. 2329 // We will use SR0 to hold stack limit and SR1 to hold the stack size 2330 // requested and arguments for __morestack(). 2331 // SR0: Scratch Register #0 2332 // SR1: Scratch Register #1 2333 // push {SR0, SR1} 2334 if (Thumb) { 2335 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 2336 .add(predOps(ARMCC::AL)) 2337 .addReg(ScratchReg0) 2338 .addReg(ScratchReg1); 2339 } else { 2340 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 2341 .addReg(ARM::SP, RegState::Define) 2342 .addReg(ARM::SP) 2343 .add(predOps(ARMCC::AL)) 2344 .addReg(ScratchReg0) 2345 .addReg(ScratchReg1); 2346 } 2347 2348 // Emit the relevant DWARF information about the change in stack pointer as 2349 // well as where to find both r4 and r5 (the callee-save registers) 2350 CFIIndex = 2351 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -8)); 2352 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2353 .addCFIIndex(CFIIndex); 2354 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2355 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 2356 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2357 .addCFIIndex(CFIIndex); 2358 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2359 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 2360 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2361 .addCFIIndex(CFIIndex); 2362 2363 // mov SR1, sp 2364 if (Thumb) { 2365 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 2366 .addReg(ARM::SP) 2367 .add(predOps(ARMCC::AL)); 2368 } else if (CompareStackPointer) { 2369 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 2370 .addReg(ARM::SP) 2371 .add(predOps(ARMCC::AL)) 2372 .add(condCodeOp()); 2373 } 2374 2375 // sub SR1, sp, #StackSize 2376 if (!CompareStackPointer && Thumb) { 2377 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 2378 .add(condCodeOp()) 2379 .addReg(ScratchReg1) 2380 .addImm(AlignedStackSize) 2381 .add(predOps(ARMCC::AL)); 2382 } else if (!CompareStackPointer) { 2383 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 2384 .addReg(ARM::SP) 2385 .addImm(AlignedStackSize) 2386 .add(predOps(ARMCC::AL)) 2387 .add(condCodeOp()); 2388 } 2389 2390 if (Thumb && ST->isThumb1Only()) { 2391 unsigned PCLabelId = ARMFI->createPICLabelUId(); 2392 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 2393 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0); 2394 MachineConstantPool *MCP = MF.getConstantPool(); 2395 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, 4); 2396 2397 // ldr SR0, [pc, offset(STACK_LIMIT)] 2398 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 2399 .addConstantPoolIndex(CPI) 2400 .add(predOps(ARMCC::AL)); 2401 2402 // ldr SR0, [SR0] 2403 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 2404 .addReg(ScratchReg0) 2405 .addImm(0) 2406 .add(predOps(ARMCC::AL)); 2407 } else { 2408 // Get TLS base address from the coprocessor 2409 // mrc p15, #0, SR0, c13, c0, #3 2410 BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC), 2411 ScratchReg0) 2412 .addImm(15) 2413 .addImm(0) 2414 .addImm(13) 2415 .addImm(0) 2416 .addImm(3) 2417 .add(predOps(ARMCC::AL)); 2418 2419 // Use the last tls slot on android and a private field of the TCP on linux. 2420 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 2421 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 2422 2423 // Get the stack limit from the right offset 2424 // ldr SR0, [sr0, #4 * TlsOffset] 2425 BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12), 2426 ScratchReg0) 2427 .addReg(ScratchReg0) 2428 .addImm(4 * TlsOffset) 2429 .add(predOps(ARMCC::AL)); 2430 } 2431 2432 // Compare stack limit with stack size requested. 2433 // cmp SR0, SR1 2434 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 2435 BuildMI(GetMBB, DL, TII.get(Opcode)) 2436 .addReg(ScratchReg0) 2437 .addReg(ScratchReg1) 2438 .add(predOps(ARMCC::AL)); 2439 2440 // This jump is taken if StackLimit < SP - stack required. 2441 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 2442 BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB) 2443 .addImm(ARMCC::LO) 2444 .addReg(ARM::CPSR); 2445 2446 2447 // Calling __morestack(StackSize, Size of stack arguments). 2448 // __morestack knows that the stack size requested is in SR0(r4) 2449 // and amount size of stack arguments is in SR1(r5). 2450 2451 // Pass first argument for the __morestack by Scratch Register #0. 2452 // The amount size of stack required 2453 if (Thumb) { 2454 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 2455 .add(condCodeOp()) 2456 .addImm(AlignedStackSize) 2457 .add(predOps(ARMCC::AL)); 2458 } else { 2459 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 2460 .addImm(AlignedStackSize) 2461 .add(predOps(ARMCC::AL)) 2462 .add(condCodeOp()); 2463 } 2464 // Pass second argument for the __morestack by Scratch Register #1. 2465 // The amount size of stack consumed to save function arguments. 2466 if (Thumb) { 2467 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 2468 .add(condCodeOp()) 2469 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2470 .add(predOps(ARMCC::AL)); 2471 } else { 2472 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 2473 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2474 .add(predOps(ARMCC::AL)) 2475 .add(condCodeOp()); 2476 } 2477 2478 // push {lr} - Save return address of this function. 2479 if (Thumb) { 2480 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 2481 .add(predOps(ARMCC::AL)) 2482 .addReg(ARM::LR); 2483 } else { 2484 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 2485 .addReg(ARM::SP, RegState::Define) 2486 .addReg(ARM::SP) 2487 .add(predOps(ARMCC::AL)) 2488 .addReg(ARM::LR); 2489 } 2490 2491 // Emit the DWARF info about the change in stack as well as where to find the 2492 // previous link register 2493 CFIIndex = 2494 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -12)); 2495 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2496 .addCFIIndex(CFIIndex); 2497 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2498 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 2499 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2500 .addCFIIndex(CFIIndex); 2501 2502 // Call __morestack(). 2503 if (Thumb) { 2504 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 2505 .add(predOps(ARMCC::AL)) 2506 .addExternalSymbol("__morestack"); 2507 } else { 2508 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 2509 .addExternalSymbol("__morestack"); 2510 } 2511 2512 // pop {lr} - Restore return address of this original function. 2513 if (Thumb) { 2514 if (ST->isThumb1Only()) { 2515 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2516 .add(predOps(ARMCC::AL)) 2517 .addReg(ScratchReg0); 2518 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 2519 .addReg(ScratchReg0) 2520 .add(predOps(ARMCC::AL)); 2521 } else { 2522 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 2523 .addReg(ARM::LR, RegState::Define) 2524 .addReg(ARM::SP, RegState::Define) 2525 .addReg(ARM::SP) 2526 .addImm(4) 2527 .add(predOps(ARMCC::AL)); 2528 } 2529 } else { 2530 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2531 .addReg(ARM::SP, RegState::Define) 2532 .addReg(ARM::SP) 2533 .add(predOps(ARMCC::AL)) 2534 .addReg(ARM::LR); 2535 } 2536 2537 // Restore SR0 and SR1 in case of __morestack() was called. 2538 // __morestack() will skip PostStackMBB block so we need to restore 2539 // scratch registers from here. 2540 // pop {SR0, SR1} 2541 if (Thumb) { 2542 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2543 .add(predOps(ARMCC::AL)) 2544 .addReg(ScratchReg0) 2545 .addReg(ScratchReg1); 2546 } else { 2547 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2548 .addReg(ARM::SP, RegState::Define) 2549 .addReg(ARM::SP) 2550 .add(predOps(ARMCC::AL)) 2551 .addReg(ScratchReg0) 2552 .addReg(ScratchReg1); 2553 } 2554 2555 // Update the CFA offset now that we've popped 2556 CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); 2557 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2558 .addCFIIndex(CFIIndex); 2559 2560 // Return from this function. 2561 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL)); 2562 2563 // Restore SR0 and SR1 in case of __morestack() was not called. 2564 // pop {SR0, SR1} 2565 if (Thumb) { 2566 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 2567 .add(predOps(ARMCC::AL)) 2568 .addReg(ScratchReg0) 2569 .addReg(ScratchReg1); 2570 } else { 2571 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 2572 .addReg(ARM::SP, RegState::Define) 2573 .addReg(ARM::SP) 2574 .add(predOps(ARMCC::AL)) 2575 .addReg(ScratchReg0) 2576 .addReg(ScratchReg1); 2577 } 2578 2579 // Update the CFA offset now that we've popped 2580 CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); 2581 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2582 .addCFIIndex(CFIIndex); 2583 2584 // Tell debuggers that r4 and r5 are now the same as they were in the 2585 // previous function, that they're the "Same Value". 2586 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2587 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 2588 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2589 .addCFIIndex(CFIIndex); 2590 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2591 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 2592 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2593 .addCFIIndex(CFIIndex); 2594 2595 // Organizing MBB lists 2596 PostStackMBB->addSuccessor(&PrologueMBB); 2597 2598 AllocMBB->addSuccessor(PostStackMBB); 2599 2600 GetMBB->addSuccessor(PostStackMBB); 2601 GetMBB->addSuccessor(AllocMBB); 2602 2603 McrMBB->addSuccessor(GetMBB); 2604 2605 PrevStackMBB->addSuccessor(McrMBB); 2606 2607 #ifdef EXPENSIVE_CHECKS 2608 MF.verify(); 2609 #endif 2610 } 2611