1 //===-- ARMFrameLowering.cpp - ARM Frame Information ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the ARM implementation of TargetFrameLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMFrameLowering.h" 15 #include "ARMBaseInstrInfo.h" 16 #include "ARMBaseRegisterInfo.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "MCTargetDesc/ARMAddressingModes.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/RegisterScavenging.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/IR/CallingConv.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Target/TargetOptions.h" 32 33 using namespace llvm; 34 35 static cl::opt<bool> 36 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 37 cl::desc("Align ARM NEON spills in prolog and epilog")); 38 39 static MachineBasicBlock::iterator 40 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 41 unsigned NumAlignedDPRCS2Regs); 42 43 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 44 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, 4), 45 STI(sti) {} 46 47 bool ARMFrameLowering::noFramePointerElim(const MachineFunction &MF) const { 48 // iOS always has a FP for backtracking, force other targets to keep their FP 49 // when doing FastISel. The emitted code is currently superior, and in cases 50 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 51 return TargetFrameLowering::noFramePointerElim(MF) || 52 MF.getSubtarget<ARMSubtarget>().useFastISel(); 53 } 54 55 /// hasFP - Return true if the specified function should have a dedicated frame 56 /// pointer register. This is true if the function has variable sized allocas 57 /// or if frame pointer elimination is disabled. 58 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { 59 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 60 61 // iOS requires FP not to be clobbered for backtracing purpose. 62 if (STI.isTargetIOS() || STI.isTargetWatchOS()) 63 return true; 64 65 const MachineFrameInfo &MFI = MF.getFrameInfo(); 66 // Always eliminate non-leaf frame pointers. 67 return ((MF.getTarget().Options.DisableFramePointerElim(MF) && 68 MFI.hasCalls()) || 69 RegInfo->needsStackRealignment(MF) || 70 MFI.hasVarSizedObjects() || 71 MFI.isFrameAddressTaken()); 72 } 73 74 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 75 /// not required, we reserve argument space for call sites in the function 76 /// immediately on entry to the current function. This eliminates the need for 77 /// add/sub sp brackets around call sites. Returns true if the call frame is 78 /// included as part of the stack frame. 79 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 80 const MachineFrameInfo &MFI = MF.getFrameInfo(); 81 unsigned CFSize = MFI.getMaxCallFrameSize(); 82 // It's not always a good idea to include the call frame as part of the 83 // stack frame. ARM (especially Thumb) has small immediate offset to 84 // address the stack frame. So a large call frame can cause poor codegen 85 // and may even makes it impossible to scavenge a register. 86 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 87 return false; 88 89 return !MFI.hasVarSizedObjects(); 90 } 91 92 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 93 /// call frame pseudos can be simplified. Unlike most targets, having a FP 94 /// is not sufficient here since we still may reference some objects via SP 95 /// even when FP is available in Thumb2 mode. 96 bool 97 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 98 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 99 } 100 101 static bool isCSRestore(MachineInstr &MI, const ARMBaseInstrInfo &TII, 102 const MCPhysReg *CSRegs) { 103 // Integer spill area is handled with "pop". 104 if (isPopOpcode(MI.getOpcode())) { 105 // The first two operands are predicates. The last two are 106 // imp-def and imp-use of SP. Check everything in between. 107 for (int i = 5, e = MI.getNumOperands(); i != e; ++i) 108 if (!isCalleeSavedRegister(MI.getOperand(i).getReg(), CSRegs)) 109 return false; 110 return true; 111 } 112 if ((MI.getOpcode() == ARM::LDR_POST_IMM || 113 MI.getOpcode() == ARM::LDR_POST_REG || 114 MI.getOpcode() == ARM::t2LDR_POST) && 115 isCalleeSavedRegister(MI.getOperand(0).getReg(), CSRegs) && 116 MI.getOperand(1).getReg() == ARM::SP) 117 return true; 118 119 return false; 120 } 121 122 static void emitRegPlusImmediate( 123 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 124 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 125 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 126 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 127 if (isARM) 128 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 129 Pred, PredReg, TII, MIFlags); 130 else 131 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 132 Pred, PredReg, TII, MIFlags); 133 } 134 135 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 136 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 137 const ARMBaseInstrInfo &TII, int NumBytes, 138 unsigned MIFlags = MachineInstr::NoFlags, 139 ARMCC::CondCodes Pred = ARMCC::AL, 140 unsigned PredReg = 0) { 141 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 142 MIFlags, Pred, PredReg); 143 } 144 145 static int sizeOfSPAdjustment(const MachineInstr &MI) { 146 int RegSize; 147 switch (MI.getOpcode()) { 148 case ARM::VSTMDDB_UPD: 149 RegSize = 8; 150 break; 151 case ARM::STMDB_UPD: 152 case ARM::t2STMDB_UPD: 153 RegSize = 4; 154 break; 155 case ARM::t2STR_PRE: 156 case ARM::STR_PRE_IMM: 157 return 4; 158 default: 159 llvm_unreachable("Unknown push or pop like instruction"); 160 } 161 162 int count = 0; 163 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 164 // pred) so the list starts at 4. 165 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 166 count += RegSize; 167 return count; 168 } 169 170 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 171 size_t StackSizeInBytes) { 172 const MachineFrameInfo &MFI = MF.getFrameInfo(); 173 const Function *F = MF.getFunction(); 174 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 175 if (F->hasFnAttribute("stack-probe-size")) 176 F->getFnAttribute("stack-probe-size") 177 .getValueAsString() 178 .getAsInteger(0, StackProbeSize); 179 return StackSizeInBytes >= StackProbeSize; 180 } 181 182 namespace { 183 struct StackAdjustingInsts { 184 struct InstInfo { 185 MachineBasicBlock::iterator I; 186 unsigned SPAdjust; 187 bool BeforeFPSet; 188 }; 189 190 SmallVector<InstInfo, 4> Insts; 191 192 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 193 bool BeforeFPSet = false) { 194 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 195 Insts.push_back(Info); 196 } 197 198 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 199 auto Info = find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 200 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 201 Info->SPAdjust += ExtraBytes; 202 } 203 204 void emitDefCFAOffsets(MachineModuleInfo &MMI, MachineBasicBlock &MBB, 205 const DebugLoc &dl, const ARMBaseInstrInfo &TII, 206 bool HasFP) { 207 unsigned CFAOffset = 0; 208 for (auto &Info : Insts) { 209 if (HasFP && !Info.BeforeFPSet) 210 return; 211 212 CFAOffset -= Info.SPAdjust; 213 unsigned CFIIndex = MMI.addFrameInst( 214 MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset)); 215 BuildMI(MBB, std::next(Info.I), dl, 216 TII.get(TargetOpcode::CFI_INSTRUCTION)) 217 .addCFIIndex(CFIIndex) 218 .setMIFlags(MachineInstr::FrameSetup); 219 } 220 } 221 }; 222 } 223 224 /// Emit an instruction sequence that will align the address in 225 /// register Reg by zero-ing out the lower bits. For versions of the 226 /// architecture that support Neon, this must be done in a single 227 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 228 /// single instruction. That function only gets called when optimizing 229 /// spilling of D registers on a core with the Neon instruction set 230 /// present. 231 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 232 const TargetInstrInfo &TII, 233 MachineBasicBlock &MBB, 234 MachineBasicBlock::iterator MBBI, 235 const DebugLoc &DL, const unsigned Reg, 236 const unsigned Alignment, 237 const bool MustBeSingleInstruction) { 238 const ARMSubtarget &AST = 239 static_cast<const ARMSubtarget &>(MF.getSubtarget()); 240 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 241 const unsigned AlignMask = Alignment - 1; 242 const unsigned NrBitsToZero = countTrailingZeros(Alignment); 243 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 244 if (!AFI->isThumbFunction()) { 245 // if the BFC instruction is available, use that to zero the lower 246 // bits: 247 // bfc Reg, #0, log2(Alignment) 248 // otherwise use BIC, if the mask to zero the required number of bits 249 // can be encoded in the bic immediate field 250 // bic Reg, Reg, Alignment-1 251 // otherwise, emit 252 // lsr Reg, Reg, log2(Alignment) 253 // lsl Reg, Reg, log2(Alignment) 254 if (CanUseBFC) { 255 AddDefaultPred(BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 256 .addReg(Reg, RegState::Kill) 257 .addImm(~AlignMask)); 258 } else if (AlignMask <= 255) { 259 AddDefaultCC( 260 AddDefaultPred(BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 261 .addReg(Reg, RegState::Kill) 262 .addImm(AlignMask))); 263 } else { 264 assert(!MustBeSingleInstruction && 265 "Shouldn't call emitAligningInstructions demanding a single " 266 "instruction to be emitted for large stack alignment for a target " 267 "without BFC."); 268 AddDefaultCC(AddDefaultPred( 269 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 270 .addReg(Reg, RegState::Kill) 271 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)))); 272 AddDefaultCC(AddDefaultPred( 273 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 274 .addReg(Reg, RegState::Kill) 275 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)))); 276 } 277 } else { 278 // Since this is only reached for Thumb-2 targets, the BFC instruction 279 // should always be available. 280 assert(CanUseBFC); 281 AddDefaultPred(BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 282 .addReg(Reg, RegState::Kill) 283 .addImm(~AlignMask)); 284 } 285 } 286 287 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 288 MachineBasicBlock &MBB) const { 289 MachineBasicBlock::iterator MBBI = MBB.begin(); 290 MachineFrameInfo &MFI = MF.getFrameInfo(); 291 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 292 MachineModuleInfo &MMI = MF.getMMI(); 293 MCContext &Context = MMI.getContext(); 294 const TargetMachine &TM = MF.getTarget(); 295 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 296 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 297 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 298 assert(!AFI->isThumb1OnlyFunction() && 299 "This emitPrologue does not support Thumb1!"); 300 bool isARM = !AFI->isThumbFunction(); 301 unsigned Align = STI.getFrameLowering()->getStackAlignment(); 302 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 303 unsigned NumBytes = MFI.getStackSize(); 304 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 305 306 // Debug location must be unknown since the first debug location is used 307 // to determine the end of the prologue. 308 DebugLoc dl; 309 310 unsigned FramePtr = RegInfo->getFrameRegister(MF); 311 312 // Determine the sizes of each callee-save spill areas and record which frame 313 // belongs to which callee-save spill areas. 314 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 315 int FramePtrSpillFI = 0; 316 int D8SpillFI = 0; 317 318 // All calls are tail calls in GHC calling conv, and functions have no 319 // prologue/epilogue. 320 if (MF.getFunction()->getCallingConv() == CallingConv::GHC) 321 return; 322 323 StackAdjustingInsts DefCFAOffsetCandidates; 324 bool HasFP = hasFP(MF); 325 326 // Allocate the vararg register save area. 327 if (ArgRegsSaveSize) { 328 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 329 MachineInstr::FrameSetup); 330 DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true); 331 } 332 333 if (!AFI->hasStackFrame() && 334 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 335 if (NumBytes - ArgRegsSaveSize != 0) { 336 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize), 337 MachineInstr::FrameSetup); 338 DefCFAOffsetCandidates.addInst(std::prev(MBBI), 339 NumBytes - ArgRegsSaveSize, true); 340 } 341 DefCFAOffsetCandidates.emitDefCFAOffsets(MMI, MBB, dl, TII, HasFP); 342 return; 343 } 344 345 // Determine spill area sizes. 346 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 347 unsigned Reg = CSI[i].getReg(); 348 int FI = CSI[i].getFrameIdx(); 349 switch (Reg) { 350 case ARM::R8: 351 case ARM::R9: 352 case ARM::R10: 353 case ARM::R11: 354 case ARM::R12: 355 if (STI.splitFramePushPop()) { 356 GPRCS2Size += 4; 357 break; 358 } 359 // fallthrough 360 case ARM::R0: 361 case ARM::R1: 362 case ARM::R2: 363 case ARM::R3: 364 case ARM::R4: 365 case ARM::R5: 366 case ARM::R6: 367 case ARM::R7: 368 case ARM::LR: 369 if (Reg == FramePtr) 370 FramePtrSpillFI = FI; 371 GPRCS1Size += 4; 372 break; 373 default: 374 // This is a DPR. Exclude the aligned DPRCS2 spills. 375 if (Reg == ARM::D8) 376 D8SpillFI = FI; 377 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) 378 DPRCSSize += 8; 379 } 380 } 381 382 // Move past area 1. 383 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 384 if (GPRCS1Size > 0) { 385 GPRCS1Push = LastPush = MBBI++; 386 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); 387 } 388 389 // Determine starting offsets of spill areas. 390 unsigned GPRCS1Offset = NumBytes - ArgRegsSaveSize - GPRCS1Size; 391 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 392 unsigned DPRAlign = DPRCSSize ? std::min(8U, Align) : 4U; 393 unsigned DPRGapSize = (GPRCS1Size + GPRCS2Size + ArgRegsSaveSize) % DPRAlign; 394 unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 395 int FramePtrOffsetInPush = 0; 396 if (HasFP) { 397 FramePtrOffsetInPush = 398 MFI.getObjectOffset(FramePtrSpillFI) + ArgRegsSaveSize; 399 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 400 NumBytes); 401 } 402 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 403 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 404 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 405 406 // Move past area 2. 407 if (GPRCS2Size > 0) { 408 GPRCS2Push = LastPush = MBBI++; 409 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 410 } 411 412 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 413 // .cfi_offset operations will reflect that. 414 if (DPRGapSize) { 415 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 416 if (tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 417 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 418 else { 419 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 420 MachineInstr::FrameSetup); 421 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); 422 } 423 } 424 425 // Move past area 3. 426 if (DPRCSSize > 0) { 427 // Since vpush register list cannot have gaps, there may be multiple vpush 428 // instructions in the prologue. 429 while (MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 430 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); 431 LastPush = MBBI++; 432 } 433 } 434 435 // Move past the aligned DPRCS2 area. 436 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 437 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 438 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 439 // leaves the stack pointer pointing to the DPRCS2 area. 440 // 441 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 442 NumBytes += MFI.getObjectOffset(D8SpillFI); 443 } else 444 NumBytes = DPRCSOffset; 445 446 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 447 uint32_t NumWords = NumBytes >> 2; 448 449 if (NumWords < 65536) 450 AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 451 .addImm(NumWords) 452 .setMIFlags(MachineInstr::FrameSetup)); 453 else 454 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4) 455 .addImm(NumWords) 456 .setMIFlags(MachineInstr::FrameSetup); 457 458 switch (TM.getCodeModel()) { 459 case CodeModel::Small: 460 case CodeModel::Medium: 461 case CodeModel::Default: 462 case CodeModel::Kernel: 463 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 464 .addImm((unsigned)ARMCC::AL).addReg(0) 465 .addExternalSymbol("__chkstk") 466 .addReg(ARM::R4, RegState::Implicit) 467 .setMIFlags(MachineInstr::FrameSetup); 468 break; 469 case CodeModel::Large: 470 case CodeModel::JITDefault: 471 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 472 .addExternalSymbol("__chkstk") 473 .setMIFlags(MachineInstr::FrameSetup); 474 475 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 476 .addImm((unsigned)ARMCC::AL).addReg(0) 477 .addReg(ARM::R12, RegState::Kill) 478 .addReg(ARM::R4, RegState::Implicit) 479 .setMIFlags(MachineInstr::FrameSetup); 480 break; 481 } 482 483 AddDefaultCC(AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), 484 ARM::SP) 485 .addReg(ARM::SP, RegState::Kill) 486 .addReg(ARM::R4, RegState::Kill) 487 .setMIFlags(MachineInstr::FrameSetup))); 488 NumBytes = 0; 489 } 490 491 if (NumBytes) { 492 // Adjust SP after all the callee-save spills. 493 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 494 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 495 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 496 else { 497 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 498 MachineInstr::FrameSetup); 499 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 500 } 501 502 if (HasFP && isARM) 503 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 504 // Note it's not safe to do this in Thumb2 mode because it would have 505 // taken two instructions: 506 // mov sp, r7 507 // sub sp, #24 508 // If an interrupt is taken between the two instructions, then sp is in 509 // an inconsistent state (pointing to the middle of callee-saved area). 510 // The interrupt handler can end up clobbering the registers. 511 AFI->setShouldRestoreSPFromFP(true); 512 } 513 514 // Set FP to point to the stack slot that contains the previous FP. 515 // For iOS, FP is R7, which has now been stored in spill area 1. 516 // Otherwise, if this is not iOS, all the callee-saved registers go 517 // into spill area 1, including the FP in R11. In either case, it 518 // is in area one and the adjustment needs to take place just after 519 // that push. 520 if (HasFP) { 521 MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push); 522 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); 523 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, 524 dl, TII, FramePtr, ARM::SP, 525 PushSize + FramePtrOffsetInPush, 526 MachineInstr::FrameSetup); 527 if (FramePtrOffsetInPush + PushSize != 0) { 528 unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfa( 529 nullptr, MRI->getDwarfRegNum(FramePtr, true), 530 -(ArgRegsSaveSize - FramePtrOffsetInPush))); 531 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 532 .addCFIIndex(CFIIndex) 533 .setMIFlags(MachineInstr::FrameSetup); 534 } else { 535 unsigned CFIIndex = 536 MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister( 537 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 538 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 539 .addCFIIndex(CFIIndex) 540 .setMIFlags(MachineInstr::FrameSetup); 541 } 542 } 543 544 // Now that the prologue's actual instructions are finalised, we can insert 545 // the necessary DWARF cf instructions to describe the situation. Start by 546 // recording where each register ended up: 547 if (GPRCS1Size > 0) { 548 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push); 549 int CFIIndex; 550 for (const auto &Entry : CSI) { 551 unsigned Reg = Entry.getReg(); 552 int FI = Entry.getFrameIdx(); 553 switch (Reg) { 554 case ARM::R8: 555 case ARM::R9: 556 case ARM::R10: 557 case ARM::R11: 558 case ARM::R12: 559 if (STI.splitFramePushPop()) 560 break; 561 // fallthrough 562 case ARM::R0: 563 case ARM::R1: 564 case ARM::R2: 565 case ARM::R3: 566 case ARM::R4: 567 case ARM::R5: 568 case ARM::R6: 569 case ARM::R7: 570 case ARM::LR: 571 CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset( 572 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI))); 573 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 574 .addCFIIndex(CFIIndex) 575 .setMIFlags(MachineInstr::FrameSetup); 576 break; 577 } 578 } 579 } 580 581 if (GPRCS2Size > 0) { 582 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push); 583 for (const auto &Entry : CSI) { 584 unsigned Reg = Entry.getReg(); 585 int FI = Entry.getFrameIdx(); 586 switch (Reg) { 587 case ARM::R8: 588 case ARM::R9: 589 case ARM::R10: 590 case ARM::R11: 591 case ARM::R12: 592 if (STI.splitFramePushPop()) { 593 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 594 unsigned Offset = MFI.getObjectOffset(FI); 595 unsigned CFIIndex = MMI.addFrameInst( 596 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 597 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 598 .addCFIIndex(CFIIndex) 599 .setMIFlags(MachineInstr::FrameSetup); 600 } 601 break; 602 } 603 } 604 } 605 606 if (DPRCSSize > 0) { 607 // Since vpush register list cannot have gaps, there may be multiple vpush 608 // instructions in the prologue. 609 MachineBasicBlock::iterator Pos = std::next(LastPush); 610 for (const auto &Entry : CSI) { 611 unsigned Reg = Entry.getReg(); 612 int FI = Entry.getFrameIdx(); 613 if ((Reg >= ARM::D0 && Reg <= ARM::D31) && 614 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) { 615 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 616 unsigned Offset = MFI.getObjectOffset(FI); 617 unsigned CFIIndex = MMI.addFrameInst( 618 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 619 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 620 .addCFIIndex(CFIIndex) 621 .setMIFlags(MachineInstr::FrameSetup); 622 } 623 } 624 } 625 626 // Now we can emit descriptions of where the canonical frame address was 627 // throughout the process. If we have a frame pointer, it takes over the job 628 // half-way through, so only the first few .cfi_def_cfa_offset instructions 629 // actually get emitted. 630 DefCFAOffsetCandidates.emitDefCFAOffsets(MMI, MBB, dl, TII, HasFP); 631 632 if (STI.isTargetELF() && hasFP(MF)) 633 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 634 AFI->getFramePtrSpillOffset()); 635 636 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 637 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 638 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 639 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 640 641 // If we need dynamic stack realignment, do it here. Be paranoid and make 642 // sure if we also have VLAs, we have a base pointer for frame access. 643 // If aligned NEON registers were spilled, the stack has already been 644 // realigned. 645 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) { 646 unsigned MaxAlign = MFI.getMaxAlignment(); 647 assert(!AFI->isThumb1OnlyFunction()); 648 if (!AFI->isThumbFunction()) { 649 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 650 false); 651 } else { 652 // We cannot use sp as source/dest register here, thus we're using r4 to 653 // perform the calculations. We're emitting the following sequence: 654 // mov r4, sp 655 // -- use emitAligningInstructions to produce best sequence to zero 656 // -- out lower bits in r4 657 // mov sp, r4 658 // FIXME: It will be better just to find spare register here. 659 AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 660 .addReg(ARM::SP, RegState::Kill)); 661 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 662 false); 663 AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 664 .addReg(ARM::R4, RegState::Kill)); 665 } 666 667 AFI->setShouldRestoreSPFromFP(true); 668 } 669 670 // If we need a base pointer, set it up here. It's whatever the value 671 // of the stack pointer is at this point. Any variable size objects 672 // will be allocated after this, so we can still use the base pointer 673 // to reference locals. 674 // FIXME: Clarify FrameSetup flags here. 675 if (RegInfo->hasBasePointer(MF)) { 676 if (isARM) 677 BuildMI(MBB, MBBI, dl, 678 TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 679 .addReg(ARM::SP) 680 .addImm((unsigned)ARMCC::AL).addReg(0).addReg(0); 681 else 682 AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), 683 RegInfo->getBaseRegister()) 684 .addReg(ARM::SP)); 685 } 686 687 // If the frame has variable sized objects then the epilogue must restore 688 // the sp from fp. We can assume there's an FP here since hasFP already 689 // checks for hasVarSizedObjects. 690 if (MFI.hasVarSizedObjects()) 691 AFI->setShouldRestoreSPFromFP(true); 692 } 693 694 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 695 MachineBasicBlock &MBB) const { 696 MachineFrameInfo &MFI = MF.getFrameInfo(); 697 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 698 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 699 const ARMBaseInstrInfo &TII = 700 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 701 assert(!AFI->isThumb1OnlyFunction() && 702 "This emitEpilogue does not support Thumb1!"); 703 bool isARM = !AFI->isThumbFunction(); 704 705 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 706 int NumBytes = (int)MFI.getStackSize(); 707 unsigned FramePtr = RegInfo->getFrameRegister(MF); 708 709 // All calls are tail calls in GHC calling conv, and functions have no 710 // prologue/epilogue. 711 if (MF.getFunction()->getCallingConv() == CallingConv::GHC) 712 return; 713 714 // First put ourselves on the first (from top) terminator instructions. 715 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 716 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 717 718 if (!AFI->hasStackFrame()) { 719 if (NumBytes - ArgRegsSaveSize != 0) 720 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize); 721 } else { 722 // Unwind MBBI to point to first LDR / VLDRD. 723 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 724 if (MBBI != MBB.begin()) { 725 do { 726 --MBBI; 727 } while (MBBI != MBB.begin() && isCSRestore(*MBBI, TII, CSRegs)); 728 if (!isCSRestore(*MBBI, TII, CSRegs)) 729 ++MBBI; 730 } 731 732 // Move SP to start of FP callee save spill area. 733 NumBytes -= (ArgRegsSaveSize + 734 AFI->getGPRCalleeSavedArea1Size() + 735 AFI->getGPRCalleeSavedArea2Size() + 736 AFI->getDPRCalleeSavedGapSize() + 737 AFI->getDPRCalleeSavedAreaSize()); 738 739 // Reset SP based on frame pointer only if the stack frame extends beyond 740 // frame pointer stack slot or target is ELF and the function has FP. 741 if (AFI->shouldRestoreSPFromFP()) { 742 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 743 if (NumBytes) { 744 if (isARM) 745 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 746 ARMCC::AL, 0, TII); 747 else { 748 // It's not possible to restore SP from FP in a single instruction. 749 // For iOS, this looks like: 750 // mov sp, r7 751 // sub sp, #24 752 // This is bad, if an interrupt is taken after the mov, sp is in an 753 // inconsistent state. 754 // Use the first callee-saved register as a scratch register. 755 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 756 "No scratch register to restore SP from FP!"); 757 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 758 ARMCC::AL, 0, TII); 759 AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), 760 ARM::SP) 761 .addReg(ARM::R4)); 762 } 763 } else { 764 // Thumb2 or ARM. 765 if (isARM) 766 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 767 .addReg(FramePtr).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0); 768 else 769 AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), 770 ARM::SP) 771 .addReg(FramePtr)); 772 } 773 } else if (NumBytes && 774 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 775 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes); 776 777 // Increment past our save areas. 778 if (AFI->getDPRCalleeSavedAreaSize()) { 779 MBBI++; 780 // Since vpop register list cannot have gaps, there may be multiple vpop 781 // instructions in the epilogue. 782 while (MBBI->getOpcode() == ARM::VLDMDIA_UPD) 783 MBBI++; 784 } 785 if (AFI->getDPRCalleeSavedGapSize()) { 786 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 787 "unexpected DPR alignment gap"); 788 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize()); 789 } 790 791 if (AFI->getGPRCalleeSavedArea2Size()) MBBI++; 792 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 793 } 794 795 if (ArgRegsSaveSize) 796 emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize); 797 } 798 799 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 800 /// debug info. It's the same as what we use for resolving the code-gen 801 /// references for now. FIXME: This can go wrong when references are 802 /// SP-relative and simple call frames aren't used. 803 int 804 ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 805 unsigned &FrameReg) const { 806 return ResolveFrameIndexReference(MF, FI, FrameReg, 0); 807 } 808 809 int 810 ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 811 int FI, unsigned &FrameReg, 812 int SPAdj) const { 813 const MachineFrameInfo &MFI = MF.getFrameInfo(); 814 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 815 MF.getSubtarget().getRegisterInfo()); 816 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 817 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 818 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 819 bool isFixed = MFI.isFixedObjectIndex(FI); 820 821 FrameReg = ARM::SP; 822 Offset += SPAdj; 823 824 // SP can move around if there are allocas. We may also lose track of SP 825 // when emergency spilling inside a non-reserved call frame setup. 826 bool hasMovingSP = !hasReservedCallFrame(MF); 827 828 // When dynamically realigning the stack, use the frame pointer for 829 // parameters, and the stack/base pointer for locals. 830 if (RegInfo->needsStackRealignment(MF)) { 831 assert (hasFP(MF) && "dynamic stack realignment without a FP!"); 832 if (isFixed) { 833 FrameReg = RegInfo->getFrameRegister(MF); 834 Offset = FPOffset; 835 } else if (hasMovingSP) { 836 assert(RegInfo->hasBasePointer(MF) && 837 "VLAs and dynamic stack alignment, but missing base pointer!"); 838 FrameReg = RegInfo->getBaseRegister(); 839 } 840 return Offset; 841 } 842 843 // If there is a frame pointer, use it when we can. 844 if (hasFP(MF) && AFI->hasStackFrame()) { 845 // Use frame pointer to reference fixed objects. Use it for locals if 846 // there are VLAs (and thus the SP isn't reliable as a base). 847 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 848 FrameReg = RegInfo->getFrameRegister(MF); 849 return FPOffset; 850 } else if (hasMovingSP) { 851 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 852 if (AFI->isThumb2Function()) { 853 // Try to use the frame pointer if we can, else use the base pointer 854 // since it's available. This is handy for the emergency spill slot, in 855 // particular. 856 if (FPOffset >= -255 && FPOffset < 0) { 857 FrameReg = RegInfo->getFrameRegister(MF); 858 return FPOffset; 859 } 860 } 861 } else if (AFI->isThumb2Function()) { 862 // Use add <rd>, sp, #<imm8> 863 // ldr <rd>, [sp, #<imm8>] 864 // if at all possible to save space. 865 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 866 return Offset; 867 // In Thumb2 mode, the negative offset is very limited. Try to avoid 868 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 869 if (FPOffset >= -255 && FPOffset < 0) { 870 FrameReg = RegInfo->getFrameRegister(MF); 871 return FPOffset; 872 } 873 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 874 // Otherwise, use SP or FP, whichever is closer to the stack slot. 875 FrameReg = RegInfo->getFrameRegister(MF); 876 return FPOffset; 877 } 878 } 879 // Use the base pointer if we have one. 880 if (RegInfo->hasBasePointer(MF)) 881 FrameReg = RegInfo->getBaseRegister(); 882 return Offset; 883 } 884 885 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 886 MachineBasicBlock::iterator MI, 887 const std::vector<CalleeSavedInfo> &CSI, 888 unsigned StmOpc, unsigned StrOpc, 889 bool NoGap, 890 bool(*Func)(unsigned, bool), 891 unsigned NumAlignedDPRCS2Regs, 892 unsigned MIFlags) const { 893 MachineFunction &MF = *MBB.getParent(); 894 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 895 896 DebugLoc DL; 897 898 SmallVector<std::pair<unsigned,bool>, 4> Regs; 899 unsigned i = CSI.size(); 900 while (i != 0) { 901 unsigned LastReg = 0; 902 for (; i != 0; --i) { 903 unsigned Reg = CSI[i-1].getReg(); 904 if (!(Func)(Reg, STI.splitFramePushPop())) continue; 905 906 // D-registers in the aligned area DPRCS2 are NOT spilled here. 907 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 908 continue; 909 910 bool isLiveIn = MF.getRegInfo().isLiveIn(Reg); 911 if (!isLiveIn) 912 MBB.addLiveIn(Reg); 913 // If NoGap is true, push consecutive registers and then leave the rest 914 // for other instructions. e.g. 915 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 916 if (NoGap && LastReg && LastReg != Reg-1) 917 break; 918 LastReg = Reg; 919 // Do not set a kill flag on values that are also marked as live-in. This 920 // happens with the @llvm-returnaddress intrinsic and with arguments 921 // passed in callee saved registers. 922 // Omitting the kill flags is conservatively correct even if the live-in 923 // is not used after all. 924 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 925 } 926 927 if (Regs.empty()) 928 continue; 929 if (Regs.size() > 1 || StrOpc== 0) { 930 MachineInstrBuilder MIB = 931 AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 932 .addReg(ARM::SP).setMIFlags(MIFlags)); 933 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 934 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 935 } else if (Regs.size() == 1) { 936 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc), 937 ARM::SP) 938 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 939 .addReg(ARM::SP).setMIFlags(MIFlags) 940 .addImm(-4); 941 AddDefaultPred(MIB); 942 } 943 Regs.clear(); 944 945 // Put any subsequent vpush instructions before this one: they will refer to 946 // higher register numbers so need to be pushed first in order to preserve 947 // monotonicity. 948 if (MI != MBB.begin()) 949 --MI; 950 } 951 } 952 953 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 954 MachineBasicBlock::iterator MI, 955 const std::vector<CalleeSavedInfo> &CSI, 956 unsigned LdmOpc, unsigned LdrOpc, 957 bool isVarArg, bool NoGap, 958 bool(*Func)(unsigned, bool), 959 unsigned NumAlignedDPRCS2Regs) const { 960 MachineFunction &MF = *MBB.getParent(); 961 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 962 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 963 DebugLoc DL; 964 bool isTailCall = false; 965 bool isInterrupt = false; 966 bool isTrap = false; 967 if (MBB.end() != MI) { 968 DL = MI->getDebugLoc(); 969 unsigned RetOpcode = MI->getOpcode(); 970 isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri); 971 isInterrupt = 972 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 973 isTrap = 974 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 975 RetOpcode == ARM::tTRAP; 976 } 977 978 SmallVector<unsigned, 4> Regs; 979 unsigned i = CSI.size(); 980 while (i != 0) { 981 unsigned LastReg = 0; 982 bool DeleteRet = false; 983 for (; i != 0; --i) { 984 unsigned Reg = CSI[i-1].getReg(); 985 if (!(Func)(Reg, STI.splitFramePushPop())) continue; 986 987 // The aligned reloads from area DPRCS2 are not inserted here. 988 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 989 continue; 990 991 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 992 !isTrap && STI.hasV5TOps()) { 993 if (MBB.succ_empty()) { 994 Reg = ARM::PC; 995 DeleteRet = true; 996 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 997 } else 998 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 999 // Fold the return instruction into the LDM. 1000 } 1001 1002 // If NoGap is true, pop consecutive registers and then leave the rest 1003 // for other instructions. e.g. 1004 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1005 if (NoGap && LastReg && LastReg != Reg-1) 1006 break; 1007 1008 LastReg = Reg; 1009 Regs.push_back(Reg); 1010 } 1011 1012 if (Regs.empty()) 1013 continue; 1014 if (Regs.size() > 1 || LdrOpc == 0) { 1015 MachineInstrBuilder MIB = 1016 AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1017 .addReg(ARM::SP)); 1018 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1019 MIB.addReg(Regs[i], getDefRegState(true)); 1020 if (DeleteRet && MI != MBB.end()) { 1021 MIB.copyImplicitOps(*MI); 1022 MI->eraseFromParent(); 1023 } 1024 MI = MIB; 1025 } else if (Regs.size() == 1) { 1026 // If we adjusted the reg to PC from LR above, switch it back here. We 1027 // only do that for LDM. 1028 if (Regs[0] == ARM::PC) 1029 Regs[0] = ARM::LR; 1030 MachineInstrBuilder MIB = 1031 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1032 .addReg(ARM::SP, RegState::Define) 1033 .addReg(ARM::SP); 1034 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1035 // that refactoring is complete (eventually). 1036 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1037 MIB.addReg(0); 1038 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1039 } else 1040 MIB.addImm(4); 1041 AddDefaultPred(MIB); 1042 } 1043 Regs.clear(); 1044 1045 // Put any subsequent vpop instructions after this one: they will refer to 1046 // higher register numbers so need to be popped afterwards. 1047 if (MI != MBB.end()) 1048 ++MI; 1049 } 1050 } 1051 1052 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1053 /// starting from d8. Also insert stack realignment code and leave the stack 1054 /// pointer pointing to the d8 spill slot. 1055 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1056 MachineBasicBlock::iterator MI, 1057 unsigned NumAlignedDPRCS2Regs, 1058 const std::vector<CalleeSavedInfo> &CSI, 1059 const TargetRegisterInfo *TRI) { 1060 MachineFunction &MF = *MBB.getParent(); 1061 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1062 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1063 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1064 MachineFrameInfo &MFI = MF.getFrameInfo(); 1065 1066 // Mark the D-register spill slots as properly aligned. Since MFI computes 1067 // stack slot layout backwards, this can actually mean that the d-reg stack 1068 // slot offsets can be wrong. The offset for d8 will always be correct. 1069 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 1070 unsigned DNum = CSI[i].getReg() - ARM::D8; 1071 if (DNum > NumAlignedDPRCS2Regs - 1) 1072 continue; 1073 int FI = CSI[i].getFrameIdx(); 1074 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1075 // registers will be 8-byte aligned. 1076 MFI.setObjectAlignment(FI, DNum % 2 ? 8 : 16); 1077 1078 // The stack slot for D8 needs to be maximally aligned because this is 1079 // actually the point where we align the stack pointer. MachineFrameInfo 1080 // computes all offsets relative to the incoming stack pointer which is a 1081 // bit weird when realigning the stack. Any extra padding for this 1082 // over-alignment is not realized because the code inserted below adjusts 1083 // the stack pointer by numregs * 8 before aligning the stack pointer. 1084 if (DNum == 0) 1085 MFI.setObjectAlignment(FI, MFI.getMaxAlignment()); 1086 } 1087 1088 // Move the stack pointer to the d8 spill slot, and align it at the same 1089 // time. Leave the stack slot address in the scratch register r4. 1090 // 1091 // sub r4, sp, #numregs * 8 1092 // bic r4, r4, #align - 1 1093 // mov sp, r4 1094 // 1095 bool isThumb = AFI->isThumbFunction(); 1096 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1097 AFI->setShouldRestoreSPFromFP(true); 1098 1099 // sub r4, sp, #numregs * 8 1100 // The immediate is <= 64, so it doesn't need any special encoding. 1101 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1102 AddDefaultCC(AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1103 .addReg(ARM::SP) 1104 .addImm(8 * NumAlignedDPRCS2Regs))); 1105 1106 unsigned MaxAlign = MF.getFrameInfo().getMaxAlignment(); 1107 // We must set parameter MustBeSingleInstruction to true, since 1108 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1109 // stack alignment. Luckily, this can always be done since all ARM 1110 // architecture versions that support Neon also support the BFC 1111 // instruction. 1112 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1113 1114 // mov sp, r4 1115 // The stack pointer must be adjusted before spilling anything, otherwise 1116 // the stack slots could be clobbered by an interrupt handler. 1117 // Leave r4 live, it is used below. 1118 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1119 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1120 .addReg(ARM::R4); 1121 MIB = AddDefaultPred(MIB); 1122 if (!isThumb) 1123 AddDefaultCC(MIB); 1124 1125 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1126 // r4 holds the stack slot address. 1127 unsigned NextReg = ARM::D8; 1128 1129 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1130 // The writeback is only needed when emitting two vst1.64 instructions. 1131 if (NumAlignedDPRCS2Regs >= 6) { 1132 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1133 &ARM::QQPRRegClass); 1134 MBB.addLiveIn(SupReg); 1135 AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), 1136 ARM::R4) 1137 .addReg(ARM::R4, RegState::Kill).addImm(16) 1138 .addReg(NextReg) 1139 .addReg(SupReg, RegState::ImplicitKill)); 1140 NextReg += 4; 1141 NumAlignedDPRCS2Regs -= 4; 1142 } 1143 1144 // We won't modify r4 beyond this point. It currently points to the next 1145 // register to be spilled. 1146 unsigned R4BaseReg = NextReg; 1147 1148 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1149 if (NumAlignedDPRCS2Regs >= 4) { 1150 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1151 &ARM::QQPRRegClass); 1152 MBB.addLiveIn(SupReg); 1153 AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1154 .addReg(ARM::R4).addImm(16).addReg(NextReg) 1155 .addReg(SupReg, RegState::ImplicitKill)); 1156 NextReg += 4; 1157 NumAlignedDPRCS2Regs -= 4; 1158 } 1159 1160 // 16-byte aligned vst1.64 with 2 d-regs. 1161 if (NumAlignedDPRCS2Regs >= 2) { 1162 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1163 &ARM::QPRRegClass); 1164 MBB.addLiveIn(SupReg); 1165 AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1166 .addReg(ARM::R4).addImm(16).addReg(SupReg)); 1167 NextReg += 2; 1168 NumAlignedDPRCS2Regs -= 2; 1169 } 1170 1171 // Finally, use a vanilla vstr.64 for the odd last register. 1172 if (NumAlignedDPRCS2Regs) { 1173 MBB.addLiveIn(NextReg); 1174 // vstr.64 uses addrmode5 which has an offset scale of 4. 1175 AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1176 .addReg(NextReg) 1177 .addReg(ARM::R4).addImm((NextReg-R4BaseReg)*2)); 1178 } 1179 1180 // The last spill instruction inserted should kill the scratch register r4. 1181 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1182 } 1183 1184 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1185 /// iterator to the following instruction. 1186 static MachineBasicBlock::iterator 1187 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1188 unsigned NumAlignedDPRCS2Regs) { 1189 // sub r4, sp, #numregs * 8 1190 // bic r4, r4, #align - 1 1191 // mov sp, r4 1192 ++MI; ++MI; ++MI; 1193 assert(MI->mayStore() && "Expecting spill instruction"); 1194 1195 // These switches all fall through. 1196 switch(NumAlignedDPRCS2Regs) { 1197 case 7: 1198 ++MI; 1199 assert(MI->mayStore() && "Expecting spill instruction"); 1200 default: 1201 ++MI; 1202 assert(MI->mayStore() && "Expecting spill instruction"); 1203 case 1: 1204 case 2: 1205 case 4: 1206 assert(MI->killsRegister(ARM::R4) && "Missed kill flag"); 1207 ++MI; 1208 } 1209 return MI; 1210 } 1211 1212 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1213 /// starting from d8. These instructions are assumed to execute while the 1214 /// stack is still aligned, unlike the code inserted by emitPopInst. 1215 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1216 MachineBasicBlock::iterator MI, 1217 unsigned NumAlignedDPRCS2Regs, 1218 const std::vector<CalleeSavedInfo> &CSI, 1219 const TargetRegisterInfo *TRI) { 1220 MachineFunction &MF = *MBB.getParent(); 1221 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1222 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1223 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1224 1225 // Find the frame index assigned to d8. 1226 int D8SpillFI = 0; 1227 for (unsigned i = 0, e = CSI.size(); i != e; ++i) 1228 if (CSI[i].getReg() == ARM::D8) { 1229 D8SpillFI = CSI[i].getFrameIdx(); 1230 break; 1231 } 1232 1233 // Materialize the address of the d8 spill slot into the scratch register r4. 1234 // This can be fairly complicated if the stack frame is large, so just use 1235 // the normal frame index elimination mechanism to do it. This code runs as 1236 // the initial part of the epilog where the stack and base pointers haven't 1237 // been changed yet. 1238 bool isThumb = AFI->isThumbFunction(); 1239 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1240 1241 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 1242 AddDefaultCC(AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1243 .addFrameIndex(D8SpillFI).addImm(0))); 1244 1245 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 1246 unsigned NextReg = ARM::D8; 1247 1248 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 1249 if (NumAlignedDPRCS2Regs >= 6) { 1250 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1251 &ARM::QQPRRegClass); 1252 AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 1253 .addReg(ARM::R4, RegState::Define) 1254 .addReg(ARM::R4, RegState::Kill).addImm(16) 1255 .addReg(SupReg, RegState::ImplicitDefine)); 1256 NextReg += 4; 1257 NumAlignedDPRCS2Regs -= 4; 1258 } 1259 1260 // We won't modify r4 beyond this point. It currently points to the next 1261 // register to be spilled. 1262 unsigned R4BaseReg = NextReg; 1263 1264 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 1265 if (NumAlignedDPRCS2Regs >= 4) { 1266 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1267 &ARM::QQPRRegClass); 1268 AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 1269 .addReg(ARM::R4).addImm(16) 1270 .addReg(SupReg, RegState::ImplicitDefine)); 1271 NextReg += 4; 1272 NumAlignedDPRCS2Regs -= 4; 1273 } 1274 1275 // 16-byte aligned vld1.64 with 2 d-regs. 1276 if (NumAlignedDPRCS2Regs >= 2) { 1277 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1278 &ARM::QPRRegClass); 1279 AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 1280 .addReg(ARM::R4).addImm(16)); 1281 NextReg += 2; 1282 NumAlignedDPRCS2Regs -= 2; 1283 } 1284 1285 // Finally, use a vanilla vldr.64 for the remaining odd register. 1286 if (NumAlignedDPRCS2Regs) 1287 AddDefaultPred(BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 1288 .addReg(ARM::R4).addImm(2*(NextReg-R4BaseReg))); 1289 1290 // Last store kills r4. 1291 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1292 } 1293 1294 bool ARMFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB, 1295 MachineBasicBlock::iterator MI, 1296 const std::vector<CalleeSavedInfo> &CSI, 1297 const TargetRegisterInfo *TRI) const { 1298 if (CSI.empty()) 1299 return false; 1300 1301 MachineFunction &MF = *MBB.getParent(); 1302 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1303 1304 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 1305 unsigned PushOneOpc = AFI->isThumbFunction() ? 1306 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 1307 unsigned FltOpc = ARM::VSTMDDB_UPD; 1308 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1309 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0, 1310 MachineInstr::FrameSetup); 1311 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0, 1312 MachineInstr::FrameSetup); 1313 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 1314 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 1315 1316 // The code above does not insert spill code for the aligned DPRCS2 registers. 1317 // The stack realignment code will be inserted between the push instructions 1318 // and these spills. 1319 if (NumAlignedDPRCS2Regs) 1320 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1321 1322 return true; 1323 } 1324 1325 bool ARMFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, 1326 MachineBasicBlock::iterator MI, 1327 const std::vector<CalleeSavedInfo> &CSI, 1328 const TargetRegisterInfo *TRI) const { 1329 if (CSI.empty()) 1330 return false; 1331 1332 MachineFunction &MF = *MBB.getParent(); 1333 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1334 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 1335 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1336 1337 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 1338 // registers. Do that here instead. 1339 if (NumAlignedDPRCS2Regs) 1340 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1341 1342 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1343 unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM; 1344 unsigned FltOpc = ARM::VLDMDIA_UPD; 1345 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 1346 NumAlignedDPRCS2Regs); 1347 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1348 &isARMArea2Register, 0); 1349 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1350 &isARMArea1Register, 0); 1351 1352 return true; 1353 } 1354 1355 // FIXME: Make generic? 1356 static unsigned GetFunctionSizeInBytes(const MachineFunction &MF, 1357 const ARMBaseInstrInfo &TII) { 1358 unsigned FnSize = 0; 1359 for (auto &MBB : MF) { 1360 for (auto &MI : MBB) 1361 FnSize += TII.getInstSizeInBytes(MI); 1362 } 1363 return FnSize; 1364 } 1365 1366 /// estimateRSStackSizeLimit - Look at each instruction that references stack 1367 /// frames and return the stack size limit beyond which some of these 1368 /// instructions will require a scratch register during their expansion later. 1369 // FIXME: Move to TII? 1370 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 1371 const TargetFrameLowering *TFI) { 1372 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1373 unsigned Limit = (1 << 12) - 1; 1374 for (auto &MBB : MF) { 1375 for (auto &MI : MBB) { 1376 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1377 if (!MI.getOperand(i).isFI()) 1378 continue; 1379 1380 // When using ADDri to get the address of a stack object, 255 is the 1381 // largest offset guaranteed to fit in the immediate offset. 1382 if (MI.getOpcode() == ARM::ADDri) { 1383 Limit = std::min(Limit, (1U << 8) - 1); 1384 break; 1385 } 1386 1387 // Otherwise check the addressing mode. 1388 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 1389 case ARMII::AddrMode3: 1390 case ARMII::AddrModeT2_i8: 1391 Limit = std::min(Limit, (1U << 8) - 1); 1392 break; 1393 case ARMII::AddrMode5: 1394 case ARMII::AddrModeT2_i8s4: 1395 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 1396 break; 1397 case ARMII::AddrModeT2_i12: 1398 // i12 supports only positive offset so these will be converted to 1399 // i8 opcodes. See llvm::rewriteT2FrameIndex. 1400 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 1401 Limit = std::min(Limit, (1U << 8) - 1); 1402 break; 1403 case ARMII::AddrMode4: 1404 case ARMII::AddrMode6: 1405 // Addressing modes 4 & 6 (load/store) instructions can't encode an 1406 // immediate offset for stack references. 1407 return 0; 1408 default: 1409 break; 1410 } 1411 break; // At most one FI per instruction 1412 } 1413 } 1414 } 1415 1416 return Limit; 1417 } 1418 1419 // In functions that realign the stack, it can be an advantage to spill the 1420 // callee-saved vector registers after realigning the stack. The vst1 and vld1 1421 // instructions take alignment hints that can improve performance. 1422 // 1423 static void 1424 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 1425 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 1426 if (!SpillAlignedNEONRegs) 1427 return; 1428 1429 // Naked functions don't spill callee-saved registers. 1430 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 1431 return; 1432 1433 // We are planning to use NEON instructions vst1 / vld1. 1434 if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON()) 1435 return; 1436 1437 // Don't bother if the default stack alignment is sufficiently high. 1438 if (MF.getSubtarget().getFrameLowering()->getStackAlignment() >= 8) 1439 return; 1440 1441 // Aligned spills require stack realignment. 1442 if (!static_cast<const ARMBaseRegisterInfo *>( 1443 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 1444 return; 1445 1446 // We always spill contiguous d-registers starting from d8. Count how many 1447 // needs spilling. The register allocator will almost always use the 1448 // callee-saved registers in order, but it can happen that there are holes in 1449 // the range. Registers above the hole will be spilled to the standard DPRCS 1450 // area. 1451 unsigned NumSpills = 0; 1452 for (; NumSpills < 8; ++NumSpills) 1453 if (!SavedRegs.test(ARM::D8 + NumSpills)) 1454 break; 1455 1456 // Don't do this for just one d-register. It's not worth it. 1457 if (NumSpills < 2) 1458 return; 1459 1460 // Spill the first NumSpills D-registers after realigning the stack. 1461 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 1462 1463 // A scratch register is required for the vst1 / vld1 instructions. 1464 SavedRegs.set(ARM::R4); 1465 } 1466 1467 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 1468 BitVector &SavedRegs, 1469 RegScavenger *RS) const { 1470 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1471 // This tells PEI to spill the FP as if it is any other callee-save register 1472 // to take advantage the eliminateFrameIndex machinery. This also ensures it 1473 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 1474 // to combine multiple loads / stores. 1475 bool CanEliminateFrame = true; 1476 bool CS1Spilled = false; 1477 bool LRSpilled = false; 1478 unsigned NumGPRSpills = 0; 1479 unsigned NumFPRSpills = 0; 1480 SmallVector<unsigned, 4> UnspilledCS1GPRs; 1481 SmallVector<unsigned, 4> UnspilledCS2GPRs; 1482 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1483 MF.getSubtarget().getRegisterInfo()); 1484 const ARMBaseInstrInfo &TII = 1485 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1486 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1487 MachineFrameInfo &MFI = MF.getFrameInfo(); 1488 MachineRegisterInfo &MRI = MF.getRegInfo(); 1489 unsigned FramePtr = RegInfo->getFrameRegister(MF); 1490 1491 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 1492 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 1493 // since it's not always possible to restore sp from fp in a single 1494 // instruction. 1495 // FIXME: It will be better just to find spare register here. 1496 if (AFI->isThumb2Function() && 1497 (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF))) 1498 SavedRegs.set(ARM::R4); 1499 1500 if (AFI->isThumb1OnlyFunction()) { 1501 // Spill LR if Thumb1 function uses variable length argument lists. 1502 if (AFI->getArgRegsSaveSize() > 0) 1503 SavedRegs.set(ARM::LR); 1504 1505 // Spill R4 if Thumb1 epilogue has to restore SP from FP. We don't know 1506 // for sure what the stack size will be, but for this, an estimate is good 1507 // enough. If there anything changes it, it'll be a spill, which implies 1508 // we've used all the registers and so R4 is already used, so not marking 1509 // it here will be OK. 1510 // FIXME: It will be better just to find spare register here. 1511 unsigned StackSize = MFI.estimateStackSize(MF); 1512 if (MFI.hasVarSizedObjects() || StackSize > 508) 1513 SavedRegs.set(ARM::R4); 1514 } 1515 1516 // See if we can spill vector registers to aligned stack. 1517 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 1518 1519 // Spill the BasePtr if it's used. 1520 if (RegInfo->hasBasePointer(MF)) 1521 SavedRegs.set(RegInfo->getBaseRegister()); 1522 1523 // Don't spill FP if the frame can be eliminated. This is determined 1524 // by scanning the callee-save registers to see if any is modified. 1525 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 1526 for (unsigned i = 0; CSRegs[i]; ++i) { 1527 unsigned Reg = CSRegs[i]; 1528 bool Spilled = false; 1529 if (SavedRegs.test(Reg)) { 1530 Spilled = true; 1531 CanEliminateFrame = false; 1532 } 1533 1534 if (!ARM::GPRRegClass.contains(Reg)) { 1535 if (Spilled) { 1536 if (ARM::SPRRegClass.contains(Reg)) 1537 NumFPRSpills++; 1538 else if (ARM::DPRRegClass.contains(Reg)) 1539 NumFPRSpills += 2; 1540 else if (ARM::QPRRegClass.contains(Reg)) 1541 NumFPRSpills += 4; 1542 } 1543 continue; 1544 } 1545 1546 if (Spilled) { 1547 NumGPRSpills++; 1548 1549 if (!STI.splitFramePushPop()) { 1550 if (Reg == ARM::LR) 1551 LRSpilled = true; 1552 CS1Spilled = true; 1553 continue; 1554 } 1555 1556 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 1557 switch (Reg) { 1558 case ARM::LR: 1559 LRSpilled = true; 1560 // Fallthrough 1561 case ARM::R0: case ARM::R1: 1562 case ARM::R2: case ARM::R3: 1563 case ARM::R4: case ARM::R5: 1564 case ARM::R6: case ARM::R7: 1565 CS1Spilled = true; 1566 break; 1567 default: 1568 break; 1569 } 1570 } else { 1571 if (!STI.splitFramePushPop()) { 1572 UnspilledCS1GPRs.push_back(Reg); 1573 continue; 1574 } 1575 1576 switch (Reg) { 1577 case ARM::R0: case ARM::R1: 1578 case ARM::R2: case ARM::R3: 1579 case ARM::R4: case ARM::R5: 1580 case ARM::R6: case ARM::R7: 1581 case ARM::LR: 1582 UnspilledCS1GPRs.push_back(Reg); 1583 break; 1584 default: 1585 UnspilledCS2GPRs.push_back(Reg); 1586 break; 1587 } 1588 } 1589 } 1590 1591 bool ForceLRSpill = false; 1592 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 1593 unsigned FnSize = GetFunctionSizeInBytes(MF, TII); 1594 // Force LR to be spilled if the Thumb function size is > 2048. This enables 1595 // use of BL to implement far jump. If it turns out that it's not needed 1596 // then the branch fix up path will undo it. 1597 if (FnSize >= (1 << 11)) { 1598 CanEliminateFrame = false; 1599 ForceLRSpill = true; 1600 } 1601 } 1602 1603 // If any of the stack slot references may be out of range of an immediate 1604 // offset, make sure a register (or a spill slot) is available for the 1605 // register scavenger. Note that if we're indexing off the frame pointer, the 1606 // effective stack size is 4 bytes larger since the FP points to the stack 1607 // slot of the previous FP. Also, if we have variable sized objects in the 1608 // function, stack slot references will often be negative, and some of 1609 // our instructions are positive-offset only, so conservatively consider 1610 // that case to want a spill slot (or register) as well. Similarly, if 1611 // the function adjusts the stack pointer during execution and the 1612 // adjustments aren't already part of our stack size estimate, our offset 1613 // calculations may be off, so be conservative. 1614 // FIXME: We could add logic to be more precise about negative offsets 1615 // and which instructions will need a scratch register for them. Is it 1616 // worth the effort and added fragility? 1617 unsigned EstimatedStackSize = 1618 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 1619 if (hasFP(MF)) { 1620 if (AFI->hasStackFrame()) 1621 EstimatedStackSize += 4; 1622 } else { 1623 // If FP is not used, SP will be used to access arguments, so count the 1624 // size of arguments into the estimation. 1625 EstimatedStackSize += MF.getInfo<ARMFunctionInfo>()->getArgumentStackSize(); 1626 } 1627 EstimatedStackSize += 16; // For possible paddings. 1628 1629 bool BigStack = EstimatedStackSize >= estimateRSStackSizeLimit(MF, this) || 1630 MFI.hasVarSizedObjects() || 1631 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)); 1632 bool ExtraCSSpill = false; 1633 if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 1634 AFI->setHasStackFrame(true); 1635 1636 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 1637 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 1638 if (!LRSpilled && CS1Spilled) { 1639 SavedRegs.set(ARM::LR); 1640 NumGPRSpills++; 1641 SmallVectorImpl<unsigned>::iterator LRPos; 1642 LRPos = find(UnspilledCS1GPRs, (unsigned)ARM::LR); 1643 if (LRPos != UnspilledCS1GPRs.end()) 1644 UnspilledCS1GPRs.erase(LRPos); 1645 1646 ForceLRSpill = false; 1647 ExtraCSSpill = true; 1648 } 1649 1650 if (hasFP(MF)) { 1651 SavedRegs.set(FramePtr); 1652 auto FPPos = find(UnspilledCS1GPRs, FramePtr); 1653 if (FPPos != UnspilledCS1GPRs.end()) 1654 UnspilledCS1GPRs.erase(FPPos); 1655 NumGPRSpills++; 1656 } 1657 1658 // If stack and double are 8-byte aligned and we are spilling an odd number 1659 // of GPRs, spill one extra callee save GPR so we won't have to pad between 1660 // the integer and double callee save areas. 1661 unsigned TargetAlign = getStackAlignment(); 1662 if (TargetAlign >= 8 && (NumGPRSpills & 1)) { 1663 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 1664 for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) { 1665 unsigned Reg = UnspilledCS1GPRs[i]; 1666 // Don't spill high register if the function is thumb. In the case of 1667 // Windows on ARM, accept R11 (frame pointer) 1668 if (!AFI->isThumbFunction() || 1669 (STI.isTargetWindows() && Reg == ARM::R11) || 1670 isARMLowRegister(Reg) || Reg == ARM::LR) { 1671 SavedRegs.set(Reg); 1672 if (!MRI.isReserved(Reg)) 1673 ExtraCSSpill = true; 1674 break; 1675 } 1676 } 1677 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 1678 unsigned Reg = UnspilledCS2GPRs.front(); 1679 SavedRegs.set(Reg); 1680 if (!MRI.isReserved(Reg)) 1681 ExtraCSSpill = true; 1682 } 1683 } 1684 1685 // Estimate if we might need to scavenge a register at some point in order 1686 // to materialize a stack offset. If so, either spill one additional 1687 // callee-saved register or reserve a special spill slot to facilitate 1688 // register scavenging. Thumb1 needs a spill slot for stack pointer 1689 // adjustments also, even when the frame itself is small. 1690 if (BigStack && !ExtraCSSpill) { 1691 // If any non-reserved CS register isn't spilled, just spill one or two 1692 // extra. That should take care of it! 1693 unsigned NumExtras = TargetAlign / 4; 1694 SmallVector<unsigned, 2> Extras; 1695 while (NumExtras && !UnspilledCS1GPRs.empty()) { 1696 unsigned Reg = UnspilledCS1GPRs.back(); 1697 UnspilledCS1GPRs.pop_back(); 1698 if (!MRI.isReserved(Reg) && 1699 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg) || 1700 Reg == ARM::LR)) { 1701 Extras.push_back(Reg); 1702 NumExtras--; 1703 } 1704 } 1705 // For non-Thumb1 functions, also check for hi-reg CS registers 1706 if (!AFI->isThumb1OnlyFunction()) { 1707 while (NumExtras && !UnspilledCS2GPRs.empty()) { 1708 unsigned Reg = UnspilledCS2GPRs.back(); 1709 UnspilledCS2GPRs.pop_back(); 1710 if (!MRI.isReserved(Reg)) { 1711 Extras.push_back(Reg); 1712 NumExtras--; 1713 } 1714 } 1715 } 1716 if (Extras.size() && NumExtras == 0) { 1717 for (unsigned i = 0, e = Extras.size(); i != e; ++i) { 1718 SavedRegs.set(Extras[i]); 1719 } 1720 } else if (!AFI->isThumb1OnlyFunction()) { 1721 // note: Thumb1 functions spill to R12, not the stack. Reserve a slot 1722 // closest to SP or frame pointer. 1723 assert(RS && "Register scavenging not provided"); 1724 const TargetRegisterClass *RC = &ARM::GPRRegClass; 1725 RS->addScavengingFrameIndex(MFI.CreateStackObject(RC->getSize(), 1726 RC->getAlignment(), 1727 false)); 1728 } 1729 } 1730 } 1731 1732 if (ForceLRSpill) { 1733 SavedRegs.set(ARM::LR); 1734 AFI->setLRIsSpilledForFarJump(true); 1735 } 1736 } 1737 1738 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 1739 MachineFunction &MF, MachineBasicBlock &MBB, 1740 MachineBasicBlock::iterator I) const { 1741 const ARMBaseInstrInfo &TII = 1742 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1743 if (!hasReservedCallFrame(MF)) { 1744 // If we have alloca, convert as follows: 1745 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 1746 // ADJCALLSTACKUP -> add, sp, sp, amount 1747 MachineInstr &Old = *I; 1748 DebugLoc dl = Old.getDebugLoc(); 1749 unsigned Amount = Old.getOperand(0).getImm(); 1750 if (Amount != 0) { 1751 // We need to keep the stack aligned properly. To do this, we round the 1752 // amount of space needed for the outgoing arguments up to the next 1753 // alignment boundary. 1754 Amount = alignSPAdjust(Amount); 1755 1756 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1757 assert(!AFI->isThumb1OnlyFunction() && 1758 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 1759 bool isARM = !AFI->isThumbFunction(); 1760 1761 // Replace the pseudo instruction with a new instruction... 1762 unsigned Opc = Old.getOpcode(); 1763 int PIdx = Old.findFirstPredOperandIdx(); 1764 ARMCC::CondCodes Pred = 1765 (PIdx == -1) ? ARMCC::AL 1766 : (ARMCC::CondCodes)Old.getOperand(PIdx).getImm(); 1767 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 1768 // Note: PredReg is operand 2 for ADJCALLSTACKDOWN. 1769 unsigned PredReg = Old.getOperand(2).getReg(); 1770 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 1771 Pred, PredReg); 1772 } else { 1773 // Note: PredReg is operand 3 for ADJCALLSTACKUP. 1774 unsigned PredReg = Old.getOperand(3).getReg(); 1775 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 1776 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 1777 Pred, PredReg); 1778 } 1779 } 1780 } 1781 return MBB.erase(I); 1782 } 1783 1784 /// Get the minimum constant for ARM that is greater than or equal to the 1785 /// argument. In ARM, constants can have any value that can be produced by 1786 /// rotating an 8-bit value to the right by an even number of bits within a 1787 /// 32-bit word. 1788 static uint32_t alignToARMConstant(uint32_t Value) { 1789 unsigned Shifted = 0; 1790 1791 if (Value == 0) 1792 return 0; 1793 1794 while (!(Value & 0xC0000000)) { 1795 Value = Value << 2; 1796 Shifted += 2; 1797 } 1798 1799 bool Carry = (Value & 0x00FFFFFF); 1800 Value = ((Value & 0xFF000000) >> 24) + Carry; 1801 1802 if (Value & 0x0000100) 1803 Value = Value & 0x000001FC; 1804 1805 if (Shifted > 24) 1806 Value = Value >> (Shifted - 24); 1807 else 1808 Value = Value << (24 - Shifted); 1809 1810 return Value; 1811 } 1812 1813 // The stack limit in the TCB is set to this many bytes above the actual 1814 // stack limit. 1815 static const uint64_t kSplitStackAvailable = 256; 1816 1817 // Adjust the function prologue to enable split stacks. This currently only 1818 // supports android and linux. 1819 // 1820 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 1821 // must be well defined in order to allow for consistent implementations of the 1822 // __morestack helper function. The ABI is also not a normal ABI in that it 1823 // doesn't follow the normal calling conventions because this allows the 1824 // prologue of each function to be optimized further. 1825 // 1826 // Currently, the ABI looks like (when calling __morestack) 1827 // 1828 // * r4 holds the minimum stack size requested for this function call 1829 // * r5 holds the stack size of the arguments to the function 1830 // * the beginning of the function is 3 instructions after the call to 1831 // __morestack 1832 // 1833 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 1834 // place the arguments on to the new stack, and the 3-instruction knowledge to 1835 // jump directly to the body of the function when working on the new stack. 1836 // 1837 // An old (and possibly no longer compatible) implementation of __morestack for 1838 // ARM can be found at [1]. 1839 // 1840 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 1841 void ARMFrameLowering::adjustForSegmentedStacks( 1842 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 1843 unsigned Opcode; 1844 unsigned CFIIndex; 1845 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 1846 bool Thumb = ST->isThumb(); 1847 1848 // Sadly, this currently doesn't support varargs, platforms other than 1849 // android/linux. Note that thumb1/thumb2 are support for android/linux. 1850 if (MF.getFunction()->isVarArg()) 1851 report_fatal_error("Segmented stacks do not support vararg functions."); 1852 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 1853 report_fatal_error("Segmented stacks not supported on this platform."); 1854 1855 MachineFrameInfo &MFI = MF.getFrameInfo(); 1856 MachineModuleInfo &MMI = MF.getMMI(); 1857 MCContext &Context = MMI.getContext(); 1858 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 1859 const ARMBaseInstrInfo &TII = 1860 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1861 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 1862 DebugLoc DL; 1863 1864 uint64_t StackSize = MFI.getStackSize(); 1865 1866 // Do not generate a prologue for functions with a stack of size zero 1867 if (StackSize == 0) 1868 return; 1869 1870 // Use R4 and R5 as scratch registers. 1871 // We save R4 and R5 before use and restore them before leaving the function. 1872 unsigned ScratchReg0 = ARM::R4; 1873 unsigned ScratchReg1 = ARM::R5; 1874 uint64_t AlignedStackSize; 1875 1876 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 1877 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 1878 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 1879 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 1880 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 1881 1882 // Grab everything that reaches PrologueMBB to update there liveness as well. 1883 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 1884 SmallVector<MachineBasicBlock *, 2> WalkList; 1885 WalkList.push_back(&PrologueMBB); 1886 1887 do { 1888 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 1889 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 1890 if (BeforePrologueRegion.insert(PredBB).second) 1891 WalkList.push_back(PredBB); 1892 } 1893 } while (!WalkList.empty()); 1894 1895 // The order in that list is important. 1896 // The blocks will all be inserted before PrologueMBB using that order. 1897 // Therefore the block that should appear first in the CFG should appear 1898 // first in the list. 1899 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 1900 PostStackMBB}; 1901 1902 for (MachineBasicBlock *B : AddedBlocks) 1903 BeforePrologueRegion.insert(B); 1904 1905 for (const auto &LI : PrologueMBB.liveins()) { 1906 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 1907 PredBB->addLiveIn(LI); 1908 } 1909 1910 // Remove the newly added blocks from the list, since we know 1911 // we do not have to do the following updates for them. 1912 for (MachineBasicBlock *B : AddedBlocks) { 1913 BeforePrologueRegion.erase(B); 1914 MF.insert(PrologueMBB.getIterator(), B); 1915 } 1916 1917 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 1918 // Make sure the LiveIns are still sorted and unique. 1919 MBB->sortUniqueLiveIns(); 1920 // Replace the edges to PrologueMBB by edges to the sequences 1921 // we are about to add. 1922 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 1923 } 1924 1925 // The required stack size that is aligned to ARM constant criterion. 1926 AlignedStackSize = alignToARMConstant(StackSize); 1927 1928 // When the frame size is less than 256 we just compare the stack 1929 // boundary directly to the value of the stack pointer, per gcc. 1930 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 1931 1932 // We will use two of the callee save registers as scratch registers so we 1933 // need to save those registers onto the stack. 1934 // We will use SR0 to hold stack limit and SR1 to hold the stack size 1935 // requested and arguments for __morestack(). 1936 // SR0: Scratch Register #0 1937 // SR1: Scratch Register #1 1938 // push {SR0, SR1} 1939 if (Thumb) { 1940 AddDefaultPred(BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))) 1941 .addReg(ScratchReg0).addReg(ScratchReg1); 1942 } else { 1943 AddDefaultPred(BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 1944 .addReg(ARM::SP, RegState::Define).addReg(ARM::SP)) 1945 .addReg(ScratchReg0).addReg(ScratchReg1); 1946 } 1947 1948 // Emit the relevant DWARF information about the change in stack pointer as 1949 // well as where to find both r4 and r5 (the callee-save registers) 1950 CFIIndex = 1951 MMI.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -8)); 1952 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1953 .addCFIIndex(CFIIndex); 1954 CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset( 1955 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 1956 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1957 .addCFIIndex(CFIIndex); 1958 CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset( 1959 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 1960 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1961 .addCFIIndex(CFIIndex); 1962 1963 // mov SR1, sp 1964 if (Thumb) { 1965 AddDefaultPred(BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 1966 .addReg(ARM::SP)); 1967 } else if (CompareStackPointer) { 1968 AddDefaultPred(BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 1969 .addReg(ARM::SP)).addReg(0); 1970 } 1971 1972 // sub SR1, sp, #StackSize 1973 if (!CompareStackPointer && Thumb) { 1974 AddDefaultPred( 1975 AddDefaultCC(BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)) 1976 .addReg(ScratchReg1).addImm(AlignedStackSize)); 1977 } else if (!CompareStackPointer) { 1978 AddDefaultPred(BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 1979 .addReg(ARM::SP).addImm(AlignedStackSize)).addReg(0); 1980 } 1981 1982 if (Thumb && ST->isThumb1Only()) { 1983 unsigned PCLabelId = ARMFI->createPICLabelUId(); 1984 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 1985 MF.getFunction()->getContext(), "__STACK_LIMIT", PCLabelId, 0); 1986 MachineConstantPool *MCP = MF.getConstantPool(); 1987 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, 4); 1988 1989 // ldr SR0, [pc, offset(STACK_LIMIT)] 1990 AddDefaultPred(BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 1991 .addConstantPoolIndex(CPI)); 1992 1993 // ldr SR0, [SR0] 1994 AddDefaultPred(BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 1995 .addReg(ScratchReg0).addImm(0)); 1996 } else { 1997 // Get TLS base address from the coprocessor 1998 // mrc p15, #0, SR0, c13, c0, #3 1999 AddDefaultPred(BuildMI(McrMBB, DL, TII.get(ARM::MRC), ScratchReg0) 2000 .addImm(15) 2001 .addImm(0) 2002 .addImm(13) 2003 .addImm(0) 2004 .addImm(3)); 2005 2006 // Use the last tls slot on android and a private field of the TCP on linux. 2007 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 2008 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 2009 2010 // Get the stack limit from the right offset 2011 // ldr SR0, [sr0, #4 * TlsOffset] 2012 AddDefaultPred(BuildMI(GetMBB, DL, TII.get(ARM::LDRi12), ScratchReg0) 2013 .addReg(ScratchReg0).addImm(4 * TlsOffset)); 2014 } 2015 2016 // Compare stack limit with stack size requested. 2017 // cmp SR0, SR1 2018 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 2019 AddDefaultPred(BuildMI(GetMBB, DL, TII.get(Opcode)) 2020 .addReg(ScratchReg0) 2021 .addReg(ScratchReg1)); 2022 2023 // This jump is taken if StackLimit < SP - stack required. 2024 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 2025 BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB) 2026 .addImm(ARMCC::LO) 2027 .addReg(ARM::CPSR); 2028 2029 2030 // Calling __morestack(StackSize, Size of stack arguments). 2031 // __morestack knows that the stack size requested is in SR0(r4) 2032 // and amount size of stack arguments is in SR1(r5). 2033 2034 // Pass first argument for the __morestack by Scratch Register #0. 2035 // The amount size of stack required 2036 if (Thumb) { 2037 AddDefaultPred(AddDefaultCC(BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), 2038 ScratchReg0)).addImm(AlignedStackSize)); 2039 } else { 2040 AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 2041 .addImm(AlignedStackSize)).addReg(0); 2042 } 2043 // Pass second argument for the __morestack by Scratch Register #1. 2044 // The amount size of stack consumed to save function arguments. 2045 if (Thumb) { 2046 AddDefaultPred( 2047 AddDefaultCC(BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)) 2048 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))); 2049 } else { 2050 AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 2051 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))) 2052 .addReg(0); 2053 } 2054 2055 // push {lr} - Save return address of this function. 2056 if (Thumb) { 2057 AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))) 2058 .addReg(ARM::LR); 2059 } else { 2060 AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 2061 .addReg(ARM::SP, RegState::Define) 2062 .addReg(ARM::SP)) 2063 .addReg(ARM::LR); 2064 } 2065 2066 // Emit the DWARF info about the change in stack as well as where to find the 2067 // previous link register 2068 CFIIndex = 2069 MMI.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -12)); 2070 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2071 .addCFIIndex(CFIIndex); 2072 CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset( 2073 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 2074 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2075 .addCFIIndex(CFIIndex); 2076 2077 // Call __morestack(). 2078 if (Thumb) { 2079 AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::tBL))) 2080 .addExternalSymbol("__morestack"); 2081 } else { 2082 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 2083 .addExternalSymbol("__morestack"); 2084 } 2085 2086 // pop {lr} - Restore return address of this original function. 2087 if (Thumb) { 2088 if (ST->isThumb1Only()) { 2089 AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))) 2090 .addReg(ScratchReg0); 2091 AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 2092 .addReg(ScratchReg0)); 2093 } else { 2094 AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 2095 .addReg(ARM::LR, RegState::Define) 2096 .addReg(ARM::SP, RegState::Define) 2097 .addReg(ARM::SP) 2098 .addImm(4)); 2099 } 2100 } else { 2101 AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2102 .addReg(ARM::SP, RegState::Define) 2103 .addReg(ARM::SP)) 2104 .addReg(ARM::LR); 2105 } 2106 2107 // Restore SR0 and SR1 in case of __morestack() was called. 2108 // __morestack() will skip PostStackMBB block so we need to restore 2109 // scratch registers from here. 2110 // pop {SR0, SR1} 2111 if (Thumb) { 2112 AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))) 2113 .addReg(ScratchReg0) 2114 .addReg(ScratchReg1); 2115 } else { 2116 AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2117 .addReg(ARM::SP, RegState::Define) 2118 .addReg(ARM::SP)) 2119 .addReg(ScratchReg0) 2120 .addReg(ScratchReg1); 2121 } 2122 2123 // Update the CFA offset now that we've popped 2124 CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); 2125 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2126 .addCFIIndex(CFIIndex); 2127 2128 // bx lr - Return from this function. 2129 Opcode = Thumb ? ARM::tBX_RET : ARM::BX_RET; 2130 AddDefaultPred(BuildMI(AllocMBB, DL, TII.get(Opcode))); 2131 2132 // Restore SR0 and SR1 in case of __morestack() was not called. 2133 // pop {SR0, SR1} 2134 if (Thumb) { 2135 AddDefaultPred(BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))) 2136 .addReg(ScratchReg0) 2137 .addReg(ScratchReg1); 2138 } else { 2139 AddDefaultPred(BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 2140 .addReg(ARM::SP, RegState::Define) 2141 .addReg(ARM::SP)) 2142 .addReg(ScratchReg0) 2143 .addReg(ScratchReg1); 2144 } 2145 2146 // Update the CFA offset now that we've popped 2147 CFIIndex = MMI.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); 2148 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2149 .addCFIIndex(CFIIndex); 2150 2151 // Tell debuggers that r4 and r5 are now the same as they were in the 2152 // previous function, that they're the "Same Value". 2153 CFIIndex = MMI.addFrameInst(MCCFIInstruction::createSameValue( 2154 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 2155 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2156 .addCFIIndex(CFIIndex); 2157 CFIIndex = MMI.addFrameInst(MCCFIInstruction::createSameValue( 2158 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 2159 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2160 .addCFIIndex(CFIIndex); 2161 2162 // Organizing MBB lists 2163 PostStackMBB->addSuccessor(&PrologueMBB); 2164 2165 AllocMBB->addSuccessor(PostStackMBB); 2166 2167 GetMBB->addSuccessor(PostStackMBB); 2168 GetMBB->addSuccessor(AllocMBB); 2169 2170 McrMBB->addSuccessor(GetMBB); 2171 2172 PrevStackMBB->addSuccessor(McrMBB); 2173 2174 #ifdef EXPENSIVE_CHECKS 2175 MF.verify(); 2176 #endif 2177 } 2178