1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the ARM implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ARMFrameLowering.h" 14 #include "ARMBaseInstrInfo.h" 15 #include "ARMBaseRegisterInfo.h" 16 #include "ARMConstantPoolValue.h" 17 #include "ARMMachineFunctionInfo.h" 18 #include "ARMSubtarget.h" 19 #include "MCTargetDesc/ARMAddressingModes.h" 20 #include "MCTargetDesc/ARMBaseInfo.h" 21 #include "Utils/ARMBaseInfo.h" 22 #include "llvm/ADT/BitVector.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/RegisterScavenging.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetOpcodes.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/CallingConv.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/MC/MCContext.h" 46 #include "llvm/MC/MCDwarf.h" 47 #include "llvm/MC/MCInstrDesc.h" 48 #include "llvm/MC/MCRegisterInfo.h" 49 #include "llvm/Support/CodeGen.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Target/TargetMachine.h" 57 #include "llvm/Target/TargetOptions.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstddef> 61 #include <cstdint> 62 #include <iterator> 63 #include <utility> 64 #include <vector> 65 66 #define DEBUG_TYPE "arm-frame-lowering" 67 68 using namespace llvm; 69 70 static cl::opt<bool> 71 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 72 cl::desc("Align ARM NEON spills in prolog and epilog")); 73 74 static MachineBasicBlock::iterator 75 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 76 unsigned NumAlignedDPRCS2Regs); 77 78 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 79 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, 4), 80 STI(sti) {} 81 82 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const { 83 // iOS always has a FP for backtracking, force other targets to keep their FP 84 // when doing FastISel. The emitted code is currently superior, and in cases 85 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 86 return MF.getSubtarget<ARMSubtarget>().useFastISel(); 87 } 88 89 /// Returns true if the target can safely skip saving callee-saved registers 90 /// for noreturn nounwind functions. 91 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const { 92 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) && 93 MF.getFunction().hasFnAttribute(Attribute::NoUnwind) && 94 !MF.getFunction().hasFnAttribute(Attribute::UWTable)); 95 96 // Frame pointer and link register are not treated as normal CSR, thus we 97 // can always skip CSR saves for nonreturning functions. 98 return true; 99 } 100 101 /// hasFP - Return true if the specified function should have a dedicated frame 102 /// pointer register. This is true if the function has variable sized allocas 103 /// or if frame pointer elimination is disabled. 104 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { 105 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 106 const MachineFrameInfo &MFI = MF.getFrameInfo(); 107 108 // ABI-required frame pointer. 109 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 110 return true; 111 112 // Frame pointer required for use within this function. 113 return (RegInfo->needsStackRealignment(MF) || 114 MFI.hasVarSizedObjects() || 115 MFI.isFrameAddressTaken()); 116 } 117 118 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 119 /// not required, we reserve argument space for call sites in the function 120 /// immediately on entry to the current function. This eliminates the need for 121 /// add/sub sp brackets around call sites. Returns true if the call frame is 122 /// included as part of the stack frame. 123 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 124 const MachineFrameInfo &MFI = MF.getFrameInfo(); 125 unsigned CFSize = MFI.getMaxCallFrameSize(); 126 // It's not always a good idea to include the call frame as part of the 127 // stack frame. ARM (especially Thumb) has small immediate offset to 128 // address the stack frame. So a large call frame can cause poor codegen 129 // and may even makes it impossible to scavenge a register. 130 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 131 return false; 132 133 return !MFI.hasVarSizedObjects(); 134 } 135 136 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 137 /// call frame pseudos can be simplified. Unlike most targets, having a FP 138 /// is not sufficient here since we still may reference some objects via SP 139 /// even when FP is available in Thumb2 mode. 140 bool 141 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 142 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 143 } 144 145 static bool isCSRestore(MachineInstr &MI, const ARMBaseInstrInfo &TII, 146 const MCPhysReg *CSRegs) { 147 // Integer spill area is handled with "pop". 148 if (isPopOpcode(MI.getOpcode())) { 149 // The first two operands are predicates. The last two are 150 // imp-def and imp-use of SP. Check everything in between. 151 for (int i = 5, e = MI.getNumOperands(); i != e; ++i) 152 if (!isCalleeSavedRegister(MI.getOperand(i).getReg(), CSRegs)) 153 return false; 154 return true; 155 } 156 if ((MI.getOpcode() == ARM::LDR_POST_IMM || 157 MI.getOpcode() == ARM::LDR_POST_REG || 158 MI.getOpcode() == ARM::t2LDR_POST) && 159 isCalleeSavedRegister(MI.getOperand(0).getReg(), CSRegs) && 160 MI.getOperand(1).getReg() == ARM::SP) 161 return true; 162 163 return false; 164 } 165 166 static void emitRegPlusImmediate( 167 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 168 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 169 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 170 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 171 if (isARM) 172 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 173 Pred, PredReg, TII, MIFlags); 174 else 175 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 176 Pred, PredReg, TII, MIFlags); 177 } 178 179 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 180 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 181 const ARMBaseInstrInfo &TII, int NumBytes, 182 unsigned MIFlags = MachineInstr::NoFlags, 183 ARMCC::CondCodes Pred = ARMCC::AL, 184 unsigned PredReg = 0) { 185 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 186 MIFlags, Pred, PredReg); 187 } 188 189 static int sizeOfSPAdjustment(const MachineInstr &MI) { 190 int RegSize; 191 switch (MI.getOpcode()) { 192 case ARM::VSTMDDB_UPD: 193 RegSize = 8; 194 break; 195 case ARM::STMDB_UPD: 196 case ARM::t2STMDB_UPD: 197 RegSize = 4; 198 break; 199 case ARM::t2STR_PRE: 200 case ARM::STR_PRE_IMM: 201 return 4; 202 default: 203 llvm_unreachable("Unknown push or pop like instruction"); 204 } 205 206 int count = 0; 207 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 208 // pred) so the list starts at 4. 209 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 210 count += RegSize; 211 return count; 212 } 213 214 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 215 size_t StackSizeInBytes) { 216 const MachineFrameInfo &MFI = MF.getFrameInfo(); 217 const Function &F = MF.getFunction(); 218 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 219 if (F.hasFnAttribute("stack-probe-size")) 220 F.getFnAttribute("stack-probe-size") 221 .getValueAsString() 222 .getAsInteger(0, StackProbeSize); 223 return (StackSizeInBytes >= StackProbeSize) && 224 !F.hasFnAttribute("no-stack-arg-probe"); 225 } 226 227 namespace { 228 229 struct StackAdjustingInsts { 230 struct InstInfo { 231 MachineBasicBlock::iterator I; 232 unsigned SPAdjust; 233 bool BeforeFPSet; 234 }; 235 236 SmallVector<InstInfo, 4> Insts; 237 238 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 239 bool BeforeFPSet = false) { 240 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 241 Insts.push_back(Info); 242 } 243 244 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 245 auto Info = 246 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 247 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 248 Info->SPAdjust += ExtraBytes; 249 } 250 251 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 252 const ARMBaseInstrInfo &TII, bool HasFP) { 253 MachineFunction &MF = *MBB.getParent(); 254 unsigned CFAOffset = 0; 255 for (auto &Info : Insts) { 256 if (HasFP && !Info.BeforeFPSet) 257 return; 258 259 CFAOffset -= Info.SPAdjust; 260 unsigned CFIIndex = MF.addFrameInst( 261 MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset)); 262 BuildMI(MBB, std::next(Info.I), dl, 263 TII.get(TargetOpcode::CFI_INSTRUCTION)) 264 .addCFIIndex(CFIIndex) 265 .setMIFlags(MachineInstr::FrameSetup); 266 } 267 } 268 }; 269 270 } // end anonymous namespace 271 272 /// Emit an instruction sequence that will align the address in 273 /// register Reg by zero-ing out the lower bits. For versions of the 274 /// architecture that support Neon, this must be done in a single 275 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 276 /// single instruction. That function only gets called when optimizing 277 /// spilling of D registers on a core with the Neon instruction set 278 /// present. 279 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 280 const TargetInstrInfo &TII, 281 MachineBasicBlock &MBB, 282 MachineBasicBlock::iterator MBBI, 283 const DebugLoc &DL, const unsigned Reg, 284 const unsigned Alignment, 285 const bool MustBeSingleInstruction) { 286 const ARMSubtarget &AST = 287 static_cast<const ARMSubtarget &>(MF.getSubtarget()); 288 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 289 const unsigned AlignMask = Alignment - 1; 290 const unsigned NrBitsToZero = countTrailingZeros(Alignment); 291 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 292 if (!AFI->isThumbFunction()) { 293 // if the BFC instruction is available, use that to zero the lower 294 // bits: 295 // bfc Reg, #0, log2(Alignment) 296 // otherwise use BIC, if the mask to zero the required number of bits 297 // can be encoded in the bic immediate field 298 // bic Reg, Reg, Alignment-1 299 // otherwise, emit 300 // lsr Reg, Reg, log2(Alignment) 301 // lsl Reg, Reg, log2(Alignment) 302 if (CanUseBFC) { 303 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 304 .addReg(Reg, RegState::Kill) 305 .addImm(~AlignMask) 306 .add(predOps(ARMCC::AL)); 307 } else if (AlignMask <= 255) { 308 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 309 .addReg(Reg, RegState::Kill) 310 .addImm(AlignMask) 311 .add(predOps(ARMCC::AL)) 312 .add(condCodeOp()); 313 } else { 314 assert(!MustBeSingleInstruction && 315 "Shouldn't call emitAligningInstructions demanding a single " 316 "instruction to be emitted for large stack alignment for a target " 317 "without BFC."); 318 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 319 .addReg(Reg, RegState::Kill) 320 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 321 .add(predOps(ARMCC::AL)) 322 .add(condCodeOp()); 323 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 324 .addReg(Reg, RegState::Kill) 325 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 326 .add(predOps(ARMCC::AL)) 327 .add(condCodeOp()); 328 } 329 } else { 330 // Since this is only reached for Thumb-2 targets, the BFC instruction 331 // should always be available. 332 assert(CanUseBFC); 333 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 334 .addReg(Reg, RegState::Kill) 335 .addImm(~AlignMask) 336 .add(predOps(ARMCC::AL)); 337 } 338 } 339 340 /// We need the offset of the frame pointer relative to other MachineFrameInfo 341 /// offsets which are encoded relative to SP at function begin. 342 /// See also emitPrologue() for how the FP is set up. 343 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet 344 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use 345 /// this to produce a conservative estimate that we check in an assert() later. 346 static int getMaxFPOffset(const Function &F, const ARMFunctionInfo &AFI) { 347 // This is a conservative estimation: Assume the frame pointer being r7 and 348 // pc("r15") up to r8 getting spilled before (= 8 registers). 349 return -AFI.getArgRegsSaveSize() - (8 * 4); 350 } 351 352 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 353 MachineBasicBlock &MBB) const { 354 MachineBasicBlock::iterator MBBI = MBB.begin(); 355 MachineFrameInfo &MFI = MF.getFrameInfo(); 356 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 357 MachineModuleInfo &MMI = MF.getMMI(); 358 MCContext &Context = MMI.getContext(); 359 const TargetMachine &TM = MF.getTarget(); 360 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 361 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 362 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 363 assert(!AFI->isThumb1OnlyFunction() && 364 "This emitPrologue does not support Thumb1!"); 365 bool isARM = !AFI->isThumbFunction(); 366 unsigned Align = STI.getFrameLowering()->getStackAlignment(); 367 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 368 unsigned NumBytes = MFI.getStackSize(); 369 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 370 371 // Debug location must be unknown since the first debug location is used 372 // to determine the end of the prologue. 373 DebugLoc dl; 374 375 unsigned FramePtr = RegInfo->getFrameRegister(MF); 376 377 // Determine the sizes of each callee-save spill areas and record which frame 378 // belongs to which callee-save spill areas. 379 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 380 int FramePtrSpillFI = 0; 381 int D8SpillFI = 0; 382 383 // All calls are tail calls in GHC calling conv, and functions have no 384 // prologue/epilogue. 385 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 386 return; 387 388 StackAdjustingInsts DefCFAOffsetCandidates; 389 bool HasFP = hasFP(MF); 390 391 // Allocate the vararg register save area. 392 if (ArgRegsSaveSize) { 393 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 394 MachineInstr::FrameSetup); 395 DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true); 396 } 397 398 if (!AFI->hasStackFrame() && 399 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 400 if (NumBytes - ArgRegsSaveSize != 0) { 401 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize), 402 MachineInstr::FrameSetup); 403 DefCFAOffsetCandidates.addInst(std::prev(MBBI), 404 NumBytes - ArgRegsSaveSize, true); 405 } 406 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 407 return; 408 } 409 410 // Determine spill area sizes. 411 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 412 unsigned Reg = CSI[i].getReg(); 413 int FI = CSI[i].getFrameIdx(); 414 switch (Reg) { 415 case ARM::R8: 416 case ARM::R9: 417 case ARM::R10: 418 case ARM::R11: 419 case ARM::R12: 420 if (STI.splitFramePushPop(MF)) { 421 GPRCS2Size += 4; 422 break; 423 } 424 LLVM_FALLTHROUGH; 425 case ARM::R0: 426 case ARM::R1: 427 case ARM::R2: 428 case ARM::R3: 429 case ARM::R4: 430 case ARM::R5: 431 case ARM::R6: 432 case ARM::R7: 433 case ARM::LR: 434 if (Reg == FramePtr) 435 FramePtrSpillFI = FI; 436 GPRCS1Size += 4; 437 break; 438 default: 439 // This is a DPR. Exclude the aligned DPRCS2 spills. 440 if (Reg == ARM::D8) 441 D8SpillFI = FI; 442 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) 443 DPRCSSize += 8; 444 } 445 } 446 447 // Move past area 1. 448 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 449 if (GPRCS1Size > 0) { 450 GPRCS1Push = LastPush = MBBI++; 451 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); 452 } 453 454 // Determine starting offsets of spill areas. 455 unsigned GPRCS1Offset = NumBytes - ArgRegsSaveSize - GPRCS1Size; 456 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 457 unsigned DPRAlign = DPRCSSize ? std::min(8U, Align) : 4U; 458 unsigned DPRGapSize = (GPRCS1Size + GPRCS2Size + ArgRegsSaveSize) % DPRAlign; 459 unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 460 int FramePtrOffsetInPush = 0; 461 if (HasFP) { 462 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); 463 assert(getMaxFPOffset(MF.getFunction(), *AFI) <= FPOffset && 464 "Max FP estimation is wrong"); 465 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize; 466 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 467 NumBytes); 468 } 469 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 470 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 471 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 472 473 // Move past area 2. 474 if (GPRCS2Size > 0) { 475 GPRCS2Push = LastPush = MBBI++; 476 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 477 } 478 479 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 480 // .cfi_offset operations will reflect that. 481 if (DPRGapSize) { 482 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 483 if (LastPush != MBB.end() && 484 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 485 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 486 else { 487 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 488 MachineInstr::FrameSetup); 489 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); 490 } 491 } 492 493 // Move past area 3. 494 if (DPRCSSize > 0) { 495 // Since vpush register list cannot have gaps, there may be multiple vpush 496 // instructions in the prologue. 497 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 498 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); 499 LastPush = MBBI++; 500 } 501 } 502 503 // Move past the aligned DPRCS2 area. 504 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 505 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 506 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 507 // leaves the stack pointer pointing to the DPRCS2 area. 508 // 509 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 510 NumBytes += MFI.getObjectOffset(D8SpillFI); 511 } else 512 NumBytes = DPRCSOffset; 513 514 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 515 uint32_t NumWords = NumBytes >> 2; 516 517 if (NumWords < 65536) 518 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 519 .addImm(NumWords) 520 .setMIFlags(MachineInstr::FrameSetup) 521 .add(predOps(ARMCC::AL)); 522 else 523 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4) 524 .addImm(NumWords) 525 .setMIFlags(MachineInstr::FrameSetup); 526 527 switch (TM.getCodeModel()) { 528 case CodeModel::Tiny: 529 llvm_unreachable("Tiny code model not available on ARM."); 530 case CodeModel::Small: 531 case CodeModel::Medium: 532 case CodeModel::Kernel: 533 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 534 .add(predOps(ARMCC::AL)) 535 .addExternalSymbol("__chkstk") 536 .addReg(ARM::R4, RegState::Implicit) 537 .setMIFlags(MachineInstr::FrameSetup); 538 break; 539 case CodeModel::Large: 540 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 541 .addExternalSymbol("__chkstk") 542 .setMIFlags(MachineInstr::FrameSetup); 543 544 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 545 .add(predOps(ARMCC::AL)) 546 .addReg(ARM::R12, RegState::Kill) 547 .addReg(ARM::R4, RegState::Implicit) 548 .setMIFlags(MachineInstr::FrameSetup); 549 break; 550 } 551 552 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 553 .addReg(ARM::SP, RegState::Kill) 554 .addReg(ARM::R4, RegState::Kill) 555 .setMIFlags(MachineInstr::FrameSetup) 556 .add(predOps(ARMCC::AL)) 557 .add(condCodeOp()); 558 NumBytes = 0; 559 } 560 561 if (NumBytes) { 562 // Adjust SP after all the callee-save spills. 563 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 564 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 565 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 566 else { 567 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 568 MachineInstr::FrameSetup); 569 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 570 } 571 572 if (HasFP && isARM) 573 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 574 // Note it's not safe to do this in Thumb2 mode because it would have 575 // taken two instructions: 576 // mov sp, r7 577 // sub sp, #24 578 // If an interrupt is taken between the two instructions, then sp is in 579 // an inconsistent state (pointing to the middle of callee-saved area). 580 // The interrupt handler can end up clobbering the registers. 581 AFI->setShouldRestoreSPFromFP(true); 582 } 583 584 // Set FP to point to the stack slot that contains the previous FP. 585 // For iOS, FP is R7, which has now been stored in spill area 1. 586 // Otherwise, if this is not iOS, all the callee-saved registers go 587 // into spill area 1, including the FP in R11. In either case, it 588 // is in area one and the adjustment needs to take place just after 589 // that push. 590 if (HasFP) { 591 MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push); 592 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); 593 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, 594 dl, TII, FramePtr, ARM::SP, 595 PushSize + FramePtrOffsetInPush, 596 MachineInstr::FrameSetup); 597 if (FramePtrOffsetInPush + PushSize != 0) { 598 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa( 599 nullptr, MRI->getDwarfRegNum(FramePtr, true), 600 -(ArgRegsSaveSize - FramePtrOffsetInPush))); 601 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 602 .addCFIIndex(CFIIndex) 603 .setMIFlags(MachineInstr::FrameSetup); 604 } else { 605 unsigned CFIIndex = 606 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 607 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 608 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 609 .addCFIIndex(CFIIndex) 610 .setMIFlags(MachineInstr::FrameSetup); 611 } 612 } 613 614 // Now that the prologue's actual instructions are finalised, we can insert 615 // the necessary DWARF cf instructions to describe the situation. Start by 616 // recording where each register ended up: 617 if (GPRCS1Size > 0) { 618 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push); 619 int CFIIndex; 620 for (const auto &Entry : CSI) { 621 unsigned Reg = Entry.getReg(); 622 int FI = Entry.getFrameIdx(); 623 switch (Reg) { 624 case ARM::R8: 625 case ARM::R9: 626 case ARM::R10: 627 case ARM::R11: 628 case ARM::R12: 629 if (STI.splitFramePushPop(MF)) 630 break; 631 LLVM_FALLTHROUGH; 632 case ARM::R0: 633 case ARM::R1: 634 case ARM::R2: 635 case ARM::R3: 636 case ARM::R4: 637 case ARM::R5: 638 case ARM::R6: 639 case ARM::R7: 640 case ARM::LR: 641 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 642 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI))); 643 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 644 .addCFIIndex(CFIIndex) 645 .setMIFlags(MachineInstr::FrameSetup); 646 break; 647 } 648 } 649 } 650 651 if (GPRCS2Size > 0) { 652 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push); 653 for (const auto &Entry : CSI) { 654 unsigned Reg = Entry.getReg(); 655 int FI = Entry.getFrameIdx(); 656 switch (Reg) { 657 case ARM::R8: 658 case ARM::R9: 659 case ARM::R10: 660 case ARM::R11: 661 case ARM::R12: 662 if (STI.splitFramePushPop(MF)) { 663 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 664 unsigned Offset = MFI.getObjectOffset(FI); 665 unsigned CFIIndex = MF.addFrameInst( 666 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 667 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 668 .addCFIIndex(CFIIndex) 669 .setMIFlags(MachineInstr::FrameSetup); 670 } 671 break; 672 } 673 } 674 } 675 676 if (DPRCSSize > 0) { 677 // Since vpush register list cannot have gaps, there may be multiple vpush 678 // instructions in the prologue. 679 MachineBasicBlock::iterator Pos = std::next(LastPush); 680 for (const auto &Entry : CSI) { 681 unsigned Reg = Entry.getReg(); 682 int FI = Entry.getFrameIdx(); 683 if ((Reg >= ARM::D0 && Reg <= ARM::D31) && 684 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) { 685 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 686 unsigned Offset = MFI.getObjectOffset(FI); 687 unsigned CFIIndex = MF.addFrameInst( 688 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 689 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 690 .addCFIIndex(CFIIndex) 691 .setMIFlags(MachineInstr::FrameSetup); 692 } 693 } 694 } 695 696 // Now we can emit descriptions of where the canonical frame address was 697 // throughout the process. If we have a frame pointer, it takes over the job 698 // half-way through, so only the first few .cfi_def_cfa_offset instructions 699 // actually get emitted. 700 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 701 702 if (STI.isTargetELF() && hasFP(MF)) 703 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 704 AFI->getFramePtrSpillOffset()); 705 706 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 707 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 708 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 709 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 710 711 // If we need dynamic stack realignment, do it here. Be paranoid and make 712 // sure if we also have VLAs, we have a base pointer for frame access. 713 // If aligned NEON registers were spilled, the stack has already been 714 // realigned. 715 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) { 716 unsigned MaxAlign = MFI.getMaxAlignment(); 717 assert(!AFI->isThumb1OnlyFunction()); 718 if (!AFI->isThumbFunction()) { 719 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 720 false); 721 } else { 722 // We cannot use sp as source/dest register here, thus we're using r4 to 723 // perform the calculations. We're emitting the following sequence: 724 // mov r4, sp 725 // -- use emitAligningInstructions to produce best sequence to zero 726 // -- out lower bits in r4 727 // mov sp, r4 728 // FIXME: It will be better just to find spare register here. 729 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 730 .addReg(ARM::SP, RegState::Kill) 731 .add(predOps(ARMCC::AL)); 732 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 733 false); 734 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 735 .addReg(ARM::R4, RegState::Kill) 736 .add(predOps(ARMCC::AL)); 737 } 738 739 AFI->setShouldRestoreSPFromFP(true); 740 } 741 742 // If we need a base pointer, set it up here. It's whatever the value 743 // of the stack pointer is at this point. Any variable size objects 744 // will be allocated after this, so we can still use the base pointer 745 // to reference locals. 746 // FIXME: Clarify FrameSetup flags here. 747 if (RegInfo->hasBasePointer(MF)) { 748 if (isARM) 749 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 750 .addReg(ARM::SP) 751 .add(predOps(ARMCC::AL)) 752 .add(condCodeOp()); 753 else 754 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 755 .addReg(ARM::SP) 756 .add(predOps(ARMCC::AL)); 757 } 758 759 // If the frame has variable sized objects then the epilogue must restore 760 // the sp from fp. We can assume there's an FP here since hasFP already 761 // checks for hasVarSizedObjects. 762 if (MFI.hasVarSizedObjects()) 763 AFI->setShouldRestoreSPFromFP(true); 764 } 765 766 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 767 MachineBasicBlock &MBB) const { 768 MachineFrameInfo &MFI = MF.getFrameInfo(); 769 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 770 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 771 const ARMBaseInstrInfo &TII = 772 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 773 assert(!AFI->isThumb1OnlyFunction() && 774 "This emitEpilogue does not support Thumb1!"); 775 bool isARM = !AFI->isThumbFunction(); 776 777 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 778 int NumBytes = (int)MFI.getStackSize(); 779 unsigned FramePtr = RegInfo->getFrameRegister(MF); 780 781 // All calls are tail calls in GHC calling conv, and functions have no 782 // prologue/epilogue. 783 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 784 return; 785 786 // First put ourselves on the first (from top) terminator instructions. 787 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 788 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 789 790 if (!AFI->hasStackFrame()) { 791 if (NumBytes - ArgRegsSaveSize != 0) 792 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize); 793 } else { 794 // Unwind MBBI to point to first LDR / VLDRD. 795 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 796 if (MBBI != MBB.begin()) { 797 do { 798 --MBBI; 799 } while (MBBI != MBB.begin() && isCSRestore(*MBBI, TII, CSRegs)); 800 if (!isCSRestore(*MBBI, TII, CSRegs)) 801 ++MBBI; 802 } 803 804 // Move SP to start of FP callee save spill area. 805 NumBytes -= (ArgRegsSaveSize + 806 AFI->getGPRCalleeSavedArea1Size() + 807 AFI->getGPRCalleeSavedArea2Size() + 808 AFI->getDPRCalleeSavedGapSize() + 809 AFI->getDPRCalleeSavedAreaSize()); 810 811 // Reset SP based on frame pointer only if the stack frame extends beyond 812 // frame pointer stack slot or target is ELF and the function has FP. 813 if (AFI->shouldRestoreSPFromFP()) { 814 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 815 if (NumBytes) { 816 if (isARM) 817 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 818 ARMCC::AL, 0, TII); 819 else { 820 // It's not possible to restore SP from FP in a single instruction. 821 // For iOS, this looks like: 822 // mov sp, r7 823 // sub sp, #24 824 // This is bad, if an interrupt is taken after the mov, sp is in an 825 // inconsistent state. 826 // Use the first callee-saved register as a scratch register. 827 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 828 "No scratch register to restore SP from FP!"); 829 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 830 ARMCC::AL, 0, TII); 831 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 832 .addReg(ARM::R4) 833 .add(predOps(ARMCC::AL)); 834 } 835 } else { 836 // Thumb2 or ARM. 837 if (isARM) 838 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 839 .addReg(FramePtr) 840 .add(predOps(ARMCC::AL)) 841 .add(condCodeOp()); 842 else 843 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 844 .addReg(FramePtr) 845 .add(predOps(ARMCC::AL)); 846 } 847 } else if (NumBytes && 848 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 849 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes); 850 851 // Increment past our save areas. 852 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { 853 MBBI++; 854 // Since vpop register list cannot have gaps, there may be multiple vpop 855 // instructions in the epilogue. 856 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 857 MBBI++; 858 } 859 if (AFI->getDPRCalleeSavedGapSize()) { 860 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 861 "unexpected DPR alignment gap"); 862 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize()); 863 } 864 865 if (AFI->getGPRCalleeSavedArea2Size()) MBBI++; 866 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 867 } 868 869 if (ArgRegsSaveSize) 870 emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize); 871 } 872 873 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 874 /// debug info. It's the same as what we use for resolving the code-gen 875 /// references for now. FIXME: This can go wrong when references are 876 /// SP-relative and simple call frames aren't used. 877 int 878 ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 879 unsigned &FrameReg) const { 880 return ResolveFrameIndexReference(MF, FI, FrameReg, 0); 881 } 882 883 int 884 ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 885 int FI, unsigned &FrameReg, 886 int SPAdj) const { 887 const MachineFrameInfo &MFI = MF.getFrameInfo(); 888 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 889 MF.getSubtarget().getRegisterInfo()); 890 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 891 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 892 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 893 bool isFixed = MFI.isFixedObjectIndex(FI); 894 895 FrameReg = ARM::SP; 896 Offset += SPAdj; 897 898 // SP can move around if there are allocas. We may also lose track of SP 899 // when emergency spilling inside a non-reserved call frame setup. 900 bool hasMovingSP = !hasReservedCallFrame(MF); 901 902 // When dynamically realigning the stack, use the frame pointer for 903 // parameters, and the stack/base pointer for locals. 904 if (RegInfo->needsStackRealignment(MF)) { 905 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 906 if (isFixed) { 907 FrameReg = RegInfo->getFrameRegister(MF); 908 Offset = FPOffset; 909 } else if (hasMovingSP) { 910 assert(RegInfo->hasBasePointer(MF) && 911 "VLAs and dynamic stack alignment, but missing base pointer!"); 912 FrameReg = RegInfo->getBaseRegister(); 913 Offset -= SPAdj; 914 } 915 return Offset; 916 } 917 918 // If there is a frame pointer, use it when we can. 919 if (hasFP(MF) && AFI->hasStackFrame()) { 920 // Use frame pointer to reference fixed objects. Use it for locals if 921 // there are VLAs (and thus the SP isn't reliable as a base). 922 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 923 FrameReg = RegInfo->getFrameRegister(MF); 924 return FPOffset; 925 } else if (hasMovingSP) { 926 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 927 if (AFI->isThumb2Function()) { 928 // Try to use the frame pointer if we can, else use the base pointer 929 // since it's available. This is handy for the emergency spill slot, in 930 // particular. 931 if (FPOffset >= -255 && FPOffset < 0) { 932 FrameReg = RegInfo->getFrameRegister(MF); 933 return FPOffset; 934 } 935 } 936 } else if (AFI->isThumbFunction()) { 937 // Prefer SP to base pointer, if the offset is suitably aligned and in 938 // range as the effective range of the immediate offset is bigger when 939 // basing off SP. 940 // Use add <rd>, sp, #<imm8> 941 // ldr <rd>, [sp, #<imm8>] 942 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 943 return Offset; 944 // In Thumb2 mode, the negative offset is very limited. Try to avoid 945 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 946 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) { 947 FrameReg = RegInfo->getFrameRegister(MF); 948 return FPOffset; 949 } 950 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 951 // Otherwise, use SP or FP, whichever is closer to the stack slot. 952 FrameReg = RegInfo->getFrameRegister(MF); 953 return FPOffset; 954 } 955 } 956 // Use the base pointer if we have one. 957 if (RegInfo->hasBasePointer(MF)) 958 FrameReg = RegInfo->getBaseRegister(); 959 return Offset; 960 } 961 962 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 963 MachineBasicBlock::iterator MI, 964 const std::vector<CalleeSavedInfo> &CSI, 965 unsigned StmOpc, unsigned StrOpc, 966 bool NoGap, 967 bool(*Func)(unsigned, bool), 968 unsigned NumAlignedDPRCS2Regs, 969 unsigned MIFlags) const { 970 MachineFunction &MF = *MBB.getParent(); 971 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 972 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 973 974 DebugLoc DL; 975 976 using RegAndKill = std::pair<unsigned, bool>; 977 978 SmallVector<RegAndKill, 4> Regs; 979 unsigned i = CSI.size(); 980 while (i != 0) { 981 unsigned LastReg = 0; 982 for (; i != 0; --i) { 983 unsigned Reg = CSI[i-1].getReg(); 984 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 985 986 // D-registers in the aligned area DPRCS2 are NOT spilled here. 987 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 988 continue; 989 990 const MachineRegisterInfo &MRI = MF.getRegInfo(); 991 bool isLiveIn = MRI.isLiveIn(Reg); 992 if (!isLiveIn && !MRI.isReserved(Reg)) 993 MBB.addLiveIn(Reg); 994 // If NoGap is true, push consecutive registers and then leave the rest 995 // for other instructions. e.g. 996 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 997 if (NoGap && LastReg && LastReg != Reg-1) 998 break; 999 LastReg = Reg; 1000 // Do not set a kill flag on values that are also marked as live-in. This 1001 // happens with the @llvm-returnaddress intrinsic and with arguments 1002 // passed in callee saved registers. 1003 // Omitting the kill flags is conservatively correct even if the live-in 1004 // is not used after all. 1005 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 1006 } 1007 1008 if (Regs.empty()) 1009 continue; 1010 1011 llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) { 1012 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 1013 }); 1014 1015 if (Regs.size() > 1 || StrOpc== 0) { 1016 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 1017 .addReg(ARM::SP) 1018 .setMIFlags(MIFlags) 1019 .add(predOps(ARMCC::AL)); 1020 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1021 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 1022 } else if (Regs.size() == 1) { 1023 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 1024 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 1025 .addReg(ARM::SP) 1026 .setMIFlags(MIFlags) 1027 .addImm(-4) 1028 .add(predOps(ARMCC::AL)); 1029 } 1030 Regs.clear(); 1031 1032 // Put any subsequent vpush instructions before this one: they will refer to 1033 // higher register numbers so need to be pushed first in order to preserve 1034 // monotonicity. 1035 if (MI != MBB.begin()) 1036 --MI; 1037 } 1038 } 1039 1040 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1041 MachineBasicBlock::iterator MI, 1042 std::vector<CalleeSavedInfo> &CSI, 1043 unsigned LdmOpc, unsigned LdrOpc, 1044 bool isVarArg, bool NoGap, 1045 bool(*Func)(unsigned, bool), 1046 unsigned NumAlignedDPRCS2Regs) const { 1047 MachineFunction &MF = *MBB.getParent(); 1048 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1049 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1050 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1051 DebugLoc DL; 1052 bool isTailCall = false; 1053 bool isInterrupt = false; 1054 bool isTrap = false; 1055 if (MBB.end() != MI) { 1056 DL = MI->getDebugLoc(); 1057 unsigned RetOpcode = MI->getOpcode(); 1058 isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri); 1059 isInterrupt = 1060 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1061 isTrap = 1062 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1063 RetOpcode == ARM::tTRAP; 1064 } 1065 1066 SmallVector<unsigned, 4> Regs; 1067 unsigned i = CSI.size(); 1068 while (i != 0) { 1069 unsigned LastReg = 0; 1070 bool DeleteRet = false; 1071 for (; i != 0; --i) { 1072 CalleeSavedInfo &Info = CSI[i-1]; 1073 unsigned Reg = Info.getReg(); 1074 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1075 1076 // The aligned reloads from area DPRCS2 are not inserted here. 1077 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1078 continue; 1079 1080 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1081 !isTrap && STI.hasV5TOps()) { 1082 if (MBB.succ_empty()) { 1083 Reg = ARM::PC; 1084 // Fold the return instruction into the LDM. 1085 DeleteRet = true; 1086 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1087 // We 'restore' LR into PC so it is not live out of the return block: 1088 // Clear Restored bit. 1089 Info.setRestored(false); 1090 } else 1091 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1092 } 1093 1094 // If NoGap is true, pop consecutive registers and then leave the rest 1095 // for other instructions. e.g. 1096 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1097 if (NoGap && LastReg && LastReg != Reg-1) 1098 break; 1099 1100 LastReg = Reg; 1101 Regs.push_back(Reg); 1102 } 1103 1104 if (Regs.empty()) 1105 continue; 1106 1107 llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) { 1108 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1109 }); 1110 1111 if (Regs.size() > 1 || LdrOpc == 0) { 1112 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1113 .addReg(ARM::SP) 1114 .add(predOps(ARMCC::AL)); 1115 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1116 MIB.addReg(Regs[i], getDefRegState(true)); 1117 if (DeleteRet) { 1118 if (MI != MBB.end()) { 1119 MIB.copyImplicitOps(*MI); 1120 MI->eraseFromParent(); 1121 } 1122 } 1123 MI = MIB; 1124 } else if (Regs.size() == 1) { 1125 // If we adjusted the reg to PC from LR above, switch it back here. We 1126 // only do that for LDM. 1127 if (Regs[0] == ARM::PC) 1128 Regs[0] = ARM::LR; 1129 MachineInstrBuilder MIB = 1130 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1131 .addReg(ARM::SP, RegState::Define) 1132 .addReg(ARM::SP); 1133 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1134 // that refactoring is complete (eventually). 1135 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1136 MIB.addReg(0); 1137 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1138 } else 1139 MIB.addImm(4); 1140 MIB.add(predOps(ARMCC::AL)); 1141 } 1142 Regs.clear(); 1143 1144 // Put any subsequent vpop instructions after this one: they will refer to 1145 // higher register numbers so need to be popped afterwards. 1146 if (MI != MBB.end()) 1147 ++MI; 1148 } 1149 } 1150 1151 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1152 /// starting from d8. Also insert stack realignment code and leave the stack 1153 /// pointer pointing to the d8 spill slot. 1154 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1155 MachineBasicBlock::iterator MI, 1156 unsigned NumAlignedDPRCS2Regs, 1157 const std::vector<CalleeSavedInfo> &CSI, 1158 const TargetRegisterInfo *TRI) { 1159 MachineFunction &MF = *MBB.getParent(); 1160 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1161 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1162 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1163 MachineFrameInfo &MFI = MF.getFrameInfo(); 1164 1165 // Mark the D-register spill slots as properly aligned. Since MFI computes 1166 // stack slot layout backwards, this can actually mean that the d-reg stack 1167 // slot offsets can be wrong. The offset for d8 will always be correct. 1168 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 1169 unsigned DNum = CSI[i].getReg() - ARM::D8; 1170 if (DNum > NumAlignedDPRCS2Regs - 1) 1171 continue; 1172 int FI = CSI[i].getFrameIdx(); 1173 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1174 // registers will be 8-byte aligned. 1175 MFI.setObjectAlignment(FI, DNum % 2 ? 8 : 16); 1176 1177 // The stack slot for D8 needs to be maximally aligned because this is 1178 // actually the point where we align the stack pointer. MachineFrameInfo 1179 // computes all offsets relative to the incoming stack pointer which is a 1180 // bit weird when realigning the stack. Any extra padding for this 1181 // over-alignment is not realized because the code inserted below adjusts 1182 // the stack pointer by numregs * 8 before aligning the stack pointer. 1183 if (DNum == 0) 1184 MFI.setObjectAlignment(FI, MFI.getMaxAlignment()); 1185 } 1186 1187 // Move the stack pointer to the d8 spill slot, and align it at the same 1188 // time. Leave the stack slot address in the scratch register r4. 1189 // 1190 // sub r4, sp, #numregs * 8 1191 // bic r4, r4, #align - 1 1192 // mov sp, r4 1193 // 1194 bool isThumb = AFI->isThumbFunction(); 1195 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1196 AFI->setShouldRestoreSPFromFP(true); 1197 1198 // sub r4, sp, #numregs * 8 1199 // The immediate is <= 64, so it doesn't need any special encoding. 1200 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1201 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1202 .addReg(ARM::SP) 1203 .addImm(8 * NumAlignedDPRCS2Regs) 1204 .add(predOps(ARMCC::AL)) 1205 .add(condCodeOp()); 1206 1207 unsigned MaxAlign = MF.getFrameInfo().getMaxAlignment(); 1208 // We must set parameter MustBeSingleInstruction to true, since 1209 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1210 // stack alignment. Luckily, this can always be done since all ARM 1211 // architecture versions that support Neon also support the BFC 1212 // instruction. 1213 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1214 1215 // mov sp, r4 1216 // The stack pointer must be adjusted before spilling anything, otherwise 1217 // the stack slots could be clobbered by an interrupt handler. 1218 // Leave r4 live, it is used below. 1219 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1220 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1221 .addReg(ARM::R4) 1222 .add(predOps(ARMCC::AL)); 1223 if (!isThumb) 1224 MIB.add(condCodeOp()); 1225 1226 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1227 // r4 holds the stack slot address. 1228 unsigned NextReg = ARM::D8; 1229 1230 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1231 // The writeback is only needed when emitting two vst1.64 instructions. 1232 if (NumAlignedDPRCS2Regs >= 6) { 1233 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1234 &ARM::QQPRRegClass); 1235 MBB.addLiveIn(SupReg); 1236 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1237 .addReg(ARM::R4, RegState::Kill) 1238 .addImm(16) 1239 .addReg(NextReg) 1240 .addReg(SupReg, RegState::ImplicitKill) 1241 .add(predOps(ARMCC::AL)); 1242 NextReg += 4; 1243 NumAlignedDPRCS2Regs -= 4; 1244 } 1245 1246 // We won't modify r4 beyond this point. It currently points to the next 1247 // register to be spilled. 1248 unsigned R4BaseReg = NextReg; 1249 1250 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1251 if (NumAlignedDPRCS2Regs >= 4) { 1252 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1253 &ARM::QQPRRegClass); 1254 MBB.addLiveIn(SupReg); 1255 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1256 .addReg(ARM::R4) 1257 .addImm(16) 1258 .addReg(NextReg) 1259 .addReg(SupReg, RegState::ImplicitKill) 1260 .add(predOps(ARMCC::AL)); 1261 NextReg += 4; 1262 NumAlignedDPRCS2Regs -= 4; 1263 } 1264 1265 // 16-byte aligned vst1.64 with 2 d-regs. 1266 if (NumAlignedDPRCS2Regs >= 2) { 1267 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1268 &ARM::QPRRegClass); 1269 MBB.addLiveIn(SupReg); 1270 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1271 .addReg(ARM::R4) 1272 .addImm(16) 1273 .addReg(SupReg) 1274 .add(predOps(ARMCC::AL)); 1275 NextReg += 2; 1276 NumAlignedDPRCS2Regs -= 2; 1277 } 1278 1279 // Finally, use a vanilla vstr.64 for the odd last register. 1280 if (NumAlignedDPRCS2Regs) { 1281 MBB.addLiveIn(NextReg); 1282 // vstr.64 uses addrmode5 which has an offset scale of 4. 1283 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1284 .addReg(NextReg) 1285 .addReg(ARM::R4) 1286 .addImm((NextReg - R4BaseReg) * 2) 1287 .add(predOps(ARMCC::AL)); 1288 } 1289 1290 // The last spill instruction inserted should kill the scratch register r4. 1291 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1292 } 1293 1294 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1295 /// iterator to the following instruction. 1296 static MachineBasicBlock::iterator 1297 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1298 unsigned NumAlignedDPRCS2Regs) { 1299 // sub r4, sp, #numregs * 8 1300 // bic r4, r4, #align - 1 1301 // mov sp, r4 1302 ++MI; ++MI; ++MI; 1303 assert(MI->mayStore() && "Expecting spill instruction"); 1304 1305 // These switches all fall through. 1306 switch(NumAlignedDPRCS2Regs) { 1307 case 7: 1308 ++MI; 1309 assert(MI->mayStore() && "Expecting spill instruction"); 1310 LLVM_FALLTHROUGH; 1311 default: 1312 ++MI; 1313 assert(MI->mayStore() && "Expecting spill instruction"); 1314 LLVM_FALLTHROUGH; 1315 case 1: 1316 case 2: 1317 case 4: 1318 assert(MI->killsRegister(ARM::R4) && "Missed kill flag"); 1319 ++MI; 1320 } 1321 return MI; 1322 } 1323 1324 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1325 /// starting from d8. These instructions are assumed to execute while the 1326 /// stack is still aligned, unlike the code inserted by emitPopInst. 1327 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1328 MachineBasicBlock::iterator MI, 1329 unsigned NumAlignedDPRCS2Regs, 1330 const std::vector<CalleeSavedInfo> &CSI, 1331 const TargetRegisterInfo *TRI) { 1332 MachineFunction &MF = *MBB.getParent(); 1333 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1334 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1335 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1336 1337 // Find the frame index assigned to d8. 1338 int D8SpillFI = 0; 1339 for (unsigned i = 0, e = CSI.size(); i != e; ++i) 1340 if (CSI[i].getReg() == ARM::D8) { 1341 D8SpillFI = CSI[i].getFrameIdx(); 1342 break; 1343 } 1344 1345 // Materialize the address of the d8 spill slot into the scratch register r4. 1346 // This can be fairly complicated if the stack frame is large, so just use 1347 // the normal frame index elimination mechanism to do it. This code runs as 1348 // the initial part of the epilog where the stack and base pointers haven't 1349 // been changed yet. 1350 bool isThumb = AFI->isThumbFunction(); 1351 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1352 1353 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 1354 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1355 .addFrameIndex(D8SpillFI) 1356 .addImm(0) 1357 .add(predOps(ARMCC::AL)) 1358 .add(condCodeOp()); 1359 1360 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 1361 unsigned NextReg = ARM::D8; 1362 1363 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 1364 if (NumAlignedDPRCS2Regs >= 6) { 1365 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1366 &ARM::QQPRRegClass); 1367 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 1368 .addReg(ARM::R4, RegState::Define) 1369 .addReg(ARM::R4, RegState::Kill) 1370 .addImm(16) 1371 .addReg(SupReg, RegState::ImplicitDefine) 1372 .add(predOps(ARMCC::AL)); 1373 NextReg += 4; 1374 NumAlignedDPRCS2Regs -= 4; 1375 } 1376 1377 // We won't modify r4 beyond this point. It currently points to the next 1378 // register to be spilled. 1379 unsigned R4BaseReg = NextReg; 1380 1381 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 1382 if (NumAlignedDPRCS2Regs >= 4) { 1383 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1384 &ARM::QQPRRegClass); 1385 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 1386 .addReg(ARM::R4) 1387 .addImm(16) 1388 .addReg(SupReg, RegState::ImplicitDefine) 1389 .add(predOps(ARMCC::AL)); 1390 NextReg += 4; 1391 NumAlignedDPRCS2Regs -= 4; 1392 } 1393 1394 // 16-byte aligned vld1.64 with 2 d-regs. 1395 if (NumAlignedDPRCS2Regs >= 2) { 1396 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1397 &ARM::QPRRegClass); 1398 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 1399 .addReg(ARM::R4) 1400 .addImm(16) 1401 .add(predOps(ARMCC::AL)); 1402 NextReg += 2; 1403 NumAlignedDPRCS2Regs -= 2; 1404 } 1405 1406 // Finally, use a vanilla vldr.64 for the remaining odd register. 1407 if (NumAlignedDPRCS2Regs) 1408 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 1409 .addReg(ARM::R4) 1410 .addImm(2 * (NextReg - R4BaseReg)) 1411 .add(predOps(ARMCC::AL)); 1412 1413 // Last store kills r4. 1414 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1415 } 1416 1417 bool ARMFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB, 1418 MachineBasicBlock::iterator MI, 1419 const std::vector<CalleeSavedInfo> &CSI, 1420 const TargetRegisterInfo *TRI) const { 1421 if (CSI.empty()) 1422 return false; 1423 1424 MachineFunction &MF = *MBB.getParent(); 1425 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1426 1427 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 1428 unsigned PushOneOpc = AFI->isThumbFunction() ? 1429 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 1430 unsigned FltOpc = ARM::VSTMDDB_UPD; 1431 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1432 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0, 1433 MachineInstr::FrameSetup); 1434 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0, 1435 MachineInstr::FrameSetup); 1436 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 1437 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 1438 1439 // The code above does not insert spill code for the aligned DPRCS2 registers. 1440 // The stack realignment code will be inserted between the push instructions 1441 // and these spills. 1442 if (NumAlignedDPRCS2Regs) 1443 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1444 1445 return true; 1446 } 1447 1448 bool ARMFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, 1449 MachineBasicBlock::iterator MI, 1450 std::vector<CalleeSavedInfo> &CSI, 1451 const TargetRegisterInfo *TRI) const { 1452 if (CSI.empty()) 1453 return false; 1454 1455 MachineFunction &MF = *MBB.getParent(); 1456 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1457 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 1458 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1459 1460 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 1461 // registers. Do that here instead. 1462 if (NumAlignedDPRCS2Regs) 1463 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1464 1465 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1466 unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM; 1467 unsigned FltOpc = ARM::VLDMDIA_UPD; 1468 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 1469 NumAlignedDPRCS2Regs); 1470 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1471 &isARMArea2Register, 0); 1472 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1473 &isARMArea1Register, 0); 1474 1475 return true; 1476 } 1477 1478 // FIXME: Make generic? 1479 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF, 1480 const ARMBaseInstrInfo &TII) { 1481 unsigned FnSize = 0; 1482 for (auto &MBB : MF) { 1483 for (auto &MI : MBB) 1484 FnSize += TII.getInstSizeInBytes(MI); 1485 } 1486 if (MF.getJumpTableInfo()) 1487 for (auto &Table: MF.getJumpTableInfo()->getJumpTables()) 1488 FnSize += Table.MBBs.size() * 4; 1489 FnSize += MF.getConstantPool()->getConstants().size() * 4; 1490 return FnSize; 1491 } 1492 1493 /// estimateRSStackSizeLimit - Look at each instruction that references stack 1494 /// frames and return the stack size limit beyond which some of these 1495 /// instructions will require a scratch register during their expansion later. 1496 // FIXME: Move to TII? 1497 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 1498 const TargetFrameLowering *TFI) { 1499 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1500 unsigned Limit = (1 << 12) - 1; 1501 for (auto &MBB : MF) { 1502 for (auto &MI : MBB) { 1503 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1504 if (!MI.getOperand(i).isFI()) 1505 continue; 1506 1507 // When using ADDri to get the address of a stack object, 255 is the 1508 // largest offset guaranteed to fit in the immediate offset. 1509 if (MI.getOpcode() == ARM::ADDri) { 1510 Limit = std::min(Limit, (1U << 8) - 1); 1511 break; 1512 } 1513 1514 // Otherwise check the addressing mode. 1515 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 1516 case ARMII::AddrMode3: 1517 case ARMII::AddrModeT2_i8: 1518 Limit = std::min(Limit, (1U << 8) - 1); 1519 break; 1520 case ARMII::AddrMode5: 1521 case ARMII::AddrModeT2_i8s4: 1522 case ARMII::AddrModeT2_ldrex: 1523 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 1524 break; 1525 case ARMII::AddrModeT2_i12: 1526 // i12 supports only positive offset so these will be converted to 1527 // i8 opcodes. See llvm::rewriteT2FrameIndex. 1528 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 1529 Limit = std::min(Limit, (1U << 8) - 1); 1530 break; 1531 case ARMII::AddrMode4: 1532 case ARMII::AddrMode6: 1533 // Addressing modes 4 & 6 (load/store) instructions can't encode an 1534 // immediate offset for stack references. 1535 return 0; 1536 default: 1537 break; 1538 } 1539 break; // At most one FI per instruction 1540 } 1541 } 1542 } 1543 1544 return Limit; 1545 } 1546 1547 // In functions that realign the stack, it can be an advantage to spill the 1548 // callee-saved vector registers after realigning the stack. The vst1 and vld1 1549 // instructions take alignment hints that can improve performance. 1550 static void 1551 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 1552 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 1553 if (!SpillAlignedNEONRegs) 1554 return; 1555 1556 // Naked functions don't spill callee-saved registers. 1557 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 1558 return; 1559 1560 // We are planning to use NEON instructions vst1 / vld1. 1561 if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON()) 1562 return; 1563 1564 // Don't bother if the default stack alignment is sufficiently high. 1565 if (MF.getSubtarget().getFrameLowering()->getStackAlignment() >= 8) 1566 return; 1567 1568 // Aligned spills require stack realignment. 1569 if (!static_cast<const ARMBaseRegisterInfo *>( 1570 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 1571 return; 1572 1573 // We always spill contiguous d-registers starting from d8. Count how many 1574 // needs spilling. The register allocator will almost always use the 1575 // callee-saved registers in order, but it can happen that there are holes in 1576 // the range. Registers above the hole will be spilled to the standard DPRCS 1577 // area. 1578 unsigned NumSpills = 0; 1579 for (; NumSpills < 8; ++NumSpills) 1580 if (!SavedRegs.test(ARM::D8 + NumSpills)) 1581 break; 1582 1583 // Don't do this for just one d-register. It's not worth it. 1584 if (NumSpills < 2) 1585 return; 1586 1587 // Spill the first NumSpills D-registers after realigning the stack. 1588 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 1589 1590 // A scratch register is required for the vst1 / vld1 instructions. 1591 SavedRegs.set(ARM::R4); 1592 } 1593 1594 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 1595 BitVector &SavedRegs, 1596 RegScavenger *RS) const { 1597 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1598 // This tells PEI to spill the FP as if it is any other callee-save register 1599 // to take advantage the eliminateFrameIndex machinery. This also ensures it 1600 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 1601 // to combine multiple loads / stores. 1602 bool CanEliminateFrame = true; 1603 bool CS1Spilled = false; 1604 bool LRSpilled = false; 1605 unsigned NumGPRSpills = 0; 1606 unsigned NumFPRSpills = 0; 1607 SmallVector<unsigned, 4> UnspilledCS1GPRs; 1608 SmallVector<unsigned, 4> UnspilledCS2GPRs; 1609 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1610 MF.getSubtarget().getRegisterInfo()); 1611 const ARMBaseInstrInfo &TII = 1612 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1613 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1614 MachineFrameInfo &MFI = MF.getFrameInfo(); 1615 MachineRegisterInfo &MRI = MF.getRegInfo(); 1616 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1617 (void)TRI; // Silence unused warning in non-assert builds. 1618 unsigned FramePtr = RegInfo->getFrameRegister(MF); 1619 1620 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 1621 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 1622 // since it's not always possible to restore sp from fp in a single 1623 // instruction. 1624 // FIXME: It will be better just to find spare register here. 1625 if (AFI->isThumb2Function() && 1626 (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF))) 1627 SavedRegs.set(ARM::R4); 1628 1629 // If a stack probe will be emitted, spill R4 and LR, since they are 1630 // clobbered by the stack probe call. 1631 // This estimate should be a safe, conservative estimate. The actual 1632 // stack probe is enabled based on the size of the local objects; 1633 // this estimate also includes the varargs store size. 1634 if (STI.isTargetWindows() && 1635 WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) { 1636 SavedRegs.set(ARM::R4); 1637 SavedRegs.set(ARM::LR); 1638 } 1639 1640 if (AFI->isThumb1OnlyFunction()) { 1641 // Spill LR if Thumb1 function uses variable length argument lists. 1642 if (AFI->getArgRegsSaveSize() > 0) 1643 SavedRegs.set(ARM::LR); 1644 1645 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function 1646 // requires stack alignment. We don't know for sure what the stack size 1647 // will be, but for this, an estimate is good enough. If there anything 1648 // changes it, it'll be a spill, which implies we've used all the registers 1649 // and so R4 is already used, so not marking it here will be OK. 1650 // FIXME: It will be better just to find spare register here. 1651 if (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF) || 1652 MFI.estimateStackSize(MF) > 508) 1653 SavedRegs.set(ARM::R4); 1654 } 1655 1656 // See if we can spill vector registers to aligned stack. 1657 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 1658 1659 // Spill the BasePtr if it's used. 1660 if (RegInfo->hasBasePointer(MF)) 1661 SavedRegs.set(RegInfo->getBaseRegister()); 1662 1663 // Don't spill FP if the frame can be eliminated. This is determined 1664 // by scanning the callee-save registers to see if any is modified. 1665 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 1666 for (unsigned i = 0; CSRegs[i]; ++i) { 1667 unsigned Reg = CSRegs[i]; 1668 bool Spilled = false; 1669 if (SavedRegs.test(Reg)) { 1670 Spilled = true; 1671 CanEliminateFrame = false; 1672 } 1673 1674 if (!ARM::GPRRegClass.contains(Reg)) { 1675 if (Spilled) { 1676 if (ARM::SPRRegClass.contains(Reg)) 1677 NumFPRSpills++; 1678 else if (ARM::DPRRegClass.contains(Reg)) 1679 NumFPRSpills += 2; 1680 else if (ARM::QPRRegClass.contains(Reg)) 1681 NumFPRSpills += 4; 1682 } 1683 continue; 1684 } 1685 1686 if (Spilled) { 1687 NumGPRSpills++; 1688 1689 if (!STI.splitFramePushPop(MF)) { 1690 if (Reg == ARM::LR) 1691 LRSpilled = true; 1692 CS1Spilled = true; 1693 continue; 1694 } 1695 1696 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 1697 switch (Reg) { 1698 case ARM::LR: 1699 LRSpilled = true; 1700 LLVM_FALLTHROUGH; 1701 case ARM::R0: case ARM::R1: 1702 case ARM::R2: case ARM::R3: 1703 case ARM::R4: case ARM::R5: 1704 case ARM::R6: case ARM::R7: 1705 CS1Spilled = true; 1706 break; 1707 default: 1708 break; 1709 } 1710 } else { 1711 if (!STI.splitFramePushPop(MF)) { 1712 UnspilledCS1GPRs.push_back(Reg); 1713 continue; 1714 } 1715 1716 switch (Reg) { 1717 case ARM::R0: case ARM::R1: 1718 case ARM::R2: case ARM::R3: 1719 case ARM::R4: case ARM::R5: 1720 case ARM::R6: case ARM::R7: 1721 case ARM::LR: 1722 UnspilledCS1GPRs.push_back(Reg); 1723 break; 1724 default: 1725 UnspilledCS2GPRs.push_back(Reg); 1726 break; 1727 } 1728 } 1729 } 1730 1731 bool ForceLRSpill = false; 1732 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 1733 unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII); 1734 // Force LR to be spilled if the Thumb function size is > 2048. This enables 1735 // use of BL to implement far jump. If it turns out that it's not needed 1736 // then the branch fix up path will undo it. 1737 if (FnSize >= (1 << 11)) { 1738 CanEliminateFrame = false; 1739 ForceLRSpill = true; 1740 } 1741 } 1742 1743 // If any of the stack slot references may be out of range of an immediate 1744 // offset, make sure a register (or a spill slot) is available for the 1745 // register scavenger. Note that if we're indexing off the frame pointer, the 1746 // effective stack size is 4 bytes larger since the FP points to the stack 1747 // slot of the previous FP. Also, if we have variable sized objects in the 1748 // function, stack slot references will often be negative, and some of 1749 // our instructions are positive-offset only, so conservatively consider 1750 // that case to want a spill slot (or register) as well. Similarly, if 1751 // the function adjusts the stack pointer during execution and the 1752 // adjustments aren't already part of our stack size estimate, our offset 1753 // calculations may be off, so be conservative. 1754 // FIXME: We could add logic to be more precise about negative offsets 1755 // and which instructions will need a scratch register for them. Is it 1756 // worth the effort and added fragility? 1757 unsigned EstimatedStackSize = 1758 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 1759 1760 // Determine biggest (positive) SP offset in MachineFrameInfo. 1761 int MaxFixedOffset = 0; 1762 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 1763 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); 1764 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); 1765 } 1766 1767 bool HasFP = hasFP(MF); 1768 if (HasFP) { 1769 if (AFI->hasStackFrame()) 1770 EstimatedStackSize += 4; 1771 } else { 1772 // If FP is not used, SP will be used to access arguments, so count the 1773 // size of arguments into the estimation. 1774 EstimatedStackSize += MaxFixedOffset; 1775 } 1776 EstimatedStackSize += 16; // For possible paddings. 1777 1778 unsigned EstimatedRSStackSizeLimit = estimateRSStackSizeLimit(MF, this); 1779 int MaxFPOffset = getMaxFPOffset(MF.getFunction(), *AFI); 1780 bool BigFrameOffsets = EstimatedStackSize >= EstimatedRSStackSizeLimit || 1781 MFI.hasVarSizedObjects() || 1782 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)) || 1783 // For large argument stacks fp relative addressed may overflow. 1784 (HasFP && (MaxFixedOffset - MaxFPOffset) >= (int)EstimatedRSStackSizeLimit); 1785 if (BigFrameOffsets || 1786 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 1787 AFI->setHasStackFrame(true); 1788 1789 if (HasFP) { 1790 SavedRegs.set(FramePtr); 1791 // If the frame pointer is required by the ABI, also spill LR so that we 1792 // emit a complete frame record. 1793 if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) { 1794 SavedRegs.set(ARM::LR); 1795 LRSpilled = true; 1796 NumGPRSpills++; 1797 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 1798 if (LRPos != UnspilledCS1GPRs.end()) 1799 UnspilledCS1GPRs.erase(LRPos); 1800 } 1801 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 1802 if (FPPos != UnspilledCS1GPRs.end()) 1803 UnspilledCS1GPRs.erase(FPPos); 1804 NumGPRSpills++; 1805 if (FramePtr == ARM::R7) 1806 CS1Spilled = true; 1807 } 1808 1809 // This is true when we inserted a spill for an unused register that can now 1810 // be used for register scavenging. 1811 bool ExtraCSSpill = false; 1812 1813 if (AFI->isThumb1OnlyFunction()) { 1814 // For Thumb1-only targets, we need some low registers when we save and 1815 // restore the high registers (which aren't allocatable, but could be 1816 // used by inline assembly) because the push/pop instructions can not 1817 // access high registers. If necessary, we might need to push more low 1818 // registers to ensure that there is at least one free that can be used 1819 // for the saving & restoring, and preferably we should ensure that as 1820 // many as are needed are available so that fewer push/pop instructions 1821 // are required. 1822 1823 // Low registers which are not currently pushed, but could be (r4-r7). 1824 SmallVector<unsigned, 4> AvailableRegs; 1825 1826 // Unused argument registers (r0-r3) can be clobbered in the prologue for 1827 // free. 1828 int EntryRegDeficit = 0; 1829 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 1830 if (!MF.getRegInfo().isLiveIn(Reg)) { 1831 --EntryRegDeficit; 1832 LLVM_DEBUG(dbgs() 1833 << printReg(Reg, TRI) 1834 << " is unused argument register, EntryRegDeficit = " 1835 << EntryRegDeficit << "\n"); 1836 } 1837 } 1838 1839 // Unused return registers can be clobbered in the epilogue for free. 1840 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 1841 LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount() 1842 << " return regs used, ExitRegDeficit = " 1843 << ExitRegDeficit << "\n"); 1844 1845 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 1846 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 1847 1848 // r4-r6 can be used in the prologue if they are pushed by the first push 1849 // instruction. 1850 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 1851 if (SavedRegs.test(Reg)) { 1852 --RegDeficit; 1853 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 1854 << " is saved low register, RegDeficit = " 1855 << RegDeficit << "\n"); 1856 } else { 1857 AvailableRegs.push_back(Reg); 1858 LLVM_DEBUG( 1859 dbgs() 1860 << printReg(Reg, TRI) 1861 << " is non-saved low register, adding to AvailableRegs\n"); 1862 } 1863 } 1864 1865 // r7 can be used if it is not being used as the frame pointer. 1866 if (!HasFP) { 1867 if (SavedRegs.test(ARM::R7)) { 1868 --RegDeficit; 1869 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = " 1870 << RegDeficit << "\n"); 1871 } else { 1872 AvailableRegs.push_back(ARM::R7); 1873 LLVM_DEBUG( 1874 dbgs() 1875 << "%r7 is non-saved low register, adding to AvailableRegs\n"); 1876 } 1877 } 1878 1879 // Each of r8-r11 needs to be copied to a low register, then pushed. 1880 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 1881 if (SavedRegs.test(Reg)) { 1882 ++RegDeficit; 1883 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 1884 << " is saved high register, RegDeficit = " 1885 << RegDeficit << "\n"); 1886 } 1887 } 1888 1889 // LR can only be used by PUSH, not POP, and can't be used at all if the 1890 // llvm.returnaddress intrinsic is used. This is only worth doing if we 1891 // are more limited at function entry than exit. 1892 if ((EntryRegDeficit > ExitRegDeficit) && 1893 !(MF.getRegInfo().isLiveIn(ARM::LR) && 1894 MF.getFrameInfo().isReturnAddressTaken())) { 1895 if (SavedRegs.test(ARM::LR)) { 1896 --RegDeficit; 1897 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = " 1898 << RegDeficit << "\n"); 1899 } else { 1900 AvailableRegs.push_back(ARM::LR); 1901 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n"); 1902 } 1903 } 1904 1905 // If there are more high registers that need pushing than low registers 1906 // available, push some more low registers so that we can use fewer push 1907 // instructions. This might not reduce RegDeficit all the way to zero, 1908 // because we can only guarantee that r4-r6 are available, but r8-r11 may 1909 // need saving. 1910 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 1911 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 1912 unsigned Reg = AvailableRegs.pop_back_val(); 1913 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 1914 << " to make up reg deficit\n"); 1915 SavedRegs.set(Reg); 1916 NumGPRSpills++; 1917 CS1Spilled = true; 1918 assert(!MRI.isReserved(Reg) && "Should not be reserved"); 1919 if (!MRI.isPhysRegUsed(Reg)) 1920 ExtraCSSpill = true; 1921 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 1922 if (Reg == ARM::LR) 1923 LRSpilled = true; 1924 } 1925 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit 1926 << "\n"); 1927 } 1928 1929 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to 1930 // restore LR in that case. 1931 bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall(); 1932 1933 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 1934 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 1935 if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) { 1936 SavedRegs.set(ARM::LR); 1937 NumGPRSpills++; 1938 SmallVectorImpl<unsigned>::iterator LRPos; 1939 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 1940 if (LRPos != UnspilledCS1GPRs.end()) 1941 UnspilledCS1GPRs.erase(LRPos); 1942 1943 ForceLRSpill = false; 1944 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR)) 1945 ExtraCSSpill = true; 1946 } 1947 1948 // If stack and double are 8-byte aligned and we are spilling an odd number 1949 // of GPRs, spill one extra callee save GPR so we won't have to pad between 1950 // the integer and double callee save areas. 1951 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 1952 unsigned TargetAlign = getStackAlignment(); 1953 if (TargetAlign >= 8 && (NumGPRSpills & 1)) { 1954 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 1955 for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) { 1956 unsigned Reg = UnspilledCS1GPRs[i]; 1957 // Don't spill high register if the function is thumb. In the case of 1958 // Windows on ARM, accept R11 (frame pointer) 1959 if (!AFI->isThumbFunction() || 1960 (STI.isTargetWindows() && Reg == ARM::R11) || 1961 isARMLowRegister(Reg) || 1962 (Reg == ARM::LR && !ExpensiveLRRestore)) { 1963 SavedRegs.set(Reg); 1964 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 1965 << " to make up alignment\n"); 1966 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 1967 ExtraCSSpill = true; 1968 break; 1969 } 1970 } 1971 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 1972 unsigned Reg = UnspilledCS2GPRs.front(); 1973 SavedRegs.set(Reg); 1974 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 1975 << " to make up alignment\n"); 1976 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 1977 ExtraCSSpill = true; 1978 } 1979 } 1980 1981 // Estimate if we might need to scavenge a register at some point in order 1982 // to materialize a stack offset. If so, either spill one additional 1983 // callee-saved register or reserve a special spill slot to facilitate 1984 // register scavenging. Thumb1 needs a spill slot for stack pointer 1985 // adjustments also, even when the frame itself is small. 1986 if (BigFrameOffsets && !ExtraCSSpill) { 1987 // If any non-reserved CS register isn't spilled, just spill one or two 1988 // extra. That should take care of it! 1989 unsigned NumExtras = TargetAlign / 4; 1990 SmallVector<unsigned, 2> Extras; 1991 while (NumExtras && !UnspilledCS1GPRs.empty()) { 1992 unsigned Reg = UnspilledCS1GPRs.back(); 1993 UnspilledCS1GPRs.pop_back(); 1994 if (!MRI.isReserved(Reg) && 1995 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg) || 1996 Reg == ARM::LR)) { 1997 Extras.push_back(Reg); 1998 NumExtras--; 1999 } 2000 } 2001 // For non-Thumb1 functions, also check for hi-reg CS registers 2002 if (!AFI->isThumb1OnlyFunction()) { 2003 while (NumExtras && !UnspilledCS2GPRs.empty()) { 2004 unsigned Reg = UnspilledCS2GPRs.back(); 2005 UnspilledCS2GPRs.pop_back(); 2006 if (!MRI.isReserved(Reg)) { 2007 Extras.push_back(Reg); 2008 NumExtras--; 2009 } 2010 } 2011 } 2012 if (NumExtras == 0) { 2013 for (unsigned Reg : Extras) { 2014 SavedRegs.set(Reg); 2015 if (!MRI.isPhysRegUsed(Reg)) 2016 ExtraCSSpill = true; 2017 } 2018 } 2019 if (!ExtraCSSpill && !AFI->isThumb1OnlyFunction()) { 2020 // note: Thumb1 functions spill to R12, not the stack. Reserve a slot 2021 // closest to SP or frame pointer. 2022 assert(RS && "Register scavenging not provided"); 2023 const TargetRegisterClass &RC = ARM::GPRRegClass; 2024 unsigned Size = TRI->getSpillSize(RC); 2025 unsigned Align = TRI->getSpillAlignment(RC); 2026 RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Align, false)); 2027 } 2028 } 2029 } 2030 2031 if (ForceLRSpill) { 2032 SavedRegs.set(ARM::LR); 2033 AFI->setLRIsSpilledForFarJump(true); 2034 } 2035 AFI->setLRIsSpilled(SavedRegs.test(ARM::LR)); 2036 } 2037 2038 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 2039 MachineFunction &MF, MachineBasicBlock &MBB, 2040 MachineBasicBlock::iterator I) const { 2041 const ARMBaseInstrInfo &TII = 2042 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2043 if (!hasReservedCallFrame(MF)) { 2044 // If we have alloca, convert as follows: 2045 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 2046 // ADJCALLSTACKUP -> add, sp, sp, amount 2047 MachineInstr &Old = *I; 2048 DebugLoc dl = Old.getDebugLoc(); 2049 unsigned Amount = TII.getFrameSize(Old); 2050 if (Amount != 0) { 2051 // We need to keep the stack aligned properly. To do this, we round the 2052 // amount of space needed for the outgoing arguments up to the next 2053 // alignment boundary. 2054 Amount = alignSPAdjust(Amount); 2055 2056 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2057 assert(!AFI->isThumb1OnlyFunction() && 2058 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 2059 bool isARM = !AFI->isThumbFunction(); 2060 2061 // Replace the pseudo instruction with a new instruction... 2062 unsigned Opc = Old.getOpcode(); 2063 int PIdx = Old.findFirstPredOperandIdx(); 2064 ARMCC::CondCodes Pred = 2065 (PIdx == -1) ? ARMCC::AL 2066 : (ARMCC::CondCodes)Old.getOperand(PIdx).getImm(); 2067 unsigned PredReg = TII.getFramePred(Old); 2068 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 2069 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 2070 Pred, PredReg); 2071 } else { 2072 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 2073 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 2074 Pred, PredReg); 2075 } 2076 } 2077 } 2078 return MBB.erase(I); 2079 } 2080 2081 /// Get the minimum constant for ARM that is greater than or equal to the 2082 /// argument. In ARM, constants can have any value that can be produced by 2083 /// rotating an 8-bit value to the right by an even number of bits within a 2084 /// 32-bit word. 2085 static uint32_t alignToARMConstant(uint32_t Value) { 2086 unsigned Shifted = 0; 2087 2088 if (Value == 0) 2089 return 0; 2090 2091 while (!(Value & 0xC0000000)) { 2092 Value = Value << 2; 2093 Shifted += 2; 2094 } 2095 2096 bool Carry = (Value & 0x00FFFFFF); 2097 Value = ((Value & 0xFF000000) >> 24) + Carry; 2098 2099 if (Value & 0x0000100) 2100 Value = Value & 0x000001FC; 2101 2102 if (Shifted > 24) 2103 Value = Value >> (Shifted - 24); 2104 else 2105 Value = Value << (24 - Shifted); 2106 2107 return Value; 2108 } 2109 2110 // The stack limit in the TCB is set to this many bytes above the actual 2111 // stack limit. 2112 static const uint64_t kSplitStackAvailable = 256; 2113 2114 // Adjust the function prologue to enable split stacks. This currently only 2115 // supports android and linux. 2116 // 2117 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 2118 // must be well defined in order to allow for consistent implementations of the 2119 // __morestack helper function. The ABI is also not a normal ABI in that it 2120 // doesn't follow the normal calling conventions because this allows the 2121 // prologue of each function to be optimized further. 2122 // 2123 // Currently, the ABI looks like (when calling __morestack) 2124 // 2125 // * r4 holds the minimum stack size requested for this function call 2126 // * r5 holds the stack size of the arguments to the function 2127 // * the beginning of the function is 3 instructions after the call to 2128 // __morestack 2129 // 2130 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 2131 // place the arguments on to the new stack, and the 3-instruction knowledge to 2132 // jump directly to the body of the function when working on the new stack. 2133 // 2134 // An old (and possibly no longer compatible) implementation of __morestack for 2135 // ARM can be found at [1]. 2136 // 2137 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 2138 void ARMFrameLowering::adjustForSegmentedStacks( 2139 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2140 unsigned Opcode; 2141 unsigned CFIIndex; 2142 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 2143 bool Thumb = ST->isThumb(); 2144 2145 // Sadly, this currently doesn't support varargs, platforms other than 2146 // android/linux. Note that thumb1/thumb2 are support for android/linux. 2147 if (MF.getFunction().isVarArg()) 2148 report_fatal_error("Segmented stacks do not support vararg functions."); 2149 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 2150 report_fatal_error("Segmented stacks not supported on this platform."); 2151 2152 MachineFrameInfo &MFI = MF.getFrameInfo(); 2153 MachineModuleInfo &MMI = MF.getMMI(); 2154 MCContext &Context = MMI.getContext(); 2155 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 2156 const ARMBaseInstrInfo &TII = 2157 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2158 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 2159 DebugLoc DL; 2160 2161 uint64_t StackSize = MFI.getStackSize(); 2162 2163 // Do not generate a prologue for leaf functions with a stack of size zero. 2164 // For non-leaf functions we have to allow for the possibility that the 2165 // callis to a non-split function, as in PR37807. This function could also 2166 // take the address of a non-split function. When the linker tries to adjust 2167 // its non-existent prologue, it would fail with an error. Mark the object 2168 // file so that such failures are not errors. See this Go language bug-report 2169 // https://go-review.googlesource.com/c/go/+/148819/ 2170 if (StackSize == 0 && !MFI.hasTailCall()) { 2171 MF.getMMI().setHasNosplitStack(true); 2172 return; 2173 } 2174 2175 // Use R4 and R5 as scratch registers. 2176 // We save R4 and R5 before use and restore them before leaving the function. 2177 unsigned ScratchReg0 = ARM::R4; 2178 unsigned ScratchReg1 = ARM::R5; 2179 uint64_t AlignedStackSize; 2180 2181 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 2182 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 2183 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 2184 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 2185 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 2186 2187 // Grab everything that reaches PrologueMBB to update there liveness as well. 2188 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 2189 SmallVector<MachineBasicBlock *, 2> WalkList; 2190 WalkList.push_back(&PrologueMBB); 2191 2192 do { 2193 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 2194 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 2195 if (BeforePrologueRegion.insert(PredBB).second) 2196 WalkList.push_back(PredBB); 2197 } 2198 } while (!WalkList.empty()); 2199 2200 // The order in that list is important. 2201 // The blocks will all be inserted before PrologueMBB using that order. 2202 // Therefore the block that should appear first in the CFG should appear 2203 // first in the list. 2204 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 2205 PostStackMBB}; 2206 2207 for (MachineBasicBlock *B : AddedBlocks) 2208 BeforePrologueRegion.insert(B); 2209 2210 for (const auto &LI : PrologueMBB.liveins()) { 2211 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 2212 PredBB->addLiveIn(LI); 2213 } 2214 2215 // Remove the newly added blocks from the list, since we know 2216 // we do not have to do the following updates for them. 2217 for (MachineBasicBlock *B : AddedBlocks) { 2218 BeforePrologueRegion.erase(B); 2219 MF.insert(PrologueMBB.getIterator(), B); 2220 } 2221 2222 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 2223 // Make sure the LiveIns are still sorted and unique. 2224 MBB->sortUniqueLiveIns(); 2225 // Replace the edges to PrologueMBB by edges to the sequences 2226 // we are about to add. 2227 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 2228 } 2229 2230 // The required stack size that is aligned to ARM constant criterion. 2231 AlignedStackSize = alignToARMConstant(StackSize); 2232 2233 // When the frame size is less than 256 we just compare the stack 2234 // boundary directly to the value of the stack pointer, per gcc. 2235 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 2236 2237 // We will use two of the callee save registers as scratch registers so we 2238 // need to save those registers onto the stack. 2239 // We will use SR0 to hold stack limit and SR1 to hold the stack size 2240 // requested and arguments for __morestack(). 2241 // SR0: Scratch Register #0 2242 // SR1: Scratch Register #1 2243 // push {SR0, SR1} 2244 if (Thumb) { 2245 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 2246 .add(predOps(ARMCC::AL)) 2247 .addReg(ScratchReg0) 2248 .addReg(ScratchReg1); 2249 } else { 2250 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 2251 .addReg(ARM::SP, RegState::Define) 2252 .addReg(ARM::SP) 2253 .add(predOps(ARMCC::AL)) 2254 .addReg(ScratchReg0) 2255 .addReg(ScratchReg1); 2256 } 2257 2258 // Emit the relevant DWARF information about the change in stack pointer as 2259 // well as where to find both r4 and r5 (the callee-save registers) 2260 CFIIndex = 2261 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -8)); 2262 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2263 .addCFIIndex(CFIIndex); 2264 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2265 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 2266 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2267 .addCFIIndex(CFIIndex); 2268 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2269 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 2270 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2271 .addCFIIndex(CFIIndex); 2272 2273 // mov SR1, sp 2274 if (Thumb) { 2275 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 2276 .addReg(ARM::SP) 2277 .add(predOps(ARMCC::AL)); 2278 } else if (CompareStackPointer) { 2279 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 2280 .addReg(ARM::SP) 2281 .add(predOps(ARMCC::AL)) 2282 .add(condCodeOp()); 2283 } 2284 2285 // sub SR1, sp, #StackSize 2286 if (!CompareStackPointer && Thumb) { 2287 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 2288 .add(condCodeOp()) 2289 .addReg(ScratchReg1) 2290 .addImm(AlignedStackSize) 2291 .add(predOps(ARMCC::AL)); 2292 } else if (!CompareStackPointer) { 2293 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 2294 .addReg(ARM::SP) 2295 .addImm(AlignedStackSize) 2296 .add(predOps(ARMCC::AL)) 2297 .add(condCodeOp()); 2298 } 2299 2300 if (Thumb && ST->isThumb1Only()) { 2301 unsigned PCLabelId = ARMFI->createPICLabelUId(); 2302 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 2303 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0); 2304 MachineConstantPool *MCP = MF.getConstantPool(); 2305 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, 4); 2306 2307 // ldr SR0, [pc, offset(STACK_LIMIT)] 2308 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 2309 .addConstantPoolIndex(CPI) 2310 .add(predOps(ARMCC::AL)); 2311 2312 // ldr SR0, [SR0] 2313 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 2314 .addReg(ScratchReg0) 2315 .addImm(0) 2316 .add(predOps(ARMCC::AL)); 2317 } else { 2318 // Get TLS base address from the coprocessor 2319 // mrc p15, #0, SR0, c13, c0, #3 2320 BuildMI(McrMBB, DL, TII.get(ARM::MRC), ScratchReg0) 2321 .addImm(15) 2322 .addImm(0) 2323 .addImm(13) 2324 .addImm(0) 2325 .addImm(3) 2326 .add(predOps(ARMCC::AL)); 2327 2328 // Use the last tls slot on android and a private field of the TCP on linux. 2329 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 2330 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 2331 2332 // Get the stack limit from the right offset 2333 // ldr SR0, [sr0, #4 * TlsOffset] 2334 BuildMI(GetMBB, DL, TII.get(ARM::LDRi12), ScratchReg0) 2335 .addReg(ScratchReg0) 2336 .addImm(4 * TlsOffset) 2337 .add(predOps(ARMCC::AL)); 2338 } 2339 2340 // Compare stack limit with stack size requested. 2341 // cmp SR0, SR1 2342 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 2343 BuildMI(GetMBB, DL, TII.get(Opcode)) 2344 .addReg(ScratchReg0) 2345 .addReg(ScratchReg1) 2346 .add(predOps(ARMCC::AL)); 2347 2348 // This jump is taken if StackLimit < SP - stack required. 2349 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 2350 BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB) 2351 .addImm(ARMCC::LO) 2352 .addReg(ARM::CPSR); 2353 2354 2355 // Calling __morestack(StackSize, Size of stack arguments). 2356 // __morestack knows that the stack size requested is in SR0(r4) 2357 // and amount size of stack arguments is in SR1(r5). 2358 2359 // Pass first argument for the __morestack by Scratch Register #0. 2360 // The amount size of stack required 2361 if (Thumb) { 2362 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 2363 .add(condCodeOp()) 2364 .addImm(AlignedStackSize) 2365 .add(predOps(ARMCC::AL)); 2366 } else { 2367 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 2368 .addImm(AlignedStackSize) 2369 .add(predOps(ARMCC::AL)) 2370 .add(condCodeOp()); 2371 } 2372 // Pass second argument for the __morestack by Scratch Register #1. 2373 // The amount size of stack consumed to save function arguments. 2374 if (Thumb) { 2375 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 2376 .add(condCodeOp()) 2377 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2378 .add(predOps(ARMCC::AL)); 2379 } else { 2380 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 2381 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2382 .add(predOps(ARMCC::AL)) 2383 .add(condCodeOp()); 2384 } 2385 2386 // push {lr} - Save return address of this function. 2387 if (Thumb) { 2388 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 2389 .add(predOps(ARMCC::AL)) 2390 .addReg(ARM::LR); 2391 } else { 2392 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 2393 .addReg(ARM::SP, RegState::Define) 2394 .addReg(ARM::SP) 2395 .add(predOps(ARMCC::AL)) 2396 .addReg(ARM::LR); 2397 } 2398 2399 // Emit the DWARF info about the change in stack as well as where to find the 2400 // previous link register 2401 CFIIndex = 2402 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -12)); 2403 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2404 .addCFIIndex(CFIIndex); 2405 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2406 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 2407 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2408 .addCFIIndex(CFIIndex); 2409 2410 // Call __morestack(). 2411 if (Thumb) { 2412 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 2413 .add(predOps(ARMCC::AL)) 2414 .addExternalSymbol("__morestack"); 2415 } else { 2416 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 2417 .addExternalSymbol("__morestack"); 2418 } 2419 2420 // pop {lr} - Restore return address of this original function. 2421 if (Thumb) { 2422 if (ST->isThumb1Only()) { 2423 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2424 .add(predOps(ARMCC::AL)) 2425 .addReg(ScratchReg0); 2426 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 2427 .addReg(ScratchReg0) 2428 .add(predOps(ARMCC::AL)); 2429 } else { 2430 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 2431 .addReg(ARM::LR, RegState::Define) 2432 .addReg(ARM::SP, RegState::Define) 2433 .addReg(ARM::SP) 2434 .addImm(4) 2435 .add(predOps(ARMCC::AL)); 2436 } 2437 } else { 2438 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2439 .addReg(ARM::SP, RegState::Define) 2440 .addReg(ARM::SP) 2441 .add(predOps(ARMCC::AL)) 2442 .addReg(ARM::LR); 2443 } 2444 2445 // Restore SR0 and SR1 in case of __morestack() was called. 2446 // __morestack() will skip PostStackMBB block so we need to restore 2447 // scratch registers from here. 2448 // pop {SR0, SR1} 2449 if (Thumb) { 2450 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2451 .add(predOps(ARMCC::AL)) 2452 .addReg(ScratchReg0) 2453 .addReg(ScratchReg1); 2454 } else { 2455 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2456 .addReg(ARM::SP, RegState::Define) 2457 .addReg(ARM::SP) 2458 .add(predOps(ARMCC::AL)) 2459 .addReg(ScratchReg0) 2460 .addReg(ScratchReg1); 2461 } 2462 2463 // Update the CFA offset now that we've popped 2464 CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); 2465 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2466 .addCFIIndex(CFIIndex); 2467 2468 // Return from this function. 2469 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL)); 2470 2471 // Restore SR0 and SR1 in case of __morestack() was not called. 2472 // pop {SR0, SR1} 2473 if (Thumb) { 2474 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 2475 .add(predOps(ARMCC::AL)) 2476 .addReg(ScratchReg0) 2477 .addReg(ScratchReg1); 2478 } else { 2479 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 2480 .addReg(ARM::SP, RegState::Define) 2481 .addReg(ARM::SP) 2482 .add(predOps(ARMCC::AL)) 2483 .addReg(ScratchReg0) 2484 .addReg(ScratchReg1); 2485 } 2486 2487 // Update the CFA offset now that we've popped 2488 CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); 2489 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2490 .addCFIIndex(CFIIndex); 2491 2492 // Tell debuggers that r4 and r5 are now the same as they were in the 2493 // previous function, that they're the "Same Value". 2494 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2495 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 2496 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2497 .addCFIIndex(CFIIndex); 2498 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2499 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 2500 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2501 .addCFIIndex(CFIIndex); 2502 2503 // Organizing MBB lists 2504 PostStackMBB->addSuccessor(&PrologueMBB); 2505 2506 AllocMBB->addSuccessor(PostStackMBB); 2507 2508 GetMBB->addSuccessor(PostStackMBB); 2509 GetMBB->addSuccessor(AllocMBB); 2510 2511 McrMBB->addSuccessor(GetMBB); 2512 2513 PrevStackMBB->addSuccessor(McrMBB); 2514 2515 #ifdef EXPENSIVE_CHECKS 2516 MF.verify(); 2517 #endif 2518 } 2519