1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the ARM implementation of TargetFrameLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMFrameLowering.h" 15 #include "ARMBaseInstrInfo.h" 16 #include "ARMBaseRegisterInfo.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "Utils/ARMBaseInfo.h" 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineConstantPool.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/RegisterScavenging.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetOpcodes.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/CallingConv.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/MC/MCContext.h" 46 #include "llvm/MC/MCDwarf.h" 47 #include "llvm/MC/MCInstrDesc.h" 48 #include "llvm/MC/MCRegisterInfo.h" 49 #include "llvm/Support/CodeGen.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Target/TargetMachine.h" 57 #include "llvm/Target/TargetOptions.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstddef> 61 #include <cstdint> 62 #include <iterator> 63 #include <utility> 64 #include <vector> 65 66 #define DEBUG_TYPE "arm-frame-lowering" 67 68 using namespace llvm; 69 70 static cl::opt<bool> 71 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 72 cl::desc("Align ARM NEON spills in prolog and epilog")); 73 74 static MachineBasicBlock::iterator 75 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 76 unsigned NumAlignedDPRCS2Regs); 77 78 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 79 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, 4), 80 STI(sti) {} 81 82 bool ARMFrameLowering::noFramePointerElim(const MachineFunction &MF) const { 83 // iOS always has a FP for backtracking, force other targets to keep their FP 84 // when doing FastISel. The emitted code is currently superior, and in cases 85 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 86 return TargetFrameLowering::noFramePointerElim(MF) || 87 MF.getSubtarget<ARMSubtarget>().useFastISel(); 88 } 89 90 /// Returns true if the target can safely skip saving callee-saved registers 91 /// for noreturn nounwind functions. 92 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const { 93 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) && 94 MF.getFunction().hasFnAttribute(Attribute::NoUnwind) && 95 !MF.getFunction().hasFnAttribute(Attribute::UWTable)); 96 97 // Frame pointer and link register are not treated as normal CSR, thus we 98 // can always skip CSR saves for nonreturning functions. 99 return true; 100 } 101 102 /// hasFP - Return true if the specified function should have a dedicated frame 103 /// pointer register. This is true if the function has variable sized allocas 104 /// or if frame pointer elimination is disabled. 105 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { 106 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 107 const MachineFrameInfo &MFI = MF.getFrameInfo(); 108 109 // ABI-required frame pointer. 110 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 111 return true; 112 113 // Frame pointer required for use within this function. 114 return (RegInfo->needsStackRealignment(MF) || 115 MFI.hasVarSizedObjects() || 116 MFI.isFrameAddressTaken()); 117 } 118 119 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 120 /// not required, we reserve argument space for call sites in the function 121 /// immediately on entry to the current function. This eliminates the need for 122 /// add/sub sp brackets around call sites. Returns true if the call frame is 123 /// included as part of the stack frame. 124 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 125 const MachineFrameInfo &MFI = MF.getFrameInfo(); 126 unsigned CFSize = MFI.getMaxCallFrameSize(); 127 // It's not always a good idea to include the call frame as part of the 128 // stack frame. ARM (especially Thumb) has small immediate offset to 129 // address the stack frame. So a large call frame can cause poor codegen 130 // and may even makes it impossible to scavenge a register. 131 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 132 return false; 133 134 return !MFI.hasVarSizedObjects(); 135 } 136 137 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 138 /// call frame pseudos can be simplified. Unlike most targets, having a FP 139 /// is not sufficient here since we still may reference some objects via SP 140 /// even when FP is available in Thumb2 mode. 141 bool 142 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 143 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 144 } 145 146 static bool isCSRestore(MachineInstr &MI, const ARMBaseInstrInfo &TII, 147 const MCPhysReg *CSRegs) { 148 // Integer spill area is handled with "pop". 149 if (isPopOpcode(MI.getOpcode())) { 150 // The first two operands are predicates. The last two are 151 // imp-def and imp-use of SP. Check everything in between. 152 for (int i = 5, e = MI.getNumOperands(); i != e; ++i) 153 if (!isCalleeSavedRegister(MI.getOperand(i).getReg(), CSRegs)) 154 return false; 155 return true; 156 } 157 if ((MI.getOpcode() == ARM::LDR_POST_IMM || 158 MI.getOpcode() == ARM::LDR_POST_REG || 159 MI.getOpcode() == ARM::t2LDR_POST) && 160 isCalleeSavedRegister(MI.getOperand(0).getReg(), CSRegs) && 161 MI.getOperand(1).getReg() == ARM::SP) 162 return true; 163 164 return false; 165 } 166 167 static void emitRegPlusImmediate( 168 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 169 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 170 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 171 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 172 if (isARM) 173 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 174 Pred, PredReg, TII, MIFlags); 175 else 176 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 177 Pred, PredReg, TII, MIFlags); 178 } 179 180 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 181 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 182 const ARMBaseInstrInfo &TII, int NumBytes, 183 unsigned MIFlags = MachineInstr::NoFlags, 184 ARMCC::CondCodes Pred = ARMCC::AL, 185 unsigned PredReg = 0) { 186 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 187 MIFlags, Pred, PredReg); 188 } 189 190 static int sizeOfSPAdjustment(const MachineInstr &MI) { 191 int RegSize; 192 switch (MI.getOpcode()) { 193 case ARM::VSTMDDB_UPD: 194 RegSize = 8; 195 break; 196 case ARM::STMDB_UPD: 197 case ARM::t2STMDB_UPD: 198 RegSize = 4; 199 break; 200 case ARM::t2STR_PRE: 201 case ARM::STR_PRE_IMM: 202 return 4; 203 default: 204 llvm_unreachable("Unknown push or pop like instruction"); 205 } 206 207 int count = 0; 208 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 209 // pred) so the list starts at 4. 210 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 211 count += RegSize; 212 return count; 213 } 214 215 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 216 size_t StackSizeInBytes) { 217 const MachineFrameInfo &MFI = MF.getFrameInfo(); 218 const Function &F = MF.getFunction(); 219 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 220 if (F.hasFnAttribute("stack-probe-size")) 221 F.getFnAttribute("stack-probe-size") 222 .getValueAsString() 223 .getAsInteger(0, StackProbeSize); 224 return (StackSizeInBytes >= StackProbeSize) && 225 !F.hasFnAttribute("no-stack-arg-probe"); 226 } 227 228 namespace { 229 230 struct StackAdjustingInsts { 231 struct InstInfo { 232 MachineBasicBlock::iterator I; 233 unsigned SPAdjust; 234 bool BeforeFPSet; 235 }; 236 237 SmallVector<InstInfo, 4> Insts; 238 239 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 240 bool BeforeFPSet = false) { 241 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 242 Insts.push_back(Info); 243 } 244 245 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 246 auto Info = 247 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 248 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 249 Info->SPAdjust += ExtraBytes; 250 } 251 252 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 253 const ARMBaseInstrInfo &TII, bool HasFP) { 254 MachineFunction &MF = *MBB.getParent(); 255 unsigned CFAOffset = 0; 256 for (auto &Info : Insts) { 257 if (HasFP && !Info.BeforeFPSet) 258 return; 259 260 CFAOffset -= Info.SPAdjust; 261 unsigned CFIIndex = MF.addFrameInst( 262 MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset)); 263 BuildMI(MBB, std::next(Info.I), dl, 264 TII.get(TargetOpcode::CFI_INSTRUCTION)) 265 .addCFIIndex(CFIIndex) 266 .setMIFlags(MachineInstr::FrameSetup); 267 } 268 } 269 }; 270 271 } // end anonymous namespace 272 273 /// Emit an instruction sequence that will align the address in 274 /// register Reg by zero-ing out the lower bits. For versions of the 275 /// architecture that support Neon, this must be done in a single 276 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 277 /// single instruction. That function only gets called when optimizing 278 /// spilling of D registers on a core with the Neon instruction set 279 /// present. 280 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 281 const TargetInstrInfo &TII, 282 MachineBasicBlock &MBB, 283 MachineBasicBlock::iterator MBBI, 284 const DebugLoc &DL, const unsigned Reg, 285 const unsigned Alignment, 286 const bool MustBeSingleInstruction) { 287 const ARMSubtarget &AST = 288 static_cast<const ARMSubtarget &>(MF.getSubtarget()); 289 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 290 const unsigned AlignMask = Alignment - 1; 291 const unsigned NrBitsToZero = countTrailingZeros(Alignment); 292 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 293 if (!AFI->isThumbFunction()) { 294 // if the BFC instruction is available, use that to zero the lower 295 // bits: 296 // bfc Reg, #0, log2(Alignment) 297 // otherwise use BIC, if the mask to zero the required number of bits 298 // can be encoded in the bic immediate field 299 // bic Reg, Reg, Alignment-1 300 // otherwise, emit 301 // lsr Reg, Reg, log2(Alignment) 302 // lsl Reg, Reg, log2(Alignment) 303 if (CanUseBFC) { 304 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 305 .addReg(Reg, RegState::Kill) 306 .addImm(~AlignMask) 307 .add(predOps(ARMCC::AL)); 308 } else if (AlignMask <= 255) { 309 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 310 .addReg(Reg, RegState::Kill) 311 .addImm(AlignMask) 312 .add(predOps(ARMCC::AL)) 313 .add(condCodeOp()); 314 } else { 315 assert(!MustBeSingleInstruction && 316 "Shouldn't call emitAligningInstructions demanding a single " 317 "instruction to be emitted for large stack alignment for a target " 318 "without BFC."); 319 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 320 .addReg(Reg, RegState::Kill) 321 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 322 .add(predOps(ARMCC::AL)) 323 .add(condCodeOp()); 324 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 325 .addReg(Reg, RegState::Kill) 326 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 327 .add(predOps(ARMCC::AL)) 328 .add(condCodeOp()); 329 } 330 } else { 331 // Since this is only reached for Thumb-2 targets, the BFC instruction 332 // should always be available. 333 assert(CanUseBFC); 334 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 335 .addReg(Reg, RegState::Kill) 336 .addImm(~AlignMask) 337 .add(predOps(ARMCC::AL)); 338 } 339 } 340 341 /// We need the offset of the frame pointer relative to other MachineFrameInfo 342 /// offsets which are encoded relative to SP at function begin. 343 /// See also emitPrologue() for how the FP is set up. 344 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet 345 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use 346 /// this to produce a conservative estimate that we check in an assert() later. 347 static int getMaxFPOffset(const Function &F, const ARMFunctionInfo &AFI) { 348 // This is a conservative estimation: Assume the frame pointer being r7 and 349 // pc("r15") up to r8 getting spilled before (= 8 registers). 350 return -AFI.getArgRegsSaveSize() - (8 * 4); 351 } 352 353 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 354 MachineBasicBlock &MBB) const { 355 MachineBasicBlock::iterator MBBI = MBB.begin(); 356 MachineFrameInfo &MFI = MF.getFrameInfo(); 357 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 358 MachineModuleInfo &MMI = MF.getMMI(); 359 MCContext &Context = MMI.getContext(); 360 const TargetMachine &TM = MF.getTarget(); 361 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 362 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 363 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 364 assert(!AFI->isThumb1OnlyFunction() && 365 "This emitPrologue does not support Thumb1!"); 366 bool isARM = !AFI->isThumbFunction(); 367 unsigned Align = STI.getFrameLowering()->getStackAlignment(); 368 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 369 unsigned NumBytes = MFI.getStackSize(); 370 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 371 372 // Debug location must be unknown since the first debug location is used 373 // to determine the end of the prologue. 374 DebugLoc dl; 375 376 unsigned FramePtr = RegInfo->getFrameRegister(MF); 377 378 // Determine the sizes of each callee-save spill areas and record which frame 379 // belongs to which callee-save spill areas. 380 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 381 int FramePtrSpillFI = 0; 382 int D8SpillFI = 0; 383 384 // All calls are tail calls in GHC calling conv, and functions have no 385 // prologue/epilogue. 386 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 387 return; 388 389 StackAdjustingInsts DefCFAOffsetCandidates; 390 bool HasFP = hasFP(MF); 391 392 // Allocate the vararg register save area. 393 if (ArgRegsSaveSize) { 394 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 395 MachineInstr::FrameSetup); 396 DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true); 397 } 398 399 if (!AFI->hasStackFrame() && 400 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 401 if (NumBytes - ArgRegsSaveSize != 0) { 402 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize), 403 MachineInstr::FrameSetup); 404 DefCFAOffsetCandidates.addInst(std::prev(MBBI), 405 NumBytes - ArgRegsSaveSize, true); 406 } 407 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 408 return; 409 } 410 411 // Determine spill area sizes. 412 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 413 unsigned Reg = CSI[i].getReg(); 414 int FI = CSI[i].getFrameIdx(); 415 switch (Reg) { 416 case ARM::R8: 417 case ARM::R9: 418 case ARM::R10: 419 case ARM::R11: 420 case ARM::R12: 421 if (STI.splitFramePushPop(MF)) { 422 GPRCS2Size += 4; 423 break; 424 } 425 LLVM_FALLTHROUGH; 426 case ARM::R0: 427 case ARM::R1: 428 case ARM::R2: 429 case ARM::R3: 430 case ARM::R4: 431 case ARM::R5: 432 case ARM::R6: 433 case ARM::R7: 434 case ARM::LR: 435 if (Reg == FramePtr) 436 FramePtrSpillFI = FI; 437 GPRCS1Size += 4; 438 break; 439 default: 440 // This is a DPR. Exclude the aligned DPRCS2 spills. 441 if (Reg == ARM::D8) 442 D8SpillFI = FI; 443 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) 444 DPRCSSize += 8; 445 } 446 } 447 448 // Move past area 1. 449 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 450 if (GPRCS1Size > 0) { 451 GPRCS1Push = LastPush = MBBI++; 452 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); 453 } 454 455 // Determine starting offsets of spill areas. 456 unsigned GPRCS1Offset = NumBytes - ArgRegsSaveSize - GPRCS1Size; 457 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 458 unsigned DPRAlign = DPRCSSize ? std::min(8U, Align) : 4U; 459 unsigned DPRGapSize = (GPRCS1Size + GPRCS2Size + ArgRegsSaveSize) % DPRAlign; 460 unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 461 int FramePtrOffsetInPush = 0; 462 if (HasFP) { 463 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); 464 assert(getMaxFPOffset(MF.getFunction(), *AFI) <= FPOffset && 465 "Max FP estimation is wrong"); 466 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize; 467 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 468 NumBytes); 469 } 470 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 471 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 472 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 473 474 // Move past area 2. 475 if (GPRCS2Size > 0) { 476 GPRCS2Push = LastPush = MBBI++; 477 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 478 } 479 480 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 481 // .cfi_offset operations will reflect that. 482 if (DPRGapSize) { 483 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 484 if (LastPush != MBB.end() && 485 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 486 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 487 else { 488 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 489 MachineInstr::FrameSetup); 490 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); 491 } 492 } 493 494 // Move past area 3. 495 if (DPRCSSize > 0) { 496 // Since vpush register list cannot have gaps, there may be multiple vpush 497 // instructions in the prologue. 498 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 499 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); 500 LastPush = MBBI++; 501 } 502 } 503 504 // Move past the aligned DPRCS2 area. 505 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 506 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 507 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 508 // leaves the stack pointer pointing to the DPRCS2 area. 509 // 510 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 511 NumBytes += MFI.getObjectOffset(D8SpillFI); 512 } else 513 NumBytes = DPRCSOffset; 514 515 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 516 uint32_t NumWords = NumBytes >> 2; 517 518 if (NumWords < 65536) 519 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 520 .addImm(NumWords) 521 .setMIFlags(MachineInstr::FrameSetup) 522 .add(predOps(ARMCC::AL)); 523 else 524 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4) 525 .addImm(NumWords) 526 .setMIFlags(MachineInstr::FrameSetup); 527 528 switch (TM.getCodeModel()) { 529 case CodeModel::Tiny: 530 llvm_unreachable("Tiny code model not available on ARM."); 531 case CodeModel::Small: 532 case CodeModel::Medium: 533 case CodeModel::Kernel: 534 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 535 .add(predOps(ARMCC::AL)) 536 .addExternalSymbol("__chkstk") 537 .addReg(ARM::R4, RegState::Implicit) 538 .setMIFlags(MachineInstr::FrameSetup); 539 break; 540 case CodeModel::Large: 541 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 542 .addExternalSymbol("__chkstk") 543 .setMIFlags(MachineInstr::FrameSetup); 544 545 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 546 .add(predOps(ARMCC::AL)) 547 .addReg(ARM::R12, RegState::Kill) 548 .addReg(ARM::R4, RegState::Implicit) 549 .setMIFlags(MachineInstr::FrameSetup); 550 break; 551 } 552 553 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 554 .addReg(ARM::SP, RegState::Kill) 555 .addReg(ARM::R4, RegState::Kill) 556 .setMIFlags(MachineInstr::FrameSetup) 557 .add(predOps(ARMCC::AL)) 558 .add(condCodeOp()); 559 NumBytes = 0; 560 } 561 562 if (NumBytes) { 563 // Adjust SP after all the callee-save spills. 564 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 565 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 566 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 567 else { 568 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 569 MachineInstr::FrameSetup); 570 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 571 } 572 573 if (HasFP && isARM) 574 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 575 // Note it's not safe to do this in Thumb2 mode because it would have 576 // taken two instructions: 577 // mov sp, r7 578 // sub sp, #24 579 // If an interrupt is taken between the two instructions, then sp is in 580 // an inconsistent state (pointing to the middle of callee-saved area). 581 // The interrupt handler can end up clobbering the registers. 582 AFI->setShouldRestoreSPFromFP(true); 583 } 584 585 // Set FP to point to the stack slot that contains the previous FP. 586 // For iOS, FP is R7, which has now been stored in spill area 1. 587 // Otherwise, if this is not iOS, all the callee-saved registers go 588 // into spill area 1, including the FP in R11. In either case, it 589 // is in area one and the adjustment needs to take place just after 590 // that push. 591 if (HasFP) { 592 MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push); 593 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); 594 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, 595 dl, TII, FramePtr, ARM::SP, 596 PushSize + FramePtrOffsetInPush, 597 MachineInstr::FrameSetup); 598 if (FramePtrOffsetInPush + PushSize != 0) { 599 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa( 600 nullptr, MRI->getDwarfRegNum(FramePtr, true), 601 -(ArgRegsSaveSize - FramePtrOffsetInPush))); 602 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 603 .addCFIIndex(CFIIndex) 604 .setMIFlags(MachineInstr::FrameSetup); 605 } else { 606 unsigned CFIIndex = 607 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 608 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 609 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 610 .addCFIIndex(CFIIndex) 611 .setMIFlags(MachineInstr::FrameSetup); 612 } 613 } 614 615 // Now that the prologue's actual instructions are finalised, we can insert 616 // the necessary DWARF cf instructions to describe the situation. Start by 617 // recording where each register ended up: 618 if (GPRCS1Size > 0) { 619 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push); 620 int CFIIndex; 621 for (const auto &Entry : CSI) { 622 unsigned Reg = Entry.getReg(); 623 int FI = Entry.getFrameIdx(); 624 switch (Reg) { 625 case ARM::R8: 626 case ARM::R9: 627 case ARM::R10: 628 case ARM::R11: 629 case ARM::R12: 630 if (STI.splitFramePushPop(MF)) 631 break; 632 LLVM_FALLTHROUGH; 633 case ARM::R0: 634 case ARM::R1: 635 case ARM::R2: 636 case ARM::R3: 637 case ARM::R4: 638 case ARM::R5: 639 case ARM::R6: 640 case ARM::R7: 641 case ARM::LR: 642 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 643 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI))); 644 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 645 .addCFIIndex(CFIIndex) 646 .setMIFlags(MachineInstr::FrameSetup); 647 break; 648 } 649 } 650 } 651 652 if (GPRCS2Size > 0) { 653 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push); 654 for (const auto &Entry : CSI) { 655 unsigned Reg = Entry.getReg(); 656 int FI = Entry.getFrameIdx(); 657 switch (Reg) { 658 case ARM::R8: 659 case ARM::R9: 660 case ARM::R10: 661 case ARM::R11: 662 case ARM::R12: 663 if (STI.splitFramePushPop(MF)) { 664 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 665 unsigned Offset = MFI.getObjectOffset(FI); 666 unsigned CFIIndex = MF.addFrameInst( 667 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 668 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 669 .addCFIIndex(CFIIndex) 670 .setMIFlags(MachineInstr::FrameSetup); 671 } 672 break; 673 } 674 } 675 } 676 677 if (DPRCSSize > 0) { 678 // Since vpush register list cannot have gaps, there may be multiple vpush 679 // instructions in the prologue. 680 MachineBasicBlock::iterator Pos = std::next(LastPush); 681 for (const auto &Entry : CSI) { 682 unsigned Reg = Entry.getReg(); 683 int FI = Entry.getFrameIdx(); 684 if ((Reg >= ARM::D0 && Reg <= ARM::D31) && 685 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) { 686 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 687 unsigned Offset = MFI.getObjectOffset(FI); 688 unsigned CFIIndex = MF.addFrameInst( 689 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 690 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 691 .addCFIIndex(CFIIndex) 692 .setMIFlags(MachineInstr::FrameSetup); 693 } 694 } 695 } 696 697 // Now we can emit descriptions of where the canonical frame address was 698 // throughout the process. If we have a frame pointer, it takes over the job 699 // half-way through, so only the first few .cfi_def_cfa_offset instructions 700 // actually get emitted. 701 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 702 703 if (STI.isTargetELF() && hasFP(MF)) 704 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 705 AFI->getFramePtrSpillOffset()); 706 707 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 708 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 709 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 710 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 711 712 // If we need dynamic stack realignment, do it here. Be paranoid and make 713 // sure if we also have VLAs, we have a base pointer for frame access. 714 // If aligned NEON registers were spilled, the stack has already been 715 // realigned. 716 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) { 717 unsigned MaxAlign = MFI.getMaxAlignment(); 718 assert(!AFI->isThumb1OnlyFunction()); 719 if (!AFI->isThumbFunction()) { 720 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 721 false); 722 } else { 723 // We cannot use sp as source/dest register here, thus we're using r4 to 724 // perform the calculations. We're emitting the following sequence: 725 // mov r4, sp 726 // -- use emitAligningInstructions to produce best sequence to zero 727 // -- out lower bits in r4 728 // mov sp, r4 729 // FIXME: It will be better just to find spare register here. 730 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 731 .addReg(ARM::SP, RegState::Kill) 732 .add(predOps(ARMCC::AL)); 733 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 734 false); 735 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 736 .addReg(ARM::R4, RegState::Kill) 737 .add(predOps(ARMCC::AL)); 738 } 739 740 AFI->setShouldRestoreSPFromFP(true); 741 } 742 743 // If we need a base pointer, set it up here. It's whatever the value 744 // of the stack pointer is at this point. Any variable size objects 745 // will be allocated after this, so we can still use the base pointer 746 // to reference locals. 747 // FIXME: Clarify FrameSetup flags here. 748 if (RegInfo->hasBasePointer(MF)) { 749 if (isARM) 750 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 751 .addReg(ARM::SP) 752 .add(predOps(ARMCC::AL)) 753 .add(condCodeOp()); 754 else 755 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 756 .addReg(ARM::SP) 757 .add(predOps(ARMCC::AL)); 758 } 759 760 // If the frame has variable sized objects then the epilogue must restore 761 // the sp from fp. We can assume there's an FP here since hasFP already 762 // checks for hasVarSizedObjects. 763 if (MFI.hasVarSizedObjects()) 764 AFI->setShouldRestoreSPFromFP(true); 765 } 766 767 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 768 MachineBasicBlock &MBB) const { 769 MachineFrameInfo &MFI = MF.getFrameInfo(); 770 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 771 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 772 const ARMBaseInstrInfo &TII = 773 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 774 assert(!AFI->isThumb1OnlyFunction() && 775 "This emitEpilogue does not support Thumb1!"); 776 bool isARM = !AFI->isThumbFunction(); 777 778 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 779 int NumBytes = (int)MFI.getStackSize(); 780 unsigned FramePtr = RegInfo->getFrameRegister(MF); 781 782 // All calls are tail calls in GHC calling conv, and functions have no 783 // prologue/epilogue. 784 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 785 return; 786 787 // First put ourselves on the first (from top) terminator instructions. 788 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 789 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 790 791 if (!AFI->hasStackFrame()) { 792 if (NumBytes - ArgRegsSaveSize != 0) 793 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize); 794 } else { 795 // Unwind MBBI to point to first LDR / VLDRD. 796 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 797 if (MBBI != MBB.begin()) { 798 do { 799 --MBBI; 800 } while (MBBI != MBB.begin() && isCSRestore(*MBBI, TII, CSRegs)); 801 if (!isCSRestore(*MBBI, TII, CSRegs)) 802 ++MBBI; 803 } 804 805 // Move SP to start of FP callee save spill area. 806 NumBytes -= (ArgRegsSaveSize + 807 AFI->getGPRCalleeSavedArea1Size() + 808 AFI->getGPRCalleeSavedArea2Size() + 809 AFI->getDPRCalleeSavedGapSize() + 810 AFI->getDPRCalleeSavedAreaSize()); 811 812 // Reset SP based on frame pointer only if the stack frame extends beyond 813 // frame pointer stack slot or target is ELF and the function has FP. 814 if (AFI->shouldRestoreSPFromFP()) { 815 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 816 if (NumBytes) { 817 if (isARM) 818 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 819 ARMCC::AL, 0, TII); 820 else { 821 // It's not possible to restore SP from FP in a single instruction. 822 // For iOS, this looks like: 823 // mov sp, r7 824 // sub sp, #24 825 // This is bad, if an interrupt is taken after the mov, sp is in an 826 // inconsistent state. 827 // Use the first callee-saved register as a scratch register. 828 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 829 "No scratch register to restore SP from FP!"); 830 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 831 ARMCC::AL, 0, TII); 832 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 833 .addReg(ARM::R4) 834 .add(predOps(ARMCC::AL)); 835 } 836 } else { 837 // Thumb2 or ARM. 838 if (isARM) 839 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 840 .addReg(FramePtr) 841 .add(predOps(ARMCC::AL)) 842 .add(condCodeOp()); 843 else 844 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 845 .addReg(FramePtr) 846 .add(predOps(ARMCC::AL)); 847 } 848 } else if (NumBytes && 849 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 850 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes); 851 852 // Increment past our save areas. 853 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { 854 MBBI++; 855 // Since vpop register list cannot have gaps, there may be multiple vpop 856 // instructions in the epilogue. 857 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 858 MBBI++; 859 } 860 if (AFI->getDPRCalleeSavedGapSize()) { 861 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 862 "unexpected DPR alignment gap"); 863 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize()); 864 } 865 866 if (AFI->getGPRCalleeSavedArea2Size()) MBBI++; 867 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 868 } 869 870 if (ArgRegsSaveSize) 871 emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize); 872 } 873 874 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 875 /// debug info. It's the same as what we use for resolving the code-gen 876 /// references for now. FIXME: This can go wrong when references are 877 /// SP-relative and simple call frames aren't used. 878 int 879 ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 880 unsigned &FrameReg) const { 881 return ResolveFrameIndexReference(MF, FI, FrameReg, 0); 882 } 883 884 int 885 ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 886 int FI, unsigned &FrameReg, 887 int SPAdj) const { 888 const MachineFrameInfo &MFI = MF.getFrameInfo(); 889 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 890 MF.getSubtarget().getRegisterInfo()); 891 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 892 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 893 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 894 bool isFixed = MFI.isFixedObjectIndex(FI); 895 896 FrameReg = ARM::SP; 897 Offset += SPAdj; 898 899 // SP can move around if there are allocas. We may also lose track of SP 900 // when emergency spilling inside a non-reserved call frame setup. 901 bool hasMovingSP = !hasReservedCallFrame(MF); 902 903 // When dynamically realigning the stack, use the frame pointer for 904 // parameters, and the stack/base pointer for locals. 905 if (RegInfo->needsStackRealignment(MF)) { 906 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 907 if (isFixed) { 908 FrameReg = RegInfo->getFrameRegister(MF); 909 Offset = FPOffset; 910 } else if (hasMovingSP) { 911 assert(RegInfo->hasBasePointer(MF) && 912 "VLAs and dynamic stack alignment, but missing base pointer!"); 913 FrameReg = RegInfo->getBaseRegister(); 914 } 915 return Offset; 916 } 917 918 // If there is a frame pointer, use it when we can. 919 if (hasFP(MF) && AFI->hasStackFrame()) { 920 // Use frame pointer to reference fixed objects. Use it for locals if 921 // there are VLAs (and thus the SP isn't reliable as a base). 922 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 923 FrameReg = RegInfo->getFrameRegister(MF); 924 return FPOffset; 925 } else if (hasMovingSP) { 926 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 927 if (AFI->isThumb2Function()) { 928 // Try to use the frame pointer if we can, else use the base pointer 929 // since it's available. This is handy for the emergency spill slot, in 930 // particular. 931 if (FPOffset >= -255 && FPOffset < 0) { 932 FrameReg = RegInfo->getFrameRegister(MF); 933 return FPOffset; 934 } 935 } 936 } else if (AFI->isThumbFunction()) { 937 // Prefer SP to base pointer, if the offset is suitably aligned and in 938 // range as the effective range of the immediate offset is bigger when 939 // basing off SP. 940 // Use add <rd>, sp, #<imm8> 941 // ldr <rd>, [sp, #<imm8>] 942 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 943 return Offset; 944 // In Thumb2 mode, the negative offset is very limited. Try to avoid 945 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 946 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) { 947 FrameReg = RegInfo->getFrameRegister(MF); 948 return FPOffset; 949 } 950 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 951 // Otherwise, use SP or FP, whichever is closer to the stack slot. 952 FrameReg = RegInfo->getFrameRegister(MF); 953 return FPOffset; 954 } 955 } 956 // Use the base pointer if we have one. 957 if (RegInfo->hasBasePointer(MF)) 958 FrameReg = RegInfo->getBaseRegister(); 959 return Offset; 960 } 961 962 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 963 MachineBasicBlock::iterator MI, 964 const std::vector<CalleeSavedInfo> &CSI, 965 unsigned StmOpc, unsigned StrOpc, 966 bool NoGap, 967 bool(*Func)(unsigned, bool), 968 unsigned NumAlignedDPRCS2Regs, 969 unsigned MIFlags) const { 970 MachineFunction &MF = *MBB.getParent(); 971 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 972 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 973 974 DebugLoc DL; 975 976 using RegAndKill = std::pair<unsigned, bool>; 977 978 SmallVector<RegAndKill, 4> Regs; 979 unsigned i = CSI.size(); 980 while (i != 0) { 981 unsigned LastReg = 0; 982 for (; i != 0; --i) { 983 unsigned Reg = CSI[i-1].getReg(); 984 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 985 986 // D-registers in the aligned area DPRCS2 are NOT spilled here. 987 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 988 continue; 989 990 const MachineRegisterInfo &MRI = MF.getRegInfo(); 991 bool isLiveIn = MRI.isLiveIn(Reg); 992 if (!isLiveIn && !MRI.isReserved(Reg)) 993 MBB.addLiveIn(Reg); 994 // If NoGap is true, push consecutive registers and then leave the rest 995 // for other instructions. e.g. 996 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 997 if (NoGap && LastReg && LastReg != Reg-1) 998 break; 999 LastReg = Reg; 1000 // Do not set a kill flag on values that are also marked as live-in. This 1001 // happens with the @llvm-returnaddress intrinsic and with arguments 1002 // passed in callee saved registers. 1003 // Omitting the kill flags is conservatively correct even if the live-in 1004 // is not used after all. 1005 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 1006 } 1007 1008 if (Regs.empty()) 1009 continue; 1010 1011 llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) { 1012 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 1013 }); 1014 1015 if (Regs.size() > 1 || StrOpc== 0) { 1016 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 1017 .addReg(ARM::SP) 1018 .setMIFlags(MIFlags) 1019 .add(predOps(ARMCC::AL)); 1020 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1021 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 1022 } else if (Regs.size() == 1) { 1023 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 1024 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 1025 .addReg(ARM::SP) 1026 .setMIFlags(MIFlags) 1027 .addImm(-4) 1028 .add(predOps(ARMCC::AL)); 1029 } 1030 Regs.clear(); 1031 1032 // Put any subsequent vpush instructions before this one: they will refer to 1033 // higher register numbers so need to be pushed first in order to preserve 1034 // monotonicity. 1035 if (MI != MBB.begin()) 1036 --MI; 1037 } 1038 } 1039 1040 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1041 MachineBasicBlock::iterator MI, 1042 std::vector<CalleeSavedInfo> &CSI, 1043 unsigned LdmOpc, unsigned LdrOpc, 1044 bool isVarArg, bool NoGap, 1045 bool(*Func)(unsigned, bool), 1046 unsigned NumAlignedDPRCS2Regs) const { 1047 MachineFunction &MF = *MBB.getParent(); 1048 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1049 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1050 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1051 DebugLoc DL; 1052 bool isTailCall = false; 1053 bool isInterrupt = false; 1054 bool isTrap = false; 1055 if (MBB.end() != MI) { 1056 DL = MI->getDebugLoc(); 1057 unsigned RetOpcode = MI->getOpcode(); 1058 isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri); 1059 isInterrupt = 1060 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1061 isTrap = 1062 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1063 RetOpcode == ARM::tTRAP; 1064 } 1065 1066 SmallVector<unsigned, 4> Regs; 1067 unsigned i = CSI.size(); 1068 while (i != 0) { 1069 unsigned LastReg = 0; 1070 bool DeleteRet = false; 1071 for (; i != 0; --i) { 1072 CalleeSavedInfo &Info = CSI[i-1]; 1073 unsigned Reg = Info.getReg(); 1074 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1075 1076 // The aligned reloads from area DPRCS2 are not inserted here. 1077 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1078 continue; 1079 1080 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1081 !isTrap && STI.hasV5TOps()) { 1082 if (MBB.succ_empty()) { 1083 Reg = ARM::PC; 1084 // Fold the return instruction into the LDM. 1085 DeleteRet = true; 1086 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1087 // We 'restore' LR into PC so it is not live out of the return block: 1088 // Clear Restored bit. 1089 Info.setRestored(false); 1090 } else 1091 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1092 } 1093 1094 // If NoGap is true, pop consecutive registers and then leave the rest 1095 // for other instructions. e.g. 1096 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1097 if (NoGap && LastReg && LastReg != Reg-1) 1098 break; 1099 1100 LastReg = Reg; 1101 Regs.push_back(Reg); 1102 } 1103 1104 if (Regs.empty()) 1105 continue; 1106 1107 llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) { 1108 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1109 }); 1110 1111 if (Regs.size() > 1 || LdrOpc == 0) { 1112 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1113 .addReg(ARM::SP) 1114 .add(predOps(ARMCC::AL)); 1115 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1116 MIB.addReg(Regs[i], getDefRegState(true)); 1117 if (DeleteRet) { 1118 if (MI != MBB.end()) { 1119 MIB.copyImplicitOps(*MI); 1120 MI->eraseFromParent(); 1121 } 1122 } 1123 MI = MIB; 1124 } else if (Regs.size() == 1) { 1125 // If we adjusted the reg to PC from LR above, switch it back here. We 1126 // only do that for LDM. 1127 if (Regs[0] == ARM::PC) 1128 Regs[0] = ARM::LR; 1129 MachineInstrBuilder MIB = 1130 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1131 .addReg(ARM::SP, RegState::Define) 1132 .addReg(ARM::SP); 1133 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1134 // that refactoring is complete (eventually). 1135 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1136 MIB.addReg(0); 1137 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1138 } else 1139 MIB.addImm(4); 1140 MIB.add(predOps(ARMCC::AL)); 1141 } 1142 Regs.clear(); 1143 1144 // Put any subsequent vpop instructions after this one: they will refer to 1145 // higher register numbers so need to be popped afterwards. 1146 if (MI != MBB.end()) 1147 ++MI; 1148 } 1149 } 1150 1151 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1152 /// starting from d8. Also insert stack realignment code and leave the stack 1153 /// pointer pointing to the d8 spill slot. 1154 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1155 MachineBasicBlock::iterator MI, 1156 unsigned NumAlignedDPRCS2Regs, 1157 const std::vector<CalleeSavedInfo> &CSI, 1158 const TargetRegisterInfo *TRI) { 1159 MachineFunction &MF = *MBB.getParent(); 1160 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1161 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1162 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1163 MachineFrameInfo &MFI = MF.getFrameInfo(); 1164 1165 // Mark the D-register spill slots as properly aligned. Since MFI computes 1166 // stack slot layout backwards, this can actually mean that the d-reg stack 1167 // slot offsets can be wrong. The offset for d8 will always be correct. 1168 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 1169 unsigned DNum = CSI[i].getReg() - ARM::D8; 1170 if (DNum > NumAlignedDPRCS2Regs - 1) 1171 continue; 1172 int FI = CSI[i].getFrameIdx(); 1173 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1174 // registers will be 8-byte aligned. 1175 MFI.setObjectAlignment(FI, DNum % 2 ? 8 : 16); 1176 1177 // The stack slot for D8 needs to be maximally aligned because this is 1178 // actually the point where we align the stack pointer. MachineFrameInfo 1179 // computes all offsets relative to the incoming stack pointer which is a 1180 // bit weird when realigning the stack. Any extra padding for this 1181 // over-alignment is not realized because the code inserted below adjusts 1182 // the stack pointer by numregs * 8 before aligning the stack pointer. 1183 if (DNum == 0) 1184 MFI.setObjectAlignment(FI, MFI.getMaxAlignment()); 1185 } 1186 1187 // Move the stack pointer to the d8 spill slot, and align it at the same 1188 // time. Leave the stack slot address in the scratch register r4. 1189 // 1190 // sub r4, sp, #numregs * 8 1191 // bic r4, r4, #align - 1 1192 // mov sp, r4 1193 // 1194 bool isThumb = AFI->isThumbFunction(); 1195 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1196 AFI->setShouldRestoreSPFromFP(true); 1197 1198 // sub r4, sp, #numregs * 8 1199 // The immediate is <= 64, so it doesn't need any special encoding. 1200 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1201 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1202 .addReg(ARM::SP) 1203 .addImm(8 * NumAlignedDPRCS2Regs) 1204 .add(predOps(ARMCC::AL)) 1205 .add(condCodeOp()); 1206 1207 unsigned MaxAlign = MF.getFrameInfo().getMaxAlignment(); 1208 // We must set parameter MustBeSingleInstruction to true, since 1209 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1210 // stack alignment. Luckily, this can always be done since all ARM 1211 // architecture versions that support Neon also support the BFC 1212 // instruction. 1213 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1214 1215 // mov sp, r4 1216 // The stack pointer must be adjusted before spilling anything, otherwise 1217 // the stack slots could be clobbered by an interrupt handler. 1218 // Leave r4 live, it is used below. 1219 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1220 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1221 .addReg(ARM::R4) 1222 .add(predOps(ARMCC::AL)); 1223 if (!isThumb) 1224 MIB.add(condCodeOp()); 1225 1226 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1227 // r4 holds the stack slot address. 1228 unsigned NextReg = ARM::D8; 1229 1230 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1231 // The writeback is only needed when emitting two vst1.64 instructions. 1232 if (NumAlignedDPRCS2Regs >= 6) { 1233 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1234 &ARM::QQPRRegClass); 1235 MBB.addLiveIn(SupReg); 1236 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1237 .addReg(ARM::R4, RegState::Kill) 1238 .addImm(16) 1239 .addReg(NextReg) 1240 .addReg(SupReg, RegState::ImplicitKill) 1241 .add(predOps(ARMCC::AL)); 1242 NextReg += 4; 1243 NumAlignedDPRCS2Regs -= 4; 1244 } 1245 1246 // We won't modify r4 beyond this point. It currently points to the next 1247 // register to be spilled. 1248 unsigned R4BaseReg = NextReg; 1249 1250 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1251 if (NumAlignedDPRCS2Regs >= 4) { 1252 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1253 &ARM::QQPRRegClass); 1254 MBB.addLiveIn(SupReg); 1255 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1256 .addReg(ARM::R4) 1257 .addImm(16) 1258 .addReg(NextReg) 1259 .addReg(SupReg, RegState::ImplicitKill) 1260 .add(predOps(ARMCC::AL)); 1261 NextReg += 4; 1262 NumAlignedDPRCS2Regs -= 4; 1263 } 1264 1265 // 16-byte aligned vst1.64 with 2 d-regs. 1266 if (NumAlignedDPRCS2Regs >= 2) { 1267 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1268 &ARM::QPRRegClass); 1269 MBB.addLiveIn(SupReg); 1270 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1271 .addReg(ARM::R4) 1272 .addImm(16) 1273 .addReg(SupReg) 1274 .add(predOps(ARMCC::AL)); 1275 NextReg += 2; 1276 NumAlignedDPRCS2Regs -= 2; 1277 } 1278 1279 // Finally, use a vanilla vstr.64 for the odd last register. 1280 if (NumAlignedDPRCS2Regs) { 1281 MBB.addLiveIn(NextReg); 1282 // vstr.64 uses addrmode5 which has an offset scale of 4. 1283 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1284 .addReg(NextReg) 1285 .addReg(ARM::R4) 1286 .addImm((NextReg - R4BaseReg) * 2) 1287 .add(predOps(ARMCC::AL)); 1288 } 1289 1290 // The last spill instruction inserted should kill the scratch register r4. 1291 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1292 } 1293 1294 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1295 /// iterator to the following instruction. 1296 static MachineBasicBlock::iterator 1297 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1298 unsigned NumAlignedDPRCS2Regs) { 1299 // sub r4, sp, #numregs * 8 1300 // bic r4, r4, #align - 1 1301 // mov sp, r4 1302 ++MI; ++MI; ++MI; 1303 assert(MI->mayStore() && "Expecting spill instruction"); 1304 1305 // These switches all fall through. 1306 switch(NumAlignedDPRCS2Regs) { 1307 case 7: 1308 ++MI; 1309 assert(MI->mayStore() && "Expecting spill instruction"); 1310 LLVM_FALLTHROUGH; 1311 default: 1312 ++MI; 1313 assert(MI->mayStore() && "Expecting spill instruction"); 1314 LLVM_FALLTHROUGH; 1315 case 1: 1316 case 2: 1317 case 4: 1318 assert(MI->killsRegister(ARM::R4) && "Missed kill flag"); 1319 ++MI; 1320 } 1321 return MI; 1322 } 1323 1324 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1325 /// starting from d8. These instructions are assumed to execute while the 1326 /// stack is still aligned, unlike the code inserted by emitPopInst. 1327 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1328 MachineBasicBlock::iterator MI, 1329 unsigned NumAlignedDPRCS2Regs, 1330 const std::vector<CalleeSavedInfo> &CSI, 1331 const TargetRegisterInfo *TRI) { 1332 MachineFunction &MF = *MBB.getParent(); 1333 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1334 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1335 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1336 1337 // Find the frame index assigned to d8. 1338 int D8SpillFI = 0; 1339 for (unsigned i = 0, e = CSI.size(); i != e; ++i) 1340 if (CSI[i].getReg() == ARM::D8) { 1341 D8SpillFI = CSI[i].getFrameIdx(); 1342 break; 1343 } 1344 1345 // Materialize the address of the d8 spill slot into the scratch register r4. 1346 // This can be fairly complicated if the stack frame is large, so just use 1347 // the normal frame index elimination mechanism to do it. This code runs as 1348 // the initial part of the epilog where the stack and base pointers haven't 1349 // been changed yet. 1350 bool isThumb = AFI->isThumbFunction(); 1351 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1352 1353 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 1354 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1355 .addFrameIndex(D8SpillFI) 1356 .addImm(0) 1357 .add(predOps(ARMCC::AL)) 1358 .add(condCodeOp()); 1359 1360 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 1361 unsigned NextReg = ARM::D8; 1362 1363 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 1364 if (NumAlignedDPRCS2Regs >= 6) { 1365 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1366 &ARM::QQPRRegClass); 1367 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 1368 .addReg(ARM::R4, RegState::Define) 1369 .addReg(ARM::R4, RegState::Kill) 1370 .addImm(16) 1371 .addReg(SupReg, RegState::ImplicitDefine) 1372 .add(predOps(ARMCC::AL)); 1373 NextReg += 4; 1374 NumAlignedDPRCS2Regs -= 4; 1375 } 1376 1377 // We won't modify r4 beyond this point. It currently points to the next 1378 // register to be spilled. 1379 unsigned R4BaseReg = NextReg; 1380 1381 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 1382 if (NumAlignedDPRCS2Regs >= 4) { 1383 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1384 &ARM::QQPRRegClass); 1385 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 1386 .addReg(ARM::R4) 1387 .addImm(16) 1388 .addReg(SupReg, RegState::ImplicitDefine) 1389 .add(predOps(ARMCC::AL)); 1390 NextReg += 4; 1391 NumAlignedDPRCS2Regs -= 4; 1392 } 1393 1394 // 16-byte aligned vld1.64 with 2 d-regs. 1395 if (NumAlignedDPRCS2Regs >= 2) { 1396 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1397 &ARM::QPRRegClass); 1398 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 1399 .addReg(ARM::R4) 1400 .addImm(16) 1401 .add(predOps(ARMCC::AL)); 1402 NextReg += 2; 1403 NumAlignedDPRCS2Regs -= 2; 1404 } 1405 1406 // Finally, use a vanilla vldr.64 for the remaining odd register. 1407 if (NumAlignedDPRCS2Regs) 1408 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 1409 .addReg(ARM::R4) 1410 .addImm(2 * (NextReg - R4BaseReg)) 1411 .add(predOps(ARMCC::AL)); 1412 1413 // Last store kills r4. 1414 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1415 } 1416 1417 bool ARMFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB, 1418 MachineBasicBlock::iterator MI, 1419 const std::vector<CalleeSavedInfo> &CSI, 1420 const TargetRegisterInfo *TRI) const { 1421 if (CSI.empty()) 1422 return false; 1423 1424 MachineFunction &MF = *MBB.getParent(); 1425 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1426 1427 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 1428 unsigned PushOneOpc = AFI->isThumbFunction() ? 1429 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 1430 unsigned FltOpc = ARM::VSTMDDB_UPD; 1431 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1432 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0, 1433 MachineInstr::FrameSetup); 1434 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0, 1435 MachineInstr::FrameSetup); 1436 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 1437 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 1438 1439 // The code above does not insert spill code for the aligned DPRCS2 registers. 1440 // The stack realignment code will be inserted between the push instructions 1441 // and these spills. 1442 if (NumAlignedDPRCS2Regs) 1443 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1444 1445 return true; 1446 } 1447 1448 bool ARMFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, 1449 MachineBasicBlock::iterator MI, 1450 std::vector<CalleeSavedInfo> &CSI, 1451 const TargetRegisterInfo *TRI) const { 1452 if (CSI.empty()) 1453 return false; 1454 1455 MachineFunction &MF = *MBB.getParent(); 1456 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1457 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 1458 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1459 1460 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 1461 // registers. Do that here instead. 1462 if (NumAlignedDPRCS2Regs) 1463 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1464 1465 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1466 unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM; 1467 unsigned FltOpc = ARM::VLDMDIA_UPD; 1468 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 1469 NumAlignedDPRCS2Regs); 1470 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1471 &isARMArea2Register, 0); 1472 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1473 &isARMArea1Register, 0); 1474 1475 return true; 1476 } 1477 1478 // FIXME: Make generic? 1479 static unsigned GetFunctionSizeInBytes(const MachineFunction &MF, 1480 const ARMBaseInstrInfo &TII) { 1481 unsigned FnSize = 0; 1482 for (auto &MBB : MF) { 1483 for (auto &MI : MBB) 1484 FnSize += TII.getInstSizeInBytes(MI); 1485 } 1486 return FnSize; 1487 } 1488 1489 /// estimateRSStackSizeLimit - Look at each instruction that references stack 1490 /// frames and return the stack size limit beyond which some of these 1491 /// instructions will require a scratch register during their expansion later. 1492 // FIXME: Move to TII? 1493 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 1494 const TargetFrameLowering *TFI) { 1495 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1496 unsigned Limit = (1 << 12) - 1; 1497 for (auto &MBB : MF) { 1498 for (auto &MI : MBB) { 1499 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1500 if (!MI.getOperand(i).isFI()) 1501 continue; 1502 1503 // When using ADDri to get the address of a stack object, 255 is the 1504 // largest offset guaranteed to fit in the immediate offset. 1505 if (MI.getOpcode() == ARM::ADDri) { 1506 Limit = std::min(Limit, (1U << 8) - 1); 1507 break; 1508 } 1509 1510 // Otherwise check the addressing mode. 1511 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 1512 case ARMII::AddrMode3: 1513 case ARMII::AddrModeT2_i8: 1514 Limit = std::min(Limit, (1U << 8) - 1); 1515 break; 1516 case ARMII::AddrMode5: 1517 case ARMII::AddrModeT2_i8s4: 1518 case ARMII::AddrModeT2_ldrex: 1519 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 1520 break; 1521 case ARMII::AddrModeT2_i12: 1522 // i12 supports only positive offset so these will be converted to 1523 // i8 opcodes. See llvm::rewriteT2FrameIndex. 1524 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 1525 Limit = std::min(Limit, (1U << 8) - 1); 1526 break; 1527 case ARMII::AddrMode4: 1528 case ARMII::AddrMode6: 1529 // Addressing modes 4 & 6 (load/store) instructions can't encode an 1530 // immediate offset for stack references. 1531 return 0; 1532 default: 1533 break; 1534 } 1535 break; // At most one FI per instruction 1536 } 1537 } 1538 } 1539 1540 return Limit; 1541 } 1542 1543 // In functions that realign the stack, it can be an advantage to spill the 1544 // callee-saved vector registers after realigning the stack. The vst1 and vld1 1545 // instructions take alignment hints that can improve performance. 1546 static void 1547 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 1548 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 1549 if (!SpillAlignedNEONRegs) 1550 return; 1551 1552 // Naked functions don't spill callee-saved registers. 1553 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 1554 return; 1555 1556 // We are planning to use NEON instructions vst1 / vld1. 1557 if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON()) 1558 return; 1559 1560 // Don't bother if the default stack alignment is sufficiently high. 1561 if (MF.getSubtarget().getFrameLowering()->getStackAlignment() >= 8) 1562 return; 1563 1564 // Aligned spills require stack realignment. 1565 if (!static_cast<const ARMBaseRegisterInfo *>( 1566 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 1567 return; 1568 1569 // We always spill contiguous d-registers starting from d8. Count how many 1570 // needs spilling. The register allocator will almost always use the 1571 // callee-saved registers in order, but it can happen that there are holes in 1572 // the range. Registers above the hole will be spilled to the standard DPRCS 1573 // area. 1574 unsigned NumSpills = 0; 1575 for (; NumSpills < 8; ++NumSpills) 1576 if (!SavedRegs.test(ARM::D8 + NumSpills)) 1577 break; 1578 1579 // Don't do this for just one d-register. It's not worth it. 1580 if (NumSpills < 2) 1581 return; 1582 1583 // Spill the first NumSpills D-registers after realigning the stack. 1584 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 1585 1586 // A scratch register is required for the vst1 / vld1 instructions. 1587 SavedRegs.set(ARM::R4); 1588 } 1589 1590 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 1591 BitVector &SavedRegs, 1592 RegScavenger *RS) const { 1593 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1594 // This tells PEI to spill the FP as if it is any other callee-save register 1595 // to take advantage the eliminateFrameIndex machinery. This also ensures it 1596 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 1597 // to combine multiple loads / stores. 1598 bool CanEliminateFrame = true; 1599 bool CS1Spilled = false; 1600 bool LRSpilled = false; 1601 unsigned NumGPRSpills = 0; 1602 unsigned NumFPRSpills = 0; 1603 SmallVector<unsigned, 4> UnspilledCS1GPRs; 1604 SmallVector<unsigned, 4> UnspilledCS2GPRs; 1605 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1606 MF.getSubtarget().getRegisterInfo()); 1607 const ARMBaseInstrInfo &TII = 1608 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1609 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1610 MachineFrameInfo &MFI = MF.getFrameInfo(); 1611 MachineRegisterInfo &MRI = MF.getRegInfo(); 1612 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1613 (void)TRI; // Silence unused warning in non-assert builds. 1614 unsigned FramePtr = RegInfo->getFrameRegister(MF); 1615 1616 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 1617 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 1618 // since it's not always possible to restore sp from fp in a single 1619 // instruction. 1620 // FIXME: It will be better just to find spare register here. 1621 if (AFI->isThumb2Function() && 1622 (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF))) 1623 SavedRegs.set(ARM::R4); 1624 1625 // If a stack probe will be emitted, spill R4 and LR, since they are 1626 // clobbered by the stack probe call. 1627 // This estimate should be a safe, conservative estimate. The actual 1628 // stack probe is enabled based on the size of the local objects; 1629 // this estimate also includes the varargs store size. 1630 if (STI.isTargetWindows() && 1631 WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) { 1632 SavedRegs.set(ARM::R4); 1633 SavedRegs.set(ARM::LR); 1634 } 1635 1636 if (AFI->isThumb1OnlyFunction()) { 1637 // Spill LR if Thumb1 function uses variable length argument lists. 1638 if (AFI->getArgRegsSaveSize() > 0) 1639 SavedRegs.set(ARM::LR); 1640 1641 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function 1642 // requires stack alignment. We don't know for sure what the stack size 1643 // will be, but for this, an estimate is good enough. If there anything 1644 // changes it, it'll be a spill, which implies we've used all the registers 1645 // and so R4 is already used, so not marking it here will be OK. 1646 // FIXME: It will be better just to find spare register here. 1647 if (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF) || 1648 MFI.estimateStackSize(MF) > 508) 1649 SavedRegs.set(ARM::R4); 1650 } 1651 1652 // See if we can spill vector registers to aligned stack. 1653 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 1654 1655 // Spill the BasePtr if it's used. 1656 if (RegInfo->hasBasePointer(MF)) 1657 SavedRegs.set(RegInfo->getBaseRegister()); 1658 1659 // Don't spill FP if the frame can be eliminated. This is determined 1660 // by scanning the callee-save registers to see if any is modified. 1661 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 1662 for (unsigned i = 0; CSRegs[i]; ++i) { 1663 unsigned Reg = CSRegs[i]; 1664 bool Spilled = false; 1665 if (SavedRegs.test(Reg)) { 1666 Spilled = true; 1667 CanEliminateFrame = false; 1668 } 1669 1670 if (!ARM::GPRRegClass.contains(Reg)) { 1671 if (Spilled) { 1672 if (ARM::SPRRegClass.contains(Reg)) 1673 NumFPRSpills++; 1674 else if (ARM::DPRRegClass.contains(Reg)) 1675 NumFPRSpills += 2; 1676 else if (ARM::QPRRegClass.contains(Reg)) 1677 NumFPRSpills += 4; 1678 } 1679 continue; 1680 } 1681 1682 if (Spilled) { 1683 NumGPRSpills++; 1684 1685 if (!STI.splitFramePushPop(MF)) { 1686 if (Reg == ARM::LR) 1687 LRSpilled = true; 1688 CS1Spilled = true; 1689 continue; 1690 } 1691 1692 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 1693 switch (Reg) { 1694 case ARM::LR: 1695 LRSpilled = true; 1696 LLVM_FALLTHROUGH; 1697 case ARM::R0: case ARM::R1: 1698 case ARM::R2: case ARM::R3: 1699 case ARM::R4: case ARM::R5: 1700 case ARM::R6: case ARM::R7: 1701 CS1Spilled = true; 1702 break; 1703 default: 1704 break; 1705 } 1706 } else { 1707 if (!STI.splitFramePushPop(MF)) { 1708 UnspilledCS1GPRs.push_back(Reg); 1709 continue; 1710 } 1711 1712 switch (Reg) { 1713 case ARM::R0: case ARM::R1: 1714 case ARM::R2: case ARM::R3: 1715 case ARM::R4: case ARM::R5: 1716 case ARM::R6: case ARM::R7: 1717 case ARM::LR: 1718 UnspilledCS1GPRs.push_back(Reg); 1719 break; 1720 default: 1721 UnspilledCS2GPRs.push_back(Reg); 1722 break; 1723 } 1724 } 1725 } 1726 1727 bool ForceLRSpill = false; 1728 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 1729 unsigned FnSize = GetFunctionSizeInBytes(MF, TII); 1730 // Force LR to be spilled if the Thumb function size is > 2048. This enables 1731 // use of BL to implement far jump. If it turns out that it's not needed 1732 // then the branch fix up path will undo it. 1733 if (FnSize >= (1 << 11)) { 1734 CanEliminateFrame = false; 1735 ForceLRSpill = true; 1736 } 1737 } 1738 1739 // If any of the stack slot references may be out of range of an immediate 1740 // offset, make sure a register (or a spill slot) is available for the 1741 // register scavenger. Note that if we're indexing off the frame pointer, the 1742 // effective stack size is 4 bytes larger since the FP points to the stack 1743 // slot of the previous FP. Also, if we have variable sized objects in the 1744 // function, stack slot references will often be negative, and some of 1745 // our instructions are positive-offset only, so conservatively consider 1746 // that case to want a spill slot (or register) as well. Similarly, if 1747 // the function adjusts the stack pointer during execution and the 1748 // adjustments aren't already part of our stack size estimate, our offset 1749 // calculations may be off, so be conservative. 1750 // FIXME: We could add logic to be more precise about negative offsets 1751 // and which instructions will need a scratch register for them. Is it 1752 // worth the effort and added fragility? 1753 unsigned EstimatedStackSize = 1754 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 1755 1756 // Determine biggest (positive) SP offset in MachineFrameInfo. 1757 int MaxFixedOffset = 0; 1758 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 1759 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); 1760 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); 1761 } 1762 1763 bool HasFP = hasFP(MF); 1764 if (HasFP) { 1765 if (AFI->hasStackFrame()) 1766 EstimatedStackSize += 4; 1767 } else { 1768 // If FP is not used, SP will be used to access arguments, so count the 1769 // size of arguments into the estimation. 1770 EstimatedStackSize += MaxFixedOffset; 1771 } 1772 EstimatedStackSize += 16; // For possible paddings. 1773 1774 unsigned EstimatedRSStackSizeLimit = estimateRSStackSizeLimit(MF, this); 1775 int MaxFPOffset = getMaxFPOffset(MF.getFunction(), *AFI); 1776 bool BigFrameOffsets = EstimatedStackSize >= EstimatedRSStackSizeLimit || 1777 MFI.hasVarSizedObjects() || 1778 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)) || 1779 // For large argument stacks fp relative addressed may overflow. 1780 (HasFP && (MaxFixedOffset - MaxFPOffset) >= (int)EstimatedRSStackSizeLimit); 1781 if (BigFrameOffsets || 1782 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 1783 AFI->setHasStackFrame(true); 1784 1785 if (HasFP) { 1786 SavedRegs.set(FramePtr); 1787 // If the frame pointer is required by the ABI, also spill LR so that we 1788 // emit a complete frame record. 1789 if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) { 1790 SavedRegs.set(ARM::LR); 1791 LRSpilled = true; 1792 NumGPRSpills++; 1793 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 1794 if (LRPos != UnspilledCS1GPRs.end()) 1795 UnspilledCS1GPRs.erase(LRPos); 1796 } 1797 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 1798 if (FPPos != UnspilledCS1GPRs.end()) 1799 UnspilledCS1GPRs.erase(FPPos); 1800 NumGPRSpills++; 1801 if (FramePtr == ARM::R7) 1802 CS1Spilled = true; 1803 } 1804 1805 // This is true when we inserted a spill for an unused register that can now 1806 // be used for register scavenging. 1807 bool ExtraCSSpill = false; 1808 1809 if (AFI->isThumb1OnlyFunction()) { 1810 // For Thumb1-only targets, we need some low registers when we save and 1811 // restore the high registers (which aren't allocatable, but could be 1812 // used by inline assembly) because the push/pop instructions can not 1813 // access high registers. If necessary, we might need to push more low 1814 // registers to ensure that there is at least one free that can be used 1815 // for the saving & restoring, and preferably we should ensure that as 1816 // many as are needed are available so that fewer push/pop instructions 1817 // are required. 1818 1819 // Low registers which are not currently pushed, but could be (r4-r7). 1820 SmallVector<unsigned, 4> AvailableRegs; 1821 1822 // Unused argument registers (r0-r3) can be clobbered in the prologue for 1823 // free. 1824 int EntryRegDeficit = 0; 1825 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 1826 if (!MF.getRegInfo().isLiveIn(Reg)) { 1827 --EntryRegDeficit; 1828 LLVM_DEBUG(dbgs() 1829 << printReg(Reg, TRI) 1830 << " is unused argument register, EntryRegDeficit = " 1831 << EntryRegDeficit << "\n"); 1832 } 1833 } 1834 1835 // Unused return registers can be clobbered in the epilogue for free. 1836 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 1837 LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount() 1838 << " return regs used, ExitRegDeficit = " 1839 << ExitRegDeficit << "\n"); 1840 1841 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 1842 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 1843 1844 // r4-r6 can be used in the prologue if they are pushed by the first push 1845 // instruction. 1846 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 1847 if (SavedRegs.test(Reg)) { 1848 --RegDeficit; 1849 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 1850 << " is saved low register, RegDeficit = " 1851 << RegDeficit << "\n"); 1852 } else { 1853 AvailableRegs.push_back(Reg); 1854 LLVM_DEBUG( 1855 dbgs() 1856 << printReg(Reg, TRI) 1857 << " is non-saved low register, adding to AvailableRegs\n"); 1858 } 1859 } 1860 1861 // r7 can be used if it is not being used as the frame pointer. 1862 if (!HasFP) { 1863 if (SavedRegs.test(ARM::R7)) { 1864 --RegDeficit; 1865 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = " 1866 << RegDeficit << "\n"); 1867 } else { 1868 AvailableRegs.push_back(ARM::R7); 1869 LLVM_DEBUG( 1870 dbgs() 1871 << "%r7 is non-saved low register, adding to AvailableRegs\n"); 1872 } 1873 } 1874 1875 // Each of r8-r11 needs to be copied to a low register, then pushed. 1876 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 1877 if (SavedRegs.test(Reg)) { 1878 ++RegDeficit; 1879 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 1880 << " is saved high register, RegDeficit = " 1881 << RegDeficit << "\n"); 1882 } 1883 } 1884 1885 // LR can only be used by PUSH, not POP, and can't be used at all if the 1886 // llvm.returnaddress intrinsic is used. This is only worth doing if we 1887 // are more limited at function entry than exit. 1888 if ((EntryRegDeficit > ExitRegDeficit) && 1889 !(MF.getRegInfo().isLiveIn(ARM::LR) && 1890 MF.getFrameInfo().isReturnAddressTaken())) { 1891 if (SavedRegs.test(ARM::LR)) { 1892 --RegDeficit; 1893 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = " 1894 << RegDeficit << "\n"); 1895 } else { 1896 AvailableRegs.push_back(ARM::LR); 1897 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n"); 1898 } 1899 } 1900 1901 // If there are more high registers that need pushing than low registers 1902 // available, push some more low registers so that we can use fewer push 1903 // instructions. This might not reduce RegDeficit all the way to zero, 1904 // because we can only guarantee that r4-r6 are available, but r8-r11 may 1905 // need saving. 1906 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 1907 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 1908 unsigned Reg = AvailableRegs.pop_back_val(); 1909 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 1910 << " to make up reg deficit\n"); 1911 SavedRegs.set(Reg); 1912 NumGPRSpills++; 1913 CS1Spilled = true; 1914 assert(!MRI.isReserved(Reg) && "Should not be reserved"); 1915 if (!MRI.isPhysRegUsed(Reg)) 1916 ExtraCSSpill = true; 1917 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 1918 if (Reg == ARM::LR) 1919 LRSpilled = true; 1920 } 1921 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit 1922 << "\n"); 1923 } 1924 1925 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to 1926 // restore LR in that case. 1927 bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall(); 1928 1929 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 1930 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 1931 if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) { 1932 SavedRegs.set(ARM::LR); 1933 NumGPRSpills++; 1934 SmallVectorImpl<unsigned>::iterator LRPos; 1935 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 1936 if (LRPos != UnspilledCS1GPRs.end()) 1937 UnspilledCS1GPRs.erase(LRPos); 1938 1939 ForceLRSpill = false; 1940 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR)) 1941 ExtraCSSpill = true; 1942 } 1943 1944 // If stack and double are 8-byte aligned and we are spilling an odd number 1945 // of GPRs, spill one extra callee save GPR so we won't have to pad between 1946 // the integer and double callee save areas. 1947 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 1948 unsigned TargetAlign = getStackAlignment(); 1949 if (TargetAlign >= 8 && (NumGPRSpills & 1)) { 1950 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 1951 for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) { 1952 unsigned Reg = UnspilledCS1GPRs[i]; 1953 // Don't spill high register if the function is thumb. In the case of 1954 // Windows on ARM, accept R11 (frame pointer) 1955 if (!AFI->isThumbFunction() || 1956 (STI.isTargetWindows() && Reg == ARM::R11) || 1957 isARMLowRegister(Reg) || 1958 (Reg == ARM::LR && !ExpensiveLRRestore)) { 1959 SavedRegs.set(Reg); 1960 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 1961 << " to make up alignment\n"); 1962 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 1963 ExtraCSSpill = true; 1964 break; 1965 } 1966 } 1967 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 1968 unsigned Reg = UnspilledCS2GPRs.front(); 1969 SavedRegs.set(Reg); 1970 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 1971 << " to make up alignment\n"); 1972 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 1973 ExtraCSSpill = true; 1974 } 1975 } 1976 1977 // Estimate if we might need to scavenge a register at some point in order 1978 // to materialize a stack offset. If so, either spill one additional 1979 // callee-saved register or reserve a special spill slot to facilitate 1980 // register scavenging. Thumb1 needs a spill slot for stack pointer 1981 // adjustments also, even when the frame itself is small. 1982 if (BigFrameOffsets && !ExtraCSSpill) { 1983 // If any non-reserved CS register isn't spilled, just spill one or two 1984 // extra. That should take care of it! 1985 unsigned NumExtras = TargetAlign / 4; 1986 SmallVector<unsigned, 2> Extras; 1987 while (NumExtras && !UnspilledCS1GPRs.empty()) { 1988 unsigned Reg = UnspilledCS1GPRs.back(); 1989 UnspilledCS1GPRs.pop_back(); 1990 if (!MRI.isReserved(Reg) && 1991 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg) || 1992 Reg == ARM::LR)) { 1993 Extras.push_back(Reg); 1994 NumExtras--; 1995 } 1996 } 1997 // For non-Thumb1 functions, also check for hi-reg CS registers 1998 if (!AFI->isThumb1OnlyFunction()) { 1999 while (NumExtras && !UnspilledCS2GPRs.empty()) { 2000 unsigned Reg = UnspilledCS2GPRs.back(); 2001 UnspilledCS2GPRs.pop_back(); 2002 if (!MRI.isReserved(Reg)) { 2003 Extras.push_back(Reg); 2004 NumExtras--; 2005 } 2006 } 2007 } 2008 if (NumExtras == 0) { 2009 for (unsigned Reg : Extras) { 2010 SavedRegs.set(Reg); 2011 if (!MRI.isPhysRegUsed(Reg)) 2012 ExtraCSSpill = true; 2013 } 2014 } 2015 if (!ExtraCSSpill && !AFI->isThumb1OnlyFunction()) { 2016 // note: Thumb1 functions spill to R12, not the stack. Reserve a slot 2017 // closest to SP or frame pointer. 2018 assert(RS && "Register scavenging not provided"); 2019 const TargetRegisterClass &RC = ARM::GPRRegClass; 2020 unsigned Size = TRI->getSpillSize(RC); 2021 unsigned Align = TRI->getSpillAlignment(RC); 2022 RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Align, false)); 2023 } 2024 } 2025 } 2026 2027 if (ForceLRSpill) { 2028 SavedRegs.set(ARM::LR); 2029 AFI->setLRIsSpilledForFarJump(true); 2030 } 2031 } 2032 2033 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 2034 MachineFunction &MF, MachineBasicBlock &MBB, 2035 MachineBasicBlock::iterator I) const { 2036 const ARMBaseInstrInfo &TII = 2037 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2038 if (!hasReservedCallFrame(MF)) { 2039 // If we have alloca, convert as follows: 2040 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 2041 // ADJCALLSTACKUP -> add, sp, sp, amount 2042 MachineInstr &Old = *I; 2043 DebugLoc dl = Old.getDebugLoc(); 2044 unsigned Amount = TII.getFrameSize(Old); 2045 if (Amount != 0) { 2046 // We need to keep the stack aligned properly. To do this, we round the 2047 // amount of space needed for the outgoing arguments up to the next 2048 // alignment boundary. 2049 Amount = alignSPAdjust(Amount); 2050 2051 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2052 assert(!AFI->isThumb1OnlyFunction() && 2053 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 2054 bool isARM = !AFI->isThumbFunction(); 2055 2056 // Replace the pseudo instruction with a new instruction... 2057 unsigned Opc = Old.getOpcode(); 2058 int PIdx = Old.findFirstPredOperandIdx(); 2059 ARMCC::CondCodes Pred = 2060 (PIdx == -1) ? ARMCC::AL 2061 : (ARMCC::CondCodes)Old.getOperand(PIdx).getImm(); 2062 unsigned PredReg = TII.getFramePred(Old); 2063 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 2064 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 2065 Pred, PredReg); 2066 } else { 2067 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 2068 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 2069 Pred, PredReg); 2070 } 2071 } 2072 } 2073 return MBB.erase(I); 2074 } 2075 2076 /// Get the minimum constant for ARM that is greater than or equal to the 2077 /// argument. In ARM, constants can have any value that can be produced by 2078 /// rotating an 8-bit value to the right by an even number of bits within a 2079 /// 32-bit word. 2080 static uint32_t alignToARMConstant(uint32_t Value) { 2081 unsigned Shifted = 0; 2082 2083 if (Value == 0) 2084 return 0; 2085 2086 while (!(Value & 0xC0000000)) { 2087 Value = Value << 2; 2088 Shifted += 2; 2089 } 2090 2091 bool Carry = (Value & 0x00FFFFFF); 2092 Value = ((Value & 0xFF000000) >> 24) + Carry; 2093 2094 if (Value & 0x0000100) 2095 Value = Value & 0x000001FC; 2096 2097 if (Shifted > 24) 2098 Value = Value >> (Shifted - 24); 2099 else 2100 Value = Value << (24 - Shifted); 2101 2102 return Value; 2103 } 2104 2105 // The stack limit in the TCB is set to this many bytes above the actual 2106 // stack limit. 2107 static const uint64_t kSplitStackAvailable = 256; 2108 2109 // Adjust the function prologue to enable split stacks. This currently only 2110 // supports android and linux. 2111 // 2112 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 2113 // must be well defined in order to allow for consistent implementations of the 2114 // __morestack helper function. The ABI is also not a normal ABI in that it 2115 // doesn't follow the normal calling conventions because this allows the 2116 // prologue of each function to be optimized further. 2117 // 2118 // Currently, the ABI looks like (when calling __morestack) 2119 // 2120 // * r4 holds the minimum stack size requested for this function call 2121 // * r5 holds the stack size of the arguments to the function 2122 // * the beginning of the function is 3 instructions after the call to 2123 // __morestack 2124 // 2125 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 2126 // place the arguments on to the new stack, and the 3-instruction knowledge to 2127 // jump directly to the body of the function when working on the new stack. 2128 // 2129 // An old (and possibly no longer compatible) implementation of __morestack for 2130 // ARM can be found at [1]. 2131 // 2132 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 2133 void ARMFrameLowering::adjustForSegmentedStacks( 2134 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2135 unsigned Opcode; 2136 unsigned CFIIndex; 2137 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 2138 bool Thumb = ST->isThumb(); 2139 2140 // Sadly, this currently doesn't support varargs, platforms other than 2141 // android/linux. Note that thumb1/thumb2 are support for android/linux. 2142 if (MF.getFunction().isVarArg()) 2143 report_fatal_error("Segmented stacks do not support vararg functions."); 2144 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 2145 report_fatal_error("Segmented stacks not supported on this platform."); 2146 2147 MachineFrameInfo &MFI = MF.getFrameInfo(); 2148 MachineModuleInfo &MMI = MF.getMMI(); 2149 MCContext &Context = MMI.getContext(); 2150 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 2151 const ARMBaseInstrInfo &TII = 2152 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2153 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 2154 DebugLoc DL; 2155 2156 uint64_t StackSize = MFI.getStackSize(); 2157 2158 // Do not generate a prologue for leaf functions with a stack of size zero. 2159 // For non-leaf functions we have to allow for the possibility that the 2160 // call is to a non-split function, as in PR37807. 2161 if (StackSize == 0 && !MFI.hasTailCall()) 2162 return; 2163 2164 // Use R4 and R5 as scratch registers. 2165 // We save R4 and R5 before use and restore them before leaving the function. 2166 unsigned ScratchReg0 = ARM::R4; 2167 unsigned ScratchReg1 = ARM::R5; 2168 uint64_t AlignedStackSize; 2169 2170 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 2171 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 2172 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 2173 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 2174 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 2175 2176 // Grab everything that reaches PrologueMBB to update there liveness as well. 2177 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 2178 SmallVector<MachineBasicBlock *, 2> WalkList; 2179 WalkList.push_back(&PrologueMBB); 2180 2181 do { 2182 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 2183 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 2184 if (BeforePrologueRegion.insert(PredBB).second) 2185 WalkList.push_back(PredBB); 2186 } 2187 } while (!WalkList.empty()); 2188 2189 // The order in that list is important. 2190 // The blocks will all be inserted before PrologueMBB using that order. 2191 // Therefore the block that should appear first in the CFG should appear 2192 // first in the list. 2193 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 2194 PostStackMBB}; 2195 2196 for (MachineBasicBlock *B : AddedBlocks) 2197 BeforePrologueRegion.insert(B); 2198 2199 for (const auto &LI : PrologueMBB.liveins()) { 2200 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 2201 PredBB->addLiveIn(LI); 2202 } 2203 2204 // Remove the newly added blocks from the list, since we know 2205 // we do not have to do the following updates for them. 2206 for (MachineBasicBlock *B : AddedBlocks) { 2207 BeforePrologueRegion.erase(B); 2208 MF.insert(PrologueMBB.getIterator(), B); 2209 } 2210 2211 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 2212 // Make sure the LiveIns are still sorted and unique. 2213 MBB->sortUniqueLiveIns(); 2214 // Replace the edges to PrologueMBB by edges to the sequences 2215 // we are about to add. 2216 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 2217 } 2218 2219 // The required stack size that is aligned to ARM constant criterion. 2220 AlignedStackSize = alignToARMConstant(StackSize); 2221 2222 // When the frame size is less than 256 we just compare the stack 2223 // boundary directly to the value of the stack pointer, per gcc. 2224 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 2225 2226 // We will use two of the callee save registers as scratch registers so we 2227 // need to save those registers onto the stack. 2228 // We will use SR0 to hold stack limit and SR1 to hold the stack size 2229 // requested and arguments for __morestack(). 2230 // SR0: Scratch Register #0 2231 // SR1: Scratch Register #1 2232 // push {SR0, SR1} 2233 if (Thumb) { 2234 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 2235 .add(predOps(ARMCC::AL)) 2236 .addReg(ScratchReg0) 2237 .addReg(ScratchReg1); 2238 } else { 2239 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 2240 .addReg(ARM::SP, RegState::Define) 2241 .addReg(ARM::SP) 2242 .add(predOps(ARMCC::AL)) 2243 .addReg(ScratchReg0) 2244 .addReg(ScratchReg1); 2245 } 2246 2247 // Emit the relevant DWARF information about the change in stack pointer as 2248 // well as where to find both r4 and r5 (the callee-save registers) 2249 CFIIndex = 2250 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -8)); 2251 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2252 .addCFIIndex(CFIIndex); 2253 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2254 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 2255 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2256 .addCFIIndex(CFIIndex); 2257 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2258 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 2259 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2260 .addCFIIndex(CFIIndex); 2261 2262 // mov SR1, sp 2263 if (Thumb) { 2264 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 2265 .addReg(ARM::SP) 2266 .add(predOps(ARMCC::AL)); 2267 } else if (CompareStackPointer) { 2268 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 2269 .addReg(ARM::SP) 2270 .add(predOps(ARMCC::AL)) 2271 .add(condCodeOp()); 2272 } 2273 2274 // sub SR1, sp, #StackSize 2275 if (!CompareStackPointer && Thumb) { 2276 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 2277 .add(condCodeOp()) 2278 .addReg(ScratchReg1) 2279 .addImm(AlignedStackSize) 2280 .add(predOps(ARMCC::AL)); 2281 } else if (!CompareStackPointer) { 2282 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 2283 .addReg(ARM::SP) 2284 .addImm(AlignedStackSize) 2285 .add(predOps(ARMCC::AL)) 2286 .add(condCodeOp()); 2287 } 2288 2289 if (Thumb && ST->isThumb1Only()) { 2290 unsigned PCLabelId = ARMFI->createPICLabelUId(); 2291 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 2292 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0); 2293 MachineConstantPool *MCP = MF.getConstantPool(); 2294 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, 4); 2295 2296 // ldr SR0, [pc, offset(STACK_LIMIT)] 2297 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 2298 .addConstantPoolIndex(CPI) 2299 .add(predOps(ARMCC::AL)); 2300 2301 // ldr SR0, [SR0] 2302 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 2303 .addReg(ScratchReg0) 2304 .addImm(0) 2305 .add(predOps(ARMCC::AL)); 2306 } else { 2307 // Get TLS base address from the coprocessor 2308 // mrc p15, #0, SR0, c13, c0, #3 2309 BuildMI(McrMBB, DL, TII.get(ARM::MRC), ScratchReg0) 2310 .addImm(15) 2311 .addImm(0) 2312 .addImm(13) 2313 .addImm(0) 2314 .addImm(3) 2315 .add(predOps(ARMCC::AL)); 2316 2317 // Use the last tls slot on android and a private field of the TCP on linux. 2318 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 2319 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 2320 2321 // Get the stack limit from the right offset 2322 // ldr SR0, [sr0, #4 * TlsOffset] 2323 BuildMI(GetMBB, DL, TII.get(ARM::LDRi12), ScratchReg0) 2324 .addReg(ScratchReg0) 2325 .addImm(4 * TlsOffset) 2326 .add(predOps(ARMCC::AL)); 2327 } 2328 2329 // Compare stack limit with stack size requested. 2330 // cmp SR0, SR1 2331 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 2332 BuildMI(GetMBB, DL, TII.get(Opcode)) 2333 .addReg(ScratchReg0) 2334 .addReg(ScratchReg1) 2335 .add(predOps(ARMCC::AL)); 2336 2337 // This jump is taken if StackLimit < SP - stack required. 2338 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 2339 BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB) 2340 .addImm(ARMCC::LO) 2341 .addReg(ARM::CPSR); 2342 2343 2344 // Calling __morestack(StackSize, Size of stack arguments). 2345 // __morestack knows that the stack size requested is in SR0(r4) 2346 // and amount size of stack arguments is in SR1(r5). 2347 2348 // Pass first argument for the __morestack by Scratch Register #0. 2349 // The amount size of stack required 2350 if (Thumb) { 2351 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 2352 .add(condCodeOp()) 2353 .addImm(AlignedStackSize) 2354 .add(predOps(ARMCC::AL)); 2355 } else { 2356 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 2357 .addImm(AlignedStackSize) 2358 .add(predOps(ARMCC::AL)) 2359 .add(condCodeOp()); 2360 } 2361 // Pass second argument for the __morestack by Scratch Register #1. 2362 // The amount size of stack consumed to save function arguments. 2363 if (Thumb) { 2364 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 2365 .add(condCodeOp()) 2366 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2367 .add(predOps(ARMCC::AL)); 2368 } else { 2369 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 2370 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2371 .add(predOps(ARMCC::AL)) 2372 .add(condCodeOp()); 2373 } 2374 2375 // push {lr} - Save return address of this function. 2376 if (Thumb) { 2377 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 2378 .add(predOps(ARMCC::AL)) 2379 .addReg(ARM::LR); 2380 } else { 2381 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 2382 .addReg(ARM::SP, RegState::Define) 2383 .addReg(ARM::SP) 2384 .add(predOps(ARMCC::AL)) 2385 .addReg(ARM::LR); 2386 } 2387 2388 // Emit the DWARF info about the change in stack as well as where to find the 2389 // previous link register 2390 CFIIndex = 2391 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -12)); 2392 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2393 .addCFIIndex(CFIIndex); 2394 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2395 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 2396 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2397 .addCFIIndex(CFIIndex); 2398 2399 // Call __morestack(). 2400 if (Thumb) { 2401 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 2402 .add(predOps(ARMCC::AL)) 2403 .addExternalSymbol("__morestack"); 2404 } else { 2405 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 2406 .addExternalSymbol("__morestack"); 2407 } 2408 2409 // pop {lr} - Restore return address of this original function. 2410 if (Thumb) { 2411 if (ST->isThumb1Only()) { 2412 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2413 .add(predOps(ARMCC::AL)) 2414 .addReg(ScratchReg0); 2415 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 2416 .addReg(ScratchReg0) 2417 .add(predOps(ARMCC::AL)); 2418 } else { 2419 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 2420 .addReg(ARM::LR, RegState::Define) 2421 .addReg(ARM::SP, RegState::Define) 2422 .addReg(ARM::SP) 2423 .addImm(4) 2424 .add(predOps(ARMCC::AL)); 2425 } 2426 } else { 2427 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2428 .addReg(ARM::SP, RegState::Define) 2429 .addReg(ARM::SP) 2430 .add(predOps(ARMCC::AL)) 2431 .addReg(ARM::LR); 2432 } 2433 2434 // Restore SR0 and SR1 in case of __morestack() was called. 2435 // __morestack() will skip PostStackMBB block so we need to restore 2436 // scratch registers from here. 2437 // pop {SR0, SR1} 2438 if (Thumb) { 2439 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2440 .add(predOps(ARMCC::AL)) 2441 .addReg(ScratchReg0) 2442 .addReg(ScratchReg1); 2443 } else { 2444 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2445 .addReg(ARM::SP, RegState::Define) 2446 .addReg(ARM::SP) 2447 .add(predOps(ARMCC::AL)) 2448 .addReg(ScratchReg0) 2449 .addReg(ScratchReg1); 2450 } 2451 2452 // Update the CFA offset now that we've popped 2453 CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); 2454 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2455 .addCFIIndex(CFIIndex); 2456 2457 // Return from this function. 2458 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL)); 2459 2460 // Restore SR0 and SR1 in case of __morestack() was not called. 2461 // pop {SR0, SR1} 2462 if (Thumb) { 2463 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 2464 .add(predOps(ARMCC::AL)) 2465 .addReg(ScratchReg0) 2466 .addReg(ScratchReg1); 2467 } else { 2468 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 2469 .addReg(ARM::SP, RegState::Define) 2470 .addReg(ARM::SP) 2471 .add(predOps(ARMCC::AL)) 2472 .addReg(ScratchReg0) 2473 .addReg(ScratchReg1); 2474 } 2475 2476 // Update the CFA offset now that we've popped 2477 CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); 2478 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2479 .addCFIIndex(CFIIndex); 2480 2481 // Tell debuggers that r4 and r5 are now the same as they were in the 2482 // previous function, that they're the "Same Value". 2483 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2484 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 2485 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2486 .addCFIIndex(CFIIndex); 2487 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2488 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 2489 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2490 .addCFIIndex(CFIIndex); 2491 2492 // Organizing MBB lists 2493 PostStackMBB->addSuccessor(&PrologueMBB); 2494 2495 AllocMBB->addSuccessor(PostStackMBB); 2496 2497 GetMBB->addSuccessor(PostStackMBB); 2498 GetMBB->addSuccessor(AllocMBB); 2499 2500 McrMBB->addSuccessor(GetMBB); 2501 2502 PrevStackMBB->addSuccessor(McrMBB); 2503 2504 #ifdef EXPENSIVE_CHECKS 2505 MF.verify(); 2506 #endif 2507 } 2508