1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the ARM implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 // 13 // This file contains the ARM implementation of TargetFrameLowering class. 14 // 15 // On ARM, stack frames are structured as follows: 16 // 17 // The stack grows downward. 18 // 19 // All of the individual frame areas on the frame below are optional, i.e. it's 20 // possible to create a function so that the particular area isn't present 21 // in the frame. 22 // 23 // At function entry, the "frame" looks as follows: 24 // 25 // | | Higher address 26 // |-----------------------------------| 27 // | | 28 // | arguments passed on the stack | 29 // | | 30 // |-----------------------------------| <- sp 31 // | | Lower address 32 // 33 // 34 // After the prologue has run, the frame has the following general structure. 35 // Technically the last frame area (VLAs) doesn't get created until in the 36 // main function body, after the prologue is run. However, it's depicted here 37 // for completeness. 38 // 39 // | | Higher address 40 // |-----------------------------------| 41 // | | 42 // | arguments passed on the stack | 43 // | | 44 // |-----------------------------------| <- (sp at function entry) 45 // | | 46 // | varargs from registers | 47 // | | 48 // |-----------------------------------| 49 // | | 50 // | prev_lr | 51 // | prev_fp | 52 // | (a.k.a. "frame record") | 53 // | | 54 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11) 55 // | | 56 // | callee-saved gpr registers | 57 // | | 58 // |-----------------------------------| 59 // | | 60 // | callee-saved fp/simd regs | 61 // | | 62 // |-----------------------------------| 63 // |.empty.space.to.make.part.below....| 64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at 65 // |.the.standard.8-byte.alignment.....| compile time; if present) 66 // |-----------------------------------| 67 // | | 68 // | local variables of fixed size | 69 // | including spill slots | 70 // |-----------------------------------| <- base pointer (not defined by ABI, 71 // |.variable-sized.local.variables....| LLVM chooses r6) 72 // |.(VLAs)............................| (size of this area is unknown at 73 // |...................................| compile time) 74 // |-----------------------------------| <- sp 75 // | | Lower address 76 // 77 // 78 // To access the data in a frame, at-compile time, a constant offset must be 79 // computable from one of the pointers (fp, bp, sp) to access it. The size 80 // of the areas with a dotted background cannot be computed at compile-time 81 // if they are present, making it required to have all three of fp, bp and 82 // sp to be set up to be able to access all contents in the frame areas, 83 // assuming all of the frame areas are non-empty. 84 // 85 // For most functions, some of the frame areas are empty. For those functions, 86 // it may not be necessary to set up fp or bp: 87 // * A base pointer is definitely needed when there are both VLAs and local 88 // variables with more-than-default alignment requirements. 89 // * A frame pointer is definitely needed when there are local variables with 90 // more-than-default alignment requirements. 91 // 92 // In some cases when a base pointer is not strictly needed, it is generated 93 // anyway when offsets from the frame pointer to access local variables become 94 // so large that the offset can't be encoded in the immediate fields of loads 95 // or stores. 96 // 97 // The frame pointer might be chosen to be r7 or r11, depending on the target 98 // architecture and operating system. See ARMSubtarget::getFramePointerReg for 99 // details. 100 // 101 // Outgoing function arguments must be at the bottom of the stack frame when 102 // calling another function. If we do not have variable-sized stack objects, we 103 // can allocate a "reserved call frame" area at the bottom of the local 104 // variable area, large enough for all outgoing calls. If we do have VLAs, then 105 // the stack pointer must be decremented and incremented around each call to 106 // make space for the arguments below the VLAs. 107 // 108 //===----------------------------------------------------------------------===// 109 110 #include "ARMFrameLowering.h" 111 #include "ARMBaseInstrInfo.h" 112 #include "ARMBaseRegisterInfo.h" 113 #include "ARMConstantPoolValue.h" 114 #include "ARMMachineFunctionInfo.h" 115 #include "ARMSubtarget.h" 116 #include "MCTargetDesc/ARMAddressingModes.h" 117 #include "MCTargetDesc/ARMBaseInfo.h" 118 #include "Utils/ARMBaseInfo.h" 119 #include "llvm/ADT/BitVector.h" 120 #include "llvm/ADT/STLExtras.h" 121 #include "llvm/ADT/SmallPtrSet.h" 122 #include "llvm/ADT/SmallVector.h" 123 #include "llvm/CodeGen/MachineBasicBlock.h" 124 #include "llvm/CodeGen/MachineConstantPool.h" 125 #include "llvm/CodeGen/MachineFrameInfo.h" 126 #include "llvm/CodeGen/MachineFunction.h" 127 #include "llvm/CodeGen/MachineInstr.h" 128 #include "llvm/CodeGen/MachineInstrBuilder.h" 129 #include "llvm/CodeGen/MachineJumpTableInfo.h" 130 #include "llvm/CodeGen/MachineModuleInfo.h" 131 #include "llvm/CodeGen/MachineOperand.h" 132 #include "llvm/CodeGen/MachineRegisterInfo.h" 133 #include "llvm/CodeGen/RegisterScavenging.h" 134 #include "llvm/CodeGen/TargetInstrInfo.h" 135 #include "llvm/CodeGen/TargetOpcodes.h" 136 #include "llvm/CodeGen/TargetRegisterInfo.h" 137 #include "llvm/CodeGen/TargetSubtargetInfo.h" 138 #include "llvm/IR/Attributes.h" 139 #include "llvm/IR/CallingConv.h" 140 #include "llvm/IR/DebugLoc.h" 141 #include "llvm/IR/Function.h" 142 #include "llvm/MC/MCAsmInfo.h" 143 #include "llvm/MC/MCContext.h" 144 #include "llvm/MC/MCDwarf.h" 145 #include "llvm/MC/MCInstrDesc.h" 146 #include "llvm/MC/MCRegisterInfo.h" 147 #include "llvm/Support/CodeGen.h" 148 #include "llvm/Support/CommandLine.h" 149 #include "llvm/Support/Compiler.h" 150 #include "llvm/Support/Debug.h" 151 #include "llvm/Support/ErrorHandling.h" 152 #include "llvm/Support/MathExtras.h" 153 #include "llvm/Support/raw_ostream.h" 154 #include "llvm/Target/TargetMachine.h" 155 #include "llvm/Target/TargetOptions.h" 156 #include <algorithm> 157 #include <cassert> 158 #include <cstddef> 159 #include <cstdint> 160 #include <iterator> 161 #include <utility> 162 #include <vector> 163 164 #define DEBUG_TYPE "arm-frame-lowering" 165 166 using namespace llvm; 167 168 static cl::opt<bool> 169 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 170 cl::desc("Align ARM NEON spills in prolog and epilog")); 171 172 static MachineBasicBlock::iterator 173 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 174 unsigned NumAlignedDPRCS2Regs); 175 176 enum class SpillArea { 177 GPRCS1, 178 GPRCS2, 179 DPRCS1, 180 DPRCS2, 181 FPCXT, 182 }; 183 184 /// Get the spill area that Reg should be saved into in the prologue. 185 SpillArea getSpillArea(Register Reg, 186 ARMSubtarget::PushPopSplitVariation Variation, 187 unsigned NumAlignedDPRCS2Regs, 188 const ARMBaseRegisterInfo *RegInfo) { 189 // NoSplit: 190 // push {r0-r12, lr} GPRCS1 191 // vpush {r8-d15} DPRCS1 192 // 193 // SplitR7: 194 // push {r0-r7, lr} GPRCS1 195 // push {r8-r12} GPRCS2 196 // vpush {r8-d15} DPRCS1 197 // 198 // SplitR11WindowsSEH: 199 // push {r0-r10, r12} GPRCS1 200 // vpush {r8-d15} DPRCS1 201 // push {r11, lr} GPRCS2 202 // 203 // SplitR11AAPCSSignRA: 204 // push {r0-r10, r12} GPRSC1 205 // push {r11, lr} GPRCS2 206 // vpush {r8-d15} DPRCS1 207 208 // If FPCXTNS is spilled (for CMSE secure entryfunctions), it is always at 209 // the top of the stack frame. 210 // The DPRCS2 region is used for ABIs which only guarantee 4-byte alignment 211 // of SP. If used, it will be below the other save areas, after the stack has 212 // been re-aligned. 213 214 switch (Reg) { 215 default: 216 dbgs() << "Don't know where to spill " << printReg(Reg, RegInfo) << "\n"; 217 llvm_unreachable("Don't know where to spill this register"); 218 break; 219 220 case ARM::FPCXTNS: 221 return SpillArea::FPCXT; 222 223 case ARM::R0: 224 case ARM::R1: 225 case ARM::R2: 226 case ARM::R3: 227 case ARM::R4: 228 case ARM::R5: 229 case ARM::R6: 230 case ARM::R7: 231 return SpillArea::GPRCS1; 232 233 case ARM::R8: 234 case ARM::R9: 235 case ARM::R10: 236 if (Variation == ARMSubtarget::SplitR7) 237 return SpillArea::GPRCS2; 238 else 239 return SpillArea::GPRCS1; 240 241 case ARM::R11: 242 if (Variation == ARMSubtarget::NoSplit) 243 return SpillArea::GPRCS1; 244 else 245 return SpillArea::GPRCS2; 246 247 case ARM::R12: 248 if (Variation == ARMSubtarget::SplitR7) 249 return SpillArea::GPRCS2; 250 else 251 return SpillArea::GPRCS1; 252 253 case ARM::LR: 254 if (Variation == ARMSubtarget::SplitR11WindowsSEH || 255 Variation == ARMSubtarget::SplitR11AAPCSSignRA) 256 return SpillArea::GPRCS2; 257 else 258 return SpillArea::GPRCS1; 259 260 case ARM::D0: 261 case ARM::D1: 262 case ARM::D2: 263 case ARM::D3: 264 case ARM::D4: 265 case ARM::D5: 266 case ARM::D6: 267 case ARM::D7: 268 return SpillArea::DPRCS1; 269 270 case ARM::D8: 271 case ARM::D9: 272 case ARM::D10: 273 case ARM::D11: 274 case ARM::D12: 275 case ARM::D13: 276 case ARM::D14: 277 case ARM::D15: 278 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 279 return SpillArea::DPRCS2; 280 else 281 return SpillArea::DPRCS1; 282 283 case ARM::D16: 284 case ARM::D17: 285 case ARM::D18: 286 case ARM::D19: 287 case ARM::D20: 288 case ARM::D21: 289 case ARM::D22: 290 case ARM::D23: 291 case ARM::D24: 292 case ARM::D25: 293 case ARM::D26: 294 case ARM::D27: 295 case ARM::D28: 296 case ARM::D29: 297 case ARM::D30: 298 case ARM::D31: 299 return SpillArea::DPRCS1; 300 } 301 } 302 303 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 304 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)), 305 STI(sti) {} 306 307 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const { 308 // iOS always has a FP for backtracking, force other targets to keep their FP 309 // when doing FastISel. The emitted code is currently superior, and in cases 310 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 311 return MF.getSubtarget<ARMSubtarget>().useFastISel(); 312 } 313 314 /// Returns true if the target can safely skip saving callee-saved registers 315 /// for noreturn nounwind functions. 316 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const { 317 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) && 318 MF.getFunction().hasFnAttribute(Attribute::NoUnwind) && 319 !MF.getFunction().hasFnAttribute(Attribute::UWTable)); 320 321 // Frame pointer and link register are not treated as normal CSR, thus we 322 // can always skip CSR saves for nonreturning functions. 323 return true; 324 } 325 326 /// hasFP - Return true if the specified function should have a dedicated frame 327 /// pointer register. This is true if the function has variable sized allocas 328 /// or if frame pointer elimination is disabled. 329 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { 330 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 331 const MachineFrameInfo &MFI = MF.getFrameInfo(); 332 333 // ABI-required frame pointer. 334 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 335 return true; 336 337 // Frame pointer required for use within this function. 338 return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 339 MFI.isFrameAddressTaken()); 340 } 341 342 /// isFPReserved - Return true if the frame pointer register should be 343 /// considered a reserved register on the scope of the specified function. 344 bool ARMFrameLowering::isFPReserved(const MachineFunction &MF) const { 345 return hasFP(MF) || MF.getTarget().Options.FramePointerIsReserved(MF); 346 } 347 348 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 349 /// not required, we reserve argument space for call sites in the function 350 /// immediately on entry to the current function. This eliminates the need for 351 /// add/sub sp brackets around call sites. Returns true if the call frame is 352 /// included as part of the stack frame. 353 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 354 const MachineFrameInfo &MFI = MF.getFrameInfo(); 355 unsigned CFSize = MFI.getMaxCallFrameSize(); 356 // It's not always a good idea to include the call frame as part of the 357 // stack frame. ARM (especially Thumb) has small immediate offset to 358 // address the stack frame. So a large call frame can cause poor codegen 359 // and may even makes it impossible to scavenge a register. 360 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 361 return false; 362 363 return !MFI.hasVarSizedObjects(); 364 } 365 366 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 367 /// call frame pseudos can be simplified. Unlike most targets, having a FP 368 /// is not sufficient here since we still may reference some objects via SP 369 /// even when FP is available in Thumb2 mode. 370 bool 371 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 372 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 373 } 374 375 // Returns how much of the incoming argument stack area we should clean up in an 376 // epilogue. For the C calling convention this will be 0, for guaranteed tail 377 // call conventions it can be positive (a normal return or a tail call to a 378 // function that uses less stack space for arguments) or negative (for a tail 379 // call to a function that needs more stack space than us for arguments). 380 static int getArgumentStackToRestore(MachineFunction &MF, 381 MachineBasicBlock &MBB) { 382 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 383 bool IsTailCallReturn = false; 384 if (MBB.end() != MBBI) { 385 unsigned RetOpcode = MBBI->getOpcode(); 386 IsTailCallReturn = RetOpcode == ARM::TCRETURNdi || 387 RetOpcode == ARM::TCRETURNri || 388 RetOpcode == ARM::TCRETURNrinotr12; 389 } 390 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 391 392 int ArgumentPopSize = 0; 393 if (IsTailCallReturn) { 394 MachineOperand &StackAdjust = MBBI->getOperand(1); 395 396 // For a tail-call in a callee-pops-arguments environment, some or all of 397 // the stack may actually be in use for the call's arguments, this is 398 // calculated during LowerCall and consumed here... 399 ArgumentPopSize = StackAdjust.getImm(); 400 } else { 401 // ... otherwise the amount to pop is *all* of the argument space, 402 // conveniently stored in the MachineFunctionInfo by 403 // LowerFormalArguments. This will, of course, be zero for the C calling 404 // convention. 405 ArgumentPopSize = AFI->getArgumentStackToRestore(); 406 } 407 408 return ArgumentPopSize; 409 } 410 411 static bool needsWinCFI(const MachineFunction &MF) { 412 const Function &F = MF.getFunction(); 413 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 414 F.needsUnwindTableEntry(); 415 } 416 417 // Given a load or a store instruction, generate an appropriate unwinding SEH 418 // code on Windows. 419 static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI, 420 const TargetInstrInfo &TII, 421 unsigned Flags) { 422 unsigned Opc = MBBI->getOpcode(); 423 MachineBasicBlock *MBB = MBBI->getParent(); 424 MachineFunction &MF = *MBB->getParent(); 425 DebugLoc DL = MBBI->getDebugLoc(); 426 MachineInstrBuilder MIB; 427 const ARMSubtarget &Subtarget = MF.getSubtarget<ARMSubtarget>(); 428 const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 429 430 Flags |= MachineInstr::NoMerge; 431 432 switch (Opc) { 433 default: 434 report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc)); 435 break; 436 case ARM::t2ADDri: // add.w r11, sp, #xx 437 case ARM::t2ADDri12: // add.w r11, sp, #xx 438 case ARM::t2MOVTi16: // movt r4, #xx 439 case ARM::tBL: // bl __chkstk 440 // These are harmless if used for just setting up a frame pointer, 441 // but that frame pointer can't be relied upon for unwinding, unless 442 // set up with SEH_SaveSP. 443 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 444 .addImm(/*Wide=*/1) 445 .setMIFlags(Flags); 446 break; 447 448 case ARM::t2MOVi16: { // mov(w) r4, #xx 449 bool Wide = MBBI->getOperand(1).getImm() >= 256; 450 if (!Wide) { 451 MachineInstrBuilder NewInstr = 452 BuildMI(MF, DL, TII.get(ARM::tMOVi8)).setMIFlags(MBBI->getFlags()); 453 NewInstr.add(MBBI->getOperand(0)); 454 NewInstr.add(t1CondCodeOp(/*isDead=*/true)); 455 for (MachineOperand &MO : llvm::drop_begin(MBBI->operands())) 456 NewInstr.add(MO); 457 MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr); 458 MBB->erase(MBBI); 459 MBBI = NewMBBI; 460 } 461 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)).addImm(Wide).setMIFlags(Flags); 462 break; 463 } 464 465 case ARM::tBLXr: // blx r12 (__chkstk) 466 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 467 .addImm(/*Wide=*/0) 468 .setMIFlags(Flags); 469 break; 470 471 case ARM::t2MOVi32imm: // movw+movt 472 // This pseudo instruction expands into two mov instructions. If the 473 // second operand is a symbol reference, this will stay as two wide 474 // instructions, movw+movt. If they're immediates, the first one can 475 // end up as a narrow mov though. 476 // As two SEH instructions are appended here, they won't get interleaved 477 // between the two final movw/movt instructions, but it doesn't make any 478 // practical difference. 479 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 480 .addImm(/*Wide=*/1) 481 .setMIFlags(Flags); 482 MBB->insertAfter(MBBI, MIB); 483 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 484 .addImm(/*Wide=*/1) 485 .setMIFlags(Flags); 486 break; 487 488 case ARM::t2STR_PRE: 489 if (MBBI->getOperand(0).getReg() == ARM::SP && 490 MBBI->getOperand(2).getReg() == ARM::SP && 491 MBBI->getOperand(3).getImm() == -4) { 492 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 493 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs)) 494 .addImm(1ULL << Reg) 495 .addImm(/*Wide=*/1) 496 .setMIFlags(Flags); 497 } else { 498 report_fatal_error("No matching SEH Opcode for t2STR_PRE"); 499 } 500 break; 501 502 case ARM::t2LDR_POST: 503 if (MBBI->getOperand(1).getReg() == ARM::SP && 504 MBBI->getOperand(2).getReg() == ARM::SP && 505 MBBI->getOperand(3).getImm() == 4) { 506 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 507 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs)) 508 .addImm(1ULL << Reg) 509 .addImm(/*Wide=*/1) 510 .setMIFlags(Flags); 511 } else { 512 report_fatal_error("No matching SEH Opcode for t2LDR_POST"); 513 } 514 break; 515 516 case ARM::t2LDMIA_RET: 517 case ARM::t2LDMIA_UPD: 518 case ARM::t2STMDB_UPD: { 519 unsigned Mask = 0; 520 bool Wide = false; 521 for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) { 522 const MachineOperand &MO = MBBI->getOperand(i); 523 if (!MO.isReg() || MO.isImplicit()) 524 continue; 525 unsigned Reg = RegInfo->getSEHRegNum(MO.getReg()); 526 if (Reg == 15) 527 Reg = 14; 528 if (Reg >= 8 && Reg <= 13) 529 Wide = true; 530 else if (Opc == ARM::t2LDMIA_UPD && Reg == 14) 531 Wide = true; 532 Mask |= 1 << Reg; 533 } 534 if (!Wide) { 535 unsigned NewOpc; 536 switch (Opc) { 537 case ARM::t2LDMIA_RET: 538 NewOpc = ARM::tPOP_RET; 539 break; 540 case ARM::t2LDMIA_UPD: 541 NewOpc = ARM::tPOP; 542 break; 543 case ARM::t2STMDB_UPD: 544 NewOpc = ARM::tPUSH; 545 break; 546 default: 547 llvm_unreachable(""); 548 } 549 MachineInstrBuilder NewInstr = 550 BuildMI(MF, DL, TII.get(NewOpc)).setMIFlags(MBBI->getFlags()); 551 for (unsigned i = 2, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) 552 NewInstr.add(MBBI->getOperand(i)); 553 MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr); 554 MBB->erase(MBBI); 555 MBBI = NewMBBI; 556 } 557 unsigned SEHOpc = 558 (Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs; 559 MIB = BuildMI(MF, DL, TII.get(SEHOpc)) 560 .addImm(Mask) 561 .addImm(Wide ? 1 : 0) 562 .setMIFlags(Flags); 563 break; 564 } 565 case ARM::VSTMDDB_UPD: 566 case ARM::VLDMDIA_UPD: { 567 int First = -1, Last = 0; 568 for (const MachineOperand &MO : llvm::drop_begin(MBBI->operands(), 4)) { 569 unsigned Reg = RegInfo->getSEHRegNum(MO.getReg()); 570 if (First == -1) 571 First = Reg; 572 Last = Reg; 573 } 574 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs)) 575 .addImm(First) 576 .addImm(Last) 577 .setMIFlags(Flags); 578 break; 579 } 580 case ARM::tSUBspi: 581 case ARM::tADDspi: 582 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc)) 583 .addImm(MBBI->getOperand(2).getImm() * 4) 584 .addImm(/*Wide=*/0) 585 .setMIFlags(Flags); 586 break; 587 case ARM::t2SUBspImm: 588 case ARM::t2SUBspImm12: 589 case ARM::t2ADDspImm: 590 case ARM::t2ADDspImm12: 591 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc)) 592 .addImm(MBBI->getOperand(2).getImm()) 593 .addImm(/*Wide=*/1) 594 .setMIFlags(Flags); 595 break; 596 597 case ARM::tMOVr: 598 if (MBBI->getOperand(1).getReg() == ARM::SP && 599 (Flags & MachineInstr::FrameSetup)) { 600 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 601 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP)) 602 .addImm(Reg) 603 .setMIFlags(Flags); 604 } else if (MBBI->getOperand(0).getReg() == ARM::SP && 605 (Flags & MachineInstr::FrameDestroy)) { 606 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 607 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP)) 608 .addImm(Reg) 609 .setMIFlags(Flags); 610 } else { 611 report_fatal_error("No SEH Opcode for MOV"); 612 } 613 break; 614 615 case ARM::tBX_RET: 616 case ARM::TCRETURNri: 617 case ARM::TCRETURNrinotr12: 618 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret)) 619 .addImm(/*Wide=*/0) 620 .setMIFlags(Flags); 621 break; 622 623 case ARM::TCRETURNdi: 624 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret)) 625 .addImm(/*Wide=*/1) 626 .setMIFlags(Flags); 627 break; 628 } 629 return MBB->insertAfter(MBBI, MIB); 630 } 631 632 static MachineBasicBlock::iterator 633 initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) { 634 if (MBBI == MBB.begin()) 635 return MachineBasicBlock::iterator(); 636 return std::prev(MBBI); 637 } 638 639 static void insertSEHRange(MachineBasicBlock &MBB, 640 MachineBasicBlock::iterator Start, 641 const MachineBasicBlock::iterator &End, 642 const ARMBaseInstrInfo &TII, unsigned MIFlags) { 643 if (Start.isValid()) 644 Start = std::next(Start); 645 else 646 Start = MBB.begin(); 647 648 for (auto MI = Start; MI != End;) { 649 auto Next = std::next(MI); 650 // Check if this instruction already has got a SEH opcode added. In that 651 // case, don't do this generic mapping. 652 if (Next != End && isSEHInstruction(*Next)) { 653 MI = std::next(Next); 654 while (MI != End && isSEHInstruction(*MI)) 655 ++MI; 656 continue; 657 } 658 insertSEH(MI, TII, MIFlags); 659 MI = Next; 660 } 661 } 662 663 static void emitRegPlusImmediate( 664 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 665 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 666 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 667 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 668 if (isARM) 669 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 670 Pred, PredReg, TII, MIFlags); 671 else 672 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 673 Pred, PredReg, TII, MIFlags); 674 } 675 676 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 677 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 678 const ARMBaseInstrInfo &TII, int NumBytes, 679 unsigned MIFlags = MachineInstr::NoFlags, 680 ARMCC::CondCodes Pred = ARMCC::AL, 681 unsigned PredReg = 0) { 682 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 683 MIFlags, Pred, PredReg); 684 } 685 686 static int sizeOfSPAdjustment(const MachineInstr &MI) { 687 int RegSize; 688 switch (MI.getOpcode()) { 689 case ARM::VSTMDDB_UPD: 690 RegSize = 8; 691 break; 692 case ARM::STMDB_UPD: 693 case ARM::t2STMDB_UPD: 694 RegSize = 4; 695 break; 696 case ARM::t2STR_PRE: 697 case ARM::STR_PRE_IMM: 698 return 4; 699 default: 700 llvm_unreachable("Unknown push or pop like instruction"); 701 } 702 703 int count = 0; 704 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 705 // pred) so the list starts at 4. 706 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 707 count += RegSize; 708 return count; 709 } 710 711 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 712 size_t StackSizeInBytes) { 713 const MachineFrameInfo &MFI = MF.getFrameInfo(); 714 const Function &F = MF.getFunction(); 715 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 716 717 StackProbeSize = 718 F.getFnAttributeAsParsedInteger("stack-probe-size", StackProbeSize); 719 return (StackSizeInBytes >= StackProbeSize) && 720 !F.hasFnAttribute("no-stack-arg-probe"); 721 } 722 723 namespace { 724 725 struct StackAdjustingInsts { 726 struct InstInfo { 727 MachineBasicBlock::iterator I; 728 unsigned SPAdjust; 729 bool BeforeFPSet; 730 731 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 732 void dump() { 733 dbgs() << " " << (BeforeFPSet ? "before-fp " : " ") 734 << "sp-adjust=" << SPAdjust; 735 I->dump(); 736 } 737 #endif 738 }; 739 740 SmallVector<InstInfo, 4> Insts; 741 742 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 743 bool BeforeFPSet = false) { 744 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 745 Insts.push_back(Info); 746 } 747 748 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 749 auto Info = 750 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 751 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 752 Info->SPAdjust += ExtraBytes; 753 } 754 755 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 756 const ARMBaseInstrInfo &TII, bool HasFP) { 757 MachineFunction &MF = *MBB.getParent(); 758 unsigned CFAOffset = 0; 759 for (auto &Info : Insts) { 760 if (HasFP && !Info.BeforeFPSet) 761 return; 762 763 CFAOffset += Info.SPAdjust; 764 unsigned CFIIndex = MF.addFrameInst( 765 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset)); 766 BuildMI(MBB, std::next(Info.I), dl, 767 TII.get(TargetOpcode::CFI_INSTRUCTION)) 768 .addCFIIndex(CFIIndex) 769 .setMIFlags(MachineInstr::FrameSetup); 770 } 771 } 772 773 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 774 void dump() { 775 dbgs() << "StackAdjustingInsts:\n"; 776 for (auto &Info : Insts) 777 Info.dump(); 778 } 779 #endif 780 }; 781 782 } // end anonymous namespace 783 784 /// Emit an instruction sequence that will align the address in 785 /// register Reg by zero-ing out the lower bits. For versions of the 786 /// architecture that support Neon, this must be done in a single 787 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 788 /// single instruction. That function only gets called when optimizing 789 /// spilling of D registers on a core with the Neon instruction set 790 /// present. 791 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 792 const TargetInstrInfo &TII, 793 MachineBasicBlock &MBB, 794 MachineBasicBlock::iterator MBBI, 795 const DebugLoc &DL, const unsigned Reg, 796 const Align Alignment, 797 const bool MustBeSingleInstruction) { 798 const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>(); 799 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 800 const unsigned AlignMask = Alignment.value() - 1U; 801 const unsigned NrBitsToZero = Log2(Alignment); 802 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 803 if (!AFI->isThumbFunction()) { 804 // if the BFC instruction is available, use that to zero the lower 805 // bits: 806 // bfc Reg, #0, log2(Alignment) 807 // otherwise use BIC, if the mask to zero the required number of bits 808 // can be encoded in the bic immediate field 809 // bic Reg, Reg, Alignment-1 810 // otherwise, emit 811 // lsr Reg, Reg, log2(Alignment) 812 // lsl Reg, Reg, log2(Alignment) 813 if (CanUseBFC) { 814 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 815 .addReg(Reg, RegState::Kill) 816 .addImm(~AlignMask) 817 .add(predOps(ARMCC::AL)); 818 } else if (AlignMask <= 255) { 819 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 820 .addReg(Reg, RegState::Kill) 821 .addImm(AlignMask) 822 .add(predOps(ARMCC::AL)) 823 .add(condCodeOp()); 824 } else { 825 assert(!MustBeSingleInstruction && 826 "Shouldn't call emitAligningInstructions demanding a single " 827 "instruction to be emitted for large stack alignment for a target " 828 "without BFC."); 829 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 830 .addReg(Reg, RegState::Kill) 831 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 832 .add(predOps(ARMCC::AL)) 833 .add(condCodeOp()); 834 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 835 .addReg(Reg, RegState::Kill) 836 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 837 .add(predOps(ARMCC::AL)) 838 .add(condCodeOp()); 839 } 840 } else { 841 // Since this is only reached for Thumb-2 targets, the BFC instruction 842 // should always be available. 843 assert(CanUseBFC); 844 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 845 .addReg(Reg, RegState::Kill) 846 .addImm(~AlignMask) 847 .add(predOps(ARMCC::AL)); 848 } 849 } 850 851 /// We need the offset of the frame pointer relative to other MachineFrameInfo 852 /// offsets which are encoded relative to SP at function begin. 853 /// See also emitPrologue() for how the FP is set up. 854 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet 855 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use 856 /// this to produce a conservative estimate that we check in an assert() later. 857 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI, 858 const MachineFunction &MF) { 859 ARMSubtarget::PushPopSplitVariation PushPopSplit = 860 STI.getPushPopSplitVariation(MF); 861 // For Thumb1, push.w isn't available, so the first push will always push 862 // r7 and lr onto the stack first. 863 if (AFI.isThumb1OnlyFunction()) 864 return -AFI.getArgRegsSaveSize() - (2 * 4); 865 // This is a conservative estimation: Assume the frame pointer being r7 and 866 // pc("r15") up to r8 getting spilled before (= 8 registers). 867 int MaxRegBytes = 8 * 4; 868 if (PushPopSplit == ARMSubtarget::SplitR11AAPCSSignRA) 869 // Here, r11 can be stored below all of r4-r15. 870 MaxRegBytes = 11 * 4; 871 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 872 // Here, r11 can be stored below all of r4-r15 plus d8-d15. 873 MaxRegBytes = 11 * 4 + 8 * 8; 874 } 875 int FPCXTSaveSize = 876 (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0; 877 return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes; 878 } 879 880 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 881 MachineBasicBlock &MBB) const { 882 MachineBasicBlock::iterator MBBI = MBB.begin(); 883 MachineFrameInfo &MFI = MF.getFrameInfo(); 884 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 885 MCContext &Context = MF.getContext(); 886 const TargetMachine &TM = MF.getTarget(); 887 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 888 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 889 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 890 assert(!AFI->isThumb1OnlyFunction() && 891 "This emitPrologue does not support Thumb1!"); 892 bool isARM = !AFI->isThumbFunction(); 893 Align Alignment = STI.getFrameLowering()->getStackAlign(); 894 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 895 unsigned NumBytes = MFI.getStackSize(); 896 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 897 int FPCXTSaveSize = 0; 898 bool NeedsWinCFI = needsWinCFI(MF); 899 ARMSubtarget::PushPopSplitVariation PushPopSplit = 900 STI.getPushPopSplitVariation(MF); 901 902 LLVM_DEBUG(dbgs() << "Emitting prologue for " << MF.getName() << "\n"); 903 904 // Debug location must be unknown since the first debug location is used 905 // to determine the end of the prologue. 906 DebugLoc dl; 907 908 Register FramePtr = RegInfo->getFrameRegister(MF); 909 910 // Determine the sizes of each callee-save spill areas and record which frame 911 // belongs to which callee-save spill areas. 912 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 913 int FramePtrSpillFI = 0; 914 int D8SpillFI = 0; 915 916 // All calls are tail calls in GHC calling conv, and functions have no 917 // prologue/epilogue. 918 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 919 return; 920 921 StackAdjustingInsts DefCFAOffsetCandidates; 922 bool HasFP = hasFP(MF); 923 924 if (!AFI->hasStackFrame() && 925 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 926 if (NumBytes != 0) { 927 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 928 MachineInstr::FrameSetup); 929 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true); 930 } 931 if (!NeedsWinCFI) 932 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 933 if (NeedsWinCFI && MBBI != MBB.begin()) { 934 insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup); 935 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd)) 936 .setMIFlag(MachineInstr::FrameSetup); 937 MF.setHasWinCFI(true); 938 } 939 return; 940 } 941 942 // Determine spill area sizes, and some important frame indices. 943 SpillArea FramePtrSpillArea; 944 bool BeforeFPPush = true; 945 for (const CalleeSavedInfo &I : CSI) { 946 Register Reg = I.getReg(); 947 int FI = I.getFrameIdx(); 948 949 SpillArea Area = getSpillArea(Reg, PushPopSplit, 950 AFI->getNumAlignedDPRCS2Regs(), RegInfo); 951 952 if (Reg == FramePtr) { 953 FramePtrSpillFI = FI; 954 FramePtrSpillArea = Area; 955 } 956 if (Reg == ARM::D8) 957 D8SpillFI = FI; 958 959 switch (Area) { 960 case SpillArea::FPCXT: 961 FPCXTSaveSize += 4; 962 break; 963 case SpillArea::GPRCS1: 964 GPRCS1Size += 4; 965 break; 966 case SpillArea::GPRCS2: 967 GPRCS2Size += 4; 968 break; 969 case SpillArea::DPRCS1: 970 DPRCSSize += 8; 971 break; 972 case SpillArea::DPRCS2: 973 break; 974 } 975 } 976 977 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 978 979 // Move past the PAC computation. 980 if (AFI->shouldSignReturnAddress()) 981 LastPush = MBBI++; 982 983 // Move past FPCXT area. 984 if (FPCXTSaveSize > 0) { 985 LastPush = MBBI++; 986 DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, BeforeFPPush); 987 } 988 989 // Allocate the vararg register save area. 990 if (ArgRegsSaveSize) { 991 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 992 MachineInstr::FrameSetup); 993 LastPush = std::prev(MBBI); 994 DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, BeforeFPPush); 995 } 996 997 // Move past area 1. 998 if (GPRCS1Size > 0) { 999 GPRCS1Push = LastPush = MBBI++; 1000 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, BeforeFPPush); 1001 if (FramePtrSpillArea == SpillArea::GPRCS1) 1002 BeforeFPPush = false; 1003 } 1004 1005 // Determine starting offsets of spill areas. These offsets are all positive 1006 // offsets from the bottom of the lowest-addressed callee-save area 1007 // (excluding DPRCS2, which is th the re-aligned stack region) to the bottom 1008 // of the spill area in question. 1009 unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize; 1010 unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size; 1011 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 1012 Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4); 1013 unsigned DPRGapSize = GPRCS1Size + FPCXTSaveSize + ArgRegsSaveSize; 1014 if (PushPopSplit != ARMSubtarget::SplitR11WindowsSEH) { 1015 DPRGapSize += GPRCS2Size; 1016 } 1017 DPRGapSize %= DPRAlign.value(); 1018 1019 unsigned DPRCSOffset; 1020 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 1021 DPRCSOffset = GPRCS1Offset - DPRGapSize - DPRCSSize; 1022 GPRCS2Offset = DPRCSOffset - GPRCS2Size; 1023 } else { 1024 DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 1025 } 1026 if (HasFP) { 1027 // Offset from the CFA to the saved frame pointer, will be negative. 1028 [[maybe_unused]] int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); 1029 LLVM_DEBUG(dbgs() << "FramePtrSpillFI: " << FramePtrSpillFI 1030 << ", FPOffset: " << FPOffset << "\n"); 1031 assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset && 1032 "Max FP estimation is wrong"); 1033 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 1034 NumBytes); 1035 } 1036 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 1037 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 1038 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 1039 1040 // Move GPRCS2, unless using SplitR11WindowsSEH, in which case it will be 1041 // after DPRCS1. 1042 if (GPRCS2Size > 0 && PushPopSplit != ARMSubtarget::SplitR11WindowsSEH) { 1043 GPRCS2Push = LastPush = MBBI++; 1044 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size, BeforeFPPush); 1045 if (FramePtrSpillArea == SpillArea::GPRCS2) 1046 BeforeFPPush = false; 1047 } 1048 1049 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 1050 // .cfi_offset operations will reflect that. 1051 if (DPRGapSize) { 1052 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 1053 if (LastPush != MBB.end() && 1054 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 1055 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 1056 else { 1057 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 1058 MachineInstr::FrameSetup); 1059 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize, BeforeFPPush); 1060 } 1061 } 1062 1063 // Move past DPRCS1. 1064 if (DPRCSSize > 0) { 1065 // Since vpush register list cannot have gaps, there may be multiple vpush 1066 // instructions in the prologue. 1067 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 1068 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI), 1069 BeforeFPPush); 1070 LastPush = MBBI++; 1071 } 1072 } 1073 1074 // Move past the aligned DPRCS2 area. 1075 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 1076 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 1077 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 1078 // leaves the stack pointer pointing to the DPRCS2 area. 1079 // 1080 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 1081 NumBytes += MFI.getObjectOffset(D8SpillFI); 1082 } else 1083 NumBytes = DPRCSOffset; 1084 1085 // Move GPRCS2, if using using SplitR11WindowsSEH. 1086 if (GPRCS2Size > 0 && PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 1087 GPRCS2Push = LastPush = MBBI++; 1088 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size, BeforeFPPush); 1089 if (FramePtrSpillArea == SpillArea::GPRCS2) 1090 BeforeFPPush = false; 1091 } 1092 1093 bool NeedsWinCFIStackAlloc = NeedsWinCFI; 1094 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH && HasFP) 1095 NeedsWinCFIStackAlloc = false; 1096 1097 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 1098 uint32_t NumWords = NumBytes >> 2; 1099 1100 if (NumWords < 65536) { 1101 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 1102 .addImm(NumWords) 1103 .setMIFlags(MachineInstr::FrameSetup) 1104 .add(predOps(ARMCC::AL)); 1105 } else { 1106 // Split into two instructions here, instead of using t2MOVi32imm, 1107 // to allow inserting accurate SEH instructions (including accurate 1108 // instruction size for each of them). 1109 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 1110 .addImm(NumWords & 0xffff) 1111 .setMIFlags(MachineInstr::FrameSetup) 1112 .add(predOps(ARMCC::AL)); 1113 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4) 1114 .addReg(ARM::R4) 1115 .addImm(NumWords >> 16) 1116 .setMIFlags(MachineInstr::FrameSetup) 1117 .add(predOps(ARMCC::AL)); 1118 } 1119 1120 switch (TM.getCodeModel()) { 1121 case CodeModel::Tiny: 1122 llvm_unreachable("Tiny code model not available on ARM."); 1123 case CodeModel::Small: 1124 case CodeModel::Medium: 1125 case CodeModel::Kernel: 1126 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 1127 .add(predOps(ARMCC::AL)) 1128 .addExternalSymbol("__chkstk") 1129 .addReg(ARM::R4, RegState::Implicit) 1130 .setMIFlags(MachineInstr::FrameSetup); 1131 break; 1132 case CodeModel::Large: 1133 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 1134 .addExternalSymbol("__chkstk") 1135 .setMIFlags(MachineInstr::FrameSetup); 1136 1137 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 1138 .add(predOps(ARMCC::AL)) 1139 .addReg(ARM::R12, RegState::Kill) 1140 .addReg(ARM::R4, RegState::Implicit) 1141 .setMIFlags(MachineInstr::FrameSetup); 1142 break; 1143 } 1144 1145 MachineInstrBuilder Instr, SEH; 1146 Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 1147 .addReg(ARM::SP, RegState::Kill) 1148 .addReg(ARM::R4, RegState::Kill) 1149 .setMIFlags(MachineInstr::FrameSetup) 1150 .add(predOps(ARMCC::AL)) 1151 .add(condCodeOp()); 1152 if (NeedsWinCFIStackAlloc) { 1153 SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc)) 1154 .addImm(NumBytes) 1155 .addImm(/*Wide=*/1) 1156 .setMIFlags(MachineInstr::FrameSetup); 1157 MBB.insertAfter(Instr, SEH); 1158 } 1159 NumBytes = 0; 1160 } 1161 1162 if (NumBytes) { 1163 // Adjust SP after all the callee-save spills. 1164 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 1165 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 1166 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 1167 else { 1168 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 1169 MachineInstr::FrameSetup); 1170 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 1171 } 1172 1173 if (HasFP && isARM) 1174 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 1175 // Note it's not safe to do this in Thumb2 mode because it would have 1176 // taken two instructions: 1177 // mov sp, r7 1178 // sub sp, #24 1179 // If an interrupt is taken between the two instructions, then sp is in 1180 // an inconsistent state (pointing to the middle of callee-saved area). 1181 // The interrupt handler can end up clobbering the registers. 1182 AFI->setShouldRestoreSPFromFP(true); 1183 } 1184 1185 // Set FP to point to the stack slot that contains the previous FP. 1186 // For iOS, FP is R7, which has now been stored in spill area 1. 1187 // Otherwise, if this is not iOS, all the callee-saved registers go 1188 // into spill area 1, including the FP in R11. In either case, it 1189 // is in area one and the adjustment needs to take place just after 1190 // that push. 1191 MachineBasicBlock::iterator AfterPush; 1192 if (HasFP) { 1193 MachineBasicBlock::iterator FPPushInst; 1194 // Offset from SP immediately after the push which saved the FP to the FP 1195 // save slot. 1196 int64_t FPOffsetAfterPush; 1197 switch (FramePtrSpillArea) { 1198 case SpillArea::GPRCS1: 1199 FPPushInst = GPRCS1Push; 1200 FPOffsetAfterPush = MFI.getObjectOffset(FramePtrSpillFI) + 1201 ArgRegsSaveSize + FPCXTSaveSize + 1202 sizeOfSPAdjustment(*FPPushInst); 1203 LLVM_DEBUG(dbgs() << "Frame pointer in GPRCS1, offset " 1204 << FPOffsetAfterPush << " after that push\n"); 1205 break; 1206 case SpillArea::GPRCS2: 1207 FPPushInst = GPRCS2Push; 1208 FPOffsetAfterPush = MFI.getObjectOffset(FramePtrSpillFI) + 1209 ArgRegsSaveSize + FPCXTSaveSize + GPRCS1Size + 1210 sizeOfSPAdjustment(*FPPushInst); 1211 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) 1212 FPOffsetAfterPush += DPRCSSize + DPRGapSize; 1213 LLVM_DEBUG(dbgs() << "Frame pointer in GPRCS2, offset " 1214 << FPOffsetAfterPush << " after that push\n"); 1215 break; 1216 default: 1217 llvm_unreachable("frame pointer in unknown spill area"); 1218 break; 1219 } 1220 AfterPush = std::next(FPPushInst); 1221 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) 1222 assert(FPOffsetAfterPush == 0); 1223 1224 // Emit the MOV or ADD to set up the frame pointer register. 1225 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII, 1226 FramePtr, ARM::SP, FPOffsetAfterPush, 1227 MachineInstr::FrameSetup); 1228 1229 if (!NeedsWinCFI) { 1230 // Emit DWARF info to find the CFA using the frame pointer from this 1231 // point onward. 1232 if (FPOffsetAfterPush != 0) { 1233 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( 1234 nullptr, MRI->getDwarfRegNum(FramePtr, true), 1235 -MFI.getObjectOffset(FramePtrSpillFI))); 1236 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1237 .addCFIIndex(CFIIndex) 1238 .setMIFlags(MachineInstr::FrameSetup); 1239 } else { 1240 unsigned CFIIndex = 1241 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 1242 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 1243 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1244 .addCFIIndex(CFIIndex) 1245 .setMIFlags(MachineInstr::FrameSetup); 1246 } 1247 } 1248 } 1249 1250 // Emit a SEH opcode indicating the prologue end. The rest of the prologue 1251 // instructions below don't need to be replayed to unwind the stack. 1252 if (NeedsWinCFI && MBBI != MBB.begin()) { 1253 MachineBasicBlock::iterator End = MBBI; 1254 if (HasFP && PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) 1255 End = AfterPush; 1256 insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup); 1257 BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd)) 1258 .setMIFlag(MachineInstr::FrameSetup); 1259 MF.setHasWinCFI(true); 1260 } 1261 1262 // Now that the prologue's actual instructions are finalised, we can insert 1263 // the necessary DWARF cf instructions to describe the situation. Start by 1264 // recording where each register ended up: 1265 if (!NeedsWinCFI) { 1266 for (const auto &Entry : reverse(CSI)) { 1267 Register Reg = Entry.getReg(); 1268 int FI = Entry.getFrameIdx(); 1269 MachineBasicBlock::iterator CFIPos; 1270 switch (getSpillArea(Reg, PushPopSplit, AFI->getNumAlignedDPRCS2Regs(), 1271 RegInfo)) { 1272 case SpillArea::GPRCS1: 1273 CFIPos = std::next(GPRCS1Push); 1274 break; 1275 case SpillArea::GPRCS2: 1276 CFIPos = std::next(GPRCS2Push); 1277 break; 1278 case SpillArea::DPRCS1: 1279 CFIPos = std::next(LastPush); 1280 break; 1281 case SpillArea::FPCXT: 1282 case SpillArea::DPRCS2: 1283 // FPCXT and DPRCS2 are not represented in the DWARF info. 1284 break; 1285 } 1286 1287 if (CFIPos.isValid()) { 1288 int CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1289 nullptr, 1290 MRI->getDwarfRegNum(Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, 1291 true), 1292 MFI.getObjectOffset(FI))); 1293 BuildMI(MBB, CFIPos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1294 .addCFIIndex(CFIIndex) 1295 .setMIFlags(MachineInstr::FrameSetup); 1296 } 1297 } 1298 } 1299 1300 // Now we can emit descriptions of where the canonical frame address was 1301 // throughout the process. If we have a frame pointer, it takes over the job 1302 // half-way through, so only the first few .cfi_def_cfa_offset instructions 1303 // actually get emitted. 1304 if (!NeedsWinCFI) { 1305 LLVM_DEBUG(DefCFAOffsetCandidates.dump()); 1306 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 1307 } 1308 1309 if (STI.isTargetELF() && hasFP(MF)) 1310 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 1311 AFI->getFramePtrSpillOffset()); 1312 1313 AFI->setFPCXTSaveAreaSize(FPCXTSaveSize); 1314 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 1315 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 1316 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 1317 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 1318 1319 // If we need dynamic stack realignment, do it here. Be paranoid and make 1320 // sure if we also have VLAs, we have a base pointer for frame access. 1321 // If aligned NEON registers were spilled, the stack has already been 1322 // realigned. 1323 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) { 1324 Align MaxAlign = MFI.getMaxAlign(); 1325 assert(!AFI->isThumb1OnlyFunction()); 1326 if (!AFI->isThumbFunction()) { 1327 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 1328 false); 1329 } else { 1330 // We cannot use sp as source/dest register here, thus we're using r4 to 1331 // perform the calculations. We're emitting the following sequence: 1332 // mov r4, sp 1333 // -- use emitAligningInstructions to produce best sequence to zero 1334 // -- out lower bits in r4 1335 // mov sp, r4 1336 // FIXME: It will be better just to find spare register here. 1337 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 1338 .addReg(ARM::SP, RegState::Kill) 1339 .add(predOps(ARMCC::AL)); 1340 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 1341 false); 1342 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1343 .addReg(ARM::R4, RegState::Kill) 1344 .add(predOps(ARMCC::AL)); 1345 } 1346 1347 AFI->setShouldRestoreSPFromFP(true); 1348 } 1349 1350 // If we need a base pointer, set it up here. It's whatever the value 1351 // of the stack pointer is at this point. Any variable size objects 1352 // will be allocated after this, so we can still use the base pointer 1353 // to reference locals. 1354 // FIXME: Clarify FrameSetup flags here. 1355 if (RegInfo->hasBasePointer(MF)) { 1356 if (isARM) 1357 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 1358 .addReg(ARM::SP) 1359 .add(predOps(ARMCC::AL)) 1360 .add(condCodeOp()); 1361 else 1362 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 1363 .addReg(ARM::SP) 1364 .add(predOps(ARMCC::AL)); 1365 } 1366 1367 // If the frame has variable sized objects then the epilogue must restore 1368 // the sp from fp. We can assume there's an FP here since hasFP already 1369 // checks for hasVarSizedObjects. 1370 if (MFI.hasVarSizedObjects()) 1371 AFI->setShouldRestoreSPFromFP(true); 1372 } 1373 1374 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 1375 MachineBasicBlock &MBB) const { 1376 MachineFrameInfo &MFI = MF.getFrameInfo(); 1377 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1378 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 1379 const ARMBaseInstrInfo &TII = 1380 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1381 assert(!AFI->isThumb1OnlyFunction() && 1382 "This emitEpilogue does not support Thumb1!"); 1383 bool isARM = !AFI->isThumbFunction(); 1384 ARMSubtarget::PushPopSplitVariation PushPopSplit = 1385 STI.getPushPopSplitVariation(MF); 1386 1387 LLVM_DEBUG(dbgs() << "Emitting epilogue for " << MF.getName() << "\n"); 1388 1389 // Amount of stack space we reserved next to incoming args for either 1390 // varargs registers or stack arguments in tail calls made by this function. 1391 unsigned ReservedArgStack = AFI->getArgRegsSaveSize(); 1392 1393 // How much of the stack used by incoming arguments this function is expected 1394 // to restore in this particular epilogue. 1395 int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB); 1396 int NumBytes = (int)MFI.getStackSize(); 1397 Register FramePtr = RegInfo->getFrameRegister(MF); 1398 1399 // All calls are tail calls in GHC calling conv, and functions have no 1400 // prologue/epilogue. 1401 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 1402 return; 1403 1404 // First put ourselves on the first (from top) terminator instructions. 1405 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1406 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1407 1408 MachineBasicBlock::iterator RangeStart; 1409 if (!AFI->hasStackFrame()) { 1410 if (MF.hasWinCFI()) { 1411 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart)) 1412 .setMIFlag(MachineInstr::FrameDestroy); 1413 RangeStart = initMBBRange(MBB, MBBI); 1414 } 1415 1416 if (NumBytes + IncomingArgStackToRestore != 0) 1417 emitSPUpdate(isARM, MBB, MBBI, dl, TII, 1418 NumBytes + IncomingArgStackToRestore, 1419 MachineInstr::FrameDestroy); 1420 } else { 1421 // Unwind MBBI to point to first LDR / VLDRD. 1422 if (MBBI != MBB.begin()) { 1423 do { 1424 --MBBI; 1425 } while (MBBI != MBB.begin() && 1426 MBBI->getFlag(MachineInstr::FrameDestroy)); 1427 if (!MBBI->getFlag(MachineInstr::FrameDestroy)) 1428 ++MBBI; 1429 } 1430 1431 if (MF.hasWinCFI()) { 1432 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart)) 1433 .setMIFlag(MachineInstr::FrameDestroy); 1434 RangeStart = initMBBRange(MBB, MBBI); 1435 } 1436 1437 // Move SP to start of FP callee save spill area. 1438 NumBytes -= (ReservedArgStack + 1439 AFI->getFPCXTSaveAreaSize() + 1440 AFI->getGPRCalleeSavedArea1Size() + 1441 AFI->getGPRCalleeSavedArea2Size() + 1442 AFI->getDPRCalleeSavedGapSize() + 1443 AFI->getDPRCalleeSavedAreaSize()); 1444 1445 // Reset SP based on frame pointer only if the stack frame extends beyond 1446 // frame pointer stack slot or target is ELF and the function has FP. 1447 if (AFI->shouldRestoreSPFromFP()) { 1448 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 1449 if (NumBytes) { 1450 if (isARM) 1451 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 1452 ARMCC::AL, 0, TII, 1453 MachineInstr::FrameDestroy); 1454 else { 1455 // It's not possible to restore SP from FP in a single instruction. 1456 // For iOS, this looks like: 1457 // mov sp, r7 1458 // sub sp, #24 1459 // This is bad, if an interrupt is taken after the mov, sp is in an 1460 // inconsistent state. 1461 // Use the first callee-saved register as a scratch register. 1462 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 1463 "No scratch register to restore SP from FP!"); 1464 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 1465 ARMCC::AL, 0, TII, MachineInstr::FrameDestroy); 1466 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1467 .addReg(ARM::R4) 1468 .add(predOps(ARMCC::AL)) 1469 .setMIFlag(MachineInstr::FrameDestroy); 1470 } 1471 } else { 1472 // Thumb2 or ARM. 1473 if (isARM) 1474 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 1475 .addReg(FramePtr) 1476 .add(predOps(ARMCC::AL)) 1477 .add(condCodeOp()) 1478 .setMIFlag(MachineInstr::FrameDestroy); 1479 else 1480 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1481 .addReg(FramePtr) 1482 .add(predOps(ARMCC::AL)) 1483 .setMIFlag(MachineInstr::FrameDestroy); 1484 } 1485 } else if (NumBytes && 1486 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 1487 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes, 1488 MachineInstr::FrameDestroy); 1489 1490 // Increment past our save areas. 1491 if (AFI->getGPRCalleeSavedArea2Size() && 1492 PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) 1493 MBBI++; 1494 1495 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { 1496 MBBI++; 1497 // Since vpop register list cannot have gaps, there may be multiple vpop 1498 // instructions in the epilogue. 1499 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 1500 MBBI++; 1501 } 1502 if (AFI->getDPRCalleeSavedGapSize()) { 1503 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 1504 "unexpected DPR alignment gap"); 1505 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(), 1506 MachineInstr::FrameDestroy); 1507 } 1508 1509 if (AFI->getGPRCalleeSavedArea2Size() && 1510 PushPopSplit != ARMSubtarget::SplitR11WindowsSEH) 1511 MBBI++; 1512 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 1513 1514 if (ReservedArgStack || IncomingArgStackToRestore) { 1515 assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 && 1516 "attempting to restore negative stack amount"); 1517 emitSPUpdate(isARM, MBB, MBBI, dl, TII, 1518 ReservedArgStack + IncomingArgStackToRestore, 1519 MachineInstr::FrameDestroy); 1520 } 1521 1522 // Validate PAC, It should have been already popped into R12. For CMSE entry 1523 // function, the validation instruction is emitted during expansion of the 1524 // tBXNS_RET, since the validation must use the value of SP at function 1525 // entry, before saving, resp. after restoring, FPCXTNS. 1526 if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction()) 1527 BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT)); 1528 } 1529 1530 if (MF.hasWinCFI()) { 1531 insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy); 1532 BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd)) 1533 .setMIFlag(MachineInstr::FrameDestroy); 1534 } 1535 } 1536 1537 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 1538 /// debug info. It's the same as what we use for resolving the code-gen 1539 /// references for now. FIXME: This can go wrong when references are 1540 /// SP-relative and simple call frames aren't used. 1541 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, 1542 int FI, 1543 Register &FrameReg) const { 1544 return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0)); 1545 } 1546 1547 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 1548 int FI, Register &FrameReg, 1549 int SPAdj) const { 1550 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1551 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1552 MF.getSubtarget().getRegisterInfo()); 1553 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1554 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 1555 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 1556 bool isFixed = MFI.isFixedObjectIndex(FI); 1557 1558 FrameReg = ARM::SP; 1559 Offset += SPAdj; 1560 1561 // SP can move around if there are allocas. We may also lose track of SP 1562 // when emergency spilling inside a non-reserved call frame setup. 1563 bool hasMovingSP = !hasReservedCallFrame(MF); 1564 1565 // When dynamically realigning the stack, use the frame pointer for 1566 // parameters, and the stack/base pointer for locals. 1567 if (RegInfo->hasStackRealignment(MF)) { 1568 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 1569 if (isFixed) { 1570 FrameReg = RegInfo->getFrameRegister(MF); 1571 Offset = FPOffset; 1572 } else if (hasMovingSP) { 1573 assert(RegInfo->hasBasePointer(MF) && 1574 "VLAs and dynamic stack alignment, but missing base pointer!"); 1575 FrameReg = RegInfo->getBaseRegister(); 1576 Offset -= SPAdj; 1577 } 1578 return Offset; 1579 } 1580 1581 // If there is a frame pointer, use it when we can. 1582 if (hasFP(MF) && AFI->hasStackFrame()) { 1583 // Use frame pointer to reference fixed objects. Use it for locals if 1584 // there are VLAs (and thus the SP isn't reliable as a base). 1585 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 1586 FrameReg = RegInfo->getFrameRegister(MF); 1587 return FPOffset; 1588 } else if (hasMovingSP) { 1589 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 1590 if (AFI->isThumb2Function()) { 1591 // Try to use the frame pointer if we can, else use the base pointer 1592 // since it's available. This is handy for the emergency spill slot, in 1593 // particular. 1594 if (FPOffset >= -255 && FPOffset < 0) { 1595 FrameReg = RegInfo->getFrameRegister(MF); 1596 return FPOffset; 1597 } 1598 } 1599 } else if (AFI->isThumbFunction()) { 1600 // Prefer SP to base pointer, if the offset is suitably aligned and in 1601 // range as the effective range of the immediate offset is bigger when 1602 // basing off SP. 1603 // Use add <rd>, sp, #<imm8> 1604 // ldr <rd>, [sp, #<imm8>] 1605 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 1606 return Offset; 1607 // In Thumb2 mode, the negative offset is very limited. Try to avoid 1608 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 1609 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) { 1610 FrameReg = RegInfo->getFrameRegister(MF); 1611 return FPOffset; 1612 } 1613 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 1614 // Otherwise, use SP or FP, whichever is closer to the stack slot. 1615 FrameReg = RegInfo->getFrameRegister(MF); 1616 return FPOffset; 1617 } 1618 } 1619 // Use the base pointer if we have one. 1620 // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper? 1621 // That can happen if we forced a base pointer for a large call frame. 1622 if (RegInfo->hasBasePointer(MF)) { 1623 FrameReg = RegInfo->getBaseRegister(); 1624 Offset -= SPAdj; 1625 } 1626 return Offset; 1627 } 1628 1629 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 1630 MachineBasicBlock::iterator MI, 1631 ArrayRef<CalleeSavedInfo> CSI, 1632 unsigned StmOpc, unsigned StrOpc, 1633 bool NoGap, 1634 function_ref<bool(unsigned)> Func) const { 1635 MachineFunction &MF = *MBB.getParent(); 1636 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1637 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1638 1639 DebugLoc DL; 1640 1641 using RegAndKill = std::pair<unsigned, bool>; 1642 1643 SmallVector<RegAndKill, 4> Regs; 1644 unsigned i = CSI.size(); 1645 while (i != 0) { 1646 unsigned LastReg = 0; 1647 for (; i != 0; --i) { 1648 Register Reg = CSI[i-1].getReg(); 1649 if (!Func(Reg)) 1650 continue; 1651 1652 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1653 bool isLiveIn = MRI.isLiveIn(Reg); 1654 if (!isLiveIn && !MRI.isReserved(Reg)) 1655 MBB.addLiveIn(Reg); 1656 // If NoGap is true, push consecutive registers and then leave the rest 1657 // for other instructions. e.g. 1658 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 1659 if (NoGap && LastReg && LastReg != Reg-1) 1660 break; 1661 LastReg = Reg; 1662 // Do not set a kill flag on values that are also marked as live-in. This 1663 // happens with the @llvm-returnaddress intrinsic and with arguments 1664 // passed in callee saved registers. 1665 // Omitting the kill flags is conservatively correct even if the live-in 1666 // is not used after all. 1667 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 1668 } 1669 1670 if (Regs.empty()) 1671 continue; 1672 1673 llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) { 1674 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 1675 }); 1676 1677 if (Regs.size() > 1 || StrOpc== 0) { 1678 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 1679 .addReg(ARM::SP) 1680 .setMIFlags(MachineInstr::FrameSetup) 1681 .add(predOps(ARMCC::AL)); 1682 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1683 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 1684 } else if (Regs.size() == 1) { 1685 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 1686 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 1687 .addReg(ARM::SP) 1688 .setMIFlags(MachineInstr::FrameSetup) 1689 .addImm(-4) 1690 .add(predOps(ARMCC::AL)); 1691 } 1692 Regs.clear(); 1693 1694 // Put any subsequent vpush instructions before this one: they will refer to 1695 // higher register numbers so need to be pushed first in order to preserve 1696 // monotonicity. 1697 if (MI != MBB.begin()) 1698 --MI; 1699 } 1700 } 1701 1702 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1703 MachineBasicBlock::iterator MI, 1704 MutableArrayRef<CalleeSavedInfo> CSI, 1705 unsigned LdmOpc, unsigned LdrOpc, 1706 bool isVarArg, bool NoGap, 1707 function_ref<bool(unsigned)> Func) const { 1708 MachineFunction &MF = *MBB.getParent(); 1709 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1710 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1711 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1712 bool hasPAC = AFI->shouldSignReturnAddress(); 1713 DebugLoc DL; 1714 bool isTailCall = false; 1715 bool isInterrupt = false; 1716 bool isTrap = false; 1717 bool isCmseEntry = false; 1718 ARMSubtarget::PushPopSplitVariation PushPopSplit = 1719 STI.getPushPopSplitVariation(MF); 1720 if (MBB.end() != MI) { 1721 DL = MI->getDebugLoc(); 1722 unsigned RetOpcode = MI->getOpcode(); 1723 isTailCall = 1724 (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri || 1725 RetOpcode == ARM::TCRETURNrinotr12); 1726 isInterrupt = 1727 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1728 isTrap = 1729 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1730 RetOpcode == ARM::tTRAP; 1731 isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET); 1732 } 1733 1734 SmallVector<unsigned, 4> Regs; 1735 unsigned i = CSI.size(); 1736 while (i != 0) { 1737 unsigned LastReg = 0; 1738 bool DeleteRet = false; 1739 for (; i != 0; --i) { 1740 CalleeSavedInfo &Info = CSI[i-1]; 1741 Register Reg = Info.getReg(); 1742 if (!Func(Reg)) 1743 continue; 1744 1745 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1746 !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 && 1747 STI.hasV5TOps() && MBB.succ_empty() && !hasPAC && 1748 (PushPopSplit != ARMSubtarget::SplitR11WindowsSEH && 1749 PushPopSplit != ARMSubtarget::SplitR11AAPCSSignRA)) { 1750 Reg = ARM::PC; 1751 // Fold the return instruction into the LDM. 1752 DeleteRet = true; 1753 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1754 } 1755 1756 // If NoGap is true, pop consecutive registers and then leave the rest 1757 // for other instructions. e.g. 1758 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1759 if (NoGap && LastReg && LastReg != Reg-1) 1760 break; 1761 1762 LastReg = Reg; 1763 Regs.push_back(Reg); 1764 } 1765 1766 if (Regs.empty()) 1767 continue; 1768 1769 llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) { 1770 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1771 }); 1772 1773 if (Regs.size() > 1 || LdrOpc == 0) { 1774 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1775 .addReg(ARM::SP) 1776 .add(predOps(ARMCC::AL)) 1777 .setMIFlags(MachineInstr::FrameDestroy); 1778 for (unsigned Reg : Regs) 1779 MIB.addReg(Reg, getDefRegState(true)); 1780 if (DeleteRet) { 1781 if (MI != MBB.end()) { 1782 MIB.copyImplicitOps(*MI); 1783 MI->eraseFromParent(); 1784 } 1785 } 1786 MI = MIB; 1787 } else if (Regs.size() == 1) { 1788 // If we adjusted the reg to PC from LR above, switch it back here. We 1789 // only do that for LDM. 1790 if (Regs[0] == ARM::PC) 1791 Regs[0] = ARM::LR; 1792 MachineInstrBuilder MIB = 1793 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1794 .addReg(ARM::SP, RegState::Define) 1795 .addReg(ARM::SP) 1796 .setMIFlags(MachineInstr::FrameDestroy); 1797 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1798 // that refactoring is complete (eventually). 1799 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1800 MIB.addReg(0); 1801 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1802 } else 1803 MIB.addImm(4); 1804 MIB.add(predOps(ARMCC::AL)); 1805 } 1806 Regs.clear(); 1807 1808 // Put any subsequent vpop instructions after this one: they will refer to 1809 // higher register numbers so need to be popped afterwards. 1810 if (MI != MBB.end()) 1811 ++MI; 1812 } 1813 } 1814 1815 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1816 /// starting from d8. Also insert stack realignment code and leave the stack 1817 /// pointer pointing to the d8 spill slot. 1818 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1819 MachineBasicBlock::iterator MI, 1820 unsigned NumAlignedDPRCS2Regs, 1821 ArrayRef<CalleeSavedInfo> CSI, 1822 const TargetRegisterInfo *TRI) { 1823 MachineFunction &MF = *MBB.getParent(); 1824 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1825 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1826 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1827 MachineFrameInfo &MFI = MF.getFrameInfo(); 1828 1829 // Mark the D-register spill slots as properly aligned. Since MFI computes 1830 // stack slot layout backwards, this can actually mean that the d-reg stack 1831 // slot offsets can be wrong. The offset for d8 will always be correct. 1832 for (const CalleeSavedInfo &I : CSI) { 1833 unsigned DNum = I.getReg() - ARM::D8; 1834 if (DNum > NumAlignedDPRCS2Regs - 1) 1835 continue; 1836 int FI = I.getFrameIdx(); 1837 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1838 // registers will be 8-byte aligned. 1839 MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16)); 1840 1841 // The stack slot for D8 needs to be maximally aligned because this is 1842 // actually the point where we align the stack pointer. MachineFrameInfo 1843 // computes all offsets relative to the incoming stack pointer which is a 1844 // bit weird when realigning the stack. Any extra padding for this 1845 // over-alignment is not realized because the code inserted below adjusts 1846 // the stack pointer by numregs * 8 before aligning the stack pointer. 1847 if (DNum == 0) 1848 MFI.setObjectAlignment(FI, MFI.getMaxAlign()); 1849 } 1850 1851 // Move the stack pointer to the d8 spill slot, and align it at the same 1852 // time. Leave the stack slot address in the scratch register r4. 1853 // 1854 // sub r4, sp, #numregs * 8 1855 // bic r4, r4, #align - 1 1856 // mov sp, r4 1857 // 1858 bool isThumb = AFI->isThumbFunction(); 1859 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1860 AFI->setShouldRestoreSPFromFP(true); 1861 1862 // sub r4, sp, #numregs * 8 1863 // The immediate is <= 64, so it doesn't need any special encoding. 1864 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1865 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1866 .addReg(ARM::SP) 1867 .addImm(8 * NumAlignedDPRCS2Regs) 1868 .add(predOps(ARMCC::AL)) 1869 .add(condCodeOp()); 1870 1871 Align MaxAlign = MF.getFrameInfo().getMaxAlign(); 1872 // We must set parameter MustBeSingleInstruction to true, since 1873 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1874 // stack alignment. Luckily, this can always be done since all ARM 1875 // architecture versions that support Neon also support the BFC 1876 // instruction. 1877 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1878 1879 // mov sp, r4 1880 // The stack pointer must be adjusted before spilling anything, otherwise 1881 // the stack slots could be clobbered by an interrupt handler. 1882 // Leave r4 live, it is used below. 1883 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1884 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1885 .addReg(ARM::R4) 1886 .add(predOps(ARMCC::AL)); 1887 if (!isThumb) 1888 MIB.add(condCodeOp()); 1889 1890 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1891 // r4 holds the stack slot address. 1892 unsigned NextReg = ARM::D8; 1893 1894 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1895 // The writeback is only needed when emitting two vst1.64 instructions. 1896 if (NumAlignedDPRCS2Regs >= 6) { 1897 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1898 &ARM::QQPRRegClass); 1899 MBB.addLiveIn(SupReg); 1900 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1901 .addReg(ARM::R4, RegState::Kill) 1902 .addImm(16) 1903 .addReg(NextReg) 1904 .addReg(SupReg, RegState::ImplicitKill) 1905 .add(predOps(ARMCC::AL)); 1906 NextReg += 4; 1907 NumAlignedDPRCS2Regs -= 4; 1908 } 1909 1910 // We won't modify r4 beyond this point. It currently points to the next 1911 // register to be spilled. 1912 unsigned R4BaseReg = NextReg; 1913 1914 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1915 if (NumAlignedDPRCS2Regs >= 4) { 1916 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1917 &ARM::QQPRRegClass); 1918 MBB.addLiveIn(SupReg); 1919 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1920 .addReg(ARM::R4) 1921 .addImm(16) 1922 .addReg(NextReg) 1923 .addReg(SupReg, RegState::ImplicitKill) 1924 .add(predOps(ARMCC::AL)); 1925 NextReg += 4; 1926 NumAlignedDPRCS2Regs -= 4; 1927 } 1928 1929 // 16-byte aligned vst1.64 with 2 d-regs. 1930 if (NumAlignedDPRCS2Regs >= 2) { 1931 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1932 &ARM::QPRRegClass); 1933 MBB.addLiveIn(SupReg); 1934 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1935 .addReg(ARM::R4) 1936 .addImm(16) 1937 .addReg(SupReg) 1938 .add(predOps(ARMCC::AL)); 1939 NextReg += 2; 1940 NumAlignedDPRCS2Regs -= 2; 1941 } 1942 1943 // Finally, use a vanilla vstr.64 for the odd last register. 1944 if (NumAlignedDPRCS2Regs) { 1945 MBB.addLiveIn(NextReg); 1946 // vstr.64 uses addrmode5 which has an offset scale of 4. 1947 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1948 .addReg(NextReg) 1949 .addReg(ARM::R4) 1950 .addImm((NextReg - R4BaseReg) * 2) 1951 .add(predOps(ARMCC::AL)); 1952 } 1953 1954 // The last spill instruction inserted should kill the scratch register r4. 1955 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1956 } 1957 1958 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1959 /// iterator to the following instruction. 1960 static MachineBasicBlock::iterator 1961 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1962 unsigned NumAlignedDPRCS2Regs) { 1963 // sub r4, sp, #numregs * 8 1964 // bic r4, r4, #align - 1 1965 // mov sp, r4 1966 ++MI; ++MI; ++MI; 1967 assert(MI->mayStore() && "Expecting spill instruction"); 1968 1969 // These switches all fall through. 1970 switch(NumAlignedDPRCS2Regs) { 1971 case 7: 1972 ++MI; 1973 assert(MI->mayStore() && "Expecting spill instruction"); 1974 [[fallthrough]]; 1975 default: 1976 ++MI; 1977 assert(MI->mayStore() && "Expecting spill instruction"); 1978 [[fallthrough]]; 1979 case 1: 1980 case 2: 1981 case 4: 1982 assert(MI->killsRegister(ARM::R4, /*TRI=*/nullptr) && "Missed kill flag"); 1983 ++MI; 1984 } 1985 return MI; 1986 } 1987 1988 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1989 /// starting from d8. These instructions are assumed to execute while the 1990 /// stack is still aligned, unlike the code inserted by emitPopInst. 1991 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1992 MachineBasicBlock::iterator MI, 1993 unsigned NumAlignedDPRCS2Regs, 1994 ArrayRef<CalleeSavedInfo> CSI, 1995 const TargetRegisterInfo *TRI) { 1996 MachineFunction &MF = *MBB.getParent(); 1997 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1998 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1999 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 2000 2001 // Find the frame index assigned to d8. 2002 int D8SpillFI = 0; 2003 for (const CalleeSavedInfo &I : CSI) 2004 if (I.getReg() == ARM::D8) { 2005 D8SpillFI = I.getFrameIdx(); 2006 break; 2007 } 2008 2009 // Materialize the address of the d8 spill slot into the scratch register r4. 2010 // This can be fairly complicated if the stack frame is large, so just use 2011 // the normal frame index elimination mechanism to do it. This code runs as 2012 // the initial part of the epilog where the stack and base pointers haven't 2013 // been changed yet. 2014 bool isThumb = AFI->isThumbFunction(); 2015 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 2016 2017 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 2018 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 2019 .addFrameIndex(D8SpillFI) 2020 .addImm(0) 2021 .add(predOps(ARMCC::AL)) 2022 .add(condCodeOp()); 2023 2024 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 2025 unsigned NextReg = ARM::D8; 2026 2027 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 2028 if (NumAlignedDPRCS2Regs >= 6) { 2029 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 2030 &ARM::QQPRRegClass); 2031 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 2032 .addReg(ARM::R4, RegState::Define) 2033 .addReg(ARM::R4, RegState::Kill) 2034 .addImm(16) 2035 .addReg(SupReg, RegState::ImplicitDefine) 2036 .add(predOps(ARMCC::AL)); 2037 NextReg += 4; 2038 NumAlignedDPRCS2Regs -= 4; 2039 } 2040 2041 // We won't modify r4 beyond this point. It currently points to the next 2042 // register to be spilled. 2043 unsigned R4BaseReg = NextReg; 2044 2045 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 2046 if (NumAlignedDPRCS2Regs >= 4) { 2047 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 2048 &ARM::QQPRRegClass); 2049 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 2050 .addReg(ARM::R4) 2051 .addImm(16) 2052 .addReg(SupReg, RegState::ImplicitDefine) 2053 .add(predOps(ARMCC::AL)); 2054 NextReg += 4; 2055 NumAlignedDPRCS2Regs -= 4; 2056 } 2057 2058 // 16-byte aligned vld1.64 with 2 d-regs. 2059 if (NumAlignedDPRCS2Regs >= 2) { 2060 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 2061 &ARM::QPRRegClass); 2062 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 2063 .addReg(ARM::R4) 2064 .addImm(16) 2065 .add(predOps(ARMCC::AL)); 2066 NextReg += 2; 2067 NumAlignedDPRCS2Regs -= 2; 2068 } 2069 2070 // Finally, use a vanilla vldr.64 for the remaining odd register. 2071 if (NumAlignedDPRCS2Regs) 2072 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 2073 .addReg(ARM::R4) 2074 .addImm(2 * (NextReg - R4BaseReg)) 2075 .add(predOps(ARMCC::AL)); 2076 2077 // Last store kills r4. 2078 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 2079 } 2080 2081 bool ARMFrameLowering::spillCalleeSavedRegisters( 2082 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2083 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2084 if (CSI.empty()) 2085 return false; 2086 2087 MachineFunction &MF = *MBB.getParent(); 2088 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2089 ARMSubtarget::PushPopSplitVariation PushPopSplit = 2090 STI.getPushPopSplitVariation(MF); 2091 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 2092 2093 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 2094 unsigned PushOneOpc = AFI->isThumbFunction() ? 2095 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 2096 unsigned FltOpc = ARM::VSTMDDB_UPD; 2097 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 2098 // Compute PAC in R12. 2099 if (AFI->shouldSignReturnAddress()) { 2100 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC)) 2101 .setMIFlags(MachineInstr::FrameSetup); 2102 } 2103 // Save the non-secure floating point context. 2104 if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) { 2105 return C.getReg() == ARM::FPCXTNS; 2106 })) { 2107 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre), 2108 ARM::SP) 2109 .addReg(ARM::SP) 2110 .addImm(-4) 2111 .add(predOps(ARMCC::AL)); 2112 } 2113 2114 auto CheckRegArea = [PushPopSplit, NumAlignedDPRCS2Regs, 2115 RegInfo](unsigned Reg, SpillArea TestArea) { 2116 return getSpillArea(Reg, PushPopSplit, NumAlignedDPRCS2Regs, RegInfo) == 2117 TestArea; 2118 }; 2119 auto IsGPRCS1 = [&CheckRegArea](unsigned Reg) { 2120 return CheckRegArea(Reg, SpillArea::GPRCS1); 2121 }; 2122 auto IsGPRCS2 = [&CheckRegArea](unsigned Reg) { 2123 return CheckRegArea(Reg, SpillArea::GPRCS2); 2124 }; 2125 auto IsDPRCS1 = [&CheckRegArea](unsigned Reg) { 2126 return CheckRegArea(Reg, SpillArea::DPRCS1); 2127 }; 2128 2129 // Windows SEH requires the floating-point registers to be pushed between the 2130 // two blocks of GPRs in some situations. In all other cases, they are pushed 2131 // below the GPRs. 2132 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 2133 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS1); 2134 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, IsDPRCS1); 2135 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS2); 2136 } else { 2137 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS1); 2138 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS2); 2139 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, IsDPRCS1); 2140 } 2141 2142 // The code above does not insert spill code for the aligned DPRCS2 registers. 2143 // The stack realignment code will be inserted between the push instructions 2144 // and these spills. 2145 if (NumAlignedDPRCS2Regs) 2146 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 2147 2148 return true; 2149 } 2150 2151 bool ARMFrameLowering::restoreCalleeSavedRegisters( 2152 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2153 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2154 if (CSI.empty()) 2155 return false; 2156 2157 MachineFunction &MF = *MBB.getParent(); 2158 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2159 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 2160 2161 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 2162 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 2163 ARMSubtarget::PushPopSplitVariation PushPopSplit = 2164 STI.getPushPopSplitVariation(MF); 2165 2166 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 2167 // registers. Do that here instead. 2168 if (NumAlignedDPRCS2Regs) 2169 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 2170 2171 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 2172 unsigned LdrOpc = 2173 AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; 2174 unsigned FltOpc = ARM::VLDMDIA_UPD; 2175 2176 auto CheckRegArea = [PushPopSplit, NumAlignedDPRCS2Regs, 2177 RegInfo](unsigned Reg, SpillArea TestArea) { 2178 return getSpillArea(Reg, PushPopSplit, NumAlignedDPRCS2Regs, RegInfo) == 2179 TestArea; 2180 }; 2181 auto IsGPRCS1 = [&CheckRegArea](unsigned Reg) { 2182 return CheckRegArea(Reg, SpillArea::GPRCS1); 2183 }; 2184 auto IsGPRCS2 = [&CheckRegArea](unsigned Reg) { 2185 return CheckRegArea(Reg, SpillArea::GPRCS2); 2186 }; 2187 auto IsDPRCS1 = [&CheckRegArea](unsigned Reg) { 2188 return CheckRegArea(Reg, SpillArea::DPRCS1); 2189 }; 2190 2191 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 2192 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS2); 2193 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, IsDPRCS1); 2194 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS1); 2195 } else { 2196 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, IsDPRCS1); 2197 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS2); 2198 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS1); 2199 } 2200 2201 return true; 2202 } 2203 2204 // FIXME: Make generic? 2205 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF, 2206 const ARMBaseInstrInfo &TII) { 2207 unsigned FnSize = 0; 2208 for (auto &MBB : MF) { 2209 for (auto &MI : MBB) 2210 FnSize += TII.getInstSizeInBytes(MI); 2211 } 2212 if (MF.getJumpTableInfo()) 2213 for (auto &Table: MF.getJumpTableInfo()->getJumpTables()) 2214 FnSize += Table.MBBs.size() * 4; 2215 FnSize += MF.getConstantPool()->getConstants().size() * 4; 2216 return FnSize; 2217 } 2218 2219 /// estimateRSStackSizeLimit - Look at each instruction that references stack 2220 /// frames and return the stack size limit beyond which some of these 2221 /// instructions will require a scratch register during their expansion later. 2222 // FIXME: Move to TII? 2223 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 2224 const TargetFrameLowering *TFI, 2225 bool &HasNonSPFrameIndex) { 2226 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2227 const ARMBaseInstrInfo &TII = 2228 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2229 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2230 unsigned Limit = (1 << 12) - 1; 2231 for (auto &MBB : MF) { 2232 for (auto &MI : MBB) { 2233 if (MI.isDebugInstr()) 2234 continue; 2235 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 2236 if (!MI.getOperand(i).isFI()) 2237 continue; 2238 2239 // When using ADDri to get the address of a stack object, 255 is the 2240 // largest offset guaranteed to fit in the immediate offset. 2241 if (MI.getOpcode() == ARM::ADDri) { 2242 Limit = std::min(Limit, (1U << 8) - 1); 2243 break; 2244 } 2245 // t2ADDri will not require an extra register, it can reuse the 2246 // destination. 2247 if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12) 2248 break; 2249 2250 const MCInstrDesc &MCID = MI.getDesc(); 2251 const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF); 2252 if (RegClass && !RegClass->contains(ARM::SP)) 2253 HasNonSPFrameIndex = true; 2254 2255 // Otherwise check the addressing mode. 2256 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 2257 case ARMII::AddrMode_i12: 2258 case ARMII::AddrMode2: 2259 // Default 12 bit limit. 2260 break; 2261 case ARMII::AddrMode3: 2262 case ARMII::AddrModeT2_i8neg: 2263 Limit = std::min(Limit, (1U << 8) - 1); 2264 break; 2265 case ARMII::AddrMode5FP16: 2266 Limit = std::min(Limit, ((1U << 8) - 1) * 2); 2267 break; 2268 case ARMII::AddrMode5: 2269 case ARMII::AddrModeT2_i8s4: 2270 case ARMII::AddrModeT2_ldrex: 2271 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 2272 break; 2273 case ARMII::AddrModeT2_i12: 2274 // i12 supports only positive offset so these will be converted to 2275 // i8 opcodes. See llvm::rewriteT2FrameIndex. 2276 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 2277 Limit = std::min(Limit, (1U << 8) - 1); 2278 break; 2279 case ARMII::AddrMode4: 2280 case ARMII::AddrMode6: 2281 // Addressing modes 4 & 6 (load/store) instructions can't encode an 2282 // immediate offset for stack references. 2283 return 0; 2284 case ARMII::AddrModeT2_i7: 2285 Limit = std::min(Limit, ((1U << 7) - 1) * 1); 2286 break; 2287 case ARMII::AddrModeT2_i7s2: 2288 Limit = std::min(Limit, ((1U << 7) - 1) * 2); 2289 break; 2290 case ARMII::AddrModeT2_i7s4: 2291 Limit = std::min(Limit, ((1U << 7) - 1) * 4); 2292 break; 2293 default: 2294 llvm_unreachable("Unhandled addressing mode in stack size limit calculation"); 2295 } 2296 break; // At most one FI per instruction 2297 } 2298 } 2299 } 2300 2301 return Limit; 2302 } 2303 2304 // In functions that realign the stack, it can be an advantage to spill the 2305 // callee-saved vector registers after realigning the stack. The vst1 and vld1 2306 // instructions take alignment hints that can improve performance. 2307 static void 2308 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 2309 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 2310 if (!SpillAlignedNEONRegs) 2311 return; 2312 2313 // Naked functions don't spill callee-saved registers. 2314 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 2315 return; 2316 2317 // We are planning to use NEON instructions vst1 / vld1. 2318 if (!MF.getSubtarget<ARMSubtarget>().hasNEON()) 2319 return; 2320 2321 // Don't bother if the default stack alignment is sufficiently high. 2322 if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8)) 2323 return; 2324 2325 // Aligned spills require stack realignment. 2326 if (!static_cast<const ARMBaseRegisterInfo *>( 2327 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 2328 return; 2329 2330 // We always spill contiguous d-registers starting from d8. Count how many 2331 // needs spilling. The register allocator will almost always use the 2332 // callee-saved registers in order, but it can happen that there are holes in 2333 // the range. Registers above the hole will be spilled to the standard DPRCS 2334 // area. 2335 unsigned NumSpills = 0; 2336 for (; NumSpills < 8; ++NumSpills) 2337 if (!SavedRegs.test(ARM::D8 + NumSpills)) 2338 break; 2339 2340 // Don't do this for just one d-register. It's not worth it. 2341 if (NumSpills < 2) 2342 return; 2343 2344 // Spill the first NumSpills D-registers after realigning the stack. 2345 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 2346 2347 // A scratch register is required for the vst1 / vld1 instructions. 2348 SavedRegs.set(ARM::R4); 2349 } 2350 2351 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2352 // For CMSE entry functions, we want to save the FPCXT_NS immediately 2353 // upon function entry (resp. restore it immmediately before return) 2354 if (STI.hasV8_1MMainlineOps() && 2355 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) 2356 return false; 2357 2358 // We are disabling shrinkwrapping for now when PAC is enabled, as 2359 // shrinkwrapping can cause clobbering of r12 when the PAC code is 2360 // generated. A follow-up patch will fix this in a more performant manner. 2361 if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress( 2362 true /* SpillsLR */)) 2363 return false; 2364 2365 return true; 2366 } 2367 2368 bool ARMFrameLowering::requiresAAPCSFrameRecord( 2369 const MachineFunction &MF) const { 2370 const auto &Subtarget = MF.getSubtarget<ARMSubtarget>(); 2371 return Subtarget.createAAPCSFrameChain() && hasFP(MF); 2372 } 2373 2374 // Thumb1 may require a spill when storing to a frame index through FP (or any 2375 // access with execute-only), for cases where FP is a high register (R11). This 2376 // scans the function for cases where this may happen. 2377 static bool canSpillOnFrameIndexAccess(const MachineFunction &MF, 2378 const TargetFrameLowering &TFI) { 2379 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2380 if (!AFI->isThumb1OnlyFunction()) 2381 return false; 2382 2383 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 2384 for (const auto &MBB : MF) 2385 for (const auto &MI : MBB) 2386 if (MI.getOpcode() == ARM::tSTRspi || MI.getOpcode() == ARM::tSTRi || 2387 STI.genExecuteOnly()) 2388 for (const auto &Op : MI.operands()) 2389 if (Op.isFI()) { 2390 Register Reg; 2391 TFI.getFrameIndexReference(MF, Op.getIndex(), Reg); 2392 if (ARM::hGPRRegClass.contains(Reg) && Reg != ARM::SP) 2393 return true; 2394 } 2395 return false; 2396 } 2397 2398 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 2399 BitVector &SavedRegs, 2400 RegScavenger *RS) const { 2401 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2402 // This tells PEI to spill the FP as if it is any other callee-save register 2403 // to take advantage the eliminateFrameIndex machinery. This also ensures it 2404 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 2405 // to combine multiple loads / stores. 2406 bool CanEliminateFrame = !(requiresAAPCSFrameRecord(MF) && hasFP(MF)); 2407 bool CS1Spilled = false; 2408 bool LRSpilled = false; 2409 unsigned NumGPRSpills = 0; 2410 unsigned NumFPRSpills = 0; 2411 SmallVector<unsigned, 4> UnspilledCS1GPRs; 2412 SmallVector<unsigned, 4> UnspilledCS2GPRs; 2413 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 2414 MF.getSubtarget().getRegisterInfo()); 2415 const ARMBaseInstrInfo &TII = 2416 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2417 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2418 MachineFrameInfo &MFI = MF.getFrameInfo(); 2419 MachineRegisterInfo &MRI = MF.getRegInfo(); 2420 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2421 (void)TRI; // Silence unused warning in non-assert builds. 2422 Register FramePtr = RegInfo->getFrameRegister(MF); 2423 ARMSubtarget::PushPopSplitVariation PushPopSplit = 2424 STI.getPushPopSplitVariation(MF); 2425 2426 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 2427 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 2428 // since it's not always possible to restore sp from fp in a single 2429 // instruction. 2430 // FIXME: It will be better just to find spare register here. 2431 if (AFI->isThumb2Function() && 2432 (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))) 2433 SavedRegs.set(ARM::R4); 2434 2435 // If a stack probe will be emitted, spill R4 and LR, since they are 2436 // clobbered by the stack probe call. 2437 // This estimate should be a safe, conservative estimate. The actual 2438 // stack probe is enabled based on the size of the local objects; 2439 // this estimate also includes the varargs store size. 2440 if (STI.isTargetWindows() && 2441 WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) { 2442 SavedRegs.set(ARM::R4); 2443 SavedRegs.set(ARM::LR); 2444 } 2445 2446 if (AFI->isThumb1OnlyFunction()) { 2447 // Spill LR if Thumb1 function uses variable length argument lists. 2448 if (AFI->getArgRegsSaveSize() > 0) 2449 SavedRegs.set(ARM::LR); 2450 2451 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function 2452 // requires stack alignment. We don't know for sure what the stack size 2453 // will be, but for this, an estimate is good enough. If there anything 2454 // changes it, it'll be a spill, which implies we've used all the registers 2455 // and so R4 is already used, so not marking it here will be OK. 2456 // FIXME: It will be better just to find spare register here. 2457 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) || 2458 MFI.estimateStackSize(MF) > 508) 2459 SavedRegs.set(ARM::R4); 2460 } 2461 2462 // See if we can spill vector registers to aligned stack. 2463 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 2464 2465 // Spill the BasePtr if it's used. 2466 if (RegInfo->hasBasePointer(MF)) 2467 SavedRegs.set(RegInfo->getBaseRegister()); 2468 2469 // On v8.1-M.Main CMSE entry functions save/restore FPCXT. 2470 if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction()) 2471 CanEliminateFrame = false; 2472 2473 // When return address signing is enabled R12 is treated as callee-saved. 2474 if (AFI->shouldSignReturnAddress()) 2475 CanEliminateFrame = false; 2476 2477 // Don't spill FP if the frame can be eliminated. This is determined 2478 // by scanning the callee-save registers to see if any is modified. 2479 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 2480 for (unsigned i = 0; CSRegs[i]; ++i) { 2481 unsigned Reg = CSRegs[i]; 2482 bool Spilled = false; 2483 if (SavedRegs.test(Reg)) { 2484 Spilled = true; 2485 CanEliminateFrame = false; 2486 } 2487 2488 if (!ARM::GPRRegClass.contains(Reg)) { 2489 if (Spilled) { 2490 if (ARM::SPRRegClass.contains(Reg)) 2491 NumFPRSpills++; 2492 else if (ARM::DPRRegClass.contains(Reg)) 2493 NumFPRSpills += 2; 2494 else if (ARM::QPRRegClass.contains(Reg)) 2495 NumFPRSpills += 4; 2496 } 2497 continue; 2498 } 2499 2500 if (Spilled) { 2501 NumGPRSpills++; 2502 2503 if (PushPopSplit != ARMSubtarget::SplitR7) { 2504 if (Reg == ARM::LR) 2505 LRSpilled = true; 2506 CS1Spilled = true; 2507 continue; 2508 } 2509 2510 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 2511 switch (Reg) { 2512 case ARM::LR: 2513 LRSpilled = true; 2514 [[fallthrough]]; 2515 case ARM::R0: case ARM::R1: 2516 case ARM::R2: case ARM::R3: 2517 case ARM::R4: case ARM::R5: 2518 case ARM::R6: case ARM::R7: 2519 CS1Spilled = true; 2520 break; 2521 default: 2522 break; 2523 } 2524 } else { 2525 if (PushPopSplit != ARMSubtarget::SplitR7) { 2526 UnspilledCS1GPRs.push_back(Reg); 2527 continue; 2528 } 2529 2530 switch (Reg) { 2531 case ARM::R0: case ARM::R1: 2532 case ARM::R2: case ARM::R3: 2533 case ARM::R4: case ARM::R5: 2534 case ARM::R6: case ARM::R7: 2535 case ARM::LR: 2536 UnspilledCS1GPRs.push_back(Reg); 2537 break; 2538 default: 2539 UnspilledCS2GPRs.push_back(Reg); 2540 break; 2541 } 2542 } 2543 } 2544 2545 bool ForceLRSpill = false; 2546 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 2547 unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII); 2548 // Force LR to be spilled if the Thumb function size is > 2048. This enables 2549 // use of BL to implement far jump. 2550 if (FnSize >= (1 << 11)) { 2551 CanEliminateFrame = false; 2552 ForceLRSpill = true; 2553 } 2554 } 2555 2556 // If any of the stack slot references may be out of range of an immediate 2557 // offset, make sure a register (or a spill slot) is available for the 2558 // register scavenger. Note that if we're indexing off the frame pointer, the 2559 // effective stack size is 4 bytes larger since the FP points to the stack 2560 // slot of the previous FP. Also, if we have variable sized objects in the 2561 // function, stack slot references will often be negative, and some of 2562 // our instructions are positive-offset only, so conservatively consider 2563 // that case to want a spill slot (or register) as well. Similarly, if 2564 // the function adjusts the stack pointer during execution and the 2565 // adjustments aren't already part of our stack size estimate, our offset 2566 // calculations may be off, so be conservative. 2567 // FIXME: We could add logic to be more precise about negative offsets 2568 // and which instructions will need a scratch register for them. Is it 2569 // worth the effort and added fragility? 2570 unsigned EstimatedStackSize = 2571 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 2572 2573 // Determine biggest (positive) SP offset in MachineFrameInfo. 2574 int MaxFixedOffset = 0; 2575 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 2576 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); 2577 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); 2578 } 2579 2580 bool HasFP = hasFP(MF); 2581 if (HasFP) { 2582 if (AFI->hasStackFrame()) 2583 EstimatedStackSize += 4; 2584 } else { 2585 // If FP is not used, SP will be used to access arguments, so count the 2586 // size of arguments into the estimation. 2587 EstimatedStackSize += MaxFixedOffset; 2588 } 2589 EstimatedStackSize += 16; // For possible paddings. 2590 2591 unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit; 2592 bool HasNonSPFrameIndex = false; 2593 if (AFI->isThumb1OnlyFunction()) { 2594 // For Thumb1, don't bother to iterate over the function. The only 2595 // instruction that requires an emergency spill slot is a store to a 2596 // frame index. 2597 // 2598 // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned 2599 // immediate. tSTRi, which is used for bp- and fp-relative accesses, has 2600 // a 5-bit unsigned immediate. 2601 // 2602 // We could try to check if the function actually contains a tSTRspi 2603 // that might need the spill slot, but it's not really important. 2604 // Functions with VLAs or extremely large call frames are rare, and 2605 // if a function is allocating more than 1KB of stack, an extra 4-byte 2606 // slot probably isn't relevant. 2607 // 2608 // A special case is the scenario where r11 is used as FP, where accesses 2609 // to a frame index will require its value to be moved into a low reg. 2610 // This is handled later on, once we are able to determine if we have any 2611 // fp-relative accesses. 2612 if (RegInfo->hasBasePointer(MF)) 2613 EstimatedRSStackSizeLimit = (1U << 5) * 4; 2614 else 2615 EstimatedRSStackSizeLimit = (1U << 8) * 4; 2616 EstimatedRSFixedSizeLimit = (1U << 5) * 4; 2617 } else { 2618 EstimatedRSStackSizeLimit = 2619 estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex); 2620 EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit; 2621 } 2622 // Final estimate of whether sp or bp-relative accesses might require 2623 // scavenging. 2624 bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit; 2625 2626 // If the stack pointer moves and we don't have a base pointer, the 2627 // estimate logic doesn't work. The actual offsets might be larger when 2628 // we're constructing a call frame, or we might need to use negative 2629 // offsets from fp. 2630 bool HasMovingSP = MFI.hasVarSizedObjects() || 2631 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)); 2632 bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP; 2633 2634 // If we have a frame pointer, we assume arguments will be accessed 2635 // relative to the frame pointer. Check whether fp-relative accesses to 2636 // arguments require scavenging. 2637 // 2638 // We could do slightly better on Thumb1; in some cases, an sp-relative 2639 // offset would be legal even though an fp-relative offset is not. 2640 int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF); 2641 bool HasLargeArgumentList = 2642 HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit; 2643 2644 bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP || 2645 HasLargeArgumentList || HasNonSPFrameIndex; 2646 LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit 2647 << "; EstimatedStack: " << EstimatedStackSize 2648 << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset 2649 << "; BigFrameOffsets: " << BigFrameOffsets << "\n"); 2650 if (BigFrameOffsets || 2651 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 2652 AFI->setHasStackFrame(true); 2653 2654 if (HasFP) { 2655 SavedRegs.set(FramePtr); 2656 // If the frame pointer is required by the ABI, also spill LR so that we 2657 // emit a complete frame record. 2658 if ((requiresAAPCSFrameRecord(MF) || 2659 MF.getTarget().Options.DisableFramePointerElim(MF)) && 2660 !LRSpilled) { 2661 SavedRegs.set(ARM::LR); 2662 LRSpilled = true; 2663 NumGPRSpills++; 2664 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 2665 if (LRPos != UnspilledCS1GPRs.end()) 2666 UnspilledCS1GPRs.erase(LRPos); 2667 } 2668 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 2669 if (FPPos != UnspilledCS1GPRs.end()) 2670 UnspilledCS1GPRs.erase(FPPos); 2671 NumGPRSpills++; 2672 if (FramePtr == ARM::R7) 2673 CS1Spilled = true; 2674 } 2675 2676 // This is the number of extra spills inserted for callee-save GPRs which 2677 // would not otherwise be used by the function. When greater than zero it 2678 // guaranteees that it is possible to scavenge a register to hold the 2679 // address of a stack slot. On Thumb1, the register must be a valid operand 2680 // to tSTRi, i.e. r4-r7. For other subtargets, this is any GPR, i.e. r4-r11 2681 // or lr. 2682 // 2683 // If we don't insert a spill, we instead allocate an emergency spill 2684 // slot, which can be used by scavenging to spill an arbitrary register. 2685 // 2686 // We currently don't try to figure out whether any specific instruction 2687 // requires scavening an additional register. 2688 unsigned NumExtraCSSpill = 0; 2689 2690 if (AFI->isThumb1OnlyFunction()) { 2691 // For Thumb1-only targets, we need some low registers when we save and 2692 // restore the high registers (which aren't allocatable, but could be 2693 // used by inline assembly) because the push/pop instructions can not 2694 // access high registers. If necessary, we might need to push more low 2695 // registers to ensure that there is at least one free that can be used 2696 // for the saving & restoring, and preferably we should ensure that as 2697 // many as are needed are available so that fewer push/pop instructions 2698 // are required. 2699 2700 // Low registers which are not currently pushed, but could be (r4-r7). 2701 SmallVector<unsigned, 4> AvailableRegs; 2702 2703 // Unused argument registers (r0-r3) can be clobbered in the prologue for 2704 // free. 2705 int EntryRegDeficit = 0; 2706 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 2707 if (!MF.getRegInfo().isLiveIn(Reg)) { 2708 --EntryRegDeficit; 2709 LLVM_DEBUG(dbgs() 2710 << printReg(Reg, TRI) 2711 << " is unused argument register, EntryRegDeficit = " 2712 << EntryRegDeficit << "\n"); 2713 } 2714 } 2715 2716 // Unused return registers can be clobbered in the epilogue for free. 2717 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 2718 LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount() 2719 << " return regs used, ExitRegDeficit = " 2720 << ExitRegDeficit << "\n"); 2721 2722 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 2723 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 2724 2725 // r4-r6 can be used in the prologue if they are pushed by the first push 2726 // instruction. 2727 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 2728 if (SavedRegs.test(Reg)) { 2729 --RegDeficit; 2730 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2731 << " is saved low register, RegDeficit = " 2732 << RegDeficit << "\n"); 2733 } else { 2734 AvailableRegs.push_back(Reg); 2735 LLVM_DEBUG( 2736 dbgs() 2737 << printReg(Reg, TRI) 2738 << " is non-saved low register, adding to AvailableRegs\n"); 2739 } 2740 } 2741 2742 // r7 can be used if it is not being used as the frame pointer. 2743 if (!HasFP || FramePtr != ARM::R7) { 2744 if (SavedRegs.test(ARM::R7)) { 2745 --RegDeficit; 2746 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = " 2747 << RegDeficit << "\n"); 2748 } else { 2749 AvailableRegs.push_back(ARM::R7); 2750 LLVM_DEBUG( 2751 dbgs() 2752 << "%r7 is non-saved low register, adding to AvailableRegs\n"); 2753 } 2754 } 2755 2756 // Each of r8-r11 needs to be copied to a low register, then pushed. 2757 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 2758 if (SavedRegs.test(Reg)) { 2759 ++RegDeficit; 2760 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2761 << " is saved high register, RegDeficit = " 2762 << RegDeficit << "\n"); 2763 } 2764 } 2765 2766 // LR can only be used by PUSH, not POP, and can't be used at all if the 2767 // llvm.returnaddress intrinsic is used. This is only worth doing if we 2768 // are more limited at function entry than exit. 2769 if ((EntryRegDeficit > ExitRegDeficit) && 2770 !(MF.getRegInfo().isLiveIn(ARM::LR) && 2771 MF.getFrameInfo().isReturnAddressTaken())) { 2772 if (SavedRegs.test(ARM::LR)) { 2773 --RegDeficit; 2774 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = " 2775 << RegDeficit << "\n"); 2776 } else { 2777 AvailableRegs.push_back(ARM::LR); 2778 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n"); 2779 } 2780 } 2781 2782 // If there are more high registers that need pushing than low registers 2783 // available, push some more low registers so that we can use fewer push 2784 // instructions. This might not reduce RegDeficit all the way to zero, 2785 // because we can only guarantee that r4-r6 are available, but r8-r11 may 2786 // need saving. 2787 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 2788 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 2789 unsigned Reg = AvailableRegs.pop_back_val(); 2790 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2791 << " to make up reg deficit\n"); 2792 SavedRegs.set(Reg); 2793 NumGPRSpills++; 2794 CS1Spilled = true; 2795 assert(!MRI.isReserved(Reg) && "Should not be reserved"); 2796 if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg)) 2797 NumExtraCSSpill++; 2798 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 2799 if (Reg == ARM::LR) 2800 LRSpilled = true; 2801 } 2802 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit 2803 << "\n"); 2804 } 2805 2806 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to 2807 // restore LR in that case. 2808 bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall(); 2809 2810 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 2811 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 2812 if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) { 2813 SavedRegs.set(ARM::LR); 2814 NumGPRSpills++; 2815 SmallVectorImpl<unsigned>::iterator LRPos; 2816 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 2817 if (LRPos != UnspilledCS1GPRs.end()) 2818 UnspilledCS1GPRs.erase(LRPos); 2819 2820 ForceLRSpill = false; 2821 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) && 2822 !AFI->isThumb1OnlyFunction()) 2823 NumExtraCSSpill++; 2824 } 2825 2826 // If stack and double are 8-byte aligned and we are spilling an odd number 2827 // of GPRs, spill one extra callee save GPR so we won't have to pad between 2828 // the integer and double callee save areas. 2829 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 2830 const Align TargetAlign = getStackAlign(); 2831 if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) { 2832 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 2833 for (unsigned Reg : UnspilledCS1GPRs) { 2834 // Don't spill high register if the function is thumb. In the case of 2835 // Windows on ARM, accept R11 (frame pointer) 2836 if (!AFI->isThumbFunction() || 2837 (STI.isTargetWindows() && Reg == ARM::R11) || 2838 isARMLowRegister(Reg) || 2839 (Reg == ARM::LR && !ExpensiveLRRestore)) { 2840 SavedRegs.set(Reg); 2841 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2842 << " to make up alignment\n"); 2843 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) && 2844 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction())) 2845 NumExtraCSSpill++; 2846 break; 2847 } 2848 } 2849 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 2850 unsigned Reg = UnspilledCS2GPRs.front(); 2851 SavedRegs.set(Reg); 2852 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2853 << " to make up alignment\n"); 2854 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 2855 NumExtraCSSpill++; 2856 } 2857 } 2858 2859 // Estimate if we might need to scavenge registers at some point in order 2860 // to materialize a stack offset. If so, either spill one additional 2861 // callee-saved register or reserve a special spill slot to facilitate 2862 // register scavenging. Thumb1 needs a spill slot for stack pointer 2863 // adjustments and for frame index accesses when FP is high register, 2864 // even when the frame itself is small. 2865 unsigned RegsNeeded = 0; 2866 if (BigFrameOffsets || canSpillOnFrameIndexAccess(MF, *this)) { 2867 RegsNeeded++; 2868 // With thumb1 execute-only we may need an additional register for saving 2869 // and restoring the CPSR. 2870 if (AFI->isThumb1OnlyFunction() && STI.genExecuteOnly() && !STI.useMovt()) 2871 RegsNeeded++; 2872 } 2873 2874 if (RegsNeeded > NumExtraCSSpill) { 2875 // If any non-reserved CS register isn't spilled, just spill one or two 2876 // extra. That should take care of it! 2877 unsigned NumExtras = TargetAlign.value() / 4; 2878 SmallVector<unsigned, 2> Extras; 2879 while (NumExtras && !UnspilledCS1GPRs.empty()) { 2880 unsigned Reg = UnspilledCS1GPRs.pop_back_val(); 2881 if (!MRI.isReserved(Reg) && 2882 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) { 2883 Extras.push_back(Reg); 2884 NumExtras--; 2885 } 2886 } 2887 // For non-Thumb1 functions, also check for hi-reg CS registers 2888 if (!AFI->isThumb1OnlyFunction()) { 2889 while (NumExtras && !UnspilledCS2GPRs.empty()) { 2890 unsigned Reg = UnspilledCS2GPRs.pop_back_val(); 2891 if (!MRI.isReserved(Reg)) { 2892 Extras.push_back(Reg); 2893 NumExtras--; 2894 } 2895 } 2896 } 2897 if (NumExtras == 0) { 2898 for (unsigned Reg : Extras) { 2899 SavedRegs.set(Reg); 2900 if (!MRI.isPhysRegUsed(Reg)) 2901 NumExtraCSSpill++; 2902 } 2903 } 2904 while ((RegsNeeded > NumExtraCSSpill) && RS) { 2905 // Reserve a slot closest to SP or frame pointer. 2906 LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n"); 2907 const TargetRegisterClass &RC = ARM::GPRRegClass; 2908 unsigned Size = TRI->getSpillSize(RC); 2909 Align Alignment = TRI->getSpillAlign(RC); 2910 RS->addScavengingFrameIndex( 2911 MFI.CreateStackObject(Size, Alignment, false)); 2912 --RegsNeeded; 2913 } 2914 } 2915 } 2916 2917 if (ForceLRSpill) 2918 SavedRegs.set(ARM::LR); 2919 AFI->setLRIsSpilled(SavedRegs.test(ARM::LR)); 2920 } 2921 2922 void ARMFrameLowering::updateLRRestored(MachineFunction &MF) { 2923 MachineFrameInfo &MFI = MF.getFrameInfo(); 2924 if (!MFI.isCalleeSavedInfoValid()) 2925 return; 2926 2927 // Check if all terminators do not implicitly use LR. Then we can 'restore' LR 2928 // into PC so it is not live out of the return block: Clear the Restored bit 2929 // in that case. 2930 for (CalleeSavedInfo &Info : MFI.getCalleeSavedInfo()) { 2931 if (Info.getReg() != ARM::LR) 2932 continue; 2933 if (all_of(MF, [](const MachineBasicBlock &MBB) { 2934 return all_of(MBB.terminators(), [](const MachineInstr &Term) { 2935 return !Term.isReturn() || Term.getOpcode() == ARM::LDMIA_RET || 2936 Term.getOpcode() == ARM::t2LDMIA_RET || 2937 Term.getOpcode() == ARM::tPOP_RET; 2938 }); 2939 })) { 2940 Info.setRestored(false); 2941 break; 2942 } 2943 } 2944 } 2945 2946 void ARMFrameLowering::processFunctionBeforeFrameFinalized( 2947 MachineFunction &MF, RegScavenger *RS) const { 2948 TargetFrameLowering::processFunctionBeforeFrameFinalized(MF, RS); 2949 updateLRRestored(MF); 2950 } 2951 2952 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF, 2953 BitVector &SavedRegs) const { 2954 TargetFrameLowering::getCalleeSaves(MF, SavedRegs); 2955 2956 // If we have the "returned" parameter attribute which guarantees that we 2957 // return the value which was passed in r0 unmodified (e.g. C++ 'structors), 2958 // record that fact for IPRA. 2959 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2960 if (AFI->getPreservesR0()) 2961 SavedRegs.set(ARM::R0); 2962 } 2963 2964 bool ARMFrameLowering::assignCalleeSavedSpillSlots( 2965 MachineFunction &MF, const TargetRegisterInfo *TRI, 2966 std::vector<CalleeSavedInfo> &CSI) const { 2967 // For CMSE entry functions, handle floating-point context as if it was a 2968 // callee-saved register. 2969 if (STI.hasV8_1MMainlineOps() && 2970 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) { 2971 CSI.emplace_back(ARM::FPCXTNS); 2972 CSI.back().setRestored(false); 2973 } 2974 2975 // For functions, which sign their return address, upon function entry, the 2976 // return address PAC is computed in R12. Treat R12 as a callee-saved register 2977 // in this case. 2978 const auto &AFI = *MF.getInfo<ARMFunctionInfo>(); 2979 if (AFI.shouldSignReturnAddress()) { 2980 // The order of register must match the order we push them, because the 2981 // PEI assigns frame indices in that order. That order depends on the 2982 // PushPopSplitVariation, there are only two cases which we use with return 2983 // address signing: 2984 switch (STI.getPushPopSplitVariation(MF)) { 2985 case ARMSubtarget::SplitR7: 2986 // LR, R7, R6, R5, R4, <R12>, R11, R10, R9, R8, D15-D8 2987 CSI.insert(find_if(CSI, 2988 [=](const auto &CS) { 2989 Register Reg = CS.getReg(); 2990 return Reg == ARM::R10 || Reg == ARM::R11 || 2991 Reg == ARM::R8 || Reg == ARM::R9 || 2992 ARM::DPRRegClass.contains(Reg); 2993 }), 2994 CalleeSavedInfo(ARM::R12)); 2995 break; 2996 case ARMSubtarget::SplitR11AAPCSSignRA: 2997 // With SplitR11AAPCSSignRA, R12 will always be the highest-addressed CSR 2998 // on the stack. 2999 CSI.insert(CSI.begin(), CalleeSavedInfo(ARM::R12)); 3000 break; 3001 default: 3002 llvm_unreachable("Unexpected CSR split with return address signing"); 3003 } 3004 } 3005 3006 return false; 3007 } 3008 3009 const TargetFrameLowering::SpillSlot * 3010 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const { 3011 static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}}; 3012 NumEntries = std::size(FixedSpillOffsets); 3013 return FixedSpillOffsets; 3014 } 3015 3016 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 3017 MachineFunction &MF, MachineBasicBlock &MBB, 3018 MachineBasicBlock::iterator I) const { 3019 const ARMBaseInstrInfo &TII = 3020 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 3021 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 3022 bool isARM = !AFI->isThumbFunction(); 3023 DebugLoc dl = I->getDebugLoc(); 3024 unsigned Opc = I->getOpcode(); 3025 bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode(); 3026 unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; 3027 3028 assert(!AFI->isThumb1OnlyFunction() && 3029 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 3030 3031 int PIdx = I->findFirstPredOperandIdx(); 3032 ARMCC::CondCodes Pred = (PIdx == -1) 3033 ? ARMCC::AL 3034 : (ARMCC::CondCodes)I->getOperand(PIdx).getImm(); 3035 unsigned PredReg = TII.getFramePred(*I); 3036 3037 if (!hasReservedCallFrame(MF)) { 3038 // Bail early if the callee is expected to do the adjustment. 3039 if (IsDestroy && CalleePopAmount != -1U) 3040 return MBB.erase(I); 3041 3042 // If we have alloca, convert as follows: 3043 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 3044 // ADJCALLSTACKUP -> add, sp, sp, amount 3045 unsigned Amount = TII.getFrameSize(*I); 3046 if (Amount != 0) { 3047 // We need to keep the stack aligned properly. To do this, we round the 3048 // amount of space needed for the outgoing arguments up to the next 3049 // alignment boundary. 3050 Amount = alignSPAdjust(Amount); 3051 3052 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 3053 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 3054 Pred, PredReg); 3055 } else { 3056 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 3057 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 3058 Pred, PredReg); 3059 } 3060 } 3061 } else if (CalleePopAmount != -1U) { 3062 // If the calling convention demands that the callee pops arguments from the 3063 // stack, we want to add it back if we have a reserved call frame. 3064 emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount, 3065 MachineInstr::NoFlags, Pred, PredReg); 3066 } 3067 return MBB.erase(I); 3068 } 3069 3070 /// Get the minimum constant for ARM that is greater than or equal to the 3071 /// argument. In ARM, constants can have any value that can be produced by 3072 /// rotating an 8-bit value to the right by an even number of bits within a 3073 /// 32-bit word. 3074 static uint32_t alignToARMConstant(uint32_t Value) { 3075 unsigned Shifted = 0; 3076 3077 if (Value == 0) 3078 return 0; 3079 3080 while (!(Value & 0xC0000000)) { 3081 Value = Value << 2; 3082 Shifted += 2; 3083 } 3084 3085 bool Carry = (Value & 0x00FFFFFF); 3086 Value = ((Value & 0xFF000000) >> 24) + Carry; 3087 3088 if (Value & 0x0000100) 3089 Value = Value & 0x000001FC; 3090 3091 if (Shifted > 24) 3092 Value = Value >> (Shifted - 24); 3093 else 3094 Value = Value << (24 - Shifted); 3095 3096 return Value; 3097 } 3098 3099 // The stack limit in the TCB is set to this many bytes above the actual 3100 // stack limit. 3101 static const uint64_t kSplitStackAvailable = 256; 3102 3103 // Adjust the function prologue to enable split stacks. This currently only 3104 // supports android and linux. 3105 // 3106 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 3107 // must be well defined in order to allow for consistent implementations of the 3108 // __morestack helper function. The ABI is also not a normal ABI in that it 3109 // doesn't follow the normal calling conventions because this allows the 3110 // prologue of each function to be optimized further. 3111 // 3112 // Currently, the ABI looks like (when calling __morestack) 3113 // 3114 // * r4 holds the minimum stack size requested for this function call 3115 // * r5 holds the stack size of the arguments to the function 3116 // * the beginning of the function is 3 instructions after the call to 3117 // __morestack 3118 // 3119 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 3120 // place the arguments on to the new stack, and the 3-instruction knowledge to 3121 // jump directly to the body of the function when working on the new stack. 3122 // 3123 // An old (and possibly no longer compatible) implementation of __morestack for 3124 // ARM can be found at [1]. 3125 // 3126 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 3127 void ARMFrameLowering::adjustForSegmentedStacks( 3128 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3129 unsigned Opcode; 3130 unsigned CFIIndex; 3131 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 3132 bool Thumb = ST->isThumb(); 3133 bool Thumb2 = ST->isThumb2(); 3134 3135 // Sadly, this currently doesn't support varargs, platforms other than 3136 // android/linux. Note that thumb1/thumb2 are support for android/linux. 3137 if (MF.getFunction().isVarArg()) 3138 report_fatal_error("Segmented stacks do not support vararg functions."); 3139 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 3140 report_fatal_error("Segmented stacks not supported on this platform."); 3141 3142 MachineFrameInfo &MFI = MF.getFrameInfo(); 3143 MCContext &Context = MF.getContext(); 3144 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 3145 const ARMBaseInstrInfo &TII = 3146 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 3147 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 3148 DebugLoc DL; 3149 3150 if (!MFI.needsSplitStackProlog()) 3151 return; 3152 3153 uint64_t StackSize = MFI.getStackSize(); 3154 3155 // Use R4 and R5 as scratch registers. 3156 // We save R4 and R5 before use and restore them before leaving the function. 3157 unsigned ScratchReg0 = ARM::R4; 3158 unsigned ScratchReg1 = ARM::R5; 3159 unsigned MovOp = ST->useMovt() ? ARM::t2MOVi32imm : ARM::tMOVi32imm; 3160 uint64_t AlignedStackSize; 3161 3162 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 3163 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 3164 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 3165 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 3166 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 3167 3168 // Grab everything that reaches PrologueMBB to update there liveness as well. 3169 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 3170 SmallVector<MachineBasicBlock *, 2> WalkList; 3171 WalkList.push_back(&PrologueMBB); 3172 3173 do { 3174 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 3175 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 3176 if (BeforePrologueRegion.insert(PredBB).second) 3177 WalkList.push_back(PredBB); 3178 } 3179 } while (!WalkList.empty()); 3180 3181 // The order in that list is important. 3182 // The blocks will all be inserted before PrologueMBB using that order. 3183 // Therefore the block that should appear first in the CFG should appear 3184 // first in the list. 3185 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 3186 PostStackMBB}; 3187 3188 for (MachineBasicBlock *B : AddedBlocks) 3189 BeforePrologueRegion.insert(B); 3190 3191 for (const auto &LI : PrologueMBB.liveins()) { 3192 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 3193 PredBB->addLiveIn(LI); 3194 } 3195 3196 // Remove the newly added blocks from the list, since we know 3197 // we do not have to do the following updates for them. 3198 for (MachineBasicBlock *B : AddedBlocks) { 3199 BeforePrologueRegion.erase(B); 3200 MF.insert(PrologueMBB.getIterator(), B); 3201 } 3202 3203 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 3204 // Make sure the LiveIns are still sorted and unique. 3205 MBB->sortUniqueLiveIns(); 3206 // Replace the edges to PrologueMBB by edges to the sequences 3207 // we are about to add, but only update for immediate predecessors. 3208 if (MBB->isSuccessor(&PrologueMBB)) 3209 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 3210 } 3211 3212 // The required stack size that is aligned to ARM constant criterion. 3213 AlignedStackSize = alignToARMConstant(StackSize); 3214 3215 // When the frame size is less than 256 we just compare the stack 3216 // boundary directly to the value of the stack pointer, per gcc. 3217 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 3218 3219 // We will use two of the callee save registers as scratch registers so we 3220 // need to save those registers onto the stack. 3221 // We will use SR0 to hold stack limit and SR1 to hold the stack size 3222 // requested and arguments for __morestack(). 3223 // SR0: Scratch Register #0 3224 // SR1: Scratch Register #1 3225 // push {SR0, SR1} 3226 if (Thumb) { 3227 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 3228 .add(predOps(ARMCC::AL)) 3229 .addReg(ScratchReg0) 3230 .addReg(ScratchReg1); 3231 } else { 3232 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 3233 .addReg(ARM::SP, RegState::Define) 3234 .addReg(ARM::SP) 3235 .add(predOps(ARMCC::AL)) 3236 .addReg(ScratchReg0) 3237 .addReg(ScratchReg1); 3238 } 3239 3240 // Emit the relevant DWARF information about the change in stack pointer as 3241 // well as where to find both r4 and r5 (the callee-save registers) 3242 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3243 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8)); 3244 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3245 .addCFIIndex(CFIIndex); 3246 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3247 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 3248 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3249 .addCFIIndex(CFIIndex); 3250 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3251 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 3252 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3253 .addCFIIndex(CFIIndex); 3254 } 3255 3256 // mov SR1, sp 3257 if (Thumb) { 3258 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 3259 .addReg(ARM::SP) 3260 .add(predOps(ARMCC::AL)); 3261 } else if (CompareStackPointer) { 3262 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 3263 .addReg(ARM::SP) 3264 .add(predOps(ARMCC::AL)) 3265 .add(condCodeOp()); 3266 } 3267 3268 // sub SR1, sp, #StackSize 3269 if (!CompareStackPointer && Thumb) { 3270 if (AlignedStackSize < 256) { 3271 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 3272 .add(condCodeOp()) 3273 .addReg(ScratchReg1) 3274 .addImm(AlignedStackSize) 3275 .add(predOps(ARMCC::AL)); 3276 } else { 3277 if (Thumb2 || ST->genExecuteOnly()) { 3278 BuildMI(McrMBB, DL, TII.get(MovOp), ScratchReg0) 3279 .addImm(AlignedStackSize); 3280 } else { 3281 auto MBBI = McrMBB->end(); 3282 auto RegInfo = STI.getRegisterInfo(); 3283 RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0, 3284 AlignedStackSize); 3285 } 3286 BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1) 3287 .add(condCodeOp()) 3288 .addReg(ScratchReg1) 3289 .addReg(ScratchReg0) 3290 .add(predOps(ARMCC::AL)); 3291 } 3292 } else if (!CompareStackPointer) { 3293 if (AlignedStackSize < 256) { 3294 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 3295 .addReg(ARM::SP) 3296 .addImm(AlignedStackSize) 3297 .add(predOps(ARMCC::AL)) 3298 .add(condCodeOp()); 3299 } else { 3300 auto MBBI = McrMBB->end(); 3301 auto RegInfo = STI.getRegisterInfo(); 3302 RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0, 3303 AlignedStackSize); 3304 BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1) 3305 .addReg(ARM::SP) 3306 .addReg(ScratchReg0) 3307 .add(predOps(ARMCC::AL)) 3308 .add(condCodeOp()); 3309 } 3310 } 3311 3312 if (Thumb && ST->isThumb1Only()) { 3313 if (ST->genExecuteOnly()) { 3314 BuildMI(GetMBB, DL, TII.get(MovOp), ScratchReg0) 3315 .addExternalSymbol("__STACK_LIMIT"); 3316 } else { 3317 unsigned PCLabelId = ARMFI->createPICLabelUId(); 3318 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 3319 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0); 3320 MachineConstantPool *MCP = MF.getConstantPool(); 3321 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4)); 3322 3323 // ldr SR0, [pc, offset(STACK_LIMIT)] 3324 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 3325 .addConstantPoolIndex(CPI) 3326 .add(predOps(ARMCC::AL)); 3327 } 3328 3329 // ldr SR0, [SR0] 3330 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 3331 .addReg(ScratchReg0) 3332 .addImm(0) 3333 .add(predOps(ARMCC::AL)); 3334 } else { 3335 // Get TLS base address from the coprocessor 3336 // mrc p15, #0, SR0, c13, c0, #3 3337 BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC), 3338 ScratchReg0) 3339 .addImm(15) 3340 .addImm(0) 3341 .addImm(13) 3342 .addImm(0) 3343 .addImm(3) 3344 .add(predOps(ARMCC::AL)); 3345 3346 // Use the last tls slot on android and a private field of the TCP on linux. 3347 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 3348 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 3349 3350 // Get the stack limit from the right offset 3351 // ldr SR0, [sr0, #4 * TlsOffset] 3352 BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12), 3353 ScratchReg0) 3354 .addReg(ScratchReg0) 3355 .addImm(4 * TlsOffset) 3356 .add(predOps(ARMCC::AL)); 3357 } 3358 3359 // Compare stack limit with stack size requested. 3360 // cmp SR0, SR1 3361 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 3362 BuildMI(GetMBB, DL, TII.get(Opcode)) 3363 .addReg(ScratchReg0) 3364 .addReg(ScratchReg1) 3365 .add(predOps(ARMCC::AL)); 3366 3367 // This jump is taken if StackLimit <= SP - stack required. 3368 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 3369 BuildMI(GetMBB, DL, TII.get(Opcode)) 3370 .addMBB(PostStackMBB) 3371 .addImm(ARMCC::LS) 3372 .addReg(ARM::CPSR); 3373 3374 // Calling __morestack(StackSize, Size of stack arguments). 3375 // __morestack knows that the stack size requested is in SR0(r4) 3376 // and amount size of stack arguments is in SR1(r5). 3377 3378 // Pass first argument for the __morestack by Scratch Register #0. 3379 // The amount size of stack required 3380 if (Thumb) { 3381 if (AlignedStackSize < 256) { 3382 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 3383 .add(condCodeOp()) 3384 .addImm(AlignedStackSize) 3385 .add(predOps(ARMCC::AL)); 3386 } else { 3387 if (Thumb2 || ST->genExecuteOnly()) { 3388 BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg0) 3389 .addImm(AlignedStackSize); 3390 } else { 3391 auto MBBI = AllocMBB->end(); 3392 auto RegInfo = STI.getRegisterInfo(); 3393 RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0, 3394 AlignedStackSize); 3395 } 3396 } 3397 } else { 3398 if (AlignedStackSize < 256) { 3399 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 3400 .addImm(AlignedStackSize) 3401 .add(predOps(ARMCC::AL)) 3402 .add(condCodeOp()); 3403 } else { 3404 auto MBBI = AllocMBB->end(); 3405 auto RegInfo = STI.getRegisterInfo(); 3406 RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0, 3407 AlignedStackSize); 3408 } 3409 } 3410 3411 // Pass second argument for the __morestack by Scratch Register #1. 3412 // The amount size of stack consumed to save function arguments. 3413 if (Thumb) { 3414 if (ARMFI->getArgumentStackSize() < 256) { 3415 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 3416 .add(condCodeOp()) 3417 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 3418 .add(predOps(ARMCC::AL)); 3419 } else { 3420 if (Thumb2 || ST->genExecuteOnly()) { 3421 BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg1) 3422 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())); 3423 } else { 3424 auto MBBI = AllocMBB->end(); 3425 auto RegInfo = STI.getRegisterInfo(); 3426 RegInfo->emitLoadConstPool( 3427 *AllocMBB, MBBI, DL, ScratchReg1, 0, 3428 alignToARMConstant(ARMFI->getArgumentStackSize())); 3429 } 3430 } 3431 } else { 3432 if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) { 3433 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 3434 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 3435 .add(predOps(ARMCC::AL)) 3436 .add(condCodeOp()); 3437 } else { 3438 auto MBBI = AllocMBB->end(); 3439 auto RegInfo = STI.getRegisterInfo(); 3440 RegInfo->emitLoadConstPool( 3441 *AllocMBB, MBBI, DL, ScratchReg1, 0, 3442 alignToARMConstant(ARMFI->getArgumentStackSize())); 3443 } 3444 } 3445 3446 // push {lr} - Save return address of this function. 3447 if (Thumb) { 3448 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 3449 .add(predOps(ARMCC::AL)) 3450 .addReg(ARM::LR); 3451 } else { 3452 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 3453 .addReg(ARM::SP, RegState::Define) 3454 .addReg(ARM::SP) 3455 .add(predOps(ARMCC::AL)) 3456 .addReg(ARM::LR); 3457 } 3458 3459 // Emit the DWARF info about the change in stack as well as where to find the 3460 // previous link register 3461 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3462 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12)); 3463 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3464 .addCFIIndex(CFIIndex); 3465 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3466 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 3467 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3468 .addCFIIndex(CFIIndex); 3469 } 3470 3471 // Call __morestack(). 3472 if (Thumb) { 3473 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 3474 .add(predOps(ARMCC::AL)) 3475 .addExternalSymbol("__morestack"); 3476 } else { 3477 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 3478 .addExternalSymbol("__morestack"); 3479 } 3480 3481 // pop {lr} - Restore return address of this original function. 3482 if (Thumb) { 3483 if (ST->isThumb1Only()) { 3484 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 3485 .add(predOps(ARMCC::AL)) 3486 .addReg(ScratchReg0); 3487 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 3488 .addReg(ScratchReg0) 3489 .add(predOps(ARMCC::AL)); 3490 } else { 3491 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 3492 .addReg(ARM::LR, RegState::Define) 3493 .addReg(ARM::SP, RegState::Define) 3494 .addReg(ARM::SP) 3495 .addImm(4) 3496 .add(predOps(ARMCC::AL)); 3497 } 3498 } else { 3499 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 3500 .addReg(ARM::SP, RegState::Define) 3501 .addReg(ARM::SP) 3502 .add(predOps(ARMCC::AL)) 3503 .addReg(ARM::LR); 3504 } 3505 3506 // Restore SR0 and SR1 in case of __morestack() was called. 3507 // __morestack() will skip PostStackMBB block so we need to restore 3508 // scratch registers from here. 3509 // pop {SR0, SR1} 3510 if (Thumb) { 3511 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 3512 .add(predOps(ARMCC::AL)) 3513 .addReg(ScratchReg0) 3514 .addReg(ScratchReg1); 3515 } else { 3516 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 3517 .addReg(ARM::SP, RegState::Define) 3518 .addReg(ARM::SP) 3519 .add(predOps(ARMCC::AL)) 3520 .addReg(ScratchReg0) 3521 .addReg(ScratchReg1); 3522 } 3523 3524 // Update the CFA offset now that we've popped 3525 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3526 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 3527 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3528 .addCFIIndex(CFIIndex); 3529 } 3530 3531 // Return from this function. 3532 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL)); 3533 3534 // Restore SR0 and SR1 in case of __morestack() was not called. 3535 // pop {SR0, SR1} 3536 if (Thumb) { 3537 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 3538 .add(predOps(ARMCC::AL)) 3539 .addReg(ScratchReg0) 3540 .addReg(ScratchReg1); 3541 } else { 3542 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 3543 .addReg(ARM::SP, RegState::Define) 3544 .addReg(ARM::SP) 3545 .add(predOps(ARMCC::AL)) 3546 .addReg(ScratchReg0) 3547 .addReg(ScratchReg1); 3548 } 3549 3550 // Update the CFA offset now that we've popped 3551 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3552 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 3553 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3554 .addCFIIndex(CFIIndex); 3555 3556 // Tell debuggers that r4 and r5 are now the same as they were in the 3557 // previous function, that they're the "Same Value". 3558 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 3559 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 3560 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3561 .addCFIIndex(CFIIndex); 3562 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 3563 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 3564 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3565 .addCFIIndex(CFIIndex); 3566 } 3567 3568 // Organizing MBB lists 3569 PostStackMBB->addSuccessor(&PrologueMBB); 3570 3571 AllocMBB->addSuccessor(PostStackMBB); 3572 3573 GetMBB->addSuccessor(PostStackMBB); 3574 GetMBB->addSuccessor(AllocMBB); 3575 3576 McrMBB->addSuccessor(GetMBB); 3577 3578 PrevStackMBB->addSuccessor(McrMBB); 3579 3580 #ifdef EXPENSIVE_CHECKS 3581 MF.verify(); 3582 #endif 3583 } 3584