xref: /llvm-project/llvm/lib/Target/ARM/ARMFrameLowering.cpp (revision 2ab19bfa4125d803c16e60b5df4df9d03838e0ea)
1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the ARM implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 //
13 // This file contains the ARM implementation of TargetFrameLowering class.
14 //
15 // On ARM, stack frames are structured as follows:
16 //
17 // The stack grows downward.
18 //
19 // All of the individual frame areas on the frame below are optional, i.e. it's
20 // possible to create a function so that the particular area isn't present
21 // in the frame.
22 //
23 // At function entry, the "frame" looks as follows:
24 //
25 // |                                   | Higher address
26 // |-----------------------------------|
27 // |                                   |
28 // | arguments passed on the stack     |
29 // |                                   |
30 // |-----------------------------------| <- sp
31 // |                                   | Lower address
32 //
33 //
34 // After the prologue has run, the frame has the following general structure.
35 // Technically the last frame area (VLAs) doesn't get created until in the
36 // main function body, after the prologue is run. However, it's depicted here
37 // for completeness.
38 //
39 // |                                   | Higher address
40 // |-----------------------------------|
41 // |                                   |
42 // | arguments passed on the stack     |
43 // |                                   |
44 // |-----------------------------------| <- (sp at function entry)
45 // |                                   |
46 // | varargs from registers            |
47 // |                                   |
48 // |-----------------------------------|
49 // |                                   |
50 // | prev_fp, prev_lr                  |
51 // | (a.k.a. "frame record")           |
52 // |                                   |
53 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11)
54 // |                                   |
55 // | callee-saved gpr registers        |
56 // |                                   |
57 // |-----------------------------------|
58 // |                                   |
59 // | callee-saved fp/simd regs         |
60 // |                                   |
61 // |-----------------------------------|
62 // |.empty.space.to.make.part.below....|
63 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
64 // |.the.standard.8-byte.alignment.....|  compile time; if present)
65 // |-----------------------------------|
66 // |                                   |
67 // | local variables of fixed size     |
68 // | including spill slots             |
69 // |-----------------------------------| <- base pointer (not defined by ABI,
70 // |.variable-sized.local.variables....|       LLVM chooses r6)
71 // |.(VLAs)............................| (size of this area is unknown at
72 // |...................................|  compile time)
73 // |-----------------------------------| <- sp
74 // |                                   | Lower address
75 //
76 //
77 // To access the data in a frame, at-compile time, a constant offset must be
78 // computable from one of the pointers (fp, bp, sp) to access it. The size
79 // of the areas with a dotted background cannot be computed at compile-time
80 // if they are present, making it required to have all three of fp, bp and
81 // sp to be set up to be able to access all contents in the frame areas,
82 // assuming all of the frame areas are non-empty.
83 //
84 // For most functions, some of the frame areas are empty. For those functions,
85 // it may not be necessary to set up fp or bp:
86 // * A base pointer is definitely needed when there are both VLAs and local
87 //   variables with more-than-default alignment requirements.
88 // * A frame pointer is definitely needed when there are local variables with
89 //   more-than-default alignment requirements.
90 //
91 // In some cases when a base pointer is not strictly needed, it is generated
92 // anyway when offsets from the frame pointer to access local variables become
93 // so large that the offset can't be encoded in the immediate fields of loads
94 // or stores.
95 //
96 // The frame pointer might be chosen to be r7 or r11, depending on the target
97 // architecture and operating system. See ARMSubtarget::getFramePointerReg for
98 // details.
99 //
100 // Outgoing function arguments must be at the bottom of the stack frame when
101 // calling another function. If we do not have variable-sized stack objects, we
102 // can allocate a "reserved call frame" area at the bottom of the local
103 // variable area, large enough for all outgoing calls. If we do have VLAs, then
104 // the stack pointer must be decremented and incremented around each call to
105 // make space for the arguments below the VLAs.
106 //
107 //===----------------------------------------------------------------------===//
108 
109 #include "ARMFrameLowering.h"
110 #include "ARMBaseInstrInfo.h"
111 #include "ARMBaseRegisterInfo.h"
112 #include "ARMConstantPoolValue.h"
113 #include "ARMMachineFunctionInfo.h"
114 #include "ARMSubtarget.h"
115 #include "MCTargetDesc/ARMAddressingModes.h"
116 #include "MCTargetDesc/ARMBaseInfo.h"
117 #include "Utils/ARMBaseInfo.h"
118 #include "llvm/ADT/BitVector.h"
119 #include "llvm/ADT/STLExtras.h"
120 #include "llvm/ADT/SmallPtrSet.h"
121 #include "llvm/ADT/SmallVector.h"
122 #include "llvm/CodeGen/MachineBasicBlock.h"
123 #include "llvm/CodeGen/MachineConstantPool.h"
124 #include "llvm/CodeGen/MachineFrameInfo.h"
125 #include "llvm/CodeGen/MachineFunction.h"
126 #include "llvm/CodeGen/MachineInstr.h"
127 #include "llvm/CodeGen/MachineInstrBuilder.h"
128 #include "llvm/CodeGen/MachineJumpTableInfo.h"
129 #include "llvm/CodeGen/MachineModuleInfo.h"
130 #include "llvm/CodeGen/MachineOperand.h"
131 #include "llvm/CodeGen/MachineRegisterInfo.h"
132 #include "llvm/CodeGen/RegisterScavenging.h"
133 #include "llvm/CodeGen/TargetInstrInfo.h"
134 #include "llvm/CodeGen/TargetOpcodes.h"
135 #include "llvm/CodeGen/TargetRegisterInfo.h"
136 #include "llvm/CodeGen/TargetSubtargetInfo.h"
137 #include "llvm/IR/Attributes.h"
138 #include "llvm/IR/CallingConv.h"
139 #include "llvm/IR/DebugLoc.h"
140 #include "llvm/IR/Function.h"
141 #include "llvm/MC/MCAsmInfo.h"
142 #include "llvm/MC/MCContext.h"
143 #include "llvm/MC/MCDwarf.h"
144 #include "llvm/MC/MCInstrDesc.h"
145 #include "llvm/MC/MCRegisterInfo.h"
146 #include "llvm/Support/CodeGen.h"
147 #include "llvm/Support/CommandLine.h"
148 #include "llvm/Support/Compiler.h"
149 #include "llvm/Support/Debug.h"
150 #include "llvm/Support/ErrorHandling.h"
151 #include "llvm/Support/MathExtras.h"
152 #include "llvm/Support/raw_ostream.h"
153 #include "llvm/Target/TargetMachine.h"
154 #include "llvm/Target/TargetOptions.h"
155 #include <algorithm>
156 #include <cassert>
157 #include <cstddef>
158 #include <cstdint>
159 #include <iterator>
160 #include <utility>
161 #include <vector>
162 
163 #define DEBUG_TYPE "arm-frame-lowering"
164 
165 using namespace llvm;
166 
167 static cl::opt<bool>
168 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
169                      cl::desc("Align ARM NEON spills in prolog and epilog"));
170 
171 static MachineBasicBlock::iterator
172 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
173                         unsigned NumAlignedDPRCS2Regs);
174 
175 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
176     : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)),
177       STI(sti) {}
178 
179 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const {
180   // iOS always has a FP for backtracking, force other targets to keep their FP
181   // when doing FastISel. The emitted code is currently superior, and in cases
182   // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
183   return MF.getSubtarget<ARMSubtarget>().useFastISel();
184 }
185 
186 /// Returns true if the target can safely skip saving callee-saved registers
187 /// for noreturn nounwind functions.
188 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
189   assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
190          MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
191          !MF.getFunction().hasFnAttribute(Attribute::UWTable));
192 
193   // Frame pointer and link register are not treated as normal CSR, thus we
194   // can always skip CSR saves for nonreturning functions.
195   return true;
196 }
197 
198 /// hasFP - Return true if the specified function should have a dedicated frame
199 /// pointer register.  This is true if the function has variable sized allocas
200 /// or if frame pointer elimination is disabled.
201 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
202   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
203   const MachineFrameInfo &MFI = MF.getFrameInfo();
204 
205   // ABI-required frame pointer.
206   if (MF.getTarget().Options.DisableFramePointerElim(MF))
207     return true;
208 
209   // Frame pointer required for use within this function.
210   return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
211           MFI.isFrameAddressTaken());
212 }
213 
214 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
215 /// not required, we reserve argument space for call sites in the function
216 /// immediately on entry to the current function.  This eliminates the need for
217 /// add/sub sp brackets around call sites.  Returns true if the call frame is
218 /// included as part of the stack frame.
219 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
220   const MachineFrameInfo &MFI = MF.getFrameInfo();
221   unsigned CFSize = MFI.getMaxCallFrameSize();
222   // It's not always a good idea to include the call frame as part of the
223   // stack frame. ARM (especially Thumb) has small immediate offset to
224   // address the stack frame. So a large call frame can cause poor codegen
225   // and may even makes it impossible to scavenge a register.
226   if (CFSize >= ((1 << 12) - 1) / 2)  // Half of imm12
227     return false;
228 
229   return !MFI.hasVarSizedObjects();
230 }
231 
232 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
233 /// call frame pseudos can be simplified.  Unlike most targets, having a FP
234 /// is not sufficient here since we still may reference some objects via SP
235 /// even when FP is available in Thumb2 mode.
236 bool
237 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
238   return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
239 }
240 
241 // Returns how much of the incoming argument stack area we should clean up in an
242 // epilogue. For the C calling convention this will be 0, for guaranteed tail
243 // call conventions it can be positive (a normal return or a tail call to a
244 // function that uses less stack space for arguments) or negative (for a tail
245 // call to a function that needs more stack space than us for arguments).
246 static int getArgumentStackToRestore(MachineFunction &MF,
247                                      MachineBasicBlock &MBB) {
248   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
249   bool IsTailCallReturn = false;
250   if (MBB.end() != MBBI) {
251     unsigned RetOpcode = MBBI->getOpcode();
252     IsTailCallReturn = RetOpcode == ARM::TCRETURNdi ||
253                        RetOpcode == ARM::TCRETURNri;
254   }
255   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
256 
257   int ArgumentPopSize = 0;
258   if (IsTailCallReturn) {
259     MachineOperand &StackAdjust = MBBI->getOperand(1);
260 
261     // For a tail-call in a callee-pops-arguments environment, some or all of
262     // the stack may actually be in use for the call's arguments, this is
263     // calculated during LowerCall and consumed here...
264     ArgumentPopSize = StackAdjust.getImm();
265   } else {
266     // ... otherwise the amount to pop is *all* of the argument space,
267     // conveniently stored in the MachineFunctionInfo by
268     // LowerFormalArguments. This will, of course, be zero for the C calling
269     // convention.
270     ArgumentPopSize = AFI->getArgumentStackToRestore();
271   }
272 
273   return ArgumentPopSize;
274 }
275 
276 static bool needsWinCFI(const MachineFunction &MF) {
277   const Function &F = MF.getFunction();
278   return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
279          F.needsUnwindTableEntry();
280 }
281 
282 // Given a load or a store instruction, generate an appropriate unwinding SEH
283 // code on Windows.
284 static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI,
285                                              const TargetInstrInfo &TII,
286                                              unsigned Flags) {
287   unsigned Opc = MBBI->getOpcode();
288   MachineBasicBlock *MBB = MBBI->getParent();
289   MachineFunction &MF = *MBB->getParent();
290   DebugLoc DL = MBBI->getDebugLoc();
291   MachineInstrBuilder MIB;
292   const ARMSubtarget &Subtarget = MF.getSubtarget<ARMSubtarget>();
293   const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
294 
295   Flags |= MachineInstr::NoMerge;
296 
297   switch (Opc) {
298   default:
299     report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc));
300     break;
301   case ARM::t2ADDri:   // add.w r11, sp, #xx
302   case ARM::t2ADDri12: // add.w r11, sp, #xx
303   case ARM::t2MOVTi16: // movt  r4, #xx
304   case ARM::t2MOVi16:  // movw  r4, #xx
305   case ARM::tBL:       // bl __chkstk
306     // These are harmless if used for just setting up a frame pointer,
307     // but that frame pointer can't be relied upon for unwinding, unless
308     // set up with SEH_SaveSP.
309     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
310               .addImm(/*Wide=*/1)
311               .setMIFlags(Flags);
312     break;
313 
314   case ARM::tBLXr: // blx r12 (__chkstk)
315     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
316               .addImm(/*Wide=*/0)
317               .setMIFlags(Flags);
318     break;
319 
320   case ARM::t2MOVi32imm: // movw+movt
321     // This pseudo instruction expands into two mov instructions. If the
322     // second operand is a symbol reference, this will stay as two wide
323     // instructions, movw+movt. If they're immediates, the first one can
324     // end up as a narrow mov though.
325     // As two SEH instructions are appended here, they won't get interleaved
326     // between the two final movw/movt instructions, but it doesn't make any
327     // practical difference.
328     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
329               .addImm(/*Wide=*/1)
330               .setMIFlags(Flags);
331     MBB->insertAfter(MBBI, MIB);
332     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
333               .addImm(/*Wide=*/1)
334               .setMIFlags(Flags);
335     break;
336 
337   case ARM::t2LDMIA_RET:
338   case ARM::t2LDMIA_UPD:
339   case ARM::t2STMDB_UPD: {
340     unsigned Mask = 0;
341     for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) {
342       const MachineOperand &MO = MBBI->getOperand(i);
343       if (!MO.isReg() || MO.isImplicit())
344         continue;
345       unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
346       if (Reg == 15)
347         Reg = 14;
348       Mask |= 1 << Reg;
349     }
350     unsigned SEHOpc =
351         (Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs;
352     MIB = BuildMI(MF, DL, TII.get(SEHOpc))
353               .addImm(Mask)
354               .addImm(/*Wide=*/1)
355               .setMIFlags(Flags);
356     break;
357   }
358   case ARM::VSTMDDB_UPD:
359   case ARM::VLDMDIA_UPD: {
360     int First = -1, Last = 0;
361     for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) {
362       const MachineOperand &MO = MBBI->getOperand(i);
363       unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
364       if (First == -1)
365         First = Reg;
366       Last = Reg;
367     }
368     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs))
369               .addImm(First)
370               .addImm(Last)
371               .setMIFlags(Flags);
372     break;
373   }
374   case ARM::tSUBspi:
375   case ARM::tADDspi:
376     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
377               .addImm(MBBI->getOperand(2).getImm() * 4)
378               .addImm(/*Wide=*/0)
379               .setMIFlags(Flags);
380     break;
381   case ARM::t2SUBspImm:
382   case ARM::t2SUBspImm12:
383   case ARM::t2ADDspImm:
384   case ARM::t2ADDspImm12:
385     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
386               .addImm(MBBI->getOperand(2).getImm())
387               .addImm(/*Wide=*/1)
388               .setMIFlags(Flags);
389     break;
390 
391   case ARM::tMOVr:
392     if (MBBI->getOperand(1).getReg() == ARM::SP &&
393         (Flags & MachineInstr::FrameSetup)) {
394       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
395       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
396                 .addImm(Reg)
397                 .setMIFlags(Flags);
398     } else if (MBBI->getOperand(0).getReg() == ARM::SP &&
399                (Flags & MachineInstr::FrameDestroy)) {
400       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
401       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
402                 .addImm(Reg)
403                 .setMIFlags(Flags);
404     } else {
405       report_fatal_error("No SEH Opcode for MOV");
406     }
407     break;
408 
409   case ARM::tBX_RET:
410   case ARM::TCRETURNri:
411     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
412               .addImm(/*Wide=*/0)
413               .setMIFlags(Flags);
414     break;
415 
416   case ARM::TCRETURNdi:
417     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
418               .addImm(/*Wide=*/1)
419               .setMIFlags(Flags);
420     break;
421   }
422   return MBB->insertAfter(MBBI, MIB);
423 }
424 
425 static MachineBasicBlock::iterator
426 initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) {
427   if (MBBI == MBB.begin())
428     return MachineBasicBlock::iterator();
429   return std::prev(MBBI);
430 }
431 
432 static void insertSEHRange(MachineBasicBlock &MBB,
433                            MachineBasicBlock::iterator Start,
434                            const MachineBasicBlock::iterator &End,
435                            const ARMBaseInstrInfo &TII, unsigned MIFlags) {
436   if (Start.isValid())
437     Start = std::next(Start);
438   else
439     Start = MBB.begin();
440 
441   for (auto MI = Start; MI != End;) {
442     auto Next = std::next(MI);
443     // Check if this instruction already has got a SEH opcode added. In that
444     // case, don't do this generic mapping.
445     if (Next != End && isSEHInstruction(*Next)) {
446       MI = std::next(Next);
447       while (MI != End && isSEHInstruction(*MI))
448         ++MI;
449       continue;
450     }
451     insertSEH(MI, TII, MIFlags);
452     MI = Next;
453   }
454 }
455 
456 static void emitRegPlusImmediate(
457     bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
458     const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
459     unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
460     ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
461   if (isARM)
462     emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
463                             Pred, PredReg, TII, MIFlags);
464   else
465     emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
466                            Pred, PredReg, TII, MIFlags);
467 }
468 
469 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
470                          MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
471                          const ARMBaseInstrInfo &TII, int NumBytes,
472                          unsigned MIFlags = MachineInstr::NoFlags,
473                          ARMCC::CondCodes Pred = ARMCC::AL,
474                          unsigned PredReg = 0) {
475   emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
476                        MIFlags, Pred, PredReg);
477 }
478 
479 static int sizeOfSPAdjustment(const MachineInstr &MI) {
480   int RegSize;
481   switch (MI.getOpcode()) {
482   case ARM::VSTMDDB_UPD:
483     RegSize = 8;
484     break;
485   case ARM::STMDB_UPD:
486   case ARM::t2STMDB_UPD:
487     RegSize = 4;
488     break;
489   case ARM::t2STR_PRE:
490   case ARM::STR_PRE_IMM:
491     return 4;
492   default:
493     llvm_unreachable("Unknown push or pop like instruction");
494   }
495 
496   int count = 0;
497   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
498   // pred) so the list starts at 4.
499   for (int i = MI.getNumOperands() - 1; i >= 4; --i)
500     count += RegSize;
501   return count;
502 }
503 
504 static bool WindowsRequiresStackProbe(const MachineFunction &MF,
505                                       size_t StackSizeInBytes) {
506   const MachineFrameInfo &MFI = MF.getFrameInfo();
507   const Function &F = MF.getFunction();
508   unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
509   if (F.hasFnAttribute("stack-probe-size"))
510     F.getFnAttribute("stack-probe-size")
511         .getValueAsString()
512         .getAsInteger(0, StackProbeSize);
513   return (StackSizeInBytes >= StackProbeSize) &&
514          !F.hasFnAttribute("no-stack-arg-probe");
515 }
516 
517 namespace {
518 
519 struct StackAdjustingInsts {
520   struct InstInfo {
521     MachineBasicBlock::iterator I;
522     unsigned SPAdjust;
523     bool BeforeFPSet;
524   };
525 
526   SmallVector<InstInfo, 4> Insts;
527 
528   void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
529                bool BeforeFPSet = false) {
530     InstInfo Info = {I, SPAdjust, BeforeFPSet};
531     Insts.push_back(Info);
532   }
533 
534   void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
535     auto Info =
536         llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
537     assert(Info != Insts.end() && "invalid sp adjusting instruction");
538     Info->SPAdjust += ExtraBytes;
539   }
540 
541   void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
542                          const ARMBaseInstrInfo &TII, bool HasFP) {
543     MachineFunction &MF = *MBB.getParent();
544     unsigned CFAOffset = 0;
545     for (auto &Info : Insts) {
546       if (HasFP && !Info.BeforeFPSet)
547         return;
548 
549       CFAOffset += Info.SPAdjust;
550       unsigned CFIIndex = MF.addFrameInst(
551           MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset));
552       BuildMI(MBB, std::next(Info.I), dl,
553               TII.get(TargetOpcode::CFI_INSTRUCTION))
554               .addCFIIndex(CFIIndex)
555               .setMIFlags(MachineInstr::FrameSetup);
556     }
557   }
558 };
559 
560 } // end anonymous namespace
561 
562 /// Emit an instruction sequence that will align the address in
563 /// register Reg by zero-ing out the lower bits.  For versions of the
564 /// architecture that support Neon, this must be done in a single
565 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
566 /// single instruction. That function only gets called when optimizing
567 /// spilling of D registers on a core with the Neon instruction set
568 /// present.
569 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
570                                      const TargetInstrInfo &TII,
571                                      MachineBasicBlock &MBB,
572                                      MachineBasicBlock::iterator MBBI,
573                                      const DebugLoc &DL, const unsigned Reg,
574                                      const Align Alignment,
575                                      const bool MustBeSingleInstruction) {
576   const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>();
577   const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
578   const unsigned AlignMask = Alignment.value() - 1U;
579   const unsigned NrBitsToZero = Log2(Alignment);
580   assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
581   if (!AFI->isThumbFunction()) {
582     // if the BFC instruction is available, use that to zero the lower
583     // bits:
584     //   bfc Reg, #0, log2(Alignment)
585     // otherwise use BIC, if the mask to zero the required number of bits
586     // can be encoded in the bic immediate field
587     //   bic Reg, Reg, Alignment-1
588     // otherwise, emit
589     //   lsr Reg, Reg, log2(Alignment)
590     //   lsl Reg, Reg, log2(Alignment)
591     if (CanUseBFC) {
592       BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
593           .addReg(Reg, RegState::Kill)
594           .addImm(~AlignMask)
595           .add(predOps(ARMCC::AL));
596     } else if (AlignMask <= 255) {
597       BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
598           .addReg(Reg, RegState::Kill)
599           .addImm(AlignMask)
600           .add(predOps(ARMCC::AL))
601           .add(condCodeOp());
602     } else {
603       assert(!MustBeSingleInstruction &&
604              "Shouldn't call emitAligningInstructions demanding a single "
605              "instruction to be emitted for large stack alignment for a target "
606              "without BFC.");
607       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
608           .addReg(Reg, RegState::Kill)
609           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
610           .add(predOps(ARMCC::AL))
611           .add(condCodeOp());
612       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
613           .addReg(Reg, RegState::Kill)
614           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
615           .add(predOps(ARMCC::AL))
616           .add(condCodeOp());
617     }
618   } else {
619     // Since this is only reached for Thumb-2 targets, the BFC instruction
620     // should always be available.
621     assert(CanUseBFC);
622     BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
623         .addReg(Reg, RegState::Kill)
624         .addImm(~AlignMask)
625         .add(predOps(ARMCC::AL));
626   }
627 }
628 
629 /// We need the offset of the frame pointer relative to other MachineFrameInfo
630 /// offsets which are encoded relative to SP at function begin.
631 /// See also emitPrologue() for how the FP is set up.
632 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet
633 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
634 /// this to produce a conservative estimate that we check in an assert() later.
635 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI,
636                           const MachineFunction &MF) {
637   // For Thumb1, push.w isn't available, so the first push will always push
638   // r7 and lr onto the stack first.
639   if (AFI.isThumb1OnlyFunction())
640     return -AFI.getArgRegsSaveSize() - (2 * 4);
641   // This is a conservative estimation: Assume the frame pointer being r7 and
642   // pc("r15") up to r8 getting spilled before (= 8 registers).
643   int MaxRegBytes = 8 * 4;
644   if (STI.splitFramePointerPush(MF)) {
645     // Here, r11 can be stored below all of r4-r15 (3 registers more than
646     // above), plus d8-d15.
647     MaxRegBytes = 11 * 4 + 8 * 8;
648   }
649   int FPCXTSaveSize =
650       (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0;
651   return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes;
652 }
653 
654 void ARMFrameLowering::emitPrologue(MachineFunction &MF,
655                                     MachineBasicBlock &MBB) const {
656   MachineBasicBlock::iterator MBBI = MBB.begin();
657   MachineFrameInfo  &MFI = MF.getFrameInfo();
658   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
659   MachineModuleInfo &MMI = MF.getMMI();
660   MCContext &Context = MMI.getContext();
661   const TargetMachine &TM = MF.getTarget();
662   const MCRegisterInfo *MRI = Context.getRegisterInfo();
663   const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
664   const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
665   assert(!AFI->isThumb1OnlyFunction() &&
666          "This emitPrologue does not support Thumb1!");
667   bool isARM = !AFI->isThumbFunction();
668   Align Alignment = STI.getFrameLowering()->getStackAlign();
669   unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
670   unsigned NumBytes = MFI.getStackSize();
671   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
672   int FPCXTSaveSize = 0;
673   bool NeedsWinCFI = needsWinCFI(MF);
674 
675   // Debug location must be unknown since the first debug location is used
676   // to determine the end of the prologue.
677   DebugLoc dl;
678 
679   Register FramePtr = RegInfo->getFrameRegister(MF);
680 
681   // Determine the sizes of each callee-save spill areas and record which frame
682   // belongs to which callee-save spill areas.
683   unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
684   int FramePtrSpillFI = 0;
685   int D8SpillFI = 0;
686 
687   // All calls are tail calls in GHC calling conv, and functions have no
688   // prologue/epilogue.
689   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
690     return;
691 
692   StackAdjustingInsts DefCFAOffsetCandidates;
693   bool HasFP = hasFP(MF);
694 
695   if (!AFI->hasStackFrame() &&
696       (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
697     if (NumBytes != 0) {
698       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
699                    MachineInstr::FrameSetup);
700       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true);
701     }
702     if (!NeedsWinCFI)
703       DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
704     if (NeedsWinCFI && MBBI != MBB.begin()) {
705       insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup);
706       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd))
707           .setMIFlag(MachineInstr::FrameSetup);
708       MF.setHasWinCFI(true);
709     }
710     return;
711   }
712 
713   // Determine spill area sizes.
714   if (STI.splitFramePointerPush(MF)) {
715     for (const CalleeSavedInfo &I : CSI) {
716       Register Reg = I.getReg();
717       int FI = I.getFrameIdx();
718       switch (Reg) {
719       case ARM::R11:
720       case ARM::LR:
721         if (Reg == FramePtr)
722           FramePtrSpillFI = FI;
723         GPRCS2Size += 4;
724         break;
725       case ARM::R0:
726       case ARM::R1:
727       case ARM::R2:
728       case ARM::R3:
729       case ARM::R4:
730       case ARM::R5:
731       case ARM::R6:
732       case ARM::R7:
733       case ARM::R8:
734       case ARM::R9:
735       case ARM::R10:
736       case ARM::R12:
737         GPRCS1Size += 4;
738         break;
739       case ARM::FPCXTNS:
740         FPCXTSaveSize = 4;
741         break;
742       default:
743         // This is a DPR. Exclude the aligned DPRCS2 spills.
744         if (Reg == ARM::D8)
745           D8SpillFI = FI;
746         if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
747           DPRCSSize += 8;
748       }
749     }
750   } else {
751     for (const CalleeSavedInfo &I : CSI) {
752       Register Reg = I.getReg();
753       int FI = I.getFrameIdx();
754       switch (Reg) {
755       case ARM::R8:
756       case ARM::R9:
757       case ARM::R10:
758       case ARM::R11:
759       case ARM::R12:
760         if (STI.splitFramePushPop(MF)) {
761           GPRCS2Size += 4;
762           break;
763         }
764         LLVM_FALLTHROUGH;
765       case ARM::R0:
766       case ARM::R1:
767       case ARM::R2:
768       case ARM::R3:
769       case ARM::R4:
770       case ARM::R5:
771       case ARM::R6:
772       case ARM::R7:
773       case ARM::LR:
774         if (Reg == FramePtr)
775           FramePtrSpillFI = FI;
776         GPRCS1Size += 4;
777         break;
778       case ARM::FPCXTNS:
779         FPCXTSaveSize = 4;
780         break;
781       default:
782         // This is a DPR. Exclude the aligned DPRCS2 spills.
783         if (Reg == ARM::D8)
784           D8SpillFI = FI;
785         if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
786           DPRCSSize += 8;
787       }
788     }
789   }
790 
791   MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
792 
793   // Move past the PAC computation.
794   if (AFI->shouldSignReturnAddress())
795     LastPush = MBBI++;
796 
797   // Move past FPCXT area.
798   if (FPCXTSaveSize > 0) {
799     LastPush = MBBI++;
800     DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true);
801   }
802 
803   // Allocate the vararg register save area.
804   if (ArgRegsSaveSize) {
805     emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
806                  MachineInstr::FrameSetup);
807     LastPush = std::prev(MBBI);
808     DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, true);
809   }
810 
811   // Move past area 1.
812   if (GPRCS1Size > 0) {
813     GPRCS1Push = LastPush = MBBI++;
814     DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
815   }
816 
817   // Determine starting offsets of spill areas.
818   unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize;
819   unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size;
820   unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
821   Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4);
822   unsigned DPRGapSize = GPRCS1Size + FPCXTSaveSize + ArgRegsSaveSize;
823   if (!STI.splitFramePointerPush(MF)) {
824     DPRGapSize += GPRCS2Size;
825   }
826   DPRGapSize %= DPRAlign.value();
827 
828   unsigned DPRCSOffset;
829   if (STI.splitFramePointerPush(MF)) {
830     DPRCSOffset = GPRCS1Offset - DPRGapSize - DPRCSSize;
831     GPRCS2Offset = DPRCSOffset - GPRCS2Size;
832   } else {
833     DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
834   }
835   int FramePtrOffsetInPush = 0;
836   if (HasFP) {
837     int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
838     assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset &&
839            "Max FP estimation is wrong");
840     FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize;
841     AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
842                                 NumBytes);
843   }
844   AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
845   AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
846   AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
847 
848   // Move past area 2.
849   if (GPRCS2Size > 0 && !STI.splitFramePointerPush(MF)) {
850     GPRCS2Push = LastPush = MBBI++;
851     DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
852   }
853 
854   // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
855   // .cfi_offset operations will reflect that.
856   if (DPRGapSize) {
857     assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
858     if (LastPush != MBB.end() &&
859         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
860       DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
861     else {
862       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
863                    MachineInstr::FrameSetup);
864       DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
865     }
866   }
867 
868   // Move past area 3.
869   if (DPRCSSize > 0) {
870     // Since vpush register list cannot have gaps, there may be multiple vpush
871     // instructions in the prologue.
872     while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
873       DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
874       LastPush = MBBI++;
875     }
876   }
877 
878   // Move past the aligned DPRCS2 area.
879   if (AFI->getNumAlignedDPRCS2Regs() > 0) {
880     MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
881     // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
882     // leaves the stack pointer pointing to the DPRCS2 area.
883     //
884     // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
885     NumBytes += MFI.getObjectOffset(D8SpillFI);
886   } else
887     NumBytes = DPRCSOffset;
888 
889   if (GPRCS2Size > 0 && STI.splitFramePointerPush(MF)) {
890     GPRCS2Push = LastPush = MBBI++;
891     DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
892   }
893 
894   bool NeedsWinCFIStackAlloc = NeedsWinCFI;
895   if (STI.splitFramePointerPush(MF) && HasFP)
896     NeedsWinCFIStackAlloc = false;
897 
898   if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
899     uint32_t NumWords = NumBytes >> 2;
900 
901     if (NumWords < 65536) {
902       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
903           .addImm(NumWords)
904           .setMIFlags(MachineInstr::FrameSetup)
905           .add(predOps(ARMCC::AL));
906     } else {
907       // Split into two instructions here, instead of using t2MOVi32imm,
908       // to allow inserting accurate SEH instructions (including accurate
909       // instruction size for each of them).
910       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
911           .addImm(NumWords & 0xffff)
912           .setMIFlags(MachineInstr::FrameSetup)
913           .add(predOps(ARMCC::AL));
914       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4)
915           .addReg(ARM::R4)
916           .addImm(NumWords >> 16)
917           .setMIFlags(MachineInstr::FrameSetup)
918           .add(predOps(ARMCC::AL));
919     }
920 
921     switch (TM.getCodeModel()) {
922     case CodeModel::Tiny:
923       llvm_unreachable("Tiny code model not available on ARM.");
924     case CodeModel::Small:
925     case CodeModel::Medium:
926     case CodeModel::Kernel:
927       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
928           .add(predOps(ARMCC::AL))
929           .addExternalSymbol("__chkstk")
930           .addReg(ARM::R4, RegState::Implicit)
931           .setMIFlags(MachineInstr::FrameSetup);
932       break;
933     case CodeModel::Large:
934       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
935         .addExternalSymbol("__chkstk")
936         .setMIFlags(MachineInstr::FrameSetup);
937 
938       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
939           .add(predOps(ARMCC::AL))
940           .addReg(ARM::R12, RegState::Kill)
941           .addReg(ARM::R4, RegState::Implicit)
942           .setMIFlags(MachineInstr::FrameSetup);
943       break;
944     }
945 
946     MachineInstrBuilder Instr, SEH;
947     Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
948                 .addReg(ARM::SP, RegState::Kill)
949                 .addReg(ARM::R4, RegState::Kill)
950                 .setMIFlags(MachineInstr::FrameSetup)
951                 .add(predOps(ARMCC::AL))
952                 .add(condCodeOp());
953     if (NeedsWinCFIStackAlloc) {
954       SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc))
955                 .addImm(NumBytes)
956                 .addImm(/*Wide=*/1)
957                 .setMIFlags(MachineInstr::FrameSetup);
958       MBB.insertAfter(Instr, SEH);
959     }
960     NumBytes = 0;
961   }
962 
963   if (NumBytes) {
964     // Adjust SP after all the callee-save spills.
965     if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
966         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
967       DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
968     else {
969       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
970                    MachineInstr::FrameSetup);
971       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
972     }
973 
974     if (HasFP && isARM)
975       // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
976       // Note it's not safe to do this in Thumb2 mode because it would have
977       // taken two instructions:
978       // mov sp, r7
979       // sub sp, #24
980       // If an interrupt is taken between the two instructions, then sp is in
981       // an inconsistent state (pointing to the middle of callee-saved area).
982       // The interrupt handler can end up clobbering the registers.
983       AFI->setShouldRestoreSPFromFP(true);
984   }
985 
986   // Set FP to point to the stack slot that contains the previous FP.
987   // For iOS, FP is R7, which has now been stored in spill area 1.
988   // Otherwise, if this is not iOS, all the callee-saved registers go
989   // into spill area 1, including the FP in R11.  In either case, it
990   // is in area one and the adjustment needs to take place just after
991   // that push.
992   MachineBasicBlock::iterator AfterPush;
993   if (HasFP) {
994     AfterPush = std::next(GPRCS1Push);
995     unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
996     int FPOffset = PushSize + FramePtrOffsetInPush;
997     if (STI.splitFramePointerPush(MF)) {
998       AfterPush = std::next(GPRCS2Push);
999       emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII,
1000                            FramePtr, ARM::SP, 0, MachineInstr::FrameSetup);
1001     } else {
1002       emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII,
1003                            FramePtr, ARM::SP, FPOffset,
1004                            MachineInstr::FrameSetup);
1005     }
1006     if (!NeedsWinCFI) {
1007       if (FramePtrOffsetInPush + PushSize != 0) {
1008         unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
1009             nullptr, MRI->getDwarfRegNum(FramePtr, true),
1010             FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush));
1011         BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1012             .addCFIIndex(CFIIndex)
1013             .setMIFlags(MachineInstr::FrameSetup);
1014       } else {
1015         unsigned CFIIndex =
1016             MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
1017                 nullptr, MRI->getDwarfRegNum(FramePtr, true)));
1018         BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1019             .addCFIIndex(CFIIndex)
1020             .setMIFlags(MachineInstr::FrameSetup);
1021       }
1022     }
1023   }
1024 
1025   // Emit a SEH opcode indicating the prologue end. The rest of the prologue
1026   // instructions below don't need to be replayed to unwind the stack.
1027   if (NeedsWinCFI && MBBI != MBB.begin()) {
1028     MachineBasicBlock::iterator End = MBBI;
1029     if (HasFP && STI.splitFramePointerPush(MF))
1030       End = AfterPush;
1031     insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup);
1032     BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd))
1033         .setMIFlag(MachineInstr::FrameSetup);
1034     MF.setHasWinCFI(true);
1035   }
1036 
1037   // Now that the prologue's actual instructions are finalised, we can insert
1038   // the necessary DWARF cf instructions to describe the situation. Start by
1039   // recording where each register ended up:
1040   if (GPRCS1Size > 0 && !NeedsWinCFI) {
1041     MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
1042     int CFIIndex;
1043     for (const auto &Entry : CSI) {
1044       Register Reg = Entry.getReg();
1045       int FI = Entry.getFrameIdx();
1046       switch (Reg) {
1047       case ARM::R8:
1048       case ARM::R9:
1049       case ARM::R10:
1050       case ARM::R11:
1051       case ARM::R12:
1052         if (STI.splitFramePushPop(MF))
1053           break;
1054         LLVM_FALLTHROUGH;
1055       case ARM::R0:
1056       case ARM::R1:
1057       case ARM::R2:
1058       case ARM::R3:
1059       case ARM::R4:
1060       case ARM::R5:
1061       case ARM::R6:
1062       case ARM::R7:
1063       case ARM::LR:
1064         CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1065             nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
1066         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1067             .addCFIIndex(CFIIndex)
1068             .setMIFlags(MachineInstr::FrameSetup);
1069         break;
1070       }
1071     }
1072   }
1073 
1074   if (GPRCS2Size > 0 && !NeedsWinCFI) {
1075     MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
1076     for (const auto &Entry : CSI) {
1077       Register Reg = Entry.getReg();
1078       int FI = Entry.getFrameIdx();
1079       switch (Reg) {
1080       case ARM::R8:
1081       case ARM::R9:
1082       case ARM::R10:
1083       case ARM::R11:
1084       case ARM::R12:
1085         if (STI.splitFramePushPop(MF)) {
1086           unsigned DwarfReg = MRI->getDwarfRegNum(
1087               Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, true);
1088           unsigned Offset = MFI.getObjectOffset(FI);
1089           unsigned CFIIndex = MF.addFrameInst(
1090               MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
1091           BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1092               .addCFIIndex(CFIIndex)
1093               .setMIFlags(MachineInstr::FrameSetup);
1094         }
1095         break;
1096       }
1097     }
1098   }
1099 
1100   if (DPRCSSize > 0 && !NeedsWinCFI) {
1101     // Since vpush register list cannot have gaps, there may be multiple vpush
1102     // instructions in the prologue.
1103     MachineBasicBlock::iterator Pos = std::next(LastPush);
1104     for (const auto &Entry : CSI) {
1105       Register Reg = Entry.getReg();
1106       int FI = Entry.getFrameIdx();
1107       if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
1108           (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
1109         unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
1110         unsigned Offset = MFI.getObjectOffset(FI);
1111         unsigned CFIIndex = MF.addFrameInst(
1112             MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
1113         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1114             .addCFIIndex(CFIIndex)
1115             .setMIFlags(MachineInstr::FrameSetup);
1116       }
1117     }
1118   }
1119 
1120   // Now we can emit descriptions of where the canonical frame address was
1121   // throughout the process. If we have a frame pointer, it takes over the job
1122   // half-way through, so only the first few .cfi_def_cfa_offset instructions
1123   // actually get emitted.
1124   if (!NeedsWinCFI)
1125     DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
1126 
1127   if (STI.isTargetELF() && hasFP(MF))
1128     MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
1129                             AFI->getFramePtrSpillOffset());
1130 
1131   AFI->setFPCXTSaveAreaSize(FPCXTSaveSize);
1132   AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
1133   AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
1134   AFI->setDPRCalleeSavedGapSize(DPRGapSize);
1135   AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
1136 
1137   // If we need dynamic stack realignment, do it here. Be paranoid and make
1138   // sure if we also have VLAs, we have a base pointer for frame access.
1139   // If aligned NEON registers were spilled, the stack has already been
1140   // realigned.
1141   if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) {
1142     Align MaxAlign = MFI.getMaxAlign();
1143     assert(!AFI->isThumb1OnlyFunction());
1144     if (!AFI->isThumbFunction()) {
1145       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
1146                                false);
1147     } else {
1148       // We cannot use sp as source/dest register here, thus we're using r4 to
1149       // perform the calculations. We're emitting the following sequence:
1150       // mov r4, sp
1151       // -- use emitAligningInstructions to produce best sequence to zero
1152       // -- out lower bits in r4
1153       // mov sp, r4
1154       // FIXME: It will be better just to find spare register here.
1155       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
1156           .addReg(ARM::SP, RegState::Kill)
1157           .add(predOps(ARMCC::AL));
1158       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
1159                                false);
1160       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1161           .addReg(ARM::R4, RegState::Kill)
1162           .add(predOps(ARMCC::AL));
1163     }
1164 
1165     AFI->setShouldRestoreSPFromFP(true);
1166   }
1167 
1168   // If we need a base pointer, set it up here. It's whatever the value
1169   // of the stack pointer is at this point. Any variable size objects
1170   // will be allocated after this, so we can still use the base pointer
1171   // to reference locals.
1172   // FIXME: Clarify FrameSetup flags here.
1173   if (RegInfo->hasBasePointer(MF)) {
1174     if (isARM)
1175       BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
1176           .addReg(ARM::SP)
1177           .add(predOps(ARMCC::AL))
1178           .add(condCodeOp());
1179     else
1180       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
1181           .addReg(ARM::SP)
1182           .add(predOps(ARMCC::AL));
1183   }
1184 
1185   // If the frame has variable sized objects then the epilogue must restore
1186   // the sp from fp. We can assume there's an FP here since hasFP already
1187   // checks for hasVarSizedObjects.
1188   if (MFI.hasVarSizedObjects())
1189     AFI->setShouldRestoreSPFromFP(true);
1190 }
1191 
1192 void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
1193                                     MachineBasicBlock &MBB) const {
1194   MachineFrameInfo &MFI = MF.getFrameInfo();
1195   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1196   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
1197   const ARMBaseInstrInfo &TII =
1198       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1199   assert(!AFI->isThumb1OnlyFunction() &&
1200          "This emitEpilogue does not support Thumb1!");
1201   bool isARM = !AFI->isThumbFunction();
1202 
1203   // Amount of stack space we reserved next to incoming args for either
1204   // varargs registers or stack arguments in tail calls made by this function.
1205   unsigned ReservedArgStack = AFI->getArgRegsSaveSize();
1206 
1207   // How much of the stack used by incoming arguments this function is expected
1208   // to restore in this particular epilogue.
1209   int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB);
1210   int NumBytes = (int)MFI.getStackSize();
1211   Register FramePtr = RegInfo->getFrameRegister(MF);
1212 
1213   // All calls are tail calls in GHC calling conv, and functions have no
1214   // prologue/epilogue.
1215   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1216     return;
1217 
1218   // First put ourselves on the first (from top) terminator instructions.
1219   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1220   DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1221 
1222   MachineBasicBlock::iterator RangeStart;
1223   if (!AFI->hasStackFrame()) {
1224     if (MF.hasWinCFI()) {
1225       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
1226           .setMIFlag(MachineInstr::FrameDestroy);
1227       RangeStart = initMBBRange(MBB, MBBI);
1228     }
1229 
1230     if (NumBytes + IncomingArgStackToRestore != 0)
1231       emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1232                    NumBytes + IncomingArgStackToRestore,
1233                    MachineInstr::FrameDestroy);
1234   } else {
1235     // Unwind MBBI to point to first LDR / VLDRD.
1236     if (MBBI != MBB.begin()) {
1237       do {
1238         --MBBI;
1239       } while (MBBI != MBB.begin() &&
1240                MBBI->getFlag(MachineInstr::FrameDestroy));
1241       if (!MBBI->getFlag(MachineInstr::FrameDestroy))
1242         ++MBBI;
1243     }
1244 
1245     if (MF.hasWinCFI()) {
1246       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
1247           .setMIFlag(MachineInstr::FrameDestroy);
1248       RangeStart = initMBBRange(MBB, MBBI);
1249     }
1250 
1251     // Move SP to start of FP callee save spill area.
1252     NumBytes -= (ReservedArgStack +
1253                  AFI->getFPCXTSaveAreaSize() +
1254                  AFI->getGPRCalleeSavedArea1Size() +
1255                  AFI->getGPRCalleeSavedArea2Size() +
1256                  AFI->getDPRCalleeSavedGapSize() +
1257                  AFI->getDPRCalleeSavedAreaSize());
1258 
1259     // Reset SP based on frame pointer only if the stack frame extends beyond
1260     // frame pointer stack slot or target is ELF and the function has FP.
1261     if (AFI->shouldRestoreSPFromFP()) {
1262       NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
1263       if (NumBytes) {
1264         if (isARM)
1265           emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
1266                                   ARMCC::AL, 0, TII,
1267                                   MachineInstr::FrameDestroy);
1268         else {
1269           // It's not possible to restore SP from FP in a single instruction.
1270           // For iOS, this looks like:
1271           // mov sp, r7
1272           // sub sp, #24
1273           // This is bad, if an interrupt is taken after the mov, sp is in an
1274           // inconsistent state.
1275           // Use the first callee-saved register as a scratch register.
1276           assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
1277                  "No scratch register to restore SP from FP!");
1278           emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
1279                                  ARMCC::AL, 0, TII, MachineInstr::FrameDestroy);
1280           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1281               .addReg(ARM::R4)
1282               .add(predOps(ARMCC::AL))
1283               .setMIFlag(MachineInstr::FrameDestroy);
1284         }
1285       } else {
1286         // Thumb2 or ARM.
1287         if (isARM)
1288           BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
1289               .addReg(FramePtr)
1290               .add(predOps(ARMCC::AL))
1291               .add(condCodeOp())
1292               .setMIFlag(MachineInstr::FrameDestroy);
1293         else
1294           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1295               .addReg(FramePtr)
1296               .add(predOps(ARMCC::AL))
1297               .setMIFlag(MachineInstr::FrameDestroy);
1298       }
1299     } else if (NumBytes &&
1300                !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
1301       emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes,
1302                    MachineInstr::FrameDestroy);
1303 
1304     // Increment past our save areas.
1305     if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
1306       MBBI++;
1307       // Since vpop register list cannot have gaps, there may be multiple vpop
1308       // instructions in the epilogue.
1309       while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
1310         MBBI++;
1311     }
1312     if (AFI->getDPRCalleeSavedGapSize()) {
1313       assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
1314              "unexpected DPR alignment gap");
1315       emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(),
1316                    MachineInstr::FrameDestroy);
1317     }
1318 
1319     if (AFI->getGPRCalleeSavedArea2Size()) MBBI++;
1320     if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
1321 
1322     if (ReservedArgStack || IncomingArgStackToRestore) {
1323       assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 &&
1324              "attempting to restore negative stack amount");
1325       emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1326                    ReservedArgStack + IncomingArgStackToRestore,
1327                    MachineInstr::FrameDestroy);
1328     }
1329 
1330     // Validate PAC, It should have been already popped into R12. For CMSE entry
1331     // function, the validation instruction is emitted during expansion of the
1332     // tBXNS_RET, since the validation must use the value of SP at function
1333     // entry, before saving, resp. after restoring, FPCXTNS.
1334     if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction())
1335       BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT));
1336   }
1337 
1338   if (MF.hasWinCFI()) {
1339     insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy);
1340     BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd))
1341         .setMIFlag(MachineInstr::FrameDestroy);
1342   }
1343 }
1344 
1345 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1346 /// debug info.  It's the same as what we use for resolving the code-gen
1347 /// references for now.  FIXME: This can go wrong when references are
1348 /// SP-relative and simple call frames aren't used.
1349 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF,
1350                                                      int FI,
1351                                                      Register &FrameReg) const {
1352   return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0));
1353 }
1354 
1355 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
1356                                                  int FI, Register &FrameReg,
1357                                                  int SPAdj) const {
1358   const MachineFrameInfo &MFI = MF.getFrameInfo();
1359   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1360       MF.getSubtarget().getRegisterInfo());
1361   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1362   int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
1363   int FPOffset = Offset - AFI->getFramePtrSpillOffset();
1364   bool isFixed = MFI.isFixedObjectIndex(FI);
1365 
1366   FrameReg = ARM::SP;
1367   Offset += SPAdj;
1368 
1369   // SP can move around if there are allocas.  We may also lose track of SP
1370   // when emergency spilling inside a non-reserved call frame setup.
1371   bool hasMovingSP = !hasReservedCallFrame(MF);
1372 
1373   // When dynamically realigning the stack, use the frame pointer for
1374   // parameters, and the stack/base pointer for locals.
1375   if (RegInfo->hasStackRealignment(MF)) {
1376     assert(hasFP(MF) && "dynamic stack realignment without a FP!");
1377     if (isFixed) {
1378       FrameReg = RegInfo->getFrameRegister(MF);
1379       Offset = FPOffset;
1380     } else if (hasMovingSP) {
1381       assert(RegInfo->hasBasePointer(MF) &&
1382              "VLAs and dynamic stack alignment, but missing base pointer!");
1383       FrameReg = RegInfo->getBaseRegister();
1384       Offset -= SPAdj;
1385     }
1386     return Offset;
1387   }
1388 
1389   // If there is a frame pointer, use it when we can.
1390   if (hasFP(MF) && AFI->hasStackFrame()) {
1391     // Use frame pointer to reference fixed objects. Use it for locals if
1392     // there are VLAs (and thus the SP isn't reliable as a base).
1393     if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
1394       FrameReg = RegInfo->getFrameRegister(MF);
1395       return FPOffset;
1396     } else if (hasMovingSP) {
1397       assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
1398       if (AFI->isThumb2Function()) {
1399         // Try to use the frame pointer if we can, else use the base pointer
1400         // since it's available. This is handy for the emergency spill slot, in
1401         // particular.
1402         if (FPOffset >= -255 && FPOffset < 0) {
1403           FrameReg = RegInfo->getFrameRegister(MF);
1404           return FPOffset;
1405         }
1406       }
1407     } else if (AFI->isThumbFunction()) {
1408       // Prefer SP to base pointer, if the offset is suitably aligned and in
1409       // range as the effective range of the immediate offset is bigger when
1410       // basing off SP.
1411       // Use  add <rd>, sp, #<imm8>
1412       //      ldr <rd>, [sp, #<imm8>]
1413       if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
1414         return Offset;
1415       // In Thumb2 mode, the negative offset is very limited. Try to avoid
1416       // out of range references. ldr <rt>,[<rn>, #-<imm8>]
1417       if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
1418         FrameReg = RegInfo->getFrameRegister(MF);
1419         return FPOffset;
1420       }
1421     } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
1422       // Otherwise, use SP or FP, whichever is closer to the stack slot.
1423       FrameReg = RegInfo->getFrameRegister(MF);
1424       return FPOffset;
1425     }
1426   }
1427   // Use the base pointer if we have one.
1428   // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper?
1429   // That can happen if we forced a base pointer for a large call frame.
1430   if (RegInfo->hasBasePointer(MF)) {
1431     FrameReg = RegInfo->getBaseRegister();
1432     Offset -= SPAdj;
1433   }
1434   return Offset;
1435 }
1436 
1437 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
1438                                     MachineBasicBlock::iterator MI,
1439                                     ArrayRef<CalleeSavedInfo> CSI,
1440                                     unsigned StmOpc, unsigned StrOpc,
1441                                     bool NoGap, bool (*Func)(unsigned, bool),
1442                                     unsigned NumAlignedDPRCS2Regs,
1443                                     unsigned MIFlags) const {
1444   MachineFunction &MF = *MBB.getParent();
1445   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1446   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1447 
1448   DebugLoc DL;
1449 
1450   using RegAndKill = std::pair<unsigned, bool>;
1451 
1452   SmallVector<RegAndKill, 4> Regs;
1453   unsigned i = CSI.size();
1454   while (i != 0) {
1455     unsigned LastReg = 0;
1456     for (; i != 0; --i) {
1457       Register Reg = CSI[i-1].getReg();
1458       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1459 
1460       // D-registers in the aligned area DPRCS2 are NOT spilled here.
1461       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1462         continue;
1463 
1464       const MachineRegisterInfo &MRI = MF.getRegInfo();
1465       bool isLiveIn = MRI.isLiveIn(Reg);
1466       if (!isLiveIn && !MRI.isReserved(Reg))
1467         MBB.addLiveIn(Reg);
1468       // If NoGap is true, push consecutive registers and then leave the rest
1469       // for other instructions. e.g.
1470       // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
1471       if (NoGap && LastReg && LastReg != Reg-1)
1472         break;
1473       LastReg = Reg;
1474       // Do not set a kill flag on values that are also marked as live-in. This
1475       // happens with the @llvm-returnaddress intrinsic and with arguments
1476       // passed in callee saved registers.
1477       // Omitting the kill flags is conservatively correct even if the live-in
1478       // is not used after all.
1479       Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
1480     }
1481 
1482     if (Regs.empty())
1483       continue;
1484 
1485     llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) {
1486       return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
1487     });
1488 
1489     if (Regs.size() > 1 || StrOpc== 0) {
1490       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
1491                                     .addReg(ARM::SP)
1492                                     .setMIFlags(MIFlags)
1493                                     .add(predOps(ARMCC::AL));
1494       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1495         MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
1496     } else if (Regs.size() == 1) {
1497       BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
1498           .addReg(Regs[0].first, getKillRegState(Regs[0].second))
1499           .addReg(ARM::SP)
1500           .setMIFlags(MIFlags)
1501           .addImm(-4)
1502           .add(predOps(ARMCC::AL));
1503     }
1504     Regs.clear();
1505 
1506     // Put any subsequent vpush instructions before this one: they will refer to
1507     // higher register numbers so need to be pushed first in order to preserve
1508     // monotonicity.
1509     if (MI != MBB.begin())
1510       --MI;
1511   }
1512 }
1513 
1514 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
1515                                    MachineBasicBlock::iterator MI,
1516                                    MutableArrayRef<CalleeSavedInfo> CSI,
1517                                    unsigned LdmOpc, unsigned LdrOpc,
1518                                    bool isVarArg, bool NoGap,
1519                                    bool (*Func)(unsigned, bool),
1520                                    unsigned NumAlignedDPRCS2Regs) const {
1521   MachineFunction &MF = *MBB.getParent();
1522   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1523   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1524   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1525   bool hasPAC = AFI->shouldSignReturnAddress();
1526   DebugLoc DL;
1527   bool isTailCall = false;
1528   bool isInterrupt = false;
1529   bool isTrap = false;
1530   bool isCmseEntry = false;
1531   if (MBB.end() != MI) {
1532     DL = MI->getDebugLoc();
1533     unsigned RetOpcode = MI->getOpcode();
1534     isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri);
1535     isInterrupt =
1536         RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
1537     isTrap =
1538         RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
1539         RetOpcode == ARM::tTRAP;
1540     isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET);
1541   }
1542 
1543   SmallVector<unsigned, 4> Regs;
1544   unsigned i = CSI.size();
1545   while (i != 0) {
1546     unsigned LastReg = 0;
1547     bool DeleteRet = false;
1548     for (; i != 0; --i) {
1549       CalleeSavedInfo &Info = CSI[i-1];
1550       Register Reg = Info.getReg();
1551       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1552 
1553       // The aligned reloads from area DPRCS2 are not inserted here.
1554       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1555         continue;
1556       if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
1557           !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 &&
1558           STI.hasV5TOps() && MBB.succ_empty() && !hasPAC &&
1559           !STI.splitFramePointerPush(MF)) {
1560         Reg = ARM::PC;
1561         // Fold the return instruction into the LDM.
1562         DeleteRet = true;
1563         LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
1564         // We 'restore' LR into PC so it is not live out of the return block:
1565         // Clear Restored bit.
1566         Info.setRestored(false);
1567       }
1568 
1569       // If NoGap is true, pop consecutive registers and then leave the rest
1570       // for other instructions. e.g.
1571       // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1572       if (NoGap && LastReg && LastReg != Reg-1)
1573         break;
1574 
1575       LastReg = Reg;
1576       Regs.push_back(Reg);
1577     }
1578 
1579     if (Regs.empty())
1580       continue;
1581 
1582     llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) {
1583       return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
1584     });
1585 
1586     if (Regs.size() > 1 || LdrOpc == 0) {
1587       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
1588                                     .addReg(ARM::SP)
1589                                     .add(predOps(ARMCC::AL))
1590                                     .setMIFlags(MachineInstr::FrameDestroy);
1591       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1592         MIB.addReg(Regs[i], getDefRegState(true));
1593       if (DeleteRet) {
1594         if (MI != MBB.end()) {
1595           MIB.copyImplicitOps(*MI);
1596           MI->eraseFromParent();
1597         }
1598       }
1599       MI = MIB;
1600     } else if (Regs.size() == 1) {
1601       // If we adjusted the reg to PC from LR above, switch it back here. We
1602       // only do that for LDM.
1603       if (Regs[0] == ARM::PC)
1604         Regs[0] = ARM::LR;
1605       MachineInstrBuilder MIB =
1606         BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
1607           .addReg(ARM::SP, RegState::Define)
1608           .addReg(ARM::SP)
1609           .setMIFlags(MachineInstr::FrameDestroy);
1610       // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1611       // that refactoring is complete (eventually).
1612       if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
1613         MIB.addReg(0);
1614         MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
1615       } else
1616         MIB.addImm(4);
1617       MIB.add(predOps(ARMCC::AL));
1618     }
1619     Regs.clear();
1620 
1621     // Put any subsequent vpop instructions after this one: they will refer to
1622     // higher register numbers so need to be popped afterwards.
1623     if (MI != MBB.end())
1624       ++MI;
1625   }
1626 }
1627 
1628 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1629 /// starting from d8.  Also insert stack realignment code and leave the stack
1630 /// pointer pointing to the d8 spill slot.
1631 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
1632                                     MachineBasicBlock::iterator MI,
1633                                     unsigned NumAlignedDPRCS2Regs,
1634                                     ArrayRef<CalleeSavedInfo> CSI,
1635                                     const TargetRegisterInfo *TRI) {
1636   MachineFunction &MF = *MBB.getParent();
1637   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1638   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1639   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1640   MachineFrameInfo &MFI = MF.getFrameInfo();
1641 
1642   // Mark the D-register spill slots as properly aligned.  Since MFI computes
1643   // stack slot layout backwards, this can actually mean that the d-reg stack
1644   // slot offsets can be wrong. The offset for d8 will always be correct.
1645   for (const CalleeSavedInfo &I : CSI) {
1646     unsigned DNum = I.getReg() - ARM::D8;
1647     if (DNum > NumAlignedDPRCS2Regs - 1)
1648       continue;
1649     int FI = I.getFrameIdx();
1650     // The even-numbered registers will be 16-byte aligned, the odd-numbered
1651     // registers will be 8-byte aligned.
1652     MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16));
1653 
1654     // The stack slot for D8 needs to be maximally aligned because this is
1655     // actually the point where we align the stack pointer.  MachineFrameInfo
1656     // computes all offsets relative to the incoming stack pointer which is a
1657     // bit weird when realigning the stack.  Any extra padding for this
1658     // over-alignment is not realized because the code inserted below adjusts
1659     // the stack pointer by numregs * 8 before aligning the stack pointer.
1660     if (DNum == 0)
1661       MFI.setObjectAlignment(FI, MFI.getMaxAlign());
1662   }
1663 
1664   // Move the stack pointer to the d8 spill slot, and align it at the same
1665   // time. Leave the stack slot address in the scratch register r4.
1666   //
1667   //   sub r4, sp, #numregs * 8
1668   //   bic r4, r4, #align - 1
1669   //   mov sp, r4
1670   //
1671   bool isThumb = AFI->isThumbFunction();
1672   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1673   AFI->setShouldRestoreSPFromFP(true);
1674 
1675   // sub r4, sp, #numregs * 8
1676   // The immediate is <= 64, so it doesn't need any special encoding.
1677   unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
1678   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1679       .addReg(ARM::SP)
1680       .addImm(8 * NumAlignedDPRCS2Regs)
1681       .add(predOps(ARMCC::AL))
1682       .add(condCodeOp());
1683 
1684   Align MaxAlign = MF.getFrameInfo().getMaxAlign();
1685   // We must set parameter MustBeSingleInstruction to true, since
1686   // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1687   // stack alignment.  Luckily, this can always be done since all ARM
1688   // architecture versions that support Neon also support the BFC
1689   // instruction.
1690   emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
1691 
1692   // mov sp, r4
1693   // The stack pointer must be adjusted before spilling anything, otherwise
1694   // the stack slots could be clobbered by an interrupt handler.
1695   // Leave r4 live, it is used below.
1696   Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
1697   MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
1698                                 .addReg(ARM::R4)
1699                                 .add(predOps(ARMCC::AL));
1700   if (!isThumb)
1701     MIB.add(condCodeOp());
1702 
1703   // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1704   // r4 holds the stack slot address.
1705   unsigned NextReg = ARM::D8;
1706 
1707   // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1708   // The writeback is only needed when emitting two vst1.64 instructions.
1709   if (NumAlignedDPRCS2Regs >= 6) {
1710     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1711                                                &ARM::QQPRRegClass);
1712     MBB.addLiveIn(SupReg);
1713     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
1714         .addReg(ARM::R4, RegState::Kill)
1715         .addImm(16)
1716         .addReg(NextReg)
1717         .addReg(SupReg, RegState::ImplicitKill)
1718         .add(predOps(ARMCC::AL));
1719     NextReg += 4;
1720     NumAlignedDPRCS2Regs -= 4;
1721   }
1722 
1723   // We won't modify r4 beyond this point.  It currently points to the next
1724   // register to be spilled.
1725   unsigned R4BaseReg = NextReg;
1726 
1727   // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1728   if (NumAlignedDPRCS2Regs >= 4) {
1729     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1730                                                &ARM::QQPRRegClass);
1731     MBB.addLiveIn(SupReg);
1732     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
1733         .addReg(ARM::R4)
1734         .addImm(16)
1735         .addReg(NextReg)
1736         .addReg(SupReg, RegState::ImplicitKill)
1737         .add(predOps(ARMCC::AL));
1738     NextReg += 4;
1739     NumAlignedDPRCS2Regs -= 4;
1740   }
1741 
1742   // 16-byte aligned vst1.64 with 2 d-regs.
1743   if (NumAlignedDPRCS2Regs >= 2) {
1744     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1745                                                &ARM::QPRRegClass);
1746     MBB.addLiveIn(SupReg);
1747     BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
1748         .addReg(ARM::R4)
1749         .addImm(16)
1750         .addReg(SupReg)
1751         .add(predOps(ARMCC::AL));
1752     NextReg += 2;
1753     NumAlignedDPRCS2Regs -= 2;
1754   }
1755 
1756   // Finally, use a vanilla vstr.64 for the odd last register.
1757   if (NumAlignedDPRCS2Regs) {
1758     MBB.addLiveIn(NextReg);
1759     // vstr.64 uses addrmode5 which has an offset scale of 4.
1760     BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
1761         .addReg(NextReg)
1762         .addReg(ARM::R4)
1763         .addImm((NextReg - R4BaseReg) * 2)
1764         .add(predOps(ARMCC::AL));
1765   }
1766 
1767   // The last spill instruction inserted should kill the scratch register r4.
1768   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1769 }
1770 
1771 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1772 /// iterator to the following instruction.
1773 static MachineBasicBlock::iterator
1774 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
1775                         unsigned NumAlignedDPRCS2Regs) {
1776   //   sub r4, sp, #numregs * 8
1777   //   bic r4, r4, #align - 1
1778   //   mov sp, r4
1779   ++MI; ++MI; ++MI;
1780   assert(MI->mayStore() && "Expecting spill instruction");
1781 
1782   // These switches all fall through.
1783   switch(NumAlignedDPRCS2Regs) {
1784   case 7:
1785     ++MI;
1786     assert(MI->mayStore() && "Expecting spill instruction");
1787     LLVM_FALLTHROUGH;
1788   default:
1789     ++MI;
1790     assert(MI->mayStore() && "Expecting spill instruction");
1791     LLVM_FALLTHROUGH;
1792   case 1:
1793   case 2:
1794   case 4:
1795     assert(MI->killsRegister(ARM::R4) && "Missed kill flag");
1796     ++MI;
1797   }
1798   return MI;
1799 }
1800 
1801 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1802 /// starting from d8.  These instructions are assumed to execute while the
1803 /// stack is still aligned, unlike the code inserted by emitPopInst.
1804 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
1805                                       MachineBasicBlock::iterator MI,
1806                                       unsigned NumAlignedDPRCS2Regs,
1807                                       ArrayRef<CalleeSavedInfo> CSI,
1808                                       const TargetRegisterInfo *TRI) {
1809   MachineFunction &MF = *MBB.getParent();
1810   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1811   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1812   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1813 
1814   // Find the frame index assigned to d8.
1815   int D8SpillFI = 0;
1816   for (const CalleeSavedInfo &I : CSI)
1817     if (I.getReg() == ARM::D8) {
1818       D8SpillFI = I.getFrameIdx();
1819       break;
1820     }
1821 
1822   // Materialize the address of the d8 spill slot into the scratch register r4.
1823   // This can be fairly complicated if the stack frame is large, so just use
1824   // the normal frame index elimination mechanism to do it.  This code runs as
1825   // the initial part of the epilog where the stack and base pointers haven't
1826   // been changed yet.
1827   bool isThumb = AFI->isThumbFunction();
1828   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1829 
1830   unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
1831   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1832       .addFrameIndex(D8SpillFI)
1833       .addImm(0)
1834       .add(predOps(ARMCC::AL))
1835       .add(condCodeOp());
1836 
1837   // Now restore NumAlignedDPRCS2Regs registers starting from d8.
1838   unsigned NextReg = ARM::D8;
1839 
1840   // 16-byte aligned vld1.64 with 4 d-regs and writeback.
1841   if (NumAlignedDPRCS2Regs >= 6) {
1842     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1843                                                &ARM::QQPRRegClass);
1844     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
1845         .addReg(ARM::R4, RegState::Define)
1846         .addReg(ARM::R4, RegState::Kill)
1847         .addImm(16)
1848         .addReg(SupReg, RegState::ImplicitDefine)
1849         .add(predOps(ARMCC::AL));
1850     NextReg += 4;
1851     NumAlignedDPRCS2Regs -= 4;
1852   }
1853 
1854   // We won't modify r4 beyond this point.  It currently points to the next
1855   // register to be spilled.
1856   unsigned R4BaseReg = NextReg;
1857 
1858   // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
1859   if (NumAlignedDPRCS2Regs >= 4) {
1860     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1861                                                &ARM::QQPRRegClass);
1862     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
1863         .addReg(ARM::R4)
1864         .addImm(16)
1865         .addReg(SupReg, RegState::ImplicitDefine)
1866         .add(predOps(ARMCC::AL));
1867     NextReg += 4;
1868     NumAlignedDPRCS2Regs -= 4;
1869   }
1870 
1871   // 16-byte aligned vld1.64 with 2 d-regs.
1872   if (NumAlignedDPRCS2Regs >= 2) {
1873     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1874                                                &ARM::QPRRegClass);
1875     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
1876         .addReg(ARM::R4)
1877         .addImm(16)
1878         .add(predOps(ARMCC::AL));
1879     NextReg += 2;
1880     NumAlignedDPRCS2Regs -= 2;
1881   }
1882 
1883   // Finally, use a vanilla vldr.64 for the remaining odd register.
1884   if (NumAlignedDPRCS2Regs)
1885     BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
1886         .addReg(ARM::R4)
1887         .addImm(2 * (NextReg - R4BaseReg))
1888         .add(predOps(ARMCC::AL));
1889 
1890   // Last store kills r4.
1891   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1892 }
1893 
1894 bool ARMFrameLowering::spillCalleeSavedRegisters(
1895     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1896     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
1897   if (CSI.empty())
1898     return false;
1899 
1900   MachineFunction &MF = *MBB.getParent();
1901   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1902 
1903   unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
1904   unsigned PushOneOpc = AFI->isThumbFunction() ?
1905     ARM::t2STR_PRE : ARM::STR_PRE_IMM;
1906   unsigned FltOpc = ARM::VSTMDDB_UPD;
1907   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1908   // Compute PAC in R12.
1909   if (AFI->shouldSignReturnAddress()) {
1910     BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC))
1911         .setMIFlags(MachineInstr::FrameSetup);
1912   }
1913   // Save the non-secure floating point context.
1914   if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) {
1915         return C.getReg() == ARM::FPCXTNS;
1916       })) {
1917     BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre),
1918             ARM::SP)
1919         .addReg(ARM::SP)
1920         .addImm(-4)
1921         .add(predOps(ARMCC::AL));
1922   }
1923   if (STI.splitFramePointerPush(MF)) {
1924     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false,
1925                  &isSplitFPArea1Register, 0, MachineInstr::FrameSetup);
1926     emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
1927                  NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
1928     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false,
1929                  &isSplitFPArea2Register, 0, MachineInstr::FrameSetup);
1930   } else {
1931     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register,
1932                  0, MachineInstr::FrameSetup);
1933     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register,
1934                  0, MachineInstr::FrameSetup);
1935     emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
1936                  NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
1937   }
1938 
1939   // The code above does not insert spill code for the aligned DPRCS2 registers.
1940   // The stack realignment code will be inserted between the push instructions
1941   // and these spills.
1942   if (NumAlignedDPRCS2Regs)
1943     emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1944 
1945   return true;
1946 }
1947 
1948 bool ARMFrameLowering::restoreCalleeSavedRegisters(
1949     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1950     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
1951   if (CSI.empty())
1952     return false;
1953 
1954   MachineFunction &MF = *MBB.getParent();
1955   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1956   bool isVarArg = AFI->getArgRegsSaveSize() > 0;
1957   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1958 
1959   // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
1960   // registers. Do that here instead.
1961   if (NumAlignedDPRCS2Regs)
1962     emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1963 
1964   unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
1965   unsigned LdrOpc =
1966       AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
1967   unsigned FltOpc = ARM::VLDMDIA_UPD;
1968   if (STI.splitFramePointerPush(MF)) {
1969     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1970                 &isSplitFPArea2Register, 0);
1971     emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
1972                 NumAlignedDPRCS2Regs);
1973     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1974                 &isSplitFPArea1Register, 0);
1975   } else {
1976     emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
1977                 NumAlignedDPRCS2Regs);
1978     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1979                 &isARMArea2Register, 0);
1980     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1981                 &isARMArea1Register, 0);
1982   }
1983 
1984   return true;
1985 }
1986 
1987 // FIXME: Make generic?
1988 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF,
1989                                             const ARMBaseInstrInfo &TII) {
1990   unsigned FnSize = 0;
1991   for (auto &MBB : MF) {
1992     for (auto &MI : MBB)
1993       FnSize += TII.getInstSizeInBytes(MI);
1994   }
1995   if (MF.getJumpTableInfo())
1996     for (auto &Table: MF.getJumpTableInfo()->getJumpTables())
1997       FnSize += Table.MBBs.size() * 4;
1998   FnSize += MF.getConstantPool()->getConstants().size() * 4;
1999   return FnSize;
2000 }
2001 
2002 /// estimateRSStackSizeLimit - Look at each instruction that references stack
2003 /// frames and return the stack size limit beyond which some of these
2004 /// instructions will require a scratch register during their expansion later.
2005 // FIXME: Move to TII?
2006 static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
2007                                          const TargetFrameLowering *TFI,
2008                                          bool &HasNonSPFrameIndex) {
2009   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2010   const ARMBaseInstrInfo &TII =
2011       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2012   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2013   unsigned Limit = (1 << 12) - 1;
2014   for (auto &MBB : MF) {
2015     for (auto &MI : MBB) {
2016       if (MI.isDebugInstr())
2017         continue;
2018       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2019         if (!MI.getOperand(i).isFI())
2020           continue;
2021 
2022         // When using ADDri to get the address of a stack object, 255 is the
2023         // largest offset guaranteed to fit in the immediate offset.
2024         if (MI.getOpcode() == ARM::ADDri) {
2025           Limit = std::min(Limit, (1U << 8) - 1);
2026           break;
2027         }
2028         // t2ADDri will not require an extra register, it can reuse the
2029         // destination.
2030         if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12)
2031           break;
2032 
2033         const MCInstrDesc &MCID = MI.getDesc();
2034         const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF);
2035         if (RegClass && !RegClass->contains(ARM::SP))
2036           HasNonSPFrameIndex = true;
2037 
2038         // Otherwise check the addressing mode.
2039         switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
2040         case ARMII::AddrMode_i12:
2041         case ARMII::AddrMode2:
2042           // Default 12 bit limit.
2043           break;
2044         case ARMII::AddrMode3:
2045         case ARMII::AddrModeT2_i8neg:
2046           Limit = std::min(Limit, (1U << 8) - 1);
2047           break;
2048         case ARMII::AddrMode5FP16:
2049           Limit = std::min(Limit, ((1U << 8) - 1) * 2);
2050           break;
2051         case ARMII::AddrMode5:
2052         case ARMII::AddrModeT2_i8s4:
2053         case ARMII::AddrModeT2_ldrex:
2054           Limit = std::min(Limit, ((1U << 8) - 1) * 4);
2055           break;
2056         case ARMII::AddrModeT2_i12:
2057           // i12 supports only positive offset so these will be converted to
2058           // i8 opcodes. See llvm::rewriteT2FrameIndex.
2059           if (TFI->hasFP(MF) && AFI->hasStackFrame())
2060             Limit = std::min(Limit, (1U << 8) - 1);
2061           break;
2062         case ARMII::AddrMode4:
2063         case ARMII::AddrMode6:
2064           // Addressing modes 4 & 6 (load/store) instructions can't encode an
2065           // immediate offset for stack references.
2066           return 0;
2067         case ARMII::AddrModeT2_i7:
2068           Limit = std::min(Limit, ((1U << 7) - 1) * 1);
2069           break;
2070         case ARMII::AddrModeT2_i7s2:
2071           Limit = std::min(Limit, ((1U << 7) - 1) * 2);
2072           break;
2073         case ARMII::AddrModeT2_i7s4:
2074           Limit = std::min(Limit, ((1U << 7) - 1) * 4);
2075           break;
2076         default:
2077           llvm_unreachable("Unhandled addressing mode in stack size limit calculation");
2078         }
2079         break; // At most one FI per instruction
2080       }
2081     }
2082   }
2083 
2084   return Limit;
2085 }
2086 
2087 // In functions that realign the stack, it can be an advantage to spill the
2088 // callee-saved vector registers after realigning the stack. The vst1 and vld1
2089 // instructions take alignment hints that can improve performance.
2090 static void
2091 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
2092   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
2093   if (!SpillAlignedNEONRegs)
2094     return;
2095 
2096   // Naked functions don't spill callee-saved registers.
2097   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
2098     return;
2099 
2100   // We are planning to use NEON instructions vst1 / vld1.
2101   if (!MF.getSubtarget<ARMSubtarget>().hasNEON())
2102     return;
2103 
2104   // Don't bother if the default stack alignment is sufficiently high.
2105   if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8))
2106     return;
2107 
2108   // Aligned spills require stack realignment.
2109   if (!static_cast<const ARMBaseRegisterInfo *>(
2110            MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
2111     return;
2112 
2113   // We always spill contiguous d-registers starting from d8. Count how many
2114   // needs spilling.  The register allocator will almost always use the
2115   // callee-saved registers in order, but it can happen that there are holes in
2116   // the range.  Registers above the hole will be spilled to the standard DPRCS
2117   // area.
2118   unsigned NumSpills = 0;
2119   for (; NumSpills < 8; ++NumSpills)
2120     if (!SavedRegs.test(ARM::D8 + NumSpills))
2121       break;
2122 
2123   // Don't do this for just one d-register. It's not worth it.
2124   if (NumSpills < 2)
2125     return;
2126 
2127   // Spill the first NumSpills D-registers after realigning the stack.
2128   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
2129 
2130   // A scratch register is required for the vst1 / vld1 instructions.
2131   SavedRegs.set(ARM::R4);
2132 }
2133 
2134 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2135   // For CMSE entry functions, we want to save the FPCXT_NS immediately
2136   // upon function entry (resp. restore it immmediately before return)
2137   if (STI.hasV8_1MMainlineOps() &&
2138       MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction())
2139     return false;
2140 
2141   // We are disabling shrinkwrapping for now when PAC is enabled, as
2142   // shrinkwrapping can cause clobbering of r12 when the PAC code is
2143   // generated. A follow-up patch will fix this in a more performant manner.
2144   if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress(
2145           true /* SpillsLR */))
2146     return false;
2147 
2148   return true;
2149 }
2150 
2151 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
2152                                             BitVector &SavedRegs,
2153                                             RegScavenger *RS) const {
2154   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2155   // This tells PEI to spill the FP as if it is any other callee-save register
2156   // to take advantage the eliminateFrameIndex machinery. This also ensures it
2157   // is spilled in the order specified by getCalleeSavedRegs() to make it easier
2158   // to combine multiple loads / stores.
2159   bool CanEliminateFrame = true;
2160   bool CS1Spilled = false;
2161   bool LRSpilled = false;
2162   unsigned NumGPRSpills = 0;
2163   unsigned NumFPRSpills = 0;
2164   SmallVector<unsigned, 4> UnspilledCS1GPRs;
2165   SmallVector<unsigned, 4> UnspilledCS2GPRs;
2166   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
2167       MF.getSubtarget().getRegisterInfo());
2168   const ARMBaseInstrInfo &TII =
2169       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2170   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2171   MachineFrameInfo &MFI = MF.getFrameInfo();
2172   MachineRegisterInfo &MRI = MF.getRegInfo();
2173   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2174   (void)TRI;  // Silence unused warning in non-assert builds.
2175   Register FramePtr = RegInfo->getFrameRegister(MF);
2176 
2177   // Spill R4 if Thumb2 function requires stack realignment - it will be used as
2178   // scratch register. Also spill R4 if Thumb2 function has varsized objects,
2179   // since it's not always possible to restore sp from fp in a single
2180   // instruction.
2181   // FIXME: It will be better just to find spare register here.
2182   if (AFI->isThumb2Function() &&
2183       (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF)))
2184     SavedRegs.set(ARM::R4);
2185 
2186   // If a stack probe will be emitted, spill R4 and LR, since they are
2187   // clobbered by the stack probe call.
2188   // This estimate should be a safe, conservative estimate. The actual
2189   // stack probe is enabled based on the size of the local objects;
2190   // this estimate also includes the varargs store size.
2191   if (STI.isTargetWindows() &&
2192       WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
2193     SavedRegs.set(ARM::R4);
2194     SavedRegs.set(ARM::LR);
2195   }
2196 
2197   if (AFI->isThumb1OnlyFunction()) {
2198     // Spill LR if Thumb1 function uses variable length argument lists.
2199     if (AFI->getArgRegsSaveSize() > 0)
2200       SavedRegs.set(ARM::LR);
2201 
2202     // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
2203     // requires stack alignment.  We don't know for sure what the stack size
2204     // will be, but for this, an estimate is good enough. If there anything
2205     // changes it, it'll be a spill, which implies we've used all the registers
2206     // and so R4 is already used, so not marking it here will be OK.
2207     // FIXME: It will be better just to find spare register here.
2208     if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) ||
2209         MFI.estimateStackSize(MF) > 508)
2210       SavedRegs.set(ARM::R4);
2211   }
2212 
2213   // See if we can spill vector registers to aligned stack.
2214   checkNumAlignedDPRCS2Regs(MF, SavedRegs);
2215 
2216   // Spill the BasePtr if it's used.
2217   if (RegInfo->hasBasePointer(MF))
2218     SavedRegs.set(RegInfo->getBaseRegister());
2219 
2220   // On v8.1-M.Main CMSE entry functions save/restore FPCXT.
2221   if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction())
2222     CanEliminateFrame = false;
2223 
2224   // Don't spill FP if the frame can be eliminated. This is determined
2225   // by scanning the callee-save registers to see if any is modified.
2226   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
2227   for (unsigned i = 0; CSRegs[i]; ++i) {
2228     unsigned Reg = CSRegs[i];
2229     bool Spilled = false;
2230     if (SavedRegs.test(Reg)) {
2231       Spilled = true;
2232       CanEliminateFrame = false;
2233     }
2234 
2235     if (!ARM::GPRRegClass.contains(Reg)) {
2236       if (Spilled) {
2237         if (ARM::SPRRegClass.contains(Reg))
2238           NumFPRSpills++;
2239         else if (ARM::DPRRegClass.contains(Reg))
2240           NumFPRSpills += 2;
2241         else if (ARM::QPRRegClass.contains(Reg))
2242           NumFPRSpills += 4;
2243       }
2244       continue;
2245     }
2246 
2247     if (Spilled) {
2248       NumGPRSpills++;
2249 
2250       if (!STI.splitFramePushPop(MF)) {
2251         if (Reg == ARM::LR)
2252           LRSpilled = true;
2253         CS1Spilled = true;
2254         continue;
2255       }
2256 
2257       // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
2258       switch (Reg) {
2259       case ARM::LR:
2260         LRSpilled = true;
2261         LLVM_FALLTHROUGH;
2262       case ARM::R0: case ARM::R1:
2263       case ARM::R2: case ARM::R3:
2264       case ARM::R4: case ARM::R5:
2265       case ARM::R6: case ARM::R7:
2266         CS1Spilled = true;
2267         break;
2268       default:
2269         break;
2270       }
2271     } else {
2272       if (!STI.splitFramePushPop(MF)) {
2273         UnspilledCS1GPRs.push_back(Reg);
2274         continue;
2275       }
2276 
2277       switch (Reg) {
2278       case ARM::R0: case ARM::R1:
2279       case ARM::R2: case ARM::R3:
2280       case ARM::R4: case ARM::R5:
2281       case ARM::R6: case ARM::R7:
2282       case ARM::LR:
2283         UnspilledCS1GPRs.push_back(Reg);
2284         break;
2285       default:
2286         UnspilledCS2GPRs.push_back(Reg);
2287         break;
2288       }
2289     }
2290   }
2291 
2292   bool ForceLRSpill = false;
2293   if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
2294     unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII);
2295     // Force LR to be spilled if the Thumb function size is > 2048. This enables
2296     // use of BL to implement far jump.
2297     if (FnSize >= (1 << 11)) {
2298       CanEliminateFrame = false;
2299       ForceLRSpill = true;
2300     }
2301   }
2302 
2303   // If any of the stack slot references may be out of range of an immediate
2304   // offset, make sure a register (or a spill slot) is available for the
2305   // register scavenger. Note that if we're indexing off the frame pointer, the
2306   // effective stack size is 4 bytes larger since the FP points to the stack
2307   // slot of the previous FP. Also, if we have variable sized objects in the
2308   // function, stack slot references will often be negative, and some of
2309   // our instructions are positive-offset only, so conservatively consider
2310   // that case to want a spill slot (or register) as well. Similarly, if
2311   // the function adjusts the stack pointer during execution and the
2312   // adjustments aren't already part of our stack size estimate, our offset
2313   // calculations may be off, so be conservative.
2314   // FIXME: We could add logic to be more precise about negative offsets
2315   //        and which instructions will need a scratch register for them. Is it
2316   //        worth the effort and added fragility?
2317   unsigned EstimatedStackSize =
2318       MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
2319 
2320   // Determine biggest (positive) SP offset in MachineFrameInfo.
2321   int MaxFixedOffset = 0;
2322   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
2323     int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
2324     MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
2325   }
2326 
2327   bool HasFP = hasFP(MF);
2328   if (HasFP) {
2329     if (AFI->hasStackFrame())
2330       EstimatedStackSize += 4;
2331   } else {
2332     // If FP is not used, SP will be used to access arguments, so count the
2333     // size of arguments into the estimation.
2334     EstimatedStackSize += MaxFixedOffset;
2335   }
2336   EstimatedStackSize += 16; // For possible paddings.
2337 
2338   unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit;
2339   bool HasNonSPFrameIndex = false;
2340   if (AFI->isThumb1OnlyFunction()) {
2341     // For Thumb1, don't bother to iterate over the function. The only
2342     // instruction that requires an emergency spill slot is a store to a
2343     // frame index.
2344     //
2345     // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned
2346     // immediate. tSTRi, which is used for bp- and fp-relative accesses, has
2347     // a 5-bit unsigned immediate.
2348     //
2349     // We could try to check if the function actually contains a tSTRspi
2350     // that might need the spill slot, but it's not really important.
2351     // Functions with VLAs or extremely large call frames are rare, and
2352     // if a function is allocating more than 1KB of stack, an extra 4-byte
2353     // slot probably isn't relevant.
2354     if (RegInfo->hasBasePointer(MF))
2355       EstimatedRSStackSizeLimit = (1U << 5) * 4;
2356     else
2357       EstimatedRSStackSizeLimit = (1U << 8) * 4;
2358     EstimatedRSFixedSizeLimit = (1U << 5) * 4;
2359   } else {
2360     EstimatedRSStackSizeLimit =
2361         estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex);
2362     EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit;
2363   }
2364   // Final estimate of whether sp or bp-relative accesses might require
2365   // scavenging.
2366   bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit;
2367 
2368   // If the stack pointer moves and we don't have a base pointer, the
2369   // estimate logic doesn't work. The actual offsets might be larger when
2370   // we're constructing a call frame, or we might need to use negative
2371   // offsets from fp.
2372   bool HasMovingSP = MFI.hasVarSizedObjects() ||
2373     (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF));
2374   bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP;
2375 
2376   // If we have a frame pointer, we assume arguments will be accessed
2377   // relative to the frame pointer. Check whether fp-relative accesses to
2378   // arguments require scavenging.
2379   //
2380   // We could do slightly better on Thumb1; in some cases, an sp-relative
2381   // offset would be legal even though an fp-relative offset is not.
2382   int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF);
2383   bool HasLargeArgumentList =
2384       HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit;
2385 
2386   bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP ||
2387                          HasLargeArgumentList || HasNonSPFrameIndex;
2388   LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit
2389                     << "; EstimatedStack: " << EstimatedStackSize
2390                     << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset
2391                     << "; BigFrameOffsets: " << BigFrameOffsets << "\n");
2392   if (BigFrameOffsets ||
2393       !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
2394     AFI->setHasStackFrame(true);
2395 
2396     if (HasFP) {
2397       SavedRegs.set(FramePtr);
2398       // If the frame pointer is required by the ABI, also spill LR so that we
2399       // emit a complete frame record.
2400       if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) {
2401         SavedRegs.set(ARM::LR);
2402         LRSpilled = true;
2403         NumGPRSpills++;
2404         auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
2405         if (LRPos != UnspilledCS1GPRs.end())
2406           UnspilledCS1GPRs.erase(LRPos);
2407       }
2408       auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
2409       if (FPPos != UnspilledCS1GPRs.end())
2410         UnspilledCS1GPRs.erase(FPPos);
2411       NumGPRSpills++;
2412       if (FramePtr == ARM::R7)
2413         CS1Spilled = true;
2414     }
2415 
2416     // This is true when we inserted a spill for a callee-save GPR which is
2417     // not otherwise used by the function. This guaranteees it is possible
2418     // to scavenge a register to hold the address of a stack slot. On Thumb1,
2419     // the register must be a valid operand to tSTRi, i.e. r4-r7. For other
2420     // subtargets, this is any GPR, i.e. r4-r11 or lr.
2421     //
2422     // If we don't insert a spill, we instead allocate an emergency spill
2423     // slot, which can be used by scavenging to spill an arbitrary register.
2424     //
2425     // We currently don't try to figure out whether any specific instruction
2426     // requires scavening an additional register.
2427     bool ExtraCSSpill = false;
2428 
2429     if (AFI->isThumb1OnlyFunction()) {
2430       // For Thumb1-only targets, we need some low registers when we save and
2431       // restore the high registers (which aren't allocatable, but could be
2432       // used by inline assembly) because the push/pop instructions can not
2433       // access high registers. If necessary, we might need to push more low
2434       // registers to ensure that there is at least one free that can be used
2435       // for the saving & restoring, and preferably we should ensure that as
2436       // many as are needed are available so that fewer push/pop instructions
2437       // are required.
2438 
2439       // Low registers which are not currently pushed, but could be (r4-r7).
2440       SmallVector<unsigned, 4> AvailableRegs;
2441 
2442       // Unused argument registers (r0-r3) can be clobbered in the prologue for
2443       // free.
2444       int EntryRegDeficit = 0;
2445       for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
2446         if (!MF.getRegInfo().isLiveIn(Reg)) {
2447           --EntryRegDeficit;
2448           LLVM_DEBUG(dbgs()
2449                      << printReg(Reg, TRI)
2450                      << " is unused argument register, EntryRegDeficit = "
2451                      << EntryRegDeficit << "\n");
2452         }
2453       }
2454 
2455       // Unused return registers can be clobbered in the epilogue for free.
2456       int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
2457       LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
2458                         << " return regs used, ExitRegDeficit = "
2459                         << ExitRegDeficit << "\n");
2460 
2461       int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
2462       LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
2463 
2464       // r4-r6 can be used in the prologue if they are pushed by the first push
2465       // instruction.
2466       for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
2467         if (SavedRegs.test(Reg)) {
2468           --RegDeficit;
2469           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2470                             << " is saved low register, RegDeficit = "
2471                             << RegDeficit << "\n");
2472         } else {
2473           AvailableRegs.push_back(Reg);
2474           LLVM_DEBUG(
2475               dbgs()
2476               << printReg(Reg, TRI)
2477               << " is non-saved low register, adding to AvailableRegs\n");
2478         }
2479       }
2480 
2481       // r7 can be used if it is not being used as the frame pointer.
2482       if (!HasFP) {
2483         if (SavedRegs.test(ARM::R7)) {
2484           --RegDeficit;
2485           LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
2486                             << RegDeficit << "\n");
2487         } else {
2488           AvailableRegs.push_back(ARM::R7);
2489           LLVM_DEBUG(
2490               dbgs()
2491               << "%r7 is non-saved low register, adding to AvailableRegs\n");
2492         }
2493       }
2494 
2495       // Each of r8-r11 needs to be copied to a low register, then pushed.
2496       for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
2497         if (SavedRegs.test(Reg)) {
2498           ++RegDeficit;
2499           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2500                             << " is saved high register, RegDeficit = "
2501                             << RegDeficit << "\n");
2502         }
2503       }
2504 
2505       // LR can only be used by PUSH, not POP, and can't be used at all if the
2506       // llvm.returnaddress intrinsic is used. This is only worth doing if we
2507       // are more limited at function entry than exit.
2508       if ((EntryRegDeficit > ExitRegDeficit) &&
2509           !(MF.getRegInfo().isLiveIn(ARM::LR) &&
2510             MF.getFrameInfo().isReturnAddressTaken())) {
2511         if (SavedRegs.test(ARM::LR)) {
2512           --RegDeficit;
2513           LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
2514                             << RegDeficit << "\n");
2515         } else {
2516           AvailableRegs.push_back(ARM::LR);
2517           LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
2518         }
2519       }
2520 
2521       // If there are more high registers that need pushing than low registers
2522       // available, push some more low registers so that we can use fewer push
2523       // instructions. This might not reduce RegDeficit all the way to zero,
2524       // because we can only guarantee that r4-r6 are available, but r8-r11 may
2525       // need saving.
2526       LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
2527       for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
2528         unsigned Reg = AvailableRegs.pop_back_val();
2529         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2530                           << " to make up reg deficit\n");
2531         SavedRegs.set(Reg);
2532         NumGPRSpills++;
2533         CS1Spilled = true;
2534         assert(!MRI.isReserved(Reg) && "Should not be reserved");
2535         if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg))
2536           ExtraCSSpill = true;
2537         UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
2538         if (Reg == ARM::LR)
2539           LRSpilled = true;
2540       }
2541       LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
2542                         << "\n");
2543     }
2544 
2545     // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
2546     // restore LR in that case.
2547     bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall();
2548 
2549     // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
2550     // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
2551     if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) {
2552       SavedRegs.set(ARM::LR);
2553       NumGPRSpills++;
2554       SmallVectorImpl<unsigned>::iterator LRPos;
2555       LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
2556       if (LRPos != UnspilledCS1GPRs.end())
2557         UnspilledCS1GPRs.erase(LRPos);
2558 
2559       ForceLRSpill = false;
2560       if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) &&
2561           !AFI->isThumb1OnlyFunction())
2562         ExtraCSSpill = true;
2563     }
2564 
2565     // If stack and double are 8-byte aligned and we are spilling an odd number
2566     // of GPRs, spill one extra callee save GPR so we won't have to pad between
2567     // the integer and double callee save areas.
2568     LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
2569     const Align TargetAlign = getStackAlign();
2570     if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) {
2571       if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
2572         for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
2573           unsigned Reg = UnspilledCS1GPRs[i];
2574           // Don't spill high register if the function is thumb.  In the case of
2575           // Windows on ARM, accept R11 (frame pointer)
2576           if (!AFI->isThumbFunction() ||
2577               (STI.isTargetWindows() && Reg == ARM::R11) ||
2578               isARMLowRegister(Reg) ||
2579               (Reg == ARM::LR && !ExpensiveLRRestore)) {
2580             SavedRegs.set(Reg);
2581             LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2582                               << " to make up alignment\n");
2583             if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) &&
2584                 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction()))
2585               ExtraCSSpill = true;
2586             break;
2587           }
2588         }
2589       } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
2590         unsigned Reg = UnspilledCS2GPRs.front();
2591         SavedRegs.set(Reg);
2592         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2593                           << " to make up alignment\n");
2594         if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
2595           ExtraCSSpill = true;
2596       }
2597     }
2598 
2599     // Estimate if we might need to scavenge a register at some point in order
2600     // to materialize a stack offset. If so, either spill one additional
2601     // callee-saved register or reserve a special spill slot to facilitate
2602     // register scavenging. Thumb1 needs a spill slot for stack pointer
2603     // adjustments also, even when the frame itself is small.
2604     if (BigFrameOffsets && !ExtraCSSpill) {
2605       // If any non-reserved CS register isn't spilled, just spill one or two
2606       // extra. That should take care of it!
2607       unsigned NumExtras = TargetAlign.value() / 4;
2608       SmallVector<unsigned, 2> Extras;
2609       while (NumExtras && !UnspilledCS1GPRs.empty()) {
2610         unsigned Reg = UnspilledCS1GPRs.pop_back_val();
2611         if (!MRI.isReserved(Reg) &&
2612             (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) {
2613           Extras.push_back(Reg);
2614           NumExtras--;
2615         }
2616       }
2617       // For non-Thumb1 functions, also check for hi-reg CS registers
2618       if (!AFI->isThumb1OnlyFunction()) {
2619         while (NumExtras && !UnspilledCS2GPRs.empty()) {
2620           unsigned Reg = UnspilledCS2GPRs.pop_back_val();
2621           if (!MRI.isReserved(Reg)) {
2622             Extras.push_back(Reg);
2623             NumExtras--;
2624           }
2625         }
2626       }
2627       if (NumExtras == 0) {
2628         for (unsigned Reg : Extras) {
2629           SavedRegs.set(Reg);
2630           if (!MRI.isPhysRegUsed(Reg))
2631             ExtraCSSpill = true;
2632         }
2633       }
2634       if (!ExtraCSSpill && RS) {
2635         // Reserve a slot closest to SP or frame pointer.
2636         LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n");
2637         const TargetRegisterClass &RC = ARM::GPRRegClass;
2638         unsigned Size = TRI->getSpillSize(RC);
2639         Align Alignment = TRI->getSpillAlign(RC);
2640         RS->addScavengingFrameIndex(
2641             MFI.CreateStackObject(Size, Alignment, false));
2642       }
2643     }
2644   }
2645 
2646   if (ForceLRSpill)
2647     SavedRegs.set(ARM::LR);
2648   AFI->setLRIsSpilled(SavedRegs.test(ARM::LR));
2649 }
2650 
2651 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF,
2652                                       BitVector &SavedRegs) const {
2653   TargetFrameLowering::getCalleeSaves(MF, SavedRegs);
2654 
2655   // If we have the "returned" parameter attribute which guarantees that we
2656   // return the value which was passed in r0 unmodified (e.g. C++ 'structors),
2657   // record that fact for IPRA.
2658   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2659   if (AFI->getPreservesR0())
2660     SavedRegs.set(ARM::R0);
2661 }
2662 
2663 bool ARMFrameLowering::assignCalleeSavedSpillSlots(
2664     MachineFunction &MF, const TargetRegisterInfo *TRI,
2665     std::vector<CalleeSavedInfo> &CSI) const {
2666   // For CMSE entry functions, handle floating-point context as if it was a
2667   // callee-saved register.
2668   if (STI.hasV8_1MMainlineOps() &&
2669       MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) {
2670     CSI.emplace_back(ARM::FPCXTNS);
2671     CSI.back().setRestored(false);
2672   }
2673 
2674   // For functions, which sign their return address, upon function entry, the
2675   // return address PAC is computed in R12. Treat R12 as a callee-saved register
2676   // in this case.
2677   const auto &AFI = *MF.getInfo<ARMFunctionInfo>();
2678   if (AFI.shouldSignReturnAddress()) {
2679     // The order of register must match the order we push them, because the
2680     // PEI assigns frame indices in that order. When compiling for return
2681     // address sign and authenication, we use split push, therefore the orders
2682     // we want are:
2683     // LR, R7, R6, R5, R4, <R12>, R11, R10,  R9,  R8, D15-D8
2684     CSI.insert(find_if(CSI,
2685                        [=](const auto &CS) {
2686                          Register Reg = CS.getReg();
2687                          return Reg == ARM::R10 || Reg == ARM::R11 ||
2688                                 Reg == ARM::R8 || Reg == ARM::R9 ||
2689                                 ARM::DPRRegClass.contains(Reg);
2690                        }),
2691                CalleeSavedInfo(ARM::R12));
2692   }
2693 
2694   return false;
2695 }
2696 
2697 const TargetFrameLowering::SpillSlot *
2698 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const {
2699   static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}};
2700   NumEntries = array_lengthof(FixedSpillOffsets);
2701   return FixedSpillOffsets;
2702 }
2703 
2704 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
2705     MachineFunction &MF, MachineBasicBlock &MBB,
2706     MachineBasicBlock::iterator I) const {
2707   const ARMBaseInstrInfo &TII =
2708       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2709   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2710   bool isARM = !AFI->isThumbFunction();
2711   DebugLoc dl = I->getDebugLoc();
2712   unsigned Opc = I->getOpcode();
2713   bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode();
2714   unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
2715 
2716   assert(!AFI->isThumb1OnlyFunction() &&
2717          "This eliminateCallFramePseudoInstr does not support Thumb1!");
2718 
2719   int PIdx = I->findFirstPredOperandIdx();
2720   ARMCC::CondCodes Pred = (PIdx == -1)
2721                               ? ARMCC::AL
2722                               : (ARMCC::CondCodes)I->getOperand(PIdx).getImm();
2723   unsigned PredReg = TII.getFramePred(*I);
2724 
2725   if (!hasReservedCallFrame(MF)) {
2726     // Bail early if the callee is expected to do the adjustment.
2727     if (IsDestroy && CalleePopAmount != -1U)
2728       return MBB.erase(I);
2729 
2730     // If we have alloca, convert as follows:
2731     // ADJCALLSTACKDOWN -> sub, sp, sp, amount
2732     // ADJCALLSTACKUP   -> add, sp, sp, amount
2733     unsigned Amount = TII.getFrameSize(*I);
2734     if (Amount != 0) {
2735       // We need to keep the stack aligned properly.  To do this, we round the
2736       // amount of space needed for the outgoing arguments up to the next
2737       // alignment boundary.
2738       Amount = alignSPAdjust(Amount);
2739 
2740       if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
2741         emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
2742                      Pred, PredReg);
2743       } else {
2744         assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
2745         emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
2746                      Pred, PredReg);
2747       }
2748     }
2749   } else if (CalleePopAmount != -1U) {
2750     // If the calling convention demands that the callee pops arguments from the
2751     // stack, we want to add it back if we have a reserved call frame.
2752     emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount,
2753                  MachineInstr::NoFlags, Pred, PredReg);
2754   }
2755   return MBB.erase(I);
2756 }
2757 
2758 /// Get the minimum constant for ARM that is greater than or equal to the
2759 /// argument. In ARM, constants can have any value that can be produced by
2760 /// rotating an 8-bit value to the right by an even number of bits within a
2761 /// 32-bit word.
2762 static uint32_t alignToARMConstant(uint32_t Value) {
2763   unsigned Shifted = 0;
2764 
2765   if (Value == 0)
2766       return 0;
2767 
2768   while (!(Value & 0xC0000000)) {
2769       Value = Value << 2;
2770       Shifted += 2;
2771   }
2772 
2773   bool Carry = (Value & 0x00FFFFFF);
2774   Value = ((Value & 0xFF000000) >> 24) + Carry;
2775 
2776   if (Value & 0x0000100)
2777       Value = Value & 0x000001FC;
2778 
2779   if (Shifted > 24)
2780       Value = Value >> (Shifted - 24);
2781   else
2782       Value = Value << (24 - Shifted);
2783 
2784   return Value;
2785 }
2786 
2787 // The stack limit in the TCB is set to this many bytes above the actual
2788 // stack limit.
2789 static const uint64_t kSplitStackAvailable = 256;
2790 
2791 // Adjust the function prologue to enable split stacks. This currently only
2792 // supports android and linux.
2793 //
2794 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but
2795 // must be well defined in order to allow for consistent implementations of the
2796 // __morestack helper function. The ABI is also not a normal ABI in that it
2797 // doesn't follow the normal calling conventions because this allows the
2798 // prologue of each function to be optimized further.
2799 //
2800 // Currently, the ABI looks like (when calling __morestack)
2801 //
2802 //  * r4 holds the minimum stack size requested for this function call
2803 //  * r5 holds the stack size of the arguments to the function
2804 //  * the beginning of the function is 3 instructions after the call to
2805 //    __morestack
2806 //
2807 // Implementations of __morestack should use r4 to allocate a new stack, r5 to
2808 // place the arguments on to the new stack, and the 3-instruction knowledge to
2809 // jump directly to the body of the function when working on the new stack.
2810 //
2811 // An old (and possibly no longer compatible) implementation of __morestack for
2812 // ARM can be found at [1].
2813 //
2814 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
2815 void ARMFrameLowering::adjustForSegmentedStacks(
2816     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2817   unsigned Opcode;
2818   unsigned CFIIndex;
2819   const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
2820   bool Thumb = ST->isThumb();
2821   bool Thumb2 = ST->isThumb2();
2822 
2823   // Sadly, this currently doesn't support varargs, platforms other than
2824   // android/linux. Note that thumb1/thumb2 are support for android/linux.
2825   if (MF.getFunction().isVarArg())
2826     report_fatal_error("Segmented stacks do not support vararg functions.");
2827   if (!ST->isTargetAndroid() && !ST->isTargetLinux())
2828     report_fatal_error("Segmented stacks not supported on this platform.");
2829 
2830   MachineFrameInfo &MFI = MF.getFrameInfo();
2831   MachineModuleInfo &MMI = MF.getMMI();
2832   MCContext &Context = MMI.getContext();
2833   const MCRegisterInfo *MRI = Context.getRegisterInfo();
2834   const ARMBaseInstrInfo &TII =
2835       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2836   ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
2837   DebugLoc DL;
2838 
2839   if (!MFI.needsSplitStackProlog())
2840     return;
2841 
2842   uint64_t StackSize = MFI.getStackSize();
2843 
2844   // Use R4 and R5 as scratch registers.
2845   // We save R4 and R5 before use and restore them before leaving the function.
2846   unsigned ScratchReg0 = ARM::R4;
2847   unsigned ScratchReg1 = ARM::R5;
2848   uint64_t AlignedStackSize;
2849 
2850   MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
2851   MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
2852   MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
2853   MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
2854   MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
2855 
2856   // Grab everything that reaches PrologueMBB to update there liveness as well.
2857   SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
2858   SmallVector<MachineBasicBlock *, 2> WalkList;
2859   WalkList.push_back(&PrologueMBB);
2860 
2861   do {
2862     MachineBasicBlock *CurMBB = WalkList.pop_back_val();
2863     for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
2864       if (BeforePrologueRegion.insert(PredBB).second)
2865         WalkList.push_back(PredBB);
2866     }
2867   } while (!WalkList.empty());
2868 
2869   // The order in that list is important.
2870   // The blocks will all be inserted before PrologueMBB using that order.
2871   // Therefore the block that should appear first in the CFG should appear
2872   // first in the list.
2873   MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
2874                                       PostStackMBB};
2875 
2876   for (MachineBasicBlock *B : AddedBlocks)
2877     BeforePrologueRegion.insert(B);
2878 
2879   for (const auto &LI : PrologueMBB.liveins()) {
2880     for (MachineBasicBlock *PredBB : BeforePrologueRegion)
2881       PredBB->addLiveIn(LI);
2882   }
2883 
2884   // Remove the newly added blocks from the list, since we know
2885   // we do not have to do the following updates for them.
2886   for (MachineBasicBlock *B : AddedBlocks) {
2887     BeforePrologueRegion.erase(B);
2888     MF.insert(PrologueMBB.getIterator(), B);
2889   }
2890 
2891   for (MachineBasicBlock *MBB : BeforePrologueRegion) {
2892     // Make sure the LiveIns are still sorted and unique.
2893     MBB->sortUniqueLiveIns();
2894     // Replace the edges to PrologueMBB by edges to the sequences
2895     // we are about to add, but only update for immediate predecessors.
2896     if (MBB->isSuccessor(&PrologueMBB))
2897       MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
2898   }
2899 
2900   // The required stack size that is aligned to ARM constant criterion.
2901   AlignedStackSize = alignToARMConstant(StackSize);
2902 
2903   // When the frame size is less than 256 we just compare the stack
2904   // boundary directly to the value of the stack pointer, per gcc.
2905   bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
2906 
2907   // We will use two of the callee save registers as scratch registers so we
2908   // need to save those registers onto the stack.
2909   // We will use SR0 to hold stack limit and SR1 to hold the stack size
2910   // requested and arguments for __morestack().
2911   // SR0: Scratch Register #0
2912   // SR1: Scratch Register #1
2913   // push {SR0, SR1}
2914   if (Thumb) {
2915     BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
2916         .add(predOps(ARMCC::AL))
2917         .addReg(ScratchReg0)
2918         .addReg(ScratchReg1);
2919   } else {
2920     BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
2921         .addReg(ARM::SP, RegState::Define)
2922         .addReg(ARM::SP)
2923         .add(predOps(ARMCC::AL))
2924         .addReg(ScratchReg0)
2925         .addReg(ScratchReg1);
2926   }
2927 
2928   // Emit the relevant DWARF information about the change in stack pointer as
2929   // well as where to find both r4 and r5 (the callee-save registers)
2930   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
2931     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8));
2932     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2933         .addCFIIndex(CFIIndex);
2934     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2935         nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
2936     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2937         .addCFIIndex(CFIIndex);
2938     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2939         nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
2940     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2941         .addCFIIndex(CFIIndex);
2942   }
2943 
2944   // mov SR1, sp
2945   if (Thumb) {
2946     BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
2947         .addReg(ARM::SP)
2948         .add(predOps(ARMCC::AL));
2949   } else if (CompareStackPointer) {
2950     BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
2951         .addReg(ARM::SP)
2952         .add(predOps(ARMCC::AL))
2953         .add(condCodeOp());
2954   }
2955 
2956   // sub SR1, sp, #StackSize
2957   if (!CompareStackPointer && Thumb) {
2958     if (AlignedStackSize < 256) {
2959       BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
2960           .add(condCodeOp())
2961           .addReg(ScratchReg1)
2962           .addImm(AlignedStackSize)
2963           .add(predOps(ARMCC::AL));
2964     } else {
2965       if (Thumb2) {
2966         BuildMI(McrMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg0)
2967             .addImm(AlignedStackSize);
2968       } else {
2969         auto MBBI = McrMBB->end();
2970         auto RegInfo = STI.getRegisterInfo();
2971         RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
2972                                    AlignedStackSize);
2973       }
2974       BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1)
2975           .add(condCodeOp())
2976           .addReg(ScratchReg1)
2977           .addReg(ScratchReg0)
2978           .add(predOps(ARMCC::AL));
2979     }
2980   } else if (!CompareStackPointer) {
2981     if (AlignedStackSize < 256) {
2982       BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
2983           .addReg(ARM::SP)
2984           .addImm(AlignedStackSize)
2985           .add(predOps(ARMCC::AL))
2986           .add(condCodeOp());
2987     } else {
2988       auto MBBI = McrMBB->end();
2989       auto RegInfo = STI.getRegisterInfo();
2990       RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
2991                                  AlignedStackSize);
2992       BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1)
2993           .addReg(ARM::SP)
2994           .addReg(ScratchReg0)
2995           .add(predOps(ARMCC::AL))
2996           .add(condCodeOp());
2997     }
2998   }
2999 
3000   if (Thumb && ST->isThumb1Only()) {
3001     unsigned PCLabelId = ARMFI->createPICLabelUId();
3002     ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
3003         MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
3004     MachineConstantPool *MCP = MF.getConstantPool();
3005     unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4));
3006 
3007     // ldr SR0, [pc, offset(STACK_LIMIT)]
3008     BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
3009         .addConstantPoolIndex(CPI)
3010         .add(predOps(ARMCC::AL));
3011 
3012     // ldr SR0, [SR0]
3013     BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
3014         .addReg(ScratchReg0)
3015         .addImm(0)
3016         .add(predOps(ARMCC::AL));
3017   } else {
3018     // Get TLS base address from the coprocessor
3019     // mrc p15, #0, SR0, c13, c0, #3
3020     BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC),
3021             ScratchReg0)
3022         .addImm(15)
3023         .addImm(0)
3024         .addImm(13)
3025         .addImm(0)
3026         .addImm(3)
3027         .add(predOps(ARMCC::AL));
3028 
3029     // Use the last tls slot on android and a private field of the TCP on linux.
3030     assert(ST->isTargetAndroid() || ST->isTargetLinux());
3031     unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
3032 
3033     // Get the stack limit from the right offset
3034     // ldr SR0, [sr0, #4 * TlsOffset]
3035     BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12),
3036             ScratchReg0)
3037         .addReg(ScratchReg0)
3038         .addImm(4 * TlsOffset)
3039         .add(predOps(ARMCC::AL));
3040   }
3041 
3042   // Compare stack limit with stack size requested.
3043   // cmp SR0, SR1
3044   Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
3045   BuildMI(GetMBB, DL, TII.get(Opcode))
3046       .addReg(ScratchReg0)
3047       .addReg(ScratchReg1)
3048       .add(predOps(ARMCC::AL));
3049 
3050   // This jump is taken if StackLimit < SP - stack required.
3051   Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
3052   BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB)
3053        .addImm(ARMCC::LO)
3054        .addReg(ARM::CPSR);
3055 
3056 
3057   // Calling __morestack(StackSize, Size of stack arguments).
3058   // __morestack knows that the stack size requested is in SR0(r4)
3059   // and amount size of stack arguments is in SR1(r5).
3060 
3061   // Pass first argument for the __morestack by Scratch Register #0.
3062   //   The amount size of stack required
3063   if (Thumb) {
3064     if (AlignedStackSize < 256) {
3065       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
3066           .add(condCodeOp())
3067           .addImm(AlignedStackSize)
3068           .add(predOps(ARMCC::AL));
3069     } else {
3070       if (Thumb2) {
3071         BuildMI(AllocMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg0)
3072             .addImm(AlignedStackSize);
3073       } else {
3074         auto MBBI = AllocMBB->end();
3075         auto RegInfo = STI.getRegisterInfo();
3076         RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
3077                                    AlignedStackSize);
3078       }
3079     }
3080   } else {
3081     if (AlignedStackSize < 256) {
3082       BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
3083           .addImm(AlignedStackSize)
3084           .add(predOps(ARMCC::AL))
3085           .add(condCodeOp());
3086     } else {
3087       auto MBBI = AllocMBB->end();
3088       auto RegInfo = STI.getRegisterInfo();
3089       RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
3090                                  AlignedStackSize);
3091     }
3092   }
3093 
3094   // Pass second argument for the __morestack by Scratch Register #1.
3095   //   The amount size of stack consumed to save function arguments.
3096   if (Thumb) {
3097     if (ARMFI->getArgumentStackSize() < 256) {
3098       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
3099           .add(condCodeOp())
3100           .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
3101           .add(predOps(ARMCC::AL));
3102     } else {
3103       if (Thumb2) {
3104         BuildMI(AllocMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg1)
3105             .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()));
3106       } else {
3107         auto MBBI = AllocMBB->end();
3108         auto RegInfo = STI.getRegisterInfo();
3109         RegInfo->emitLoadConstPool(
3110             *AllocMBB, MBBI, DL, ScratchReg1, 0,
3111             alignToARMConstant(ARMFI->getArgumentStackSize()));
3112       }
3113     }
3114   } else {
3115     if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) {
3116       BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
3117           .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
3118           .add(predOps(ARMCC::AL))
3119           .add(condCodeOp());
3120     } else {
3121       auto MBBI = AllocMBB->end();
3122       auto RegInfo = STI.getRegisterInfo();
3123       RegInfo->emitLoadConstPool(
3124           *AllocMBB, MBBI, DL, ScratchReg1, 0,
3125           alignToARMConstant(ARMFI->getArgumentStackSize()));
3126     }
3127   }
3128 
3129   // push {lr} - Save return address of this function.
3130   if (Thumb) {
3131     BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
3132         .add(predOps(ARMCC::AL))
3133         .addReg(ARM::LR);
3134   } else {
3135     BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
3136         .addReg(ARM::SP, RegState::Define)
3137         .addReg(ARM::SP)
3138         .add(predOps(ARMCC::AL))
3139         .addReg(ARM::LR);
3140   }
3141 
3142   // Emit the DWARF info about the change in stack as well as where to find the
3143   // previous link register
3144   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3145     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12));
3146     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3147         .addCFIIndex(CFIIndex);
3148     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3149         nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
3150     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3151         .addCFIIndex(CFIIndex);
3152   }
3153 
3154   // Call __morestack().
3155   if (Thumb) {
3156     BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
3157         .add(predOps(ARMCC::AL))
3158         .addExternalSymbol("__morestack");
3159   } else {
3160     BuildMI(AllocMBB, DL, TII.get(ARM::BL))
3161         .addExternalSymbol("__morestack");
3162   }
3163 
3164   // pop {lr} - Restore return address of this original function.
3165   if (Thumb) {
3166     if (ST->isThumb1Only()) {
3167       BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
3168           .add(predOps(ARMCC::AL))
3169           .addReg(ScratchReg0);
3170       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
3171           .addReg(ScratchReg0)
3172           .add(predOps(ARMCC::AL));
3173     } else {
3174       BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
3175           .addReg(ARM::LR, RegState::Define)
3176           .addReg(ARM::SP, RegState::Define)
3177           .addReg(ARM::SP)
3178           .addImm(4)
3179           .add(predOps(ARMCC::AL));
3180     }
3181   } else {
3182     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
3183         .addReg(ARM::SP, RegState::Define)
3184         .addReg(ARM::SP)
3185         .add(predOps(ARMCC::AL))
3186         .addReg(ARM::LR);
3187   }
3188 
3189   // Restore SR0 and SR1 in case of __morestack() was called.
3190   // __morestack() will skip PostStackMBB block so we need to restore
3191   // scratch registers from here.
3192   // pop {SR0, SR1}
3193   if (Thumb) {
3194     BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
3195         .add(predOps(ARMCC::AL))
3196         .addReg(ScratchReg0)
3197         .addReg(ScratchReg1);
3198   } else {
3199     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
3200         .addReg(ARM::SP, RegState::Define)
3201         .addReg(ARM::SP)
3202         .add(predOps(ARMCC::AL))
3203         .addReg(ScratchReg0)
3204         .addReg(ScratchReg1);
3205   }
3206 
3207   // Update the CFA offset now that we've popped
3208   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3209     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
3210     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3211         .addCFIIndex(CFIIndex);
3212   }
3213 
3214   // Return from this function.
3215   BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
3216 
3217   // Restore SR0 and SR1 in case of __morestack() was not called.
3218   // pop {SR0, SR1}
3219   if (Thumb) {
3220     BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
3221         .add(predOps(ARMCC::AL))
3222         .addReg(ScratchReg0)
3223         .addReg(ScratchReg1);
3224   } else {
3225     BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
3226         .addReg(ARM::SP, RegState::Define)
3227         .addReg(ARM::SP)
3228         .add(predOps(ARMCC::AL))
3229         .addReg(ScratchReg0)
3230         .addReg(ScratchReg1);
3231   }
3232 
3233   // Update the CFA offset now that we've popped
3234   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3235     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
3236     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3237         .addCFIIndex(CFIIndex);
3238 
3239     // Tell debuggers that r4 and r5 are now the same as they were in the
3240     // previous function, that they're the "Same Value".
3241     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
3242         nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
3243     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3244         .addCFIIndex(CFIIndex);
3245     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
3246         nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
3247     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3248         .addCFIIndex(CFIIndex);
3249   }
3250 
3251   // Organizing MBB lists
3252   PostStackMBB->addSuccessor(&PrologueMBB);
3253 
3254   AllocMBB->addSuccessor(PostStackMBB);
3255 
3256   GetMBB->addSuccessor(PostStackMBB);
3257   GetMBB->addSuccessor(AllocMBB);
3258 
3259   McrMBB->addSuccessor(GetMBB);
3260 
3261   PrevStackMBB->addSuccessor(McrMBB);
3262 
3263 #ifdef EXPENSIVE_CHECKS
3264   MF.verify();
3265 #endif
3266 }
3267