1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the ARM implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 // 13 // This file contains the ARM implementation of TargetFrameLowering class. 14 // 15 // On ARM, stack frames are structured as follows: 16 // 17 // The stack grows downward. 18 // 19 // All of the individual frame areas on the frame below are optional, i.e. it's 20 // possible to create a function so that the particular area isn't present 21 // in the frame. 22 // 23 // At function entry, the "frame" looks as follows: 24 // 25 // | | Higher address 26 // |-----------------------------------| 27 // | | 28 // | arguments passed on the stack | 29 // | | 30 // |-----------------------------------| <- sp 31 // | | Lower address 32 // 33 // 34 // After the prologue has run, the frame has the following general structure. 35 // Technically the last frame area (VLAs) doesn't get created until in the 36 // main function body, after the prologue is run. However, it's depicted here 37 // for completeness. 38 // 39 // | | Higher address 40 // |-----------------------------------| 41 // | | 42 // | arguments passed on the stack | 43 // | | 44 // |-----------------------------------| <- (sp at function entry) 45 // | | 46 // | varargs from registers | 47 // | | 48 // |-----------------------------------| 49 // | | 50 // | prev_lr | 51 // | prev_fp | 52 // | (a.k.a. "frame record") | 53 // | | 54 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11) 55 // | | 56 // | callee-saved gpr registers | 57 // | | 58 // |-----------------------------------| 59 // | | 60 // | callee-saved fp/simd regs | 61 // | | 62 // |-----------------------------------| 63 // |.empty.space.to.make.part.below....| 64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at 65 // |.the.standard.8-byte.alignment.....| compile time; if present) 66 // |-----------------------------------| 67 // | | 68 // | local variables of fixed size | 69 // | including spill slots | 70 // |-----------------------------------| <- base pointer (not defined by ABI, 71 // |.variable-sized.local.variables....| LLVM chooses r6) 72 // |.(VLAs)............................| (size of this area is unknown at 73 // |...................................| compile time) 74 // |-----------------------------------| <- sp 75 // | | Lower address 76 // 77 // 78 // To access the data in a frame, at-compile time, a constant offset must be 79 // computable from one of the pointers (fp, bp, sp) to access it. The size 80 // of the areas with a dotted background cannot be computed at compile-time 81 // if they are present, making it required to have all three of fp, bp and 82 // sp to be set up to be able to access all contents in the frame areas, 83 // assuming all of the frame areas are non-empty. 84 // 85 // For most functions, some of the frame areas are empty. For those functions, 86 // it may not be necessary to set up fp or bp: 87 // * A base pointer is definitely needed when there are both VLAs and local 88 // variables with more-than-default alignment requirements. 89 // * A frame pointer is definitely needed when there are local variables with 90 // more-than-default alignment requirements. 91 // 92 // In some cases when a base pointer is not strictly needed, it is generated 93 // anyway when offsets from the frame pointer to access local variables become 94 // so large that the offset can't be encoded in the immediate fields of loads 95 // or stores. 96 // 97 // The frame pointer might be chosen to be r7 or r11, depending on the target 98 // architecture and operating system. See ARMSubtarget::getFramePointerReg for 99 // details. 100 // 101 // Outgoing function arguments must be at the bottom of the stack frame when 102 // calling another function. If we do not have variable-sized stack objects, we 103 // can allocate a "reserved call frame" area at the bottom of the local 104 // variable area, large enough for all outgoing calls. If we do have VLAs, then 105 // the stack pointer must be decremented and incremented around each call to 106 // make space for the arguments below the VLAs. 107 // 108 //===----------------------------------------------------------------------===// 109 110 #include "ARMFrameLowering.h" 111 #include "ARMBaseInstrInfo.h" 112 #include "ARMBaseRegisterInfo.h" 113 #include "ARMConstantPoolValue.h" 114 #include "ARMMachineFunctionInfo.h" 115 #include "ARMSubtarget.h" 116 #include "MCTargetDesc/ARMAddressingModes.h" 117 #include "MCTargetDesc/ARMBaseInfo.h" 118 #include "Utils/ARMBaseInfo.h" 119 #include "llvm/ADT/BitVector.h" 120 #include "llvm/ADT/STLExtras.h" 121 #include "llvm/ADT/SmallPtrSet.h" 122 #include "llvm/ADT/SmallVector.h" 123 #include "llvm/CodeGen/MachineBasicBlock.h" 124 #include "llvm/CodeGen/MachineConstantPool.h" 125 #include "llvm/CodeGen/MachineFrameInfo.h" 126 #include "llvm/CodeGen/MachineFunction.h" 127 #include "llvm/CodeGen/MachineInstr.h" 128 #include "llvm/CodeGen/MachineInstrBuilder.h" 129 #include "llvm/CodeGen/MachineJumpTableInfo.h" 130 #include "llvm/CodeGen/MachineModuleInfo.h" 131 #include "llvm/CodeGen/MachineOperand.h" 132 #include "llvm/CodeGen/MachineRegisterInfo.h" 133 #include "llvm/CodeGen/RegisterScavenging.h" 134 #include "llvm/CodeGen/TargetInstrInfo.h" 135 #include "llvm/CodeGen/TargetOpcodes.h" 136 #include "llvm/CodeGen/TargetRegisterInfo.h" 137 #include "llvm/CodeGen/TargetSubtargetInfo.h" 138 #include "llvm/IR/Attributes.h" 139 #include "llvm/IR/CallingConv.h" 140 #include "llvm/IR/DebugLoc.h" 141 #include "llvm/IR/Function.h" 142 #include "llvm/MC/MCAsmInfo.h" 143 #include "llvm/MC/MCContext.h" 144 #include "llvm/MC/MCDwarf.h" 145 #include "llvm/MC/MCInstrDesc.h" 146 #include "llvm/MC/MCRegisterInfo.h" 147 #include "llvm/Support/CodeGen.h" 148 #include "llvm/Support/CommandLine.h" 149 #include "llvm/Support/Compiler.h" 150 #include "llvm/Support/Debug.h" 151 #include "llvm/Support/ErrorHandling.h" 152 #include "llvm/Support/MathExtras.h" 153 #include "llvm/Support/raw_ostream.h" 154 #include "llvm/Target/TargetMachine.h" 155 #include "llvm/Target/TargetOptions.h" 156 #include <algorithm> 157 #include <cassert> 158 #include <cstddef> 159 #include <cstdint> 160 #include <iterator> 161 #include <utility> 162 #include <vector> 163 164 #define DEBUG_TYPE "arm-frame-lowering" 165 166 using namespace llvm; 167 168 static cl::opt<bool> 169 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 170 cl::desc("Align ARM NEON spills in prolog and epilog")); 171 172 static MachineBasicBlock::iterator 173 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 174 unsigned NumAlignedDPRCS2Regs); 175 176 enum class SpillArea { 177 GPRCS1, 178 GPRCS2, 179 DPRCS1, 180 DPRCS2, 181 FPCXT, 182 }; 183 184 /// Get the spill area that Reg should be saved into in the prologue. 185 SpillArea getSpillArea(Register Reg, 186 ARMSubtarget::PushPopSplitVariation Variation, 187 unsigned NumAlignedDPRCS2Regs, 188 const ARMBaseRegisterInfo *RegInfo) { 189 // NoSplit: 190 // push {r0-r12, lr} GPRCS1 191 // vpush {r8-d15} DPRCS1 192 // 193 // SplitR7: 194 // push {r0-r7, lr} GPRCS1 195 // push {r8-r12} GPRCS2 196 // vpush {r8-d15} DPRCS1 197 // 198 // SplitR11WindowsSEH: 199 // push {r0-r10, r12} GPRCS1 200 // vpush {r8-d15} DPRCS1 201 // push {r11, lr} GPRCS2 202 203 // If FPCXTNS is spilled (for CMSE secure entryfunctions), it is always at 204 // the top of the stack frame. 205 // The DPRCS2 region is used for ABIs which only guarantee 4-byte alignment 206 // of SP. If used, it will be below the other save areas, after the stack has 207 // been re-aligned. 208 209 switch (Reg) { 210 default: 211 dbgs() << "Don't know where to spill " << printReg(Reg, RegInfo) << "\n"; 212 llvm_unreachable("Don't know where to spill this register"); 213 break; 214 215 case ARM::FPCXTNS: 216 return SpillArea::FPCXT; 217 218 case ARM::R0: 219 case ARM::R1: 220 case ARM::R2: 221 case ARM::R3: 222 case ARM::R4: 223 case ARM::R5: 224 case ARM::R6: 225 case ARM::R7: 226 return SpillArea::GPRCS1; 227 228 case ARM::R8: 229 case ARM::R9: 230 case ARM::R10: 231 if (Variation == ARMSubtarget::SplitR7) 232 return SpillArea::GPRCS2; 233 else 234 return SpillArea::GPRCS1; 235 236 case ARM::R11: 237 if (Variation == ARMSubtarget::NoSplit) 238 return SpillArea::GPRCS1; 239 else 240 return SpillArea::GPRCS2; 241 242 case ARM::R12: 243 if (Variation == ARMSubtarget::SplitR7) 244 return SpillArea::GPRCS2; 245 else 246 return SpillArea::GPRCS1; 247 248 case ARM::LR: 249 if (Variation == ARMSubtarget::SplitR11WindowsSEH) 250 return SpillArea::GPRCS2; 251 else 252 return SpillArea::GPRCS1; 253 254 case ARM::D0: 255 case ARM::D1: 256 case ARM::D2: 257 case ARM::D3: 258 case ARM::D4: 259 case ARM::D5: 260 case ARM::D6: 261 case ARM::D7: 262 return SpillArea::DPRCS1; 263 264 case ARM::D8: 265 case ARM::D9: 266 case ARM::D10: 267 case ARM::D11: 268 case ARM::D12: 269 case ARM::D13: 270 case ARM::D14: 271 case ARM::D15: 272 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 273 return SpillArea::DPRCS2; 274 else 275 return SpillArea::DPRCS1; 276 277 case ARM::D16: 278 case ARM::D17: 279 case ARM::D18: 280 case ARM::D19: 281 case ARM::D20: 282 case ARM::D21: 283 case ARM::D22: 284 case ARM::D23: 285 case ARM::D24: 286 case ARM::D25: 287 case ARM::D26: 288 case ARM::D27: 289 case ARM::D28: 290 case ARM::D29: 291 case ARM::D30: 292 case ARM::D31: 293 return SpillArea::DPRCS1; 294 } 295 } 296 297 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 298 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)), 299 STI(sti) {} 300 301 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const { 302 // iOS always has a FP for backtracking, force other targets to keep their FP 303 // when doing FastISel. The emitted code is currently superior, and in cases 304 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 305 return MF.getSubtarget<ARMSubtarget>().useFastISel(); 306 } 307 308 /// Returns true if the target can safely skip saving callee-saved registers 309 /// for noreturn nounwind functions. 310 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const { 311 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) && 312 MF.getFunction().hasFnAttribute(Attribute::NoUnwind) && 313 !MF.getFunction().hasFnAttribute(Attribute::UWTable)); 314 315 // Frame pointer and link register are not treated as normal CSR, thus we 316 // can always skip CSR saves for nonreturning functions. 317 return true; 318 } 319 320 /// hasFP - Return true if the specified function should have a dedicated frame 321 /// pointer register. This is true if the function has variable sized allocas 322 /// or if frame pointer elimination is disabled. 323 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { 324 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 325 const MachineFrameInfo &MFI = MF.getFrameInfo(); 326 327 // ABI-required frame pointer. 328 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 329 return true; 330 331 // Frame pointer required for use within this function. 332 return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 333 MFI.isFrameAddressTaken()); 334 } 335 336 /// isFPReserved - Return true if the frame pointer register should be 337 /// considered a reserved register on the scope of the specified function. 338 bool ARMFrameLowering::isFPReserved(const MachineFunction &MF) const { 339 return hasFP(MF) || MF.getTarget().Options.FramePointerIsReserved(MF); 340 } 341 342 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 343 /// not required, we reserve argument space for call sites in the function 344 /// immediately on entry to the current function. This eliminates the need for 345 /// add/sub sp brackets around call sites. Returns true if the call frame is 346 /// included as part of the stack frame. 347 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 348 const MachineFrameInfo &MFI = MF.getFrameInfo(); 349 unsigned CFSize = MFI.getMaxCallFrameSize(); 350 // It's not always a good idea to include the call frame as part of the 351 // stack frame. ARM (especially Thumb) has small immediate offset to 352 // address the stack frame. So a large call frame can cause poor codegen 353 // and may even makes it impossible to scavenge a register. 354 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 355 return false; 356 357 return !MFI.hasVarSizedObjects(); 358 } 359 360 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 361 /// call frame pseudos can be simplified. Unlike most targets, having a FP 362 /// is not sufficient here since we still may reference some objects via SP 363 /// even when FP is available in Thumb2 mode. 364 bool 365 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 366 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 367 } 368 369 // Returns how much of the incoming argument stack area we should clean up in an 370 // epilogue. For the C calling convention this will be 0, for guaranteed tail 371 // call conventions it can be positive (a normal return or a tail call to a 372 // function that uses less stack space for arguments) or negative (for a tail 373 // call to a function that needs more stack space than us for arguments). 374 static int getArgumentStackToRestore(MachineFunction &MF, 375 MachineBasicBlock &MBB) { 376 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 377 bool IsTailCallReturn = false; 378 if (MBB.end() != MBBI) { 379 unsigned RetOpcode = MBBI->getOpcode(); 380 IsTailCallReturn = RetOpcode == ARM::TCRETURNdi || 381 RetOpcode == ARM::TCRETURNri || 382 RetOpcode == ARM::TCRETURNrinotr12; 383 } 384 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 385 386 int ArgumentPopSize = 0; 387 if (IsTailCallReturn) { 388 MachineOperand &StackAdjust = MBBI->getOperand(1); 389 390 // For a tail-call in a callee-pops-arguments environment, some or all of 391 // the stack may actually be in use for the call's arguments, this is 392 // calculated during LowerCall and consumed here... 393 ArgumentPopSize = StackAdjust.getImm(); 394 } else { 395 // ... otherwise the amount to pop is *all* of the argument space, 396 // conveniently stored in the MachineFunctionInfo by 397 // LowerFormalArguments. This will, of course, be zero for the C calling 398 // convention. 399 ArgumentPopSize = AFI->getArgumentStackToRestore(); 400 } 401 402 return ArgumentPopSize; 403 } 404 405 static bool needsWinCFI(const MachineFunction &MF) { 406 const Function &F = MF.getFunction(); 407 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 408 F.needsUnwindTableEntry(); 409 } 410 411 // Given a load or a store instruction, generate an appropriate unwinding SEH 412 // code on Windows. 413 static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI, 414 const TargetInstrInfo &TII, 415 unsigned Flags) { 416 unsigned Opc = MBBI->getOpcode(); 417 MachineBasicBlock *MBB = MBBI->getParent(); 418 MachineFunction &MF = *MBB->getParent(); 419 DebugLoc DL = MBBI->getDebugLoc(); 420 MachineInstrBuilder MIB; 421 const ARMSubtarget &Subtarget = MF.getSubtarget<ARMSubtarget>(); 422 const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 423 424 Flags |= MachineInstr::NoMerge; 425 426 switch (Opc) { 427 default: 428 report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc)); 429 break; 430 case ARM::t2ADDri: // add.w r11, sp, #xx 431 case ARM::t2ADDri12: // add.w r11, sp, #xx 432 case ARM::t2MOVTi16: // movt r4, #xx 433 case ARM::tBL: // bl __chkstk 434 // These are harmless if used for just setting up a frame pointer, 435 // but that frame pointer can't be relied upon for unwinding, unless 436 // set up with SEH_SaveSP. 437 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 438 .addImm(/*Wide=*/1) 439 .setMIFlags(Flags); 440 break; 441 442 case ARM::t2MOVi16: { // mov(w) r4, #xx 443 bool Wide = MBBI->getOperand(1).getImm() >= 256; 444 if (!Wide) { 445 MachineInstrBuilder NewInstr = 446 BuildMI(MF, DL, TII.get(ARM::tMOVi8)).setMIFlags(MBBI->getFlags()); 447 NewInstr.add(MBBI->getOperand(0)); 448 NewInstr.add(t1CondCodeOp(/*isDead=*/true)); 449 for (MachineOperand &MO : llvm::drop_begin(MBBI->operands())) 450 NewInstr.add(MO); 451 MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr); 452 MBB->erase(MBBI); 453 MBBI = NewMBBI; 454 } 455 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)).addImm(Wide).setMIFlags(Flags); 456 break; 457 } 458 459 case ARM::tBLXr: // blx r12 (__chkstk) 460 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 461 .addImm(/*Wide=*/0) 462 .setMIFlags(Flags); 463 break; 464 465 case ARM::t2MOVi32imm: // movw+movt 466 // This pseudo instruction expands into two mov instructions. If the 467 // second operand is a symbol reference, this will stay as two wide 468 // instructions, movw+movt. If they're immediates, the first one can 469 // end up as a narrow mov though. 470 // As two SEH instructions are appended here, they won't get interleaved 471 // between the two final movw/movt instructions, but it doesn't make any 472 // practical difference. 473 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 474 .addImm(/*Wide=*/1) 475 .setMIFlags(Flags); 476 MBB->insertAfter(MBBI, MIB); 477 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 478 .addImm(/*Wide=*/1) 479 .setMIFlags(Flags); 480 break; 481 482 case ARM::t2STR_PRE: 483 if (MBBI->getOperand(0).getReg() == ARM::SP && 484 MBBI->getOperand(2).getReg() == ARM::SP && 485 MBBI->getOperand(3).getImm() == -4) { 486 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 487 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs)) 488 .addImm(1ULL << Reg) 489 .addImm(/*Wide=*/1) 490 .setMIFlags(Flags); 491 } else { 492 report_fatal_error("No matching SEH Opcode for t2STR_PRE"); 493 } 494 break; 495 496 case ARM::t2LDR_POST: 497 if (MBBI->getOperand(1).getReg() == ARM::SP && 498 MBBI->getOperand(2).getReg() == ARM::SP && 499 MBBI->getOperand(3).getImm() == 4) { 500 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 501 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs)) 502 .addImm(1ULL << Reg) 503 .addImm(/*Wide=*/1) 504 .setMIFlags(Flags); 505 } else { 506 report_fatal_error("No matching SEH Opcode for t2LDR_POST"); 507 } 508 break; 509 510 case ARM::t2LDMIA_RET: 511 case ARM::t2LDMIA_UPD: 512 case ARM::t2STMDB_UPD: { 513 unsigned Mask = 0; 514 bool Wide = false; 515 for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) { 516 const MachineOperand &MO = MBBI->getOperand(i); 517 if (!MO.isReg() || MO.isImplicit()) 518 continue; 519 unsigned Reg = RegInfo->getSEHRegNum(MO.getReg()); 520 if (Reg == 15) 521 Reg = 14; 522 if (Reg >= 8 && Reg <= 13) 523 Wide = true; 524 else if (Opc == ARM::t2LDMIA_UPD && Reg == 14) 525 Wide = true; 526 Mask |= 1 << Reg; 527 } 528 if (!Wide) { 529 unsigned NewOpc; 530 switch (Opc) { 531 case ARM::t2LDMIA_RET: 532 NewOpc = ARM::tPOP_RET; 533 break; 534 case ARM::t2LDMIA_UPD: 535 NewOpc = ARM::tPOP; 536 break; 537 case ARM::t2STMDB_UPD: 538 NewOpc = ARM::tPUSH; 539 break; 540 default: 541 llvm_unreachable(""); 542 } 543 MachineInstrBuilder NewInstr = 544 BuildMI(MF, DL, TII.get(NewOpc)).setMIFlags(MBBI->getFlags()); 545 for (unsigned i = 2, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) 546 NewInstr.add(MBBI->getOperand(i)); 547 MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr); 548 MBB->erase(MBBI); 549 MBBI = NewMBBI; 550 } 551 unsigned SEHOpc = 552 (Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs; 553 MIB = BuildMI(MF, DL, TII.get(SEHOpc)) 554 .addImm(Mask) 555 .addImm(Wide ? 1 : 0) 556 .setMIFlags(Flags); 557 break; 558 } 559 case ARM::VSTMDDB_UPD: 560 case ARM::VLDMDIA_UPD: { 561 int First = -1, Last = 0; 562 for (const MachineOperand &MO : llvm::drop_begin(MBBI->operands(), 4)) { 563 unsigned Reg = RegInfo->getSEHRegNum(MO.getReg()); 564 if (First == -1) 565 First = Reg; 566 Last = Reg; 567 } 568 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs)) 569 .addImm(First) 570 .addImm(Last) 571 .setMIFlags(Flags); 572 break; 573 } 574 case ARM::tSUBspi: 575 case ARM::tADDspi: 576 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc)) 577 .addImm(MBBI->getOperand(2).getImm() * 4) 578 .addImm(/*Wide=*/0) 579 .setMIFlags(Flags); 580 break; 581 case ARM::t2SUBspImm: 582 case ARM::t2SUBspImm12: 583 case ARM::t2ADDspImm: 584 case ARM::t2ADDspImm12: 585 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc)) 586 .addImm(MBBI->getOperand(2).getImm()) 587 .addImm(/*Wide=*/1) 588 .setMIFlags(Flags); 589 break; 590 591 case ARM::tMOVr: 592 if (MBBI->getOperand(1).getReg() == ARM::SP && 593 (Flags & MachineInstr::FrameSetup)) { 594 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 595 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP)) 596 .addImm(Reg) 597 .setMIFlags(Flags); 598 } else if (MBBI->getOperand(0).getReg() == ARM::SP && 599 (Flags & MachineInstr::FrameDestroy)) { 600 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 601 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP)) 602 .addImm(Reg) 603 .setMIFlags(Flags); 604 } else { 605 report_fatal_error("No SEH Opcode for MOV"); 606 } 607 break; 608 609 case ARM::tBX_RET: 610 case ARM::TCRETURNri: 611 case ARM::TCRETURNrinotr12: 612 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret)) 613 .addImm(/*Wide=*/0) 614 .setMIFlags(Flags); 615 break; 616 617 case ARM::TCRETURNdi: 618 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret)) 619 .addImm(/*Wide=*/1) 620 .setMIFlags(Flags); 621 break; 622 } 623 return MBB->insertAfter(MBBI, MIB); 624 } 625 626 static MachineBasicBlock::iterator 627 initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) { 628 if (MBBI == MBB.begin()) 629 return MachineBasicBlock::iterator(); 630 return std::prev(MBBI); 631 } 632 633 static void insertSEHRange(MachineBasicBlock &MBB, 634 MachineBasicBlock::iterator Start, 635 const MachineBasicBlock::iterator &End, 636 const ARMBaseInstrInfo &TII, unsigned MIFlags) { 637 if (Start.isValid()) 638 Start = std::next(Start); 639 else 640 Start = MBB.begin(); 641 642 for (auto MI = Start; MI != End;) { 643 auto Next = std::next(MI); 644 // Check if this instruction already has got a SEH opcode added. In that 645 // case, don't do this generic mapping. 646 if (Next != End && isSEHInstruction(*Next)) { 647 MI = std::next(Next); 648 while (MI != End && isSEHInstruction(*MI)) 649 ++MI; 650 continue; 651 } 652 insertSEH(MI, TII, MIFlags); 653 MI = Next; 654 } 655 } 656 657 static void emitRegPlusImmediate( 658 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 659 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 660 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 661 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 662 if (isARM) 663 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 664 Pred, PredReg, TII, MIFlags); 665 else 666 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 667 Pred, PredReg, TII, MIFlags); 668 } 669 670 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 671 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 672 const ARMBaseInstrInfo &TII, int NumBytes, 673 unsigned MIFlags = MachineInstr::NoFlags, 674 ARMCC::CondCodes Pred = ARMCC::AL, 675 unsigned PredReg = 0) { 676 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 677 MIFlags, Pred, PredReg); 678 } 679 680 static int sizeOfSPAdjustment(const MachineInstr &MI) { 681 int RegSize; 682 switch (MI.getOpcode()) { 683 case ARM::VSTMDDB_UPD: 684 RegSize = 8; 685 break; 686 case ARM::STMDB_UPD: 687 case ARM::t2STMDB_UPD: 688 RegSize = 4; 689 break; 690 case ARM::t2STR_PRE: 691 case ARM::STR_PRE_IMM: 692 return 4; 693 default: 694 llvm_unreachable("Unknown push or pop like instruction"); 695 } 696 697 int count = 0; 698 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 699 // pred) so the list starts at 4. 700 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 701 count += RegSize; 702 return count; 703 } 704 705 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 706 size_t StackSizeInBytes) { 707 const MachineFrameInfo &MFI = MF.getFrameInfo(); 708 const Function &F = MF.getFunction(); 709 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 710 711 StackProbeSize = 712 F.getFnAttributeAsParsedInteger("stack-probe-size", StackProbeSize); 713 return (StackSizeInBytes >= StackProbeSize) && 714 !F.hasFnAttribute("no-stack-arg-probe"); 715 } 716 717 namespace { 718 719 struct StackAdjustingInsts { 720 struct InstInfo { 721 MachineBasicBlock::iterator I; 722 unsigned SPAdjust; 723 bool BeforeFPSet; 724 }; 725 726 SmallVector<InstInfo, 4> Insts; 727 728 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 729 bool BeforeFPSet = false) { 730 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 731 Insts.push_back(Info); 732 } 733 734 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 735 auto Info = 736 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 737 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 738 Info->SPAdjust += ExtraBytes; 739 } 740 741 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 742 const ARMBaseInstrInfo &TII, bool HasFP) { 743 MachineFunction &MF = *MBB.getParent(); 744 unsigned CFAOffset = 0; 745 for (auto &Info : Insts) { 746 if (HasFP && !Info.BeforeFPSet) 747 return; 748 749 CFAOffset += Info.SPAdjust; 750 unsigned CFIIndex = MF.addFrameInst( 751 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset)); 752 BuildMI(MBB, std::next(Info.I), dl, 753 TII.get(TargetOpcode::CFI_INSTRUCTION)) 754 .addCFIIndex(CFIIndex) 755 .setMIFlags(MachineInstr::FrameSetup); 756 } 757 } 758 }; 759 760 } // end anonymous namespace 761 762 /// Emit an instruction sequence that will align the address in 763 /// register Reg by zero-ing out the lower bits. For versions of the 764 /// architecture that support Neon, this must be done in a single 765 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 766 /// single instruction. That function only gets called when optimizing 767 /// spilling of D registers on a core with the Neon instruction set 768 /// present. 769 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 770 const TargetInstrInfo &TII, 771 MachineBasicBlock &MBB, 772 MachineBasicBlock::iterator MBBI, 773 const DebugLoc &DL, const unsigned Reg, 774 const Align Alignment, 775 const bool MustBeSingleInstruction) { 776 const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>(); 777 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 778 const unsigned AlignMask = Alignment.value() - 1U; 779 const unsigned NrBitsToZero = Log2(Alignment); 780 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 781 if (!AFI->isThumbFunction()) { 782 // if the BFC instruction is available, use that to zero the lower 783 // bits: 784 // bfc Reg, #0, log2(Alignment) 785 // otherwise use BIC, if the mask to zero the required number of bits 786 // can be encoded in the bic immediate field 787 // bic Reg, Reg, Alignment-1 788 // otherwise, emit 789 // lsr Reg, Reg, log2(Alignment) 790 // lsl Reg, Reg, log2(Alignment) 791 if (CanUseBFC) { 792 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 793 .addReg(Reg, RegState::Kill) 794 .addImm(~AlignMask) 795 .add(predOps(ARMCC::AL)); 796 } else if (AlignMask <= 255) { 797 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 798 .addReg(Reg, RegState::Kill) 799 .addImm(AlignMask) 800 .add(predOps(ARMCC::AL)) 801 .add(condCodeOp()); 802 } else { 803 assert(!MustBeSingleInstruction && 804 "Shouldn't call emitAligningInstructions demanding a single " 805 "instruction to be emitted for large stack alignment for a target " 806 "without BFC."); 807 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 808 .addReg(Reg, RegState::Kill) 809 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 810 .add(predOps(ARMCC::AL)) 811 .add(condCodeOp()); 812 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 813 .addReg(Reg, RegState::Kill) 814 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 815 .add(predOps(ARMCC::AL)) 816 .add(condCodeOp()); 817 } 818 } else { 819 // Since this is only reached for Thumb-2 targets, the BFC instruction 820 // should always be available. 821 assert(CanUseBFC); 822 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 823 .addReg(Reg, RegState::Kill) 824 .addImm(~AlignMask) 825 .add(predOps(ARMCC::AL)); 826 } 827 } 828 829 /// We need the offset of the frame pointer relative to other MachineFrameInfo 830 /// offsets which are encoded relative to SP at function begin. 831 /// See also emitPrologue() for how the FP is set up. 832 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet 833 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use 834 /// this to produce a conservative estimate that we check in an assert() later. 835 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI, 836 const MachineFunction &MF) { 837 ARMSubtarget::PushPopSplitVariation PushPopSplit = 838 STI.getPushPopSplitVariation(MF); 839 // For Thumb1, push.w isn't available, so the first push will always push 840 // r7 and lr onto the stack first. 841 if (AFI.isThumb1OnlyFunction()) 842 return -AFI.getArgRegsSaveSize() - (2 * 4); 843 // This is a conservative estimation: Assume the frame pointer being r7 and 844 // pc("r15") up to r8 getting spilled before (= 8 registers). 845 int MaxRegBytes = 8 * 4; 846 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 847 // Here, r11 can be stored below all of r4-r15 plus d8-d15. 848 MaxRegBytes = 11 * 4 + 8 * 8; 849 } 850 int FPCXTSaveSize = 851 (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0; 852 return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes; 853 } 854 855 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 856 MachineBasicBlock &MBB) const { 857 MachineBasicBlock::iterator MBBI = MBB.begin(); 858 MachineFrameInfo &MFI = MF.getFrameInfo(); 859 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 860 MCContext &Context = MF.getContext(); 861 const TargetMachine &TM = MF.getTarget(); 862 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 863 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 864 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 865 assert(!AFI->isThumb1OnlyFunction() && 866 "This emitPrologue does not support Thumb1!"); 867 bool isARM = !AFI->isThumbFunction(); 868 Align Alignment = STI.getFrameLowering()->getStackAlign(); 869 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 870 unsigned NumBytes = MFI.getStackSize(); 871 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 872 int FPCXTSaveSize = 0; 873 bool NeedsWinCFI = needsWinCFI(MF); 874 ARMSubtarget::PushPopSplitVariation PushPopSplit = 875 STI.getPushPopSplitVariation(MF); 876 877 // Debug location must be unknown since the first debug location is used 878 // to determine the end of the prologue. 879 DebugLoc dl; 880 881 Register FramePtr = RegInfo->getFrameRegister(MF); 882 883 // Determine the sizes of each callee-save spill areas and record which frame 884 // belongs to which callee-save spill areas. 885 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 886 int FramePtrSpillFI = 0; 887 int D8SpillFI = 0; 888 889 // All calls are tail calls in GHC calling conv, and functions have no 890 // prologue/epilogue. 891 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 892 return; 893 894 StackAdjustingInsts DefCFAOffsetCandidates; 895 bool HasFP = hasFP(MF); 896 897 if (!AFI->hasStackFrame() && 898 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 899 if (NumBytes != 0) { 900 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 901 MachineInstr::FrameSetup); 902 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true); 903 } 904 if (!NeedsWinCFI) 905 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 906 if (NeedsWinCFI && MBBI != MBB.begin()) { 907 insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup); 908 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd)) 909 .setMIFlag(MachineInstr::FrameSetup); 910 MF.setHasWinCFI(true); 911 } 912 return; 913 } 914 915 // Determine spill area sizes, and some important frame indices. 916 for (const CalleeSavedInfo &I : CSI) { 917 Register Reg = I.getReg(); 918 int FI = I.getFrameIdx(); 919 920 if (Reg == FramePtr) 921 FramePtrSpillFI = FI; 922 if (Reg == ARM::D8) 923 D8SpillFI = FI; 924 925 switch (getSpillArea(Reg, PushPopSplit, AFI->getNumAlignedDPRCS2Regs(), 926 RegInfo)) { 927 case SpillArea::FPCXT: 928 FPCXTSaveSize += 4; 929 break; 930 case SpillArea::GPRCS1: 931 GPRCS1Size += 4; 932 break; 933 case SpillArea::GPRCS2: 934 GPRCS2Size += 4; 935 break; 936 case SpillArea::DPRCS1: 937 DPRCSSize += 8; 938 break; 939 case SpillArea::DPRCS2: 940 break; 941 } 942 } 943 944 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 945 946 // Move past the PAC computation. 947 if (AFI->shouldSignReturnAddress()) 948 LastPush = MBBI++; 949 950 // Move past FPCXT area. 951 if (FPCXTSaveSize > 0) { 952 LastPush = MBBI++; 953 DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true); 954 } 955 956 // Allocate the vararg register save area. 957 if (ArgRegsSaveSize) { 958 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 959 MachineInstr::FrameSetup); 960 LastPush = std::prev(MBBI); 961 DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, true); 962 } 963 964 // Move past area 1. 965 if (GPRCS1Size > 0) { 966 GPRCS1Push = LastPush = MBBI++; 967 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); 968 } 969 970 // Determine starting offsets of spill areas. These offsets are all positive 971 // offsets from the bottom of the lowest-addressed callee-save area 972 // (excluding DPRCS2, which is th the re-aligned stack region) to the bottom 973 // of the spill area in question. 974 unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize; 975 unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size; 976 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 977 Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4); 978 unsigned DPRGapSize = GPRCS1Size + FPCXTSaveSize + ArgRegsSaveSize; 979 if (PushPopSplit != ARMSubtarget::SplitR11WindowsSEH) { 980 DPRGapSize += GPRCS2Size; 981 } 982 DPRGapSize %= DPRAlign.value(); 983 984 unsigned DPRCSOffset; 985 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 986 DPRCSOffset = GPRCS1Offset - DPRGapSize - DPRCSSize; 987 GPRCS2Offset = DPRCSOffset - GPRCS2Size; 988 } else { 989 DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 990 } 991 int FramePtrOffsetInPush = 0; 992 if (HasFP) { 993 // Offset from the CFA to the saved frame pointer, will be negative. 994 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); 995 LLVM_DEBUG(dbgs() << "FramePtrSpillFI: " << FramePtrSpillFI 996 << ", FPOffset: " << FPOffset << "\n"); 997 assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset && 998 "Max FP estimation is wrong"); 999 // Offset from the top of the GPRCS1 area to the saved frame pointer, will 1000 // be negative. 1001 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize; 1002 LLVM_DEBUG(dbgs() << "FramePtrOffsetInPush=" << FramePtrOffsetInPush 1003 << ", FramePtrSpillOffset=" 1004 << (MFI.getObjectOffset(FramePtrSpillFI) + NumBytes) 1005 << "\n"); 1006 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 1007 NumBytes); 1008 } 1009 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 1010 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 1011 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 1012 1013 // Move GPRCS2, unless using SplitR11WindowsSEH, in which case it will be 1014 // after DPRCS1. 1015 if (GPRCS2Size > 0 && PushPopSplit != ARMSubtarget::SplitR11WindowsSEH) { 1016 GPRCS2Push = LastPush = MBBI++; 1017 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 1018 } 1019 1020 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 1021 // .cfi_offset operations will reflect that. 1022 if (DPRGapSize) { 1023 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 1024 if (LastPush != MBB.end() && 1025 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 1026 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 1027 else { 1028 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 1029 MachineInstr::FrameSetup); 1030 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); 1031 } 1032 } 1033 1034 // Move past DPRCS1. 1035 if (DPRCSSize > 0) { 1036 // Since vpush register list cannot have gaps, there may be multiple vpush 1037 // instructions in the prologue. 1038 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 1039 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); 1040 LastPush = MBBI++; 1041 } 1042 } 1043 1044 // Move past the aligned DPRCS2 area. 1045 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 1046 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 1047 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 1048 // leaves the stack pointer pointing to the DPRCS2 area. 1049 // 1050 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 1051 NumBytes += MFI.getObjectOffset(D8SpillFI); 1052 } else 1053 NumBytes = DPRCSOffset; 1054 1055 // Move GPRCS2, if using using SplitR11WindowsSEH. 1056 if (GPRCS2Size > 0 && PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 1057 GPRCS2Push = LastPush = MBBI++; 1058 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 1059 } 1060 1061 bool NeedsWinCFIStackAlloc = NeedsWinCFI; 1062 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH && HasFP) 1063 NeedsWinCFIStackAlloc = false; 1064 1065 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 1066 uint32_t NumWords = NumBytes >> 2; 1067 1068 if (NumWords < 65536) { 1069 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 1070 .addImm(NumWords) 1071 .setMIFlags(MachineInstr::FrameSetup) 1072 .add(predOps(ARMCC::AL)); 1073 } else { 1074 // Split into two instructions here, instead of using t2MOVi32imm, 1075 // to allow inserting accurate SEH instructions (including accurate 1076 // instruction size for each of them). 1077 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 1078 .addImm(NumWords & 0xffff) 1079 .setMIFlags(MachineInstr::FrameSetup) 1080 .add(predOps(ARMCC::AL)); 1081 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4) 1082 .addReg(ARM::R4) 1083 .addImm(NumWords >> 16) 1084 .setMIFlags(MachineInstr::FrameSetup) 1085 .add(predOps(ARMCC::AL)); 1086 } 1087 1088 switch (TM.getCodeModel()) { 1089 case CodeModel::Tiny: 1090 llvm_unreachable("Tiny code model not available on ARM."); 1091 case CodeModel::Small: 1092 case CodeModel::Medium: 1093 case CodeModel::Kernel: 1094 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 1095 .add(predOps(ARMCC::AL)) 1096 .addExternalSymbol("__chkstk") 1097 .addReg(ARM::R4, RegState::Implicit) 1098 .setMIFlags(MachineInstr::FrameSetup); 1099 break; 1100 case CodeModel::Large: 1101 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 1102 .addExternalSymbol("__chkstk") 1103 .setMIFlags(MachineInstr::FrameSetup); 1104 1105 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 1106 .add(predOps(ARMCC::AL)) 1107 .addReg(ARM::R12, RegState::Kill) 1108 .addReg(ARM::R4, RegState::Implicit) 1109 .setMIFlags(MachineInstr::FrameSetup); 1110 break; 1111 } 1112 1113 MachineInstrBuilder Instr, SEH; 1114 Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 1115 .addReg(ARM::SP, RegState::Kill) 1116 .addReg(ARM::R4, RegState::Kill) 1117 .setMIFlags(MachineInstr::FrameSetup) 1118 .add(predOps(ARMCC::AL)) 1119 .add(condCodeOp()); 1120 if (NeedsWinCFIStackAlloc) { 1121 SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc)) 1122 .addImm(NumBytes) 1123 .addImm(/*Wide=*/1) 1124 .setMIFlags(MachineInstr::FrameSetup); 1125 MBB.insertAfter(Instr, SEH); 1126 } 1127 NumBytes = 0; 1128 } 1129 1130 if (NumBytes) { 1131 // Adjust SP after all the callee-save spills. 1132 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 1133 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 1134 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 1135 else { 1136 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 1137 MachineInstr::FrameSetup); 1138 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 1139 } 1140 1141 if (HasFP && isARM) 1142 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 1143 // Note it's not safe to do this in Thumb2 mode because it would have 1144 // taken two instructions: 1145 // mov sp, r7 1146 // sub sp, #24 1147 // If an interrupt is taken between the two instructions, then sp is in 1148 // an inconsistent state (pointing to the middle of callee-saved area). 1149 // The interrupt handler can end up clobbering the registers. 1150 AFI->setShouldRestoreSPFromFP(true); 1151 } 1152 1153 // Set FP to point to the stack slot that contains the previous FP. 1154 // For iOS, FP is R7, which has now been stored in spill area 1. 1155 // Otherwise, if this is not iOS, all the callee-saved registers go 1156 // into spill area 1, including the FP in R11. In either case, it 1157 // is in area one and the adjustment needs to take place just after 1158 // that push. 1159 // FIXME: The above is not necessary true when PACBTI is enabled. 1160 // AAPCS requires use of R11, and PACBTI gets in the way of regular pushes, 1161 // so FP ends up on area two. 1162 MachineBasicBlock::iterator AfterPush; 1163 if (HasFP) { 1164 AfterPush = std::next(GPRCS1Push); 1165 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); 1166 int FPOffset = PushSize + FramePtrOffsetInPush; 1167 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 1168 AfterPush = std::next(GPRCS2Push); 1169 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII, 1170 FramePtr, ARM::SP, 0, MachineInstr::FrameSetup); 1171 } else { 1172 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII, 1173 FramePtr, ARM::SP, FPOffset, 1174 MachineInstr::FrameSetup); 1175 } 1176 if (!NeedsWinCFI) { 1177 if (FramePtrOffsetInPush + PushSize != 0) { 1178 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( 1179 nullptr, MRI->getDwarfRegNum(FramePtr, true), 1180 FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush)); 1181 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1182 .addCFIIndex(CFIIndex) 1183 .setMIFlags(MachineInstr::FrameSetup); 1184 } else { 1185 unsigned CFIIndex = 1186 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 1187 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 1188 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1189 .addCFIIndex(CFIIndex) 1190 .setMIFlags(MachineInstr::FrameSetup); 1191 } 1192 } 1193 } 1194 1195 // Emit a SEH opcode indicating the prologue end. The rest of the prologue 1196 // instructions below don't need to be replayed to unwind the stack. 1197 if (NeedsWinCFI && MBBI != MBB.begin()) { 1198 MachineBasicBlock::iterator End = MBBI; 1199 if (HasFP && PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) 1200 End = AfterPush; 1201 insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup); 1202 BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd)) 1203 .setMIFlag(MachineInstr::FrameSetup); 1204 MF.setHasWinCFI(true); 1205 } 1206 1207 // Now that the prologue's actual instructions are finalised, we can insert 1208 // the necessary DWARF cf instructions to describe the situation. Start by 1209 // recording where each register ended up: 1210 if (!NeedsWinCFI) { 1211 for (const auto &Entry : reverse(CSI)) { 1212 Register Reg = Entry.getReg(); 1213 int FI = Entry.getFrameIdx(); 1214 MachineBasicBlock::iterator CFIPos; 1215 switch (getSpillArea(Reg, PushPopSplit, AFI->getNumAlignedDPRCS2Regs(), 1216 RegInfo)) { 1217 case SpillArea::GPRCS1: 1218 CFIPos = std::next(GPRCS1Push); 1219 break; 1220 case SpillArea::GPRCS2: 1221 CFIPos = std::next(GPRCS2Push); 1222 break; 1223 case SpillArea::DPRCS1: 1224 CFIPos = std::next(LastPush); 1225 break; 1226 case SpillArea::FPCXT: 1227 case SpillArea::DPRCS2: 1228 // FPCXT and DPRCS2 are not represented in the DWARF info. 1229 break; 1230 } 1231 1232 if (CFIPos.isValid()) { 1233 int CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1234 nullptr, 1235 MRI->getDwarfRegNum(Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, 1236 true), 1237 MFI.getObjectOffset(FI))); 1238 BuildMI(MBB, CFIPos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1239 .addCFIIndex(CFIIndex) 1240 .setMIFlags(MachineInstr::FrameSetup); 1241 } 1242 } 1243 } 1244 1245 // Now we can emit descriptions of where the canonical frame address was 1246 // throughout the process. If we have a frame pointer, it takes over the job 1247 // half-way through, so only the first few .cfi_def_cfa_offset instructions 1248 // actually get emitted. 1249 if (!NeedsWinCFI) 1250 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 1251 1252 if (STI.isTargetELF() && hasFP(MF)) 1253 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 1254 AFI->getFramePtrSpillOffset()); 1255 1256 AFI->setFPCXTSaveAreaSize(FPCXTSaveSize); 1257 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 1258 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 1259 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 1260 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 1261 1262 // If we need dynamic stack realignment, do it here. Be paranoid and make 1263 // sure if we also have VLAs, we have a base pointer for frame access. 1264 // If aligned NEON registers were spilled, the stack has already been 1265 // realigned. 1266 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) { 1267 Align MaxAlign = MFI.getMaxAlign(); 1268 assert(!AFI->isThumb1OnlyFunction()); 1269 if (!AFI->isThumbFunction()) { 1270 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 1271 false); 1272 } else { 1273 // We cannot use sp as source/dest register here, thus we're using r4 to 1274 // perform the calculations. We're emitting the following sequence: 1275 // mov r4, sp 1276 // -- use emitAligningInstructions to produce best sequence to zero 1277 // -- out lower bits in r4 1278 // mov sp, r4 1279 // FIXME: It will be better just to find spare register here. 1280 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 1281 .addReg(ARM::SP, RegState::Kill) 1282 .add(predOps(ARMCC::AL)); 1283 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 1284 false); 1285 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1286 .addReg(ARM::R4, RegState::Kill) 1287 .add(predOps(ARMCC::AL)); 1288 } 1289 1290 AFI->setShouldRestoreSPFromFP(true); 1291 } 1292 1293 // If we need a base pointer, set it up here. It's whatever the value 1294 // of the stack pointer is at this point. Any variable size objects 1295 // will be allocated after this, so we can still use the base pointer 1296 // to reference locals. 1297 // FIXME: Clarify FrameSetup flags here. 1298 if (RegInfo->hasBasePointer(MF)) { 1299 if (isARM) 1300 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 1301 .addReg(ARM::SP) 1302 .add(predOps(ARMCC::AL)) 1303 .add(condCodeOp()); 1304 else 1305 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 1306 .addReg(ARM::SP) 1307 .add(predOps(ARMCC::AL)); 1308 } 1309 1310 // If the frame has variable sized objects then the epilogue must restore 1311 // the sp from fp. We can assume there's an FP here since hasFP already 1312 // checks for hasVarSizedObjects. 1313 if (MFI.hasVarSizedObjects()) 1314 AFI->setShouldRestoreSPFromFP(true); 1315 } 1316 1317 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 1318 MachineBasicBlock &MBB) const { 1319 MachineFrameInfo &MFI = MF.getFrameInfo(); 1320 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1321 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 1322 const ARMBaseInstrInfo &TII = 1323 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1324 assert(!AFI->isThumb1OnlyFunction() && 1325 "This emitEpilogue does not support Thumb1!"); 1326 bool isARM = !AFI->isThumbFunction(); 1327 ARMSubtarget::PushPopSplitVariation PushPopSplit = 1328 STI.getPushPopSplitVariation(MF); 1329 1330 // Amount of stack space we reserved next to incoming args for either 1331 // varargs registers or stack arguments in tail calls made by this function. 1332 unsigned ReservedArgStack = AFI->getArgRegsSaveSize(); 1333 1334 // How much of the stack used by incoming arguments this function is expected 1335 // to restore in this particular epilogue. 1336 int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB); 1337 int NumBytes = (int)MFI.getStackSize(); 1338 Register FramePtr = RegInfo->getFrameRegister(MF); 1339 1340 // All calls are tail calls in GHC calling conv, and functions have no 1341 // prologue/epilogue. 1342 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 1343 return; 1344 1345 // First put ourselves on the first (from top) terminator instructions. 1346 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1347 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1348 1349 MachineBasicBlock::iterator RangeStart; 1350 if (!AFI->hasStackFrame()) { 1351 if (MF.hasWinCFI()) { 1352 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart)) 1353 .setMIFlag(MachineInstr::FrameDestroy); 1354 RangeStart = initMBBRange(MBB, MBBI); 1355 } 1356 1357 if (NumBytes + IncomingArgStackToRestore != 0) 1358 emitSPUpdate(isARM, MBB, MBBI, dl, TII, 1359 NumBytes + IncomingArgStackToRestore, 1360 MachineInstr::FrameDestroy); 1361 } else { 1362 // Unwind MBBI to point to first LDR / VLDRD. 1363 if (MBBI != MBB.begin()) { 1364 do { 1365 --MBBI; 1366 } while (MBBI != MBB.begin() && 1367 MBBI->getFlag(MachineInstr::FrameDestroy)); 1368 if (!MBBI->getFlag(MachineInstr::FrameDestroy)) 1369 ++MBBI; 1370 } 1371 1372 if (MF.hasWinCFI()) { 1373 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart)) 1374 .setMIFlag(MachineInstr::FrameDestroy); 1375 RangeStart = initMBBRange(MBB, MBBI); 1376 } 1377 1378 // Move SP to start of FP callee save spill area. 1379 NumBytes -= (ReservedArgStack + 1380 AFI->getFPCXTSaveAreaSize() + 1381 AFI->getGPRCalleeSavedArea1Size() + 1382 AFI->getGPRCalleeSavedArea2Size() + 1383 AFI->getDPRCalleeSavedGapSize() + 1384 AFI->getDPRCalleeSavedAreaSize()); 1385 1386 // Reset SP based on frame pointer only if the stack frame extends beyond 1387 // frame pointer stack slot or target is ELF and the function has FP. 1388 if (AFI->shouldRestoreSPFromFP()) { 1389 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 1390 if (NumBytes) { 1391 if (isARM) 1392 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 1393 ARMCC::AL, 0, TII, 1394 MachineInstr::FrameDestroy); 1395 else { 1396 // It's not possible to restore SP from FP in a single instruction. 1397 // For iOS, this looks like: 1398 // mov sp, r7 1399 // sub sp, #24 1400 // This is bad, if an interrupt is taken after the mov, sp is in an 1401 // inconsistent state. 1402 // Use the first callee-saved register as a scratch register. 1403 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 1404 "No scratch register to restore SP from FP!"); 1405 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 1406 ARMCC::AL, 0, TII, MachineInstr::FrameDestroy); 1407 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1408 .addReg(ARM::R4) 1409 .add(predOps(ARMCC::AL)) 1410 .setMIFlag(MachineInstr::FrameDestroy); 1411 } 1412 } else { 1413 // Thumb2 or ARM. 1414 if (isARM) 1415 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 1416 .addReg(FramePtr) 1417 .add(predOps(ARMCC::AL)) 1418 .add(condCodeOp()) 1419 .setMIFlag(MachineInstr::FrameDestroy); 1420 else 1421 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1422 .addReg(FramePtr) 1423 .add(predOps(ARMCC::AL)) 1424 .setMIFlag(MachineInstr::FrameDestroy); 1425 } 1426 } else if (NumBytes && 1427 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 1428 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes, 1429 MachineInstr::FrameDestroy); 1430 1431 // Increment past our save areas. 1432 if (AFI->getGPRCalleeSavedArea2Size() && 1433 PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) 1434 MBBI++; 1435 1436 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { 1437 MBBI++; 1438 // Since vpop register list cannot have gaps, there may be multiple vpop 1439 // instructions in the epilogue. 1440 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 1441 MBBI++; 1442 } 1443 if (AFI->getDPRCalleeSavedGapSize()) { 1444 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 1445 "unexpected DPR alignment gap"); 1446 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(), 1447 MachineInstr::FrameDestroy); 1448 } 1449 1450 if (AFI->getGPRCalleeSavedArea2Size() && 1451 PushPopSplit != ARMSubtarget::SplitR11WindowsSEH) 1452 MBBI++; 1453 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 1454 1455 if (ReservedArgStack || IncomingArgStackToRestore) { 1456 assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 && 1457 "attempting to restore negative stack amount"); 1458 emitSPUpdate(isARM, MBB, MBBI, dl, TII, 1459 ReservedArgStack + IncomingArgStackToRestore, 1460 MachineInstr::FrameDestroy); 1461 } 1462 1463 // Validate PAC, It should have been already popped into R12. For CMSE entry 1464 // function, the validation instruction is emitted during expansion of the 1465 // tBXNS_RET, since the validation must use the value of SP at function 1466 // entry, before saving, resp. after restoring, FPCXTNS. 1467 if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction()) 1468 BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT)); 1469 } 1470 1471 if (MF.hasWinCFI()) { 1472 insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy); 1473 BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd)) 1474 .setMIFlag(MachineInstr::FrameDestroy); 1475 } 1476 } 1477 1478 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 1479 /// debug info. It's the same as what we use for resolving the code-gen 1480 /// references for now. FIXME: This can go wrong when references are 1481 /// SP-relative and simple call frames aren't used. 1482 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, 1483 int FI, 1484 Register &FrameReg) const { 1485 return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0)); 1486 } 1487 1488 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 1489 int FI, Register &FrameReg, 1490 int SPAdj) const { 1491 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1492 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1493 MF.getSubtarget().getRegisterInfo()); 1494 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1495 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 1496 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 1497 bool isFixed = MFI.isFixedObjectIndex(FI); 1498 1499 FrameReg = ARM::SP; 1500 Offset += SPAdj; 1501 1502 // SP can move around if there are allocas. We may also lose track of SP 1503 // when emergency spilling inside a non-reserved call frame setup. 1504 bool hasMovingSP = !hasReservedCallFrame(MF); 1505 1506 // When dynamically realigning the stack, use the frame pointer for 1507 // parameters, and the stack/base pointer for locals. 1508 if (RegInfo->hasStackRealignment(MF)) { 1509 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 1510 if (isFixed) { 1511 FrameReg = RegInfo->getFrameRegister(MF); 1512 Offset = FPOffset; 1513 } else if (hasMovingSP) { 1514 assert(RegInfo->hasBasePointer(MF) && 1515 "VLAs and dynamic stack alignment, but missing base pointer!"); 1516 FrameReg = RegInfo->getBaseRegister(); 1517 Offset -= SPAdj; 1518 } 1519 return Offset; 1520 } 1521 1522 // If there is a frame pointer, use it when we can. 1523 if (hasFP(MF) && AFI->hasStackFrame()) { 1524 // Use frame pointer to reference fixed objects. Use it for locals if 1525 // there are VLAs (and thus the SP isn't reliable as a base). 1526 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 1527 FrameReg = RegInfo->getFrameRegister(MF); 1528 return FPOffset; 1529 } else if (hasMovingSP) { 1530 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 1531 if (AFI->isThumb2Function()) { 1532 // Try to use the frame pointer if we can, else use the base pointer 1533 // since it's available. This is handy for the emergency spill slot, in 1534 // particular. 1535 if (FPOffset >= -255 && FPOffset < 0) { 1536 FrameReg = RegInfo->getFrameRegister(MF); 1537 return FPOffset; 1538 } 1539 } 1540 } else if (AFI->isThumbFunction()) { 1541 // Prefer SP to base pointer, if the offset is suitably aligned and in 1542 // range as the effective range of the immediate offset is bigger when 1543 // basing off SP. 1544 // Use add <rd>, sp, #<imm8> 1545 // ldr <rd>, [sp, #<imm8>] 1546 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 1547 return Offset; 1548 // In Thumb2 mode, the negative offset is very limited. Try to avoid 1549 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 1550 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) { 1551 FrameReg = RegInfo->getFrameRegister(MF); 1552 return FPOffset; 1553 } 1554 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 1555 // Otherwise, use SP or FP, whichever is closer to the stack slot. 1556 FrameReg = RegInfo->getFrameRegister(MF); 1557 return FPOffset; 1558 } 1559 } 1560 // Use the base pointer if we have one. 1561 // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper? 1562 // That can happen if we forced a base pointer for a large call frame. 1563 if (RegInfo->hasBasePointer(MF)) { 1564 FrameReg = RegInfo->getBaseRegister(); 1565 Offset -= SPAdj; 1566 } 1567 return Offset; 1568 } 1569 1570 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 1571 MachineBasicBlock::iterator MI, 1572 ArrayRef<CalleeSavedInfo> CSI, 1573 unsigned StmOpc, unsigned StrOpc, 1574 bool NoGap, bool (*Func)(unsigned, bool), 1575 unsigned NumAlignedDPRCS2Regs, 1576 unsigned MIFlags) const { 1577 MachineFunction &MF = *MBB.getParent(); 1578 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1579 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1580 ARMSubtarget::PushPopSplitVariation PushPopSplit = 1581 STI.getPushPopSplitVariation(MF); 1582 1583 DebugLoc DL; 1584 1585 using RegAndKill = std::pair<unsigned, bool>; 1586 1587 SmallVector<RegAndKill, 4> Regs; 1588 unsigned i = CSI.size(); 1589 while (i != 0) { 1590 unsigned LastReg = 0; 1591 for (; i != 0; --i) { 1592 Register Reg = CSI[i-1].getReg(); 1593 if (!(Func)(Reg, PushPopSplit == ARMSubtarget::SplitR7)) 1594 continue; 1595 1596 // D-registers in the aligned area DPRCS2 are NOT spilled here. 1597 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1598 continue; 1599 1600 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1601 bool isLiveIn = MRI.isLiveIn(Reg); 1602 if (!isLiveIn && !MRI.isReserved(Reg)) 1603 MBB.addLiveIn(Reg); 1604 // If NoGap is true, push consecutive registers and then leave the rest 1605 // for other instructions. e.g. 1606 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 1607 if (NoGap && LastReg && LastReg != Reg-1) 1608 break; 1609 LastReg = Reg; 1610 // Do not set a kill flag on values that are also marked as live-in. This 1611 // happens with the @llvm-returnaddress intrinsic and with arguments 1612 // passed in callee saved registers. 1613 // Omitting the kill flags is conservatively correct even if the live-in 1614 // is not used after all. 1615 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 1616 } 1617 1618 if (Regs.empty()) 1619 continue; 1620 1621 llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) { 1622 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 1623 }); 1624 1625 if (Regs.size() > 1 || StrOpc== 0) { 1626 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 1627 .addReg(ARM::SP) 1628 .setMIFlags(MIFlags) 1629 .add(predOps(ARMCC::AL)); 1630 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1631 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 1632 } else if (Regs.size() == 1) { 1633 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 1634 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 1635 .addReg(ARM::SP) 1636 .setMIFlags(MIFlags) 1637 .addImm(-4) 1638 .add(predOps(ARMCC::AL)); 1639 } 1640 Regs.clear(); 1641 1642 // Put any subsequent vpush instructions before this one: they will refer to 1643 // higher register numbers so need to be pushed first in order to preserve 1644 // monotonicity. 1645 if (MI != MBB.begin()) 1646 --MI; 1647 } 1648 } 1649 1650 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1651 MachineBasicBlock::iterator MI, 1652 MutableArrayRef<CalleeSavedInfo> CSI, 1653 unsigned LdmOpc, unsigned LdrOpc, 1654 bool isVarArg, bool NoGap, 1655 bool (*Func)(unsigned, bool), 1656 unsigned NumAlignedDPRCS2Regs) const { 1657 MachineFunction &MF = *MBB.getParent(); 1658 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1659 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1660 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1661 bool hasPAC = AFI->shouldSignReturnAddress(); 1662 DebugLoc DL; 1663 bool isTailCall = false; 1664 bool isInterrupt = false; 1665 bool isTrap = false; 1666 bool isCmseEntry = false; 1667 ARMSubtarget::PushPopSplitVariation PushPopSplit = 1668 STI.getPushPopSplitVariation(MF); 1669 if (MBB.end() != MI) { 1670 DL = MI->getDebugLoc(); 1671 unsigned RetOpcode = MI->getOpcode(); 1672 isTailCall = 1673 (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri || 1674 RetOpcode == ARM::TCRETURNrinotr12); 1675 isInterrupt = 1676 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1677 isTrap = 1678 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1679 RetOpcode == ARM::tTRAP; 1680 isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET); 1681 } 1682 1683 SmallVector<unsigned, 4> Regs; 1684 unsigned i = CSI.size(); 1685 while (i != 0) { 1686 unsigned LastReg = 0; 1687 bool DeleteRet = false; 1688 for (; i != 0; --i) { 1689 CalleeSavedInfo &Info = CSI[i-1]; 1690 Register Reg = Info.getReg(); 1691 if (!(Func)(Reg, PushPopSplit == ARMSubtarget::SplitR7)) 1692 continue; 1693 1694 // The aligned reloads from area DPRCS2 are not inserted here. 1695 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1696 continue; 1697 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1698 !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 && 1699 STI.hasV5TOps() && MBB.succ_empty() && !hasPAC && 1700 PushPopSplit != ARMSubtarget::SplitR11WindowsSEH) { 1701 Reg = ARM::PC; 1702 // Fold the return instruction into the LDM. 1703 DeleteRet = true; 1704 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1705 } 1706 1707 // If NoGap is true, pop consecutive registers and then leave the rest 1708 // for other instructions. e.g. 1709 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1710 if (NoGap && LastReg && LastReg != Reg-1) 1711 break; 1712 1713 LastReg = Reg; 1714 Regs.push_back(Reg); 1715 } 1716 1717 if (Regs.empty()) 1718 continue; 1719 1720 llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) { 1721 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1722 }); 1723 1724 if (Regs.size() > 1 || LdrOpc == 0) { 1725 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1726 .addReg(ARM::SP) 1727 .add(predOps(ARMCC::AL)) 1728 .setMIFlags(MachineInstr::FrameDestroy); 1729 for (unsigned Reg : Regs) 1730 MIB.addReg(Reg, getDefRegState(true)); 1731 if (DeleteRet) { 1732 if (MI != MBB.end()) { 1733 MIB.copyImplicitOps(*MI); 1734 MI->eraseFromParent(); 1735 } 1736 } 1737 MI = MIB; 1738 } else if (Regs.size() == 1) { 1739 // If we adjusted the reg to PC from LR above, switch it back here. We 1740 // only do that for LDM. 1741 if (Regs[0] == ARM::PC) 1742 Regs[0] = ARM::LR; 1743 MachineInstrBuilder MIB = 1744 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1745 .addReg(ARM::SP, RegState::Define) 1746 .addReg(ARM::SP) 1747 .setMIFlags(MachineInstr::FrameDestroy); 1748 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1749 // that refactoring is complete (eventually). 1750 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1751 MIB.addReg(0); 1752 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1753 } else 1754 MIB.addImm(4); 1755 MIB.add(predOps(ARMCC::AL)); 1756 } 1757 Regs.clear(); 1758 1759 // Put any subsequent vpop instructions after this one: they will refer to 1760 // higher register numbers so need to be popped afterwards. 1761 if (MI != MBB.end()) 1762 ++MI; 1763 } 1764 } 1765 1766 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1767 /// starting from d8. Also insert stack realignment code and leave the stack 1768 /// pointer pointing to the d8 spill slot. 1769 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1770 MachineBasicBlock::iterator MI, 1771 unsigned NumAlignedDPRCS2Regs, 1772 ArrayRef<CalleeSavedInfo> CSI, 1773 const TargetRegisterInfo *TRI) { 1774 MachineFunction &MF = *MBB.getParent(); 1775 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1776 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1777 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1778 MachineFrameInfo &MFI = MF.getFrameInfo(); 1779 1780 // Mark the D-register spill slots as properly aligned. Since MFI computes 1781 // stack slot layout backwards, this can actually mean that the d-reg stack 1782 // slot offsets can be wrong. The offset for d8 will always be correct. 1783 for (const CalleeSavedInfo &I : CSI) { 1784 unsigned DNum = I.getReg() - ARM::D8; 1785 if (DNum > NumAlignedDPRCS2Regs - 1) 1786 continue; 1787 int FI = I.getFrameIdx(); 1788 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1789 // registers will be 8-byte aligned. 1790 MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16)); 1791 1792 // The stack slot for D8 needs to be maximally aligned because this is 1793 // actually the point where we align the stack pointer. MachineFrameInfo 1794 // computes all offsets relative to the incoming stack pointer which is a 1795 // bit weird when realigning the stack. Any extra padding for this 1796 // over-alignment is not realized because the code inserted below adjusts 1797 // the stack pointer by numregs * 8 before aligning the stack pointer. 1798 if (DNum == 0) 1799 MFI.setObjectAlignment(FI, MFI.getMaxAlign()); 1800 } 1801 1802 // Move the stack pointer to the d8 spill slot, and align it at the same 1803 // time. Leave the stack slot address in the scratch register r4. 1804 // 1805 // sub r4, sp, #numregs * 8 1806 // bic r4, r4, #align - 1 1807 // mov sp, r4 1808 // 1809 bool isThumb = AFI->isThumbFunction(); 1810 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1811 AFI->setShouldRestoreSPFromFP(true); 1812 1813 // sub r4, sp, #numregs * 8 1814 // The immediate is <= 64, so it doesn't need any special encoding. 1815 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1816 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1817 .addReg(ARM::SP) 1818 .addImm(8 * NumAlignedDPRCS2Regs) 1819 .add(predOps(ARMCC::AL)) 1820 .add(condCodeOp()); 1821 1822 Align MaxAlign = MF.getFrameInfo().getMaxAlign(); 1823 // We must set parameter MustBeSingleInstruction to true, since 1824 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1825 // stack alignment. Luckily, this can always be done since all ARM 1826 // architecture versions that support Neon also support the BFC 1827 // instruction. 1828 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1829 1830 // mov sp, r4 1831 // The stack pointer must be adjusted before spilling anything, otherwise 1832 // the stack slots could be clobbered by an interrupt handler. 1833 // Leave r4 live, it is used below. 1834 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1835 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1836 .addReg(ARM::R4) 1837 .add(predOps(ARMCC::AL)); 1838 if (!isThumb) 1839 MIB.add(condCodeOp()); 1840 1841 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1842 // r4 holds the stack slot address. 1843 unsigned NextReg = ARM::D8; 1844 1845 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1846 // The writeback is only needed when emitting two vst1.64 instructions. 1847 if (NumAlignedDPRCS2Regs >= 6) { 1848 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1849 &ARM::QQPRRegClass); 1850 MBB.addLiveIn(SupReg); 1851 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1852 .addReg(ARM::R4, RegState::Kill) 1853 .addImm(16) 1854 .addReg(NextReg) 1855 .addReg(SupReg, RegState::ImplicitKill) 1856 .add(predOps(ARMCC::AL)); 1857 NextReg += 4; 1858 NumAlignedDPRCS2Regs -= 4; 1859 } 1860 1861 // We won't modify r4 beyond this point. It currently points to the next 1862 // register to be spilled. 1863 unsigned R4BaseReg = NextReg; 1864 1865 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1866 if (NumAlignedDPRCS2Regs >= 4) { 1867 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1868 &ARM::QQPRRegClass); 1869 MBB.addLiveIn(SupReg); 1870 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1871 .addReg(ARM::R4) 1872 .addImm(16) 1873 .addReg(NextReg) 1874 .addReg(SupReg, RegState::ImplicitKill) 1875 .add(predOps(ARMCC::AL)); 1876 NextReg += 4; 1877 NumAlignedDPRCS2Regs -= 4; 1878 } 1879 1880 // 16-byte aligned vst1.64 with 2 d-regs. 1881 if (NumAlignedDPRCS2Regs >= 2) { 1882 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1883 &ARM::QPRRegClass); 1884 MBB.addLiveIn(SupReg); 1885 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1886 .addReg(ARM::R4) 1887 .addImm(16) 1888 .addReg(SupReg) 1889 .add(predOps(ARMCC::AL)); 1890 NextReg += 2; 1891 NumAlignedDPRCS2Regs -= 2; 1892 } 1893 1894 // Finally, use a vanilla vstr.64 for the odd last register. 1895 if (NumAlignedDPRCS2Regs) { 1896 MBB.addLiveIn(NextReg); 1897 // vstr.64 uses addrmode5 which has an offset scale of 4. 1898 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1899 .addReg(NextReg) 1900 .addReg(ARM::R4) 1901 .addImm((NextReg - R4BaseReg) * 2) 1902 .add(predOps(ARMCC::AL)); 1903 } 1904 1905 // The last spill instruction inserted should kill the scratch register r4. 1906 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1907 } 1908 1909 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1910 /// iterator to the following instruction. 1911 static MachineBasicBlock::iterator 1912 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1913 unsigned NumAlignedDPRCS2Regs) { 1914 // sub r4, sp, #numregs * 8 1915 // bic r4, r4, #align - 1 1916 // mov sp, r4 1917 ++MI; ++MI; ++MI; 1918 assert(MI->mayStore() && "Expecting spill instruction"); 1919 1920 // These switches all fall through. 1921 switch(NumAlignedDPRCS2Regs) { 1922 case 7: 1923 ++MI; 1924 assert(MI->mayStore() && "Expecting spill instruction"); 1925 [[fallthrough]]; 1926 default: 1927 ++MI; 1928 assert(MI->mayStore() && "Expecting spill instruction"); 1929 [[fallthrough]]; 1930 case 1: 1931 case 2: 1932 case 4: 1933 assert(MI->killsRegister(ARM::R4, /*TRI=*/nullptr) && "Missed kill flag"); 1934 ++MI; 1935 } 1936 return MI; 1937 } 1938 1939 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1940 /// starting from d8. These instructions are assumed to execute while the 1941 /// stack is still aligned, unlike the code inserted by emitPopInst. 1942 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1943 MachineBasicBlock::iterator MI, 1944 unsigned NumAlignedDPRCS2Regs, 1945 ArrayRef<CalleeSavedInfo> CSI, 1946 const TargetRegisterInfo *TRI) { 1947 MachineFunction &MF = *MBB.getParent(); 1948 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1949 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1950 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1951 1952 // Find the frame index assigned to d8. 1953 int D8SpillFI = 0; 1954 for (const CalleeSavedInfo &I : CSI) 1955 if (I.getReg() == ARM::D8) { 1956 D8SpillFI = I.getFrameIdx(); 1957 break; 1958 } 1959 1960 // Materialize the address of the d8 spill slot into the scratch register r4. 1961 // This can be fairly complicated if the stack frame is large, so just use 1962 // the normal frame index elimination mechanism to do it. This code runs as 1963 // the initial part of the epilog where the stack and base pointers haven't 1964 // been changed yet. 1965 bool isThumb = AFI->isThumbFunction(); 1966 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1967 1968 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 1969 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1970 .addFrameIndex(D8SpillFI) 1971 .addImm(0) 1972 .add(predOps(ARMCC::AL)) 1973 .add(condCodeOp()); 1974 1975 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 1976 unsigned NextReg = ARM::D8; 1977 1978 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 1979 if (NumAlignedDPRCS2Regs >= 6) { 1980 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1981 &ARM::QQPRRegClass); 1982 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 1983 .addReg(ARM::R4, RegState::Define) 1984 .addReg(ARM::R4, RegState::Kill) 1985 .addImm(16) 1986 .addReg(SupReg, RegState::ImplicitDefine) 1987 .add(predOps(ARMCC::AL)); 1988 NextReg += 4; 1989 NumAlignedDPRCS2Regs -= 4; 1990 } 1991 1992 // We won't modify r4 beyond this point. It currently points to the next 1993 // register to be spilled. 1994 unsigned R4BaseReg = NextReg; 1995 1996 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 1997 if (NumAlignedDPRCS2Regs >= 4) { 1998 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1999 &ARM::QQPRRegClass); 2000 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 2001 .addReg(ARM::R4) 2002 .addImm(16) 2003 .addReg(SupReg, RegState::ImplicitDefine) 2004 .add(predOps(ARMCC::AL)); 2005 NextReg += 4; 2006 NumAlignedDPRCS2Regs -= 4; 2007 } 2008 2009 // 16-byte aligned vld1.64 with 2 d-regs. 2010 if (NumAlignedDPRCS2Regs >= 2) { 2011 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 2012 &ARM::QPRRegClass); 2013 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 2014 .addReg(ARM::R4) 2015 .addImm(16) 2016 .add(predOps(ARMCC::AL)); 2017 NextReg += 2; 2018 NumAlignedDPRCS2Regs -= 2; 2019 } 2020 2021 // Finally, use a vanilla vldr.64 for the remaining odd register. 2022 if (NumAlignedDPRCS2Regs) 2023 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 2024 .addReg(ARM::R4) 2025 .addImm(2 * (NextReg - R4BaseReg)) 2026 .add(predOps(ARMCC::AL)); 2027 2028 // Last store kills r4. 2029 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 2030 } 2031 2032 bool ARMFrameLowering::spillCalleeSavedRegisters( 2033 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2034 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2035 if (CSI.empty()) 2036 return false; 2037 2038 MachineFunction &MF = *MBB.getParent(); 2039 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2040 ARMSubtarget::PushPopSplitVariation PushPopSplit = 2041 STI.getPushPopSplitVariation(MF); 2042 2043 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 2044 unsigned PushOneOpc = AFI->isThumbFunction() ? 2045 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 2046 unsigned FltOpc = ARM::VSTMDDB_UPD; 2047 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 2048 // Compute PAC in R12. 2049 if (AFI->shouldSignReturnAddress()) { 2050 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC)) 2051 .setMIFlags(MachineInstr::FrameSetup); 2052 } 2053 // Save the non-secure floating point context. 2054 if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) { 2055 return C.getReg() == ARM::FPCXTNS; 2056 })) { 2057 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre), 2058 ARM::SP) 2059 .addReg(ARM::SP) 2060 .addImm(-4) 2061 .add(predOps(ARMCC::AL)); 2062 } 2063 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 2064 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, 2065 &isSplitFPArea1Register, 0, MachineInstr::FrameSetup); 2066 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 2067 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 2068 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, 2069 &isSplitFPArea2Register, 0, MachineInstr::FrameSetup); 2070 } else { 2071 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 2072 0, MachineInstr::FrameSetup); 2073 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 2074 0, MachineInstr::FrameSetup); 2075 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 2076 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 2077 } 2078 2079 // The code above does not insert spill code for the aligned DPRCS2 registers. 2080 // The stack realignment code will be inserted between the push instructions 2081 // and these spills. 2082 if (NumAlignedDPRCS2Regs) 2083 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 2084 2085 return true; 2086 } 2087 2088 bool ARMFrameLowering::restoreCalleeSavedRegisters( 2089 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2090 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2091 if (CSI.empty()) 2092 return false; 2093 2094 MachineFunction &MF = *MBB.getParent(); 2095 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2096 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 2097 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 2098 ARMSubtarget::PushPopSplitVariation PushPopSplit = 2099 STI.getPushPopSplitVariation(MF); 2100 2101 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 2102 // registers. Do that here instead. 2103 if (NumAlignedDPRCS2Regs) 2104 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 2105 2106 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 2107 unsigned LdrOpc = 2108 AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; 2109 unsigned FltOpc = ARM::VLDMDIA_UPD; 2110 if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) { 2111 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 2112 &isSplitFPArea2Register, 0); 2113 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 2114 NumAlignedDPRCS2Regs); 2115 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 2116 &isSplitFPArea1Register, 0); 2117 } else { 2118 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 2119 NumAlignedDPRCS2Regs); 2120 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 2121 &isARMArea2Register, 0); 2122 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 2123 &isARMArea1Register, 0); 2124 } 2125 2126 return true; 2127 } 2128 2129 // FIXME: Make generic? 2130 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF, 2131 const ARMBaseInstrInfo &TII) { 2132 unsigned FnSize = 0; 2133 for (auto &MBB : MF) { 2134 for (auto &MI : MBB) 2135 FnSize += TII.getInstSizeInBytes(MI); 2136 } 2137 if (MF.getJumpTableInfo()) 2138 for (auto &Table: MF.getJumpTableInfo()->getJumpTables()) 2139 FnSize += Table.MBBs.size() * 4; 2140 FnSize += MF.getConstantPool()->getConstants().size() * 4; 2141 return FnSize; 2142 } 2143 2144 /// estimateRSStackSizeLimit - Look at each instruction that references stack 2145 /// frames and return the stack size limit beyond which some of these 2146 /// instructions will require a scratch register during their expansion later. 2147 // FIXME: Move to TII? 2148 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 2149 const TargetFrameLowering *TFI, 2150 bool &HasNonSPFrameIndex) { 2151 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2152 const ARMBaseInstrInfo &TII = 2153 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2154 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2155 unsigned Limit = (1 << 12) - 1; 2156 for (auto &MBB : MF) { 2157 for (auto &MI : MBB) { 2158 if (MI.isDebugInstr()) 2159 continue; 2160 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 2161 if (!MI.getOperand(i).isFI()) 2162 continue; 2163 2164 // When using ADDri to get the address of a stack object, 255 is the 2165 // largest offset guaranteed to fit in the immediate offset. 2166 if (MI.getOpcode() == ARM::ADDri) { 2167 Limit = std::min(Limit, (1U << 8) - 1); 2168 break; 2169 } 2170 // t2ADDri will not require an extra register, it can reuse the 2171 // destination. 2172 if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12) 2173 break; 2174 2175 const MCInstrDesc &MCID = MI.getDesc(); 2176 const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF); 2177 if (RegClass && !RegClass->contains(ARM::SP)) 2178 HasNonSPFrameIndex = true; 2179 2180 // Otherwise check the addressing mode. 2181 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 2182 case ARMII::AddrMode_i12: 2183 case ARMII::AddrMode2: 2184 // Default 12 bit limit. 2185 break; 2186 case ARMII::AddrMode3: 2187 case ARMII::AddrModeT2_i8neg: 2188 Limit = std::min(Limit, (1U << 8) - 1); 2189 break; 2190 case ARMII::AddrMode5FP16: 2191 Limit = std::min(Limit, ((1U << 8) - 1) * 2); 2192 break; 2193 case ARMII::AddrMode5: 2194 case ARMII::AddrModeT2_i8s4: 2195 case ARMII::AddrModeT2_ldrex: 2196 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 2197 break; 2198 case ARMII::AddrModeT2_i12: 2199 // i12 supports only positive offset so these will be converted to 2200 // i8 opcodes. See llvm::rewriteT2FrameIndex. 2201 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 2202 Limit = std::min(Limit, (1U << 8) - 1); 2203 break; 2204 case ARMII::AddrMode4: 2205 case ARMII::AddrMode6: 2206 // Addressing modes 4 & 6 (load/store) instructions can't encode an 2207 // immediate offset for stack references. 2208 return 0; 2209 case ARMII::AddrModeT2_i7: 2210 Limit = std::min(Limit, ((1U << 7) - 1) * 1); 2211 break; 2212 case ARMII::AddrModeT2_i7s2: 2213 Limit = std::min(Limit, ((1U << 7) - 1) * 2); 2214 break; 2215 case ARMII::AddrModeT2_i7s4: 2216 Limit = std::min(Limit, ((1U << 7) - 1) * 4); 2217 break; 2218 default: 2219 llvm_unreachable("Unhandled addressing mode in stack size limit calculation"); 2220 } 2221 break; // At most one FI per instruction 2222 } 2223 } 2224 } 2225 2226 return Limit; 2227 } 2228 2229 // In functions that realign the stack, it can be an advantage to spill the 2230 // callee-saved vector registers after realigning the stack. The vst1 and vld1 2231 // instructions take alignment hints that can improve performance. 2232 static void 2233 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 2234 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 2235 if (!SpillAlignedNEONRegs) 2236 return; 2237 2238 // Naked functions don't spill callee-saved registers. 2239 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 2240 return; 2241 2242 // We are planning to use NEON instructions vst1 / vld1. 2243 if (!MF.getSubtarget<ARMSubtarget>().hasNEON()) 2244 return; 2245 2246 // Don't bother if the default stack alignment is sufficiently high. 2247 if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8)) 2248 return; 2249 2250 // Aligned spills require stack realignment. 2251 if (!static_cast<const ARMBaseRegisterInfo *>( 2252 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 2253 return; 2254 2255 // We always spill contiguous d-registers starting from d8. Count how many 2256 // needs spilling. The register allocator will almost always use the 2257 // callee-saved registers in order, but it can happen that there are holes in 2258 // the range. Registers above the hole will be spilled to the standard DPRCS 2259 // area. 2260 unsigned NumSpills = 0; 2261 for (; NumSpills < 8; ++NumSpills) 2262 if (!SavedRegs.test(ARM::D8 + NumSpills)) 2263 break; 2264 2265 // Don't do this for just one d-register. It's not worth it. 2266 if (NumSpills < 2) 2267 return; 2268 2269 // Spill the first NumSpills D-registers after realigning the stack. 2270 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 2271 2272 // A scratch register is required for the vst1 / vld1 instructions. 2273 SavedRegs.set(ARM::R4); 2274 } 2275 2276 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2277 // For CMSE entry functions, we want to save the FPCXT_NS immediately 2278 // upon function entry (resp. restore it immmediately before return) 2279 if (STI.hasV8_1MMainlineOps() && 2280 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) 2281 return false; 2282 2283 // We are disabling shrinkwrapping for now when PAC is enabled, as 2284 // shrinkwrapping can cause clobbering of r12 when the PAC code is 2285 // generated. A follow-up patch will fix this in a more performant manner. 2286 if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress( 2287 true /* SpillsLR */)) 2288 return false; 2289 2290 return true; 2291 } 2292 2293 bool ARMFrameLowering::requiresAAPCSFrameRecord( 2294 const MachineFunction &MF) const { 2295 const auto &Subtarget = MF.getSubtarget<ARMSubtarget>(); 2296 return Subtarget.createAAPCSFrameChain() && hasFP(MF); 2297 } 2298 2299 // Thumb1 may require a spill when storing to a frame index through FP (or any 2300 // access with execute-only), for cases where FP is a high register (R11). This 2301 // scans the function for cases where this may happen. 2302 static bool canSpillOnFrameIndexAccess(const MachineFunction &MF, 2303 const TargetFrameLowering &TFI) { 2304 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2305 if (!AFI->isThumb1OnlyFunction()) 2306 return false; 2307 2308 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 2309 for (const auto &MBB : MF) 2310 for (const auto &MI : MBB) 2311 if (MI.getOpcode() == ARM::tSTRspi || MI.getOpcode() == ARM::tSTRi || 2312 STI.genExecuteOnly()) 2313 for (const auto &Op : MI.operands()) 2314 if (Op.isFI()) { 2315 Register Reg; 2316 TFI.getFrameIndexReference(MF, Op.getIndex(), Reg); 2317 if (ARM::hGPRRegClass.contains(Reg) && Reg != ARM::SP) 2318 return true; 2319 } 2320 return false; 2321 } 2322 2323 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 2324 BitVector &SavedRegs, 2325 RegScavenger *RS) const { 2326 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2327 // This tells PEI to spill the FP as if it is any other callee-save register 2328 // to take advantage the eliminateFrameIndex machinery. This also ensures it 2329 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 2330 // to combine multiple loads / stores. 2331 bool CanEliminateFrame = !(requiresAAPCSFrameRecord(MF) && hasFP(MF)); 2332 bool CS1Spilled = false; 2333 bool LRSpilled = false; 2334 unsigned NumGPRSpills = 0; 2335 unsigned NumFPRSpills = 0; 2336 SmallVector<unsigned, 4> UnspilledCS1GPRs; 2337 SmallVector<unsigned, 4> UnspilledCS2GPRs; 2338 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 2339 MF.getSubtarget().getRegisterInfo()); 2340 const ARMBaseInstrInfo &TII = 2341 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2342 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2343 MachineFrameInfo &MFI = MF.getFrameInfo(); 2344 MachineRegisterInfo &MRI = MF.getRegInfo(); 2345 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2346 (void)TRI; // Silence unused warning in non-assert builds. 2347 Register FramePtr = RegInfo->getFrameRegister(MF); 2348 ARMSubtarget::PushPopSplitVariation PushPopSplit = 2349 STI.getPushPopSplitVariation(MF); 2350 2351 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 2352 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 2353 // since it's not always possible to restore sp from fp in a single 2354 // instruction. 2355 // FIXME: It will be better just to find spare register here. 2356 if (AFI->isThumb2Function() && 2357 (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))) 2358 SavedRegs.set(ARM::R4); 2359 2360 // If a stack probe will be emitted, spill R4 and LR, since they are 2361 // clobbered by the stack probe call. 2362 // This estimate should be a safe, conservative estimate. The actual 2363 // stack probe is enabled based on the size of the local objects; 2364 // this estimate also includes the varargs store size. 2365 if (STI.isTargetWindows() && 2366 WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) { 2367 SavedRegs.set(ARM::R4); 2368 SavedRegs.set(ARM::LR); 2369 } 2370 2371 if (AFI->isThumb1OnlyFunction()) { 2372 // Spill LR if Thumb1 function uses variable length argument lists. 2373 if (AFI->getArgRegsSaveSize() > 0) 2374 SavedRegs.set(ARM::LR); 2375 2376 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function 2377 // requires stack alignment. We don't know for sure what the stack size 2378 // will be, but for this, an estimate is good enough. If there anything 2379 // changes it, it'll be a spill, which implies we've used all the registers 2380 // and so R4 is already used, so not marking it here will be OK. 2381 // FIXME: It will be better just to find spare register here. 2382 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) || 2383 MFI.estimateStackSize(MF) > 508) 2384 SavedRegs.set(ARM::R4); 2385 } 2386 2387 // See if we can spill vector registers to aligned stack. 2388 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 2389 2390 // Spill the BasePtr if it's used. 2391 if (RegInfo->hasBasePointer(MF)) 2392 SavedRegs.set(RegInfo->getBaseRegister()); 2393 2394 // On v8.1-M.Main CMSE entry functions save/restore FPCXT. 2395 if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction()) 2396 CanEliminateFrame = false; 2397 2398 // When return address signing is enabled R12 is treated as callee-saved. 2399 if (AFI->shouldSignReturnAddress()) 2400 CanEliminateFrame = false; 2401 2402 // Don't spill FP if the frame can be eliminated. This is determined 2403 // by scanning the callee-save registers to see if any is modified. 2404 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 2405 for (unsigned i = 0; CSRegs[i]; ++i) { 2406 unsigned Reg = CSRegs[i]; 2407 bool Spilled = false; 2408 if (SavedRegs.test(Reg)) { 2409 Spilled = true; 2410 CanEliminateFrame = false; 2411 } 2412 2413 if (!ARM::GPRRegClass.contains(Reg)) { 2414 if (Spilled) { 2415 if (ARM::SPRRegClass.contains(Reg)) 2416 NumFPRSpills++; 2417 else if (ARM::DPRRegClass.contains(Reg)) 2418 NumFPRSpills += 2; 2419 else if (ARM::QPRRegClass.contains(Reg)) 2420 NumFPRSpills += 4; 2421 } 2422 continue; 2423 } 2424 2425 if (Spilled) { 2426 NumGPRSpills++; 2427 2428 if (PushPopSplit != ARMSubtarget::SplitR7) { 2429 if (Reg == ARM::LR) 2430 LRSpilled = true; 2431 CS1Spilled = true; 2432 continue; 2433 } 2434 2435 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 2436 switch (Reg) { 2437 case ARM::LR: 2438 LRSpilled = true; 2439 [[fallthrough]]; 2440 case ARM::R0: case ARM::R1: 2441 case ARM::R2: case ARM::R3: 2442 case ARM::R4: case ARM::R5: 2443 case ARM::R6: case ARM::R7: 2444 CS1Spilled = true; 2445 break; 2446 default: 2447 break; 2448 } 2449 } else { 2450 if (PushPopSplit != ARMSubtarget::SplitR7) { 2451 UnspilledCS1GPRs.push_back(Reg); 2452 continue; 2453 } 2454 2455 switch (Reg) { 2456 case ARM::R0: case ARM::R1: 2457 case ARM::R2: case ARM::R3: 2458 case ARM::R4: case ARM::R5: 2459 case ARM::R6: case ARM::R7: 2460 case ARM::LR: 2461 UnspilledCS1GPRs.push_back(Reg); 2462 break; 2463 default: 2464 UnspilledCS2GPRs.push_back(Reg); 2465 break; 2466 } 2467 } 2468 } 2469 2470 bool ForceLRSpill = false; 2471 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 2472 unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII); 2473 // Force LR to be spilled if the Thumb function size is > 2048. This enables 2474 // use of BL to implement far jump. 2475 if (FnSize >= (1 << 11)) { 2476 CanEliminateFrame = false; 2477 ForceLRSpill = true; 2478 } 2479 } 2480 2481 // If any of the stack slot references may be out of range of an immediate 2482 // offset, make sure a register (or a spill slot) is available for the 2483 // register scavenger. Note that if we're indexing off the frame pointer, the 2484 // effective stack size is 4 bytes larger since the FP points to the stack 2485 // slot of the previous FP. Also, if we have variable sized objects in the 2486 // function, stack slot references will often be negative, and some of 2487 // our instructions are positive-offset only, so conservatively consider 2488 // that case to want a spill slot (or register) as well. Similarly, if 2489 // the function adjusts the stack pointer during execution and the 2490 // adjustments aren't already part of our stack size estimate, our offset 2491 // calculations may be off, so be conservative. 2492 // FIXME: We could add logic to be more precise about negative offsets 2493 // and which instructions will need a scratch register for them. Is it 2494 // worth the effort and added fragility? 2495 unsigned EstimatedStackSize = 2496 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 2497 2498 // Determine biggest (positive) SP offset in MachineFrameInfo. 2499 int MaxFixedOffset = 0; 2500 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 2501 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); 2502 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); 2503 } 2504 2505 bool HasFP = hasFP(MF); 2506 if (HasFP) { 2507 if (AFI->hasStackFrame()) 2508 EstimatedStackSize += 4; 2509 } else { 2510 // If FP is not used, SP will be used to access arguments, so count the 2511 // size of arguments into the estimation. 2512 EstimatedStackSize += MaxFixedOffset; 2513 } 2514 EstimatedStackSize += 16; // For possible paddings. 2515 2516 unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit; 2517 bool HasNonSPFrameIndex = false; 2518 if (AFI->isThumb1OnlyFunction()) { 2519 // For Thumb1, don't bother to iterate over the function. The only 2520 // instruction that requires an emergency spill slot is a store to a 2521 // frame index. 2522 // 2523 // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned 2524 // immediate. tSTRi, which is used for bp- and fp-relative accesses, has 2525 // a 5-bit unsigned immediate. 2526 // 2527 // We could try to check if the function actually contains a tSTRspi 2528 // that might need the spill slot, but it's not really important. 2529 // Functions with VLAs or extremely large call frames are rare, and 2530 // if a function is allocating more than 1KB of stack, an extra 4-byte 2531 // slot probably isn't relevant. 2532 // 2533 // A special case is the scenario where r11 is used as FP, where accesses 2534 // to a frame index will require its value to be moved into a low reg. 2535 // This is handled later on, once we are able to determine if we have any 2536 // fp-relative accesses. 2537 if (RegInfo->hasBasePointer(MF)) 2538 EstimatedRSStackSizeLimit = (1U << 5) * 4; 2539 else 2540 EstimatedRSStackSizeLimit = (1U << 8) * 4; 2541 EstimatedRSFixedSizeLimit = (1U << 5) * 4; 2542 } else { 2543 EstimatedRSStackSizeLimit = 2544 estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex); 2545 EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit; 2546 } 2547 // Final estimate of whether sp or bp-relative accesses might require 2548 // scavenging. 2549 bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit; 2550 2551 // If the stack pointer moves and we don't have a base pointer, the 2552 // estimate logic doesn't work. The actual offsets might be larger when 2553 // we're constructing a call frame, or we might need to use negative 2554 // offsets from fp. 2555 bool HasMovingSP = MFI.hasVarSizedObjects() || 2556 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)); 2557 bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP; 2558 2559 // If we have a frame pointer, we assume arguments will be accessed 2560 // relative to the frame pointer. Check whether fp-relative accesses to 2561 // arguments require scavenging. 2562 // 2563 // We could do slightly better on Thumb1; in some cases, an sp-relative 2564 // offset would be legal even though an fp-relative offset is not. 2565 int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF); 2566 bool HasLargeArgumentList = 2567 HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit; 2568 2569 bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP || 2570 HasLargeArgumentList || HasNonSPFrameIndex; 2571 LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit 2572 << "; EstimatedStack: " << EstimatedStackSize 2573 << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset 2574 << "; BigFrameOffsets: " << BigFrameOffsets << "\n"); 2575 if (BigFrameOffsets || 2576 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 2577 AFI->setHasStackFrame(true); 2578 2579 if (HasFP) { 2580 SavedRegs.set(FramePtr); 2581 // If the frame pointer is required by the ABI, also spill LR so that we 2582 // emit a complete frame record. 2583 if ((requiresAAPCSFrameRecord(MF) || 2584 MF.getTarget().Options.DisableFramePointerElim(MF)) && 2585 !LRSpilled) { 2586 SavedRegs.set(ARM::LR); 2587 LRSpilled = true; 2588 NumGPRSpills++; 2589 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 2590 if (LRPos != UnspilledCS1GPRs.end()) 2591 UnspilledCS1GPRs.erase(LRPos); 2592 } 2593 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 2594 if (FPPos != UnspilledCS1GPRs.end()) 2595 UnspilledCS1GPRs.erase(FPPos); 2596 NumGPRSpills++; 2597 if (FramePtr == ARM::R7) 2598 CS1Spilled = true; 2599 } 2600 2601 // This is the number of extra spills inserted for callee-save GPRs which 2602 // would not otherwise be used by the function. When greater than zero it 2603 // guaranteees that it is possible to scavenge a register to hold the 2604 // address of a stack slot. On Thumb1, the register must be a valid operand 2605 // to tSTRi, i.e. r4-r7. For other subtargets, this is any GPR, i.e. r4-r11 2606 // or lr. 2607 // 2608 // If we don't insert a spill, we instead allocate an emergency spill 2609 // slot, which can be used by scavenging to spill an arbitrary register. 2610 // 2611 // We currently don't try to figure out whether any specific instruction 2612 // requires scavening an additional register. 2613 unsigned NumExtraCSSpill = 0; 2614 2615 if (AFI->isThumb1OnlyFunction()) { 2616 // For Thumb1-only targets, we need some low registers when we save and 2617 // restore the high registers (which aren't allocatable, but could be 2618 // used by inline assembly) because the push/pop instructions can not 2619 // access high registers. If necessary, we might need to push more low 2620 // registers to ensure that there is at least one free that can be used 2621 // for the saving & restoring, and preferably we should ensure that as 2622 // many as are needed are available so that fewer push/pop instructions 2623 // are required. 2624 2625 // Low registers which are not currently pushed, but could be (r4-r7). 2626 SmallVector<unsigned, 4> AvailableRegs; 2627 2628 // Unused argument registers (r0-r3) can be clobbered in the prologue for 2629 // free. 2630 int EntryRegDeficit = 0; 2631 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 2632 if (!MF.getRegInfo().isLiveIn(Reg)) { 2633 --EntryRegDeficit; 2634 LLVM_DEBUG(dbgs() 2635 << printReg(Reg, TRI) 2636 << " is unused argument register, EntryRegDeficit = " 2637 << EntryRegDeficit << "\n"); 2638 } 2639 } 2640 2641 // Unused return registers can be clobbered in the epilogue for free. 2642 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 2643 LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount() 2644 << " return regs used, ExitRegDeficit = " 2645 << ExitRegDeficit << "\n"); 2646 2647 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 2648 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 2649 2650 // r4-r6 can be used in the prologue if they are pushed by the first push 2651 // instruction. 2652 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 2653 if (SavedRegs.test(Reg)) { 2654 --RegDeficit; 2655 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2656 << " is saved low register, RegDeficit = " 2657 << RegDeficit << "\n"); 2658 } else { 2659 AvailableRegs.push_back(Reg); 2660 LLVM_DEBUG( 2661 dbgs() 2662 << printReg(Reg, TRI) 2663 << " is non-saved low register, adding to AvailableRegs\n"); 2664 } 2665 } 2666 2667 // r7 can be used if it is not being used as the frame pointer. 2668 if (!HasFP || FramePtr != ARM::R7) { 2669 if (SavedRegs.test(ARM::R7)) { 2670 --RegDeficit; 2671 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = " 2672 << RegDeficit << "\n"); 2673 } else { 2674 AvailableRegs.push_back(ARM::R7); 2675 LLVM_DEBUG( 2676 dbgs() 2677 << "%r7 is non-saved low register, adding to AvailableRegs\n"); 2678 } 2679 } 2680 2681 // Each of r8-r11 needs to be copied to a low register, then pushed. 2682 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 2683 if (SavedRegs.test(Reg)) { 2684 ++RegDeficit; 2685 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2686 << " is saved high register, RegDeficit = " 2687 << RegDeficit << "\n"); 2688 } 2689 } 2690 2691 // LR can only be used by PUSH, not POP, and can't be used at all if the 2692 // llvm.returnaddress intrinsic is used. This is only worth doing if we 2693 // are more limited at function entry than exit. 2694 if ((EntryRegDeficit > ExitRegDeficit) && 2695 !(MF.getRegInfo().isLiveIn(ARM::LR) && 2696 MF.getFrameInfo().isReturnAddressTaken())) { 2697 if (SavedRegs.test(ARM::LR)) { 2698 --RegDeficit; 2699 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = " 2700 << RegDeficit << "\n"); 2701 } else { 2702 AvailableRegs.push_back(ARM::LR); 2703 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n"); 2704 } 2705 } 2706 2707 // If there are more high registers that need pushing than low registers 2708 // available, push some more low registers so that we can use fewer push 2709 // instructions. This might not reduce RegDeficit all the way to zero, 2710 // because we can only guarantee that r4-r6 are available, but r8-r11 may 2711 // need saving. 2712 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 2713 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 2714 unsigned Reg = AvailableRegs.pop_back_val(); 2715 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2716 << " to make up reg deficit\n"); 2717 SavedRegs.set(Reg); 2718 NumGPRSpills++; 2719 CS1Spilled = true; 2720 assert(!MRI.isReserved(Reg) && "Should not be reserved"); 2721 if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg)) 2722 NumExtraCSSpill++; 2723 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 2724 if (Reg == ARM::LR) 2725 LRSpilled = true; 2726 } 2727 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit 2728 << "\n"); 2729 } 2730 2731 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to 2732 // restore LR in that case. 2733 bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall(); 2734 2735 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 2736 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 2737 if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) { 2738 SavedRegs.set(ARM::LR); 2739 NumGPRSpills++; 2740 SmallVectorImpl<unsigned>::iterator LRPos; 2741 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 2742 if (LRPos != UnspilledCS1GPRs.end()) 2743 UnspilledCS1GPRs.erase(LRPos); 2744 2745 ForceLRSpill = false; 2746 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) && 2747 !AFI->isThumb1OnlyFunction()) 2748 NumExtraCSSpill++; 2749 } 2750 2751 // If stack and double are 8-byte aligned and we are spilling an odd number 2752 // of GPRs, spill one extra callee save GPR so we won't have to pad between 2753 // the integer and double callee save areas. 2754 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 2755 const Align TargetAlign = getStackAlign(); 2756 if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) { 2757 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 2758 for (unsigned Reg : UnspilledCS1GPRs) { 2759 // Don't spill high register if the function is thumb. In the case of 2760 // Windows on ARM, accept R11 (frame pointer) 2761 if (!AFI->isThumbFunction() || 2762 (STI.isTargetWindows() && Reg == ARM::R11) || 2763 isARMLowRegister(Reg) || 2764 (Reg == ARM::LR && !ExpensiveLRRestore)) { 2765 SavedRegs.set(Reg); 2766 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2767 << " to make up alignment\n"); 2768 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) && 2769 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction())) 2770 NumExtraCSSpill++; 2771 break; 2772 } 2773 } 2774 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 2775 unsigned Reg = UnspilledCS2GPRs.front(); 2776 SavedRegs.set(Reg); 2777 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2778 << " to make up alignment\n"); 2779 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 2780 NumExtraCSSpill++; 2781 } 2782 } 2783 2784 // Estimate if we might need to scavenge registers at some point in order 2785 // to materialize a stack offset. If so, either spill one additional 2786 // callee-saved register or reserve a special spill slot to facilitate 2787 // register scavenging. Thumb1 needs a spill slot for stack pointer 2788 // adjustments and for frame index accesses when FP is high register, 2789 // even when the frame itself is small. 2790 unsigned RegsNeeded = 0; 2791 if (BigFrameOffsets || canSpillOnFrameIndexAccess(MF, *this)) { 2792 RegsNeeded++; 2793 // With thumb1 execute-only we may need an additional register for saving 2794 // and restoring the CPSR. 2795 if (AFI->isThumb1OnlyFunction() && STI.genExecuteOnly() && !STI.useMovt()) 2796 RegsNeeded++; 2797 } 2798 2799 if (RegsNeeded > NumExtraCSSpill) { 2800 // If any non-reserved CS register isn't spilled, just spill one or two 2801 // extra. That should take care of it! 2802 unsigned NumExtras = TargetAlign.value() / 4; 2803 SmallVector<unsigned, 2> Extras; 2804 while (NumExtras && !UnspilledCS1GPRs.empty()) { 2805 unsigned Reg = UnspilledCS1GPRs.pop_back_val(); 2806 if (!MRI.isReserved(Reg) && 2807 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) { 2808 Extras.push_back(Reg); 2809 NumExtras--; 2810 } 2811 } 2812 // For non-Thumb1 functions, also check for hi-reg CS registers 2813 if (!AFI->isThumb1OnlyFunction()) { 2814 while (NumExtras && !UnspilledCS2GPRs.empty()) { 2815 unsigned Reg = UnspilledCS2GPRs.pop_back_val(); 2816 if (!MRI.isReserved(Reg)) { 2817 Extras.push_back(Reg); 2818 NumExtras--; 2819 } 2820 } 2821 } 2822 if (NumExtras == 0) { 2823 for (unsigned Reg : Extras) { 2824 SavedRegs.set(Reg); 2825 if (!MRI.isPhysRegUsed(Reg)) 2826 NumExtraCSSpill++; 2827 } 2828 } 2829 while ((RegsNeeded > NumExtraCSSpill) && RS) { 2830 // Reserve a slot closest to SP or frame pointer. 2831 LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n"); 2832 const TargetRegisterClass &RC = ARM::GPRRegClass; 2833 unsigned Size = TRI->getSpillSize(RC); 2834 Align Alignment = TRI->getSpillAlign(RC); 2835 RS->addScavengingFrameIndex( 2836 MFI.CreateStackObject(Size, Alignment, false)); 2837 --RegsNeeded; 2838 } 2839 } 2840 } 2841 2842 if (ForceLRSpill) 2843 SavedRegs.set(ARM::LR); 2844 AFI->setLRIsSpilled(SavedRegs.test(ARM::LR)); 2845 } 2846 2847 void ARMFrameLowering::updateLRRestored(MachineFunction &MF) { 2848 MachineFrameInfo &MFI = MF.getFrameInfo(); 2849 if (!MFI.isCalleeSavedInfoValid()) 2850 return; 2851 2852 // Check if all terminators do not implicitly use LR. Then we can 'restore' LR 2853 // into PC so it is not live out of the return block: Clear the Restored bit 2854 // in that case. 2855 for (CalleeSavedInfo &Info : MFI.getCalleeSavedInfo()) { 2856 if (Info.getReg() != ARM::LR) 2857 continue; 2858 if (all_of(MF, [](const MachineBasicBlock &MBB) { 2859 return all_of(MBB.terminators(), [](const MachineInstr &Term) { 2860 return !Term.isReturn() || Term.getOpcode() == ARM::LDMIA_RET || 2861 Term.getOpcode() == ARM::t2LDMIA_RET || 2862 Term.getOpcode() == ARM::tPOP_RET; 2863 }); 2864 })) { 2865 Info.setRestored(false); 2866 break; 2867 } 2868 } 2869 } 2870 2871 void ARMFrameLowering::processFunctionBeforeFrameFinalized( 2872 MachineFunction &MF, RegScavenger *RS) const { 2873 TargetFrameLowering::processFunctionBeforeFrameFinalized(MF, RS); 2874 updateLRRestored(MF); 2875 } 2876 2877 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF, 2878 BitVector &SavedRegs) const { 2879 TargetFrameLowering::getCalleeSaves(MF, SavedRegs); 2880 2881 // If we have the "returned" parameter attribute which guarantees that we 2882 // return the value which was passed in r0 unmodified (e.g. C++ 'structors), 2883 // record that fact for IPRA. 2884 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2885 if (AFI->getPreservesR0()) 2886 SavedRegs.set(ARM::R0); 2887 } 2888 2889 bool ARMFrameLowering::assignCalleeSavedSpillSlots( 2890 MachineFunction &MF, const TargetRegisterInfo *TRI, 2891 std::vector<CalleeSavedInfo> &CSI) const { 2892 // For CMSE entry functions, handle floating-point context as if it was a 2893 // callee-saved register. 2894 if (STI.hasV8_1MMainlineOps() && 2895 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) { 2896 CSI.emplace_back(ARM::FPCXTNS); 2897 CSI.back().setRestored(false); 2898 } 2899 2900 // For functions, which sign their return address, upon function entry, the 2901 // return address PAC is computed in R12. Treat R12 as a callee-saved register 2902 // in this case. 2903 const auto &AFI = *MF.getInfo<ARMFunctionInfo>(); 2904 if (AFI.shouldSignReturnAddress()) { 2905 // The order of register must match the order we push them, because the 2906 // PEI assigns frame indices in that order. When compiling for return 2907 // address sign and authenication, we use split push, therefore the orders 2908 // we want are: 2909 // LR, R7, R6, R5, R4, <R12>, R11, R10, R9, R8, D15-D8 2910 CSI.insert(find_if(CSI, 2911 [=](const auto &CS) { 2912 Register Reg = CS.getReg(); 2913 return Reg == ARM::R10 || Reg == ARM::R11 || 2914 Reg == ARM::R8 || Reg == ARM::R9 || 2915 ARM::DPRRegClass.contains(Reg); 2916 }), 2917 CalleeSavedInfo(ARM::R12)); 2918 } 2919 2920 return false; 2921 } 2922 2923 const TargetFrameLowering::SpillSlot * 2924 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const { 2925 static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}}; 2926 NumEntries = std::size(FixedSpillOffsets); 2927 return FixedSpillOffsets; 2928 } 2929 2930 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 2931 MachineFunction &MF, MachineBasicBlock &MBB, 2932 MachineBasicBlock::iterator I) const { 2933 const ARMBaseInstrInfo &TII = 2934 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2935 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2936 bool isARM = !AFI->isThumbFunction(); 2937 DebugLoc dl = I->getDebugLoc(); 2938 unsigned Opc = I->getOpcode(); 2939 bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode(); 2940 unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; 2941 2942 assert(!AFI->isThumb1OnlyFunction() && 2943 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 2944 2945 int PIdx = I->findFirstPredOperandIdx(); 2946 ARMCC::CondCodes Pred = (PIdx == -1) 2947 ? ARMCC::AL 2948 : (ARMCC::CondCodes)I->getOperand(PIdx).getImm(); 2949 unsigned PredReg = TII.getFramePred(*I); 2950 2951 if (!hasReservedCallFrame(MF)) { 2952 // Bail early if the callee is expected to do the adjustment. 2953 if (IsDestroy && CalleePopAmount != -1U) 2954 return MBB.erase(I); 2955 2956 // If we have alloca, convert as follows: 2957 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 2958 // ADJCALLSTACKUP -> add, sp, sp, amount 2959 unsigned Amount = TII.getFrameSize(*I); 2960 if (Amount != 0) { 2961 // We need to keep the stack aligned properly. To do this, we round the 2962 // amount of space needed for the outgoing arguments up to the next 2963 // alignment boundary. 2964 Amount = alignSPAdjust(Amount); 2965 2966 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 2967 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 2968 Pred, PredReg); 2969 } else { 2970 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 2971 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 2972 Pred, PredReg); 2973 } 2974 } 2975 } else if (CalleePopAmount != -1U) { 2976 // If the calling convention demands that the callee pops arguments from the 2977 // stack, we want to add it back if we have a reserved call frame. 2978 emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount, 2979 MachineInstr::NoFlags, Pred, PredReg); 2980 } 2981 return MBB.erase(I); 2982 } 2983 2984 /// Get the minimum constant for ARM that is greater than or equal to the 2985 /// argument. In ARM, constants can have any value that can be produced by 2986 /// rotating an 8-bit value to the right by an even number of bits within a 2987 /// 32-bit word. 2988 static uint32_t alignToARMConstant(uint32_t Value) { 2989 unsigned Shifted = 0; 2990 2991 if (Value == 0) 2992 return 0; 2993 2994 while (!(Value & 0xC0000000)) { 2995 Value = Value << 2; 2996 Shifted += 2; 2997 } 2998 2999 bool Carry = (Value & 0x00FFFFFF); 3000 Value = ((Value & 0xFF000000) >> 24) + Carry; 3001 3002 if (Value & 0x0000100) 3003 Value = Value & 0x000001FC; 3004 3005 if (Shifted > 24) 3006 Value = Value >> (Shifted - 24); 3007 else 3008 Value = Value << (24 - Shifted); 3009 3010 return Value; 3011 } 3012 3013 // The stack limit in the TCB is set to this many bytes above the actual 3014 // stack limit. 3015 static const uint64_t kSplitStackAvailable = 256; 3016 3017 // Adjust the function prologue to enable split stacks. This currently only 3018 // supports android and linux. 3019 // 3020 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 3021 // must be well defined in order to allow for consistent implementations of the 3022 // __morestack helper function. The ABI is also not a normal ABI in that it 3023 // doesn't follow the normal calling conventions because this allows the 3024 // prologue of each function to be optimized further. 3025 // 3026 // Currently, the ABI looks like (when calling __morestack) 3027 // 3028 // * r4 holds the minimum stack size requested for this function call 3029 // * r5 holds the stack size of the arguments to the function 3030 // * the beginning of the function is 3 instructions after the call to 3031 // __morestack 3032 // 3033 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 3034 // place the arguments on to the new stack, and the 3-instruction knowledge to 3035 // jump directly to the body of the function when working on the new stack. 3036 // 3037 // An old (and possibly no longer compatible) implementation of __morestack for 3038 // ARM can be found at [1]. 3039 // 3040 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 3041 void ARMFrameLowering::adjustForSegmentedStacks( 3042 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3043 unsigned Opcode; 3044 unsigned CFIIndex; 3045 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 3046 bool Thumb = ST->isThumb(); 3047 bool Thumb2 = ST->isThumb2(); 3048 3049 // Sadly, this currently doesn't support varargs, platforms other than 3050 // android/linux. Note that thumb1/thumb2 are support for android/linux. 3051 if (MF.getFunction().isVarArg()) 3052 report_fatal_error("Segmented stacks do not support vararg functions."); 3053 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 3054 report_fatal_error("Segmented stacks not supported on this platform."); 3055 3056 MachineFrameInfo &MFI = MF.getFrameInfo(); 3057 MCContext &Context = MF.getContext(); 3058 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 3059 const ARMBaseInstrInfo &TII = 3060 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 3061 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 3062 DebugLoc DL; 3063 3064 if (!MFI.needsSplitStackProlog()) 3065 return; 3066 3067 uint64_t StackSize = MFI.getStackSize(); 3068 3069 // Use R4 and R5 as scratch registers. 3070 // We save R4 and R5 before use and restore them before leaving the function. 3071 unsigned ScratchReg0 = ARM::R4; 3072 unsigned ScratchReg1 = ARM::R5; 3073 unsigned MovOp = ST->useMovt() ? ARM::t2MOVi32imm : ARM::tMOVi32imm; 3074 uint64_t AlignedStackSize; 3075 3076 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 3077 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 3078 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 3079 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 3080 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 3081 3082 // Grab everything that reaches PrologueMBB to update there liveness as well. 3083 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 3084 SmallVector<MachineBasicBlock *, 2> WalkList; 3085 WalkList.push_back(&PrologueMBB); 3086 3087 do { 3088 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 3089 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 3090 if (BeforePrologueRegion.insert(PredBB).second) 3091 WalkList.push_back(PredBB); 3092 } 3093 } while (!WalkList.empty()); 3094 3095 // The order in that list is important. 3096 // The blocks will all be inserted before PrologueMBB using that order. 3097 // Therefore the block that should appear first in the CFG should appear 3098 // first in the list. 3099 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 3100 PostStackMBB}; 3101 3102 for (MachineBasicBlock *B : AddedBlocks) 3103 BeforePrologueRegion.insert(B); 3104 3105 for (const auto &LI : PrologueMBB.liveins()) { 3106 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 3107 PredBB->addLiveIn(LI); 3108 } 3109 3110 // Remove the newly added blocks from the list, since we know 3111 // we do not have to do the following updates for them. 3112 for (MachineBasicBlock *B : AddedBlocks) { 3113 BeforePrologueRegion.erase(B); 3114 MF.insert(PrologueMBB.getIterator(), B); 3115 } 3116 3117 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 3118 // Make sure the LiveIns are still sorted and unique. 3119 MBB->sortUniqueLiveIns(); 3120 // Replace the edges to PrologueMBB by edges to the sequences 3121 // we are about to add, but only update for immediate predecessors. 3122 if (MBB->isSuccessor(&PrologueMBB)) 3123 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 3124 } 3125 3126 // The required stack size that is aligned to ARM constant criterion. 3127 AlignedStackSize = alignToARMConstant(StackSize); 3128 3129 // When the frame size is less than 256 we just compare the stack 3130 // boundary directly to the value of the stack pointer, per gcc. 3131 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 3132 3133 // We will use two of the callee save registers as scratch registers so we 3134 // need to save those registers onto the stack. 3135 // We will use SR0 to hold stack limit and SR1 to hold the stack size 3136 // requested and arguments for __morestack(). 3137 // SR0: Scratch Register #0 3138 // SR1: Scratch Register #1 3139 // push {SR0, SR1} 3140 if (Thumb) { 3141 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 3142 .add(predOps(ARMCC::AL)) 3143 .addReg(ScratchReg0) 3144 .addReg(ScratchReg1); 3145 } else { 3146 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 3147 .addReg(ARM::SP, RegState::Define) 3148 .addReg(ARM::SP) 3149 .add(predOps(ARMCC::AL)) 3150 .addReg(ScratchReg0) 3151 .addReg(ScratchReg1); 3152 } 3153 3154 // Emit the relevant DWARF information about the change in stack pointer as 3155 // well as where to find both r4 and r5 (the callee-save registers) 3156 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3157 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8)); 3158 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3159 .addCFIIndex(CFIIndex); 3160 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3161 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 3162 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3163 .addCFIIndex(CFIIndex); 3164 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3165 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 3166 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3167 .addCFIIndex(CFIIndex); 3168 } 3169 3170 // mov SR1, sp 3171 if (Thumb) { 3172 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 3173 .addReg(ARM::SP) 3174 .add(predOps(ARMCC::AL)); 3175 } else if (CompareStackPointer) { 3176 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 3177 .addReg(ARM::SP) 3178 .add(predOps(ARMCC::AL)) 3179 .add(condCodeOp()); 3180 } 3181 3182 // sub SR1, sp, #StackSize 3183 if (!CompareStackPointer && Thumb) { 3184 if (AlignedStackSize < 256) { 3185 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 3186 .add(condCodeOp()) 3187 .addReg(ScratchReg1) 3188 .addImm(AlignedStackSize) 3189 .add(predOps(ARMCC::AL)); 3190 } else { 3191 if (Thumb2 || ST->genExecuteOnly()) { 3192 BuildMI(McrMBB, DL, TII.get(MovOp), ScratchReg0) 3193 .addImm(AlignedStackSize); 3194 } else { 3195 auto MBBI = McrMBB->end(); 3196 auto RegInfo = STI.getRegisterInfo(); 3197 RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0, 3198 AlignedStackSize); 3199 } 3200 BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1) 3201 .add(condCodeOp()) 3202 .addReg(ScratchReg1) 3203 .addReg(ScratchReg0) 3204 .add(predOps(ARMCC::AL)); 3205 } 3206 } else if (!CompareStackPointer) { 3207 if (AlignedStackSize < 256) { 3208 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 3209 .addReg(ARM::SP) 3210 .addImm(AlignedStackSize) 3211 .add(predOps(ARMCC::AL)) 3212 .add(condCodeOp()); 3213 } else { 3214 auto MBBI = McrMBB->end(); 3215 auto RegInfo = STI.getRegisterInfo(); 3216 RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0, 3217 AlignedStackSize); 3218 BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1) 3219 .addReg(ARM::SP) 3220 .addReg(ScratchReg0) 3221 .add(predOps(ARMCC::AL)) 3222 .add(condCodeOp()); 3223 } 3224 } 3225 3226 if (Thumb && ST->isThumb1Only()) { 3227 if (ST->genExecuteOnly()) { 3228 BuildMI(GetMBB, DL, TII.get(MovOp), ScratchReg0) 3229 .addExternalSymbol("__STACK_LIMIT"); 3230 } else { 3231 unsigned PCLabelId = ARMFI->createPICLabelUId(); 3232 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 3233 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0); 3234 MachineConstantPool *MCP = MF.getConstantPool(); 3235 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4)); 3236 3237 // ldr SR0, [pc, offset(STACK_LIMIT)] 3238 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 3239 .addConstantPoolIndex(CPI) 3240 .add(predOps(ARMCC::AL)); 3241 } 3242 3243 // ldr SR0, [SR0] 3244 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 3245 .addReg(ScratchReg0) 3246 .addImm(0) 3247 .add(predOps(ARMCC::AL)); 3248 } else { 3249 // Get TLS base address from the coprocessor 3250 // mrc p15, #0, SR0, c13, c0, #3 3251 BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC), 3252 ScratchReg0) 3253 .addImm(15) 3254 .addImm(0) 3255 .addImm(13) 3256 .addImm(0) 3257 .addImm(3) 3258 .add(predOps(ARMCC::AL)); 3259 3260 // Use the last tls slot on android and a private field of the TCP on linux. 3261 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 3262 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 3263 3264 // Get the stack limit from the right offset 3265 // ldr SR0, [sr0, #4 * TlsOffset] 3266 BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12), 3267 ScratchReg0) 3268 .addReg(ScratchReg0) 3269 .addImm(4 * TlsOffset) 3270 .add(predOps(ARMCC::AL)); 3271 } 3272 3273 // Compare stack limit with stack size requested. 3274 // cmp SR0, SR1 3275 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 3276 BuildMI(GetMBB, DL, TII.get(Opcode)) 3277 .addReg(ScratchReg0) 3278 .addReg(ScratchReg1) 3279 .add(predOps(ARMCC::AL)); 3280 3281 // This jump is taken if StackLimit <= SP - stack required. 3282 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 3283 BuildMI(GetMBB, DL, TII.get(Opcode)) 3284 .addMBB(PostStackMBB) 3285 .addImm(ARMCC::LS) 3286 .addReg(ARM::CPSR); 3287 3288 // Calling __morestack(StackSize, Size of stack arguments). 3289 // __morestack knows that the stack size requested is in SR0(r4) 3290 // and amount size of stack arguments is in SR1(r5). 3291 3292 // Pass first argument for the __morestack by Scratch Register #0. 3293 // The amount size of stack required 3294 if (Thumb) { 3295 if (AlignedStackSize < 256) { 3296 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 3297 .add(condCodeOp()) 3298 .addImm(AlignedStackSize) 3299 .add(predOps(ARMCC::AL)); 3300 } else { 3301 if (Thumb2 || ST->genExecuteOnly()) { 3302 BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg0) 3303 .addImm(AlignedStackSize); 3304 } else { 3305 auto MBBI = AllocMBB->end(); 3306 auto RegInfo = STI.getRegisterInfo(); 3307 RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0, 3308 AlignedStackSize); 3309 } 3310 } 3311 } else { 3312 if (AlignedStackSize < 256) { 3313 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 3314 .addImm(AlignedStackSize) 3315 .add(predOps(ARMCC::AL)) 3316 .add(condCodeOp()); 3317 } else { 3318 auto MBBI = AllocMBB->end(); 3319 auto RegInfo = STI.getRegisterInfo(); 3320 RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0, 3321 AlignedStackSize); 3322 } 3323 } 3324 3325 // Pass second argument for the __morestack by Scratch Register #1. 3326 // The amount size of stack consumed to save function arguments. 3327 if (Thumb) { 3328 if (ARMFI->getArgumentStackSize() < 256) { 3329 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 3330 .add(condCodeOp()) 3331 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 3332 .add(predOps(ARMCC::AL)); 3333 } else { 3334 if (Thumb2 || ST->genExecuteOnly()) { 3335 BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg1) 3336 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())); 3337 } else { 3338 auto MBBI = AllocMBB->end(); 3339 auto RegInfo = STI.getRegisterInfo(); 3340 RegInfo->emitLoadConstPool( 3341 *AllocMBB, MBBI, DL, ScratchReg1, 0, 3342 alignToARMConstant(ARMFI->getArgumentStackSize())); 3343 } 3344 } 3345 } else { 3346 if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) { 3347 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 3348 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 3349 .add(predOps(ARMCC::AL)) 3350 .add(condCodeOp()); 3351 } else { 3352 auto MBBI = AllocMBB->end(); 3353 auto RegInfo = STI.getRegisterInfo(); 3354 RegInfo->emitLoadConstPool( 3355 *AllocMBB, MBBI, DL, ScratchReg1, 0, 3356 alignToARMConstant(ARMFI->getArgumentStackSize())); 3357 } 3358 } 3359 3360 // push {lr} - Save return address of this function. 3361 if (Thumb) { 3362 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 3363 .add(predOps(ARMCC::AL)) 3364 .addReg(ARM::LR); 3365 } else { 3366 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 3367 .addReg(ARM::SP, RegState::Define) 3368 .addReg(ARM::SP) 3369 .add(predOps(ARMCC::AL)) 3370 .addReg(ARM::LR); 3371 } 3372 3373 // Emit the DWARF info about the change in stack as well as where to find the 3374 // previous link register 3375 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3376 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12)); 3377 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3378 .addCFIIndex(CFIIndex); 3379 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3380 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 3381 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3382 .addCFIIndex(CFIIndex); 3383 } 3384 3385 // Call __morestack(). 3386 if (Thumb) { 3387 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 3388 .add(predOps(ARMCC::AL)) 3389 .addExternalSymbol("__morestack"); 3390 } else { 3391 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 3392 .addExternalSymbol("__morestack"); 3393 } 3394 3395 // pop {lr} - Restore return address of this original function. 3396 if (Thumb) { 3397 if (ST->isThumb1Only()) { 3398 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 3399 .add(predOps(ARMCC::AL)) 3400 .addReg(ScratchReg0); 3401 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 3402 .addReg(ScratchReg0) 3403 .add(predOps(ARMCC::AL)); 3404 } else { 3405 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 3406 .addReg(ARM::LR, RegState::Define) 3407 .addReg(ARM::SP, RegState::Define) 3408 .addReg(ARM::SP) 3409 .addImm(4) 3410 .add(predOps(ARMCC::AL)); 3411 } 3412 } else { 3413 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 3414 .addReg(ARM::SP, RegState::Define) 3415 .addReg(ARM::SP) 3416 .add(predOps(ARMCC::AL)) 3417 .addReg(ARM::LR); 3418 } 3419 3420 // Restore SR0 and SR1 in case of __morestack() was called. 3421 // __morestack() will skip PostStackMBB block so we need to restore 3422 // scratch registers from here. 3423 // pop {SR0, SR1} 3424 if (Thumb) { 3425 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 3426 .add(predOps(ARMCC::AL)) 3427 .addReg(ScratchReg0) 3428 .addReg(ScratchReg1); 3429 } else { 3430 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 3431 .addReg(ARM::SP, RegState::Define) 3432 .addReg(ARM::SP) 3433 .add(predOps(ARMCC::AL)) 3434 .addReg(ScratchReg0) 3435 .addReg(ScratchReg1); 3436 } 3437 3438 // Update the CFA offset now that we've popped 3439 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3440 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 3441 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3442 .addCFIIndex(CFIIndex); 3443 } 3444 3445 // Return from this function. 3446 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL)); 3447 3448 // Restore SR0 and SR1 in case of __morestack() was not called. 3449 // pop {SR0, SR1} 3450 if (Thumb) { 3451 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 3452 .add(predOps(ARMCC::AL)) 3453 .addReg(ScratchReg0) 3454 .addReg(ScratchReg1); 3455 } else { 3456 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 3457 .addReg(ARM::SP, RegState::Define) 3458 .addReg(ARM::SP) 3459 .add(predOps(ARMCC::AL)) 3460 .addReg(ScratchReg0) 3461 .addReg(ScratchReg1); 3462 } 3463 3464 // Update the CFA offset now that we've popped 3465 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3466 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 3467 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3468 .addCFIIndex(CFIIndex); 3469 3470 // Tell debuggers that r4 and r5 are now the same as they were in the 3471 // previous function, that they're the "Same Value". 3472 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 3473 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 3474 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3475 .addCFIIndex(CFIIndex); 3476 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 3477 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 3478 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3479 .addCFIIndex(CFIIndex); 3480 } 3481 3482 // Organizing MBB lists 3483 PostStackMBB->addSuccessor(&PrologueMBB); 3484 3485 AllocMBB->addSuccessor(PostStackMBB); 3486 3487 GetMBB->addSuccessor(PostStackMBB); 3488 GetMBB->addSuccessor(AllocMBB); 3489 3490 McrMBB->addSuccessor(GetMBB); 3491 3492 PrevStackMBB->addSuccessor(McrMBB); 3493 3494 #ifdef EXPENSIVE_CHECKS 3495 MF.verify(); 3496 #endif 3497 } 3498