1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the ARM implementation of TargetFrameLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMFrameLowering.h" 15 #include "ARMBaseInstrInfo.h" 16 #include "ARMBaseRegisterInfo.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "Utils/ARMBaseInfo.h" 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineConstantPool.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/RegisterScavenging.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/MC/MCContext.h" 42 #include "llvm/MC/MCDwarf.h" 43 #include "llvm/MC/MCInstrDesc.h" 44 #include "llvm/MC/MCRegisterInfo.h" 45 #include "llvm/Support/CodeGen.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Compiler.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/MathExtras.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetInstrInfo.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOpcodes.h" 55 #include "llvm/Target/TargetOptions.h" 56 #include "llvm/Target/TargetRegisterInfo.h" 57 #include "llvm/Target/TargetSubtargetInfo.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstddef> 61 #include <cstdint> 62 #include <iterator> 63 #include <utility> 64 #include <vector> 65 66 #define DEBUG_TYPE "arm-frame-lowering" 67 68 using namespace llvm; 69 70 static cl::opt<bool> 71 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 72 cl::desc("Align ARM NEON spills in prolog and epilog")); 73 74 static MachineBasicBlock::iterator 75 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 76 unsigned NumAlignedDPRCS2Regs); 77 78 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 79 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, 4), 80 STI(sti) {} 81 82 bool ARMFrameLowering::noFramePointerElim(const MachineFunction &MF) const { 83 // iOS always has a FP for backtracking, force other targets to keep their FP 84 // when doing FastISel. The emitted code is currently superior, and in cases 85 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 86 return TargetFrameLowering::noFramePointerElim(MF) || 87 MF.getSubtarget<ARMSubtarget>().useFastISel(); 88 } 89 90 /// hasFP - Return true if the specified function should have a dedicated frame 91 /// pointer register. This is true if the function has variable sized allocas 92 /// or if frame pointer elimination is disabled. 93 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { 94 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 95 const MachineFrameInfo &MFI = MF.getFrameInfo(); 96 97 // ABI-required frame pointer. 98 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 99 return true; 100 101 // Frame pointer required for use within this function. 102 return (RegInfo->needsStackRealignment(MF) || 103 MFI.hasVarSizedObjects() || 104 MFI.isFrameAddressTaken()); 105 } 106 107 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 108 /// not required, we reserve argument space for call sites in the function 109 /// immediately on entry to the current function. This eliminates the need for 110 /// add/sub sp brackets around call sites. Returns true if the call frame is 111 /// included as part of the stack frame. 112 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 113 const MachineFrameInfo &MFI = MF.getFrameInfo(); 114 unsigned CFSize = MFI.getMaxCallFrameSize(); 115 // It's not always a good idea to include the call frame as part of the 116 // stack frame. ARM (especially Thumb) has small immediate offset to 117 // address the stack frame. So a large call frame can cause poor codegen 118 // and may even makes it impossible to scavenge a register. 119 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 120 return false; 121 122 return !MFI.hasVarSizedObjects(); 123 } 124 125 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 126 /// call frame pseudos can be simplified. Unlike most targets, having a FP 127 /// is not sufficient here since we still may reference some objects via SP 128 /// even when FP is available in Thumb2 mode. 129 bool 130 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 131 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 132 } 133 134 static bool isCSRestore(MachineInstr &MI, const ARMBaseInstrInfo &TII, 135 const MCPhysReg *CSRegs) { 136 // Integer spill area is handled with "pop". 137 if (isPopOpcode(MI.getOpcode())) { 138 // The first two operands are predicates. The last two are 139 // imp-def and imp-use of SP. Check everything in between. 140 for (int i = 5, e = MI.getNumOperands(); i != e; ++i) 141 if (!isCalleeSavedRegister(MI.getOperand(i).getReg(), CSRegs)) 142 return false; 143 return true; 144 } 145 if ((MI.getOpcode() == ARM::LDR_POST_IMM || 146 MI.getOpcode() == ARM::LDR_POST_REG || 147 MI.getOpcode() == ARM::t2LDR_POST) && 148 isCalleeSavedRegister(MI.getOperand(0).getReg(), CSRegs) && 149 MI.getOperand(1).getReg() == ARM::SP) 150 return true; 151 152 return false; 153 } 154 155 static void emitRegPlusImmediate( 156 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 157 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 158 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 159 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 160 if (isARM) 161 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 162 Pred, PredReg, TII, MIFlags); 163 else 164 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 165 Pred, PredReg, TII, MIFlags); 166 } 167 168 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 169 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 170 const ARMBaseInstrInfo &TII, int NumBytes, 171 unsigned MIFlags = MachineInstr::NoFlags, 172 ARMCC::CondCodes Pred = ARMCC::AL, 173 unsigned PredReg = 0) { 174 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 175 MIFlags, Pred, PredReg); 176 } 177 178 static int sizeOfSPAdjustment(const MachineInstr &MI) { 179 int RegSize; 180 switch (MI.getOpcode()) { 181 case ARM::VSTMDDB_UPD: 182 RegSize = 8; 183 break; 184 case ARM::STMDB_UPD: 185 case ARM::t2STMDB_UPD: 186 RegSize = 4; 187 break; 188 case ARM::t2STR_PRE: 189 case ARM::STR_PRE_IMM: 190 return 4; 191 default: 192 llvm_unreachable("Unknown push or pop like instruction"); 193 } 194 195 int count = 0; 196 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 197 // pred) so the list starts at 4. 198 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 199 count += RegSize; 200 return count; 201 } 202 203 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 204 size_t StackSizeInBytes) { 205 const MachineFrameInfo &MFI = MF.getFrameInfo(); 206 const Function *F = MF.getFunction(); 207 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 208 if (F->hasFnAttribute("stack-probe-size")) 209 F->getFnAttribute("stack-probe-size") 210 .getValueAsString() 211 .getAsInteger(0, StackProbeSize); 212 return StackSizeInBytes >= StackProbeSize; 213 } 214 215 namespace { 216 217 struct StackAdjustingInsts { 218 struct InstInfo { 219 MachineBasicBlock::iterator I; 220 unsigned SPAdjust; 221 bool BeforeFPSet; 222 }; 223 224 SmallVector<InstInfo, 4> Insts; 225 226 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 227 bool BeforeFPSet = false) { 228 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 229 Insts.push_back(Info); 230 } 231 232 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 233 auto Info = 234 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 235 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 236 Info->SPAdjust += ExtraBytes; 237 } 238 239 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 240 const ARMBaseInstrInfo &TII, bool HasFP) { 241 MachineFunction &MF = *MBB.getParent(); 242 unsigned CFAOffset = 0; 243 for (auto &Info : Insts) { 244 if (HasFP && !Info.BeforeFPSet) 245 return; 246 247 CFAOffset -= Info.SPAdjust; 248 unsigned CFIIndex = MF.addFrameInst( 249 MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset)); 250 BuildMI(MBB, std::next(Info.I), dl, 251 TII.get(TargetOpcode::CFI_INSTRUCTION)) 252 .addCFIIndex(CFIIndex) 253 .setMIFlags(MachineInstr::FrameSetup); 254 } 255 } 256 }; 257 258 } // end anonymous namespace 259 260 /// Emit an instruction sequence that will align the address in 261 /// register Reg by zero-ing out the lower bits. For versions of the 262 /// architecture that support Neon, this must be done in a single 263 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 264 /// single instruction. That function only gets called when optimizing 265 /// spilling of D registers on a core with the Neon instruction set 266 /// present. 267 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 268 const TargetInstrInfo &TII, 269 MachineBasicBlock &MBB, 270 MachineBasicBlock::iterator MBBI, 271 const DebugLoc &DL, const unsigned Reg, 272 const unsigned Alignment, 273 const bool MustBeSingleInstruction) { 274 const ARMSubtarget &AST = 275 static_cast<const ARMSubtarget &>(MF.getSubtarget()); 276 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 277 const unsigned AlignMask = Alignment - 1; 278 const unsigned NrBitsToZero = countTrailingZeros(Alignment); 279 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 280 if (!AFI->isThumbFunction()) { 281 // if the BFC instruction is available, use that to zero the lower 282 // bits: 283 // bfc Reg, #0, log2(Alignment) 284 // otherwise use BIC, if the mask to zero the required number of bits 285 // can be encoded in the bic immediate field 286 // bic Reg, Reg, Alignment-1 287 // otherwise, emit 288 // lsr Reg, Reg, log2(Alignment) 289 // lsl Reg, Reg, log2(Alignment) 290 if (CanUseBFC) { 291 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 292 .addReg(Reg, RegState::Kill) 293 .addImm(~AlignMask) 294 .add(predOps(ARMCC::AL)); 295 } else if (AlignMask <= 255) { 296 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 297 .addReg(Reg, RegState::Kill) 298 .addImm(AlignMask) 299 .add(predOps(ARMCC::AL)) 300 .add(condCodeOp()); 301 } else { 302 assert(!MustBeSingleInstruction && 303 "Shouldn't call emitAligningInstructions demanding a single " 304 "instruction to be emitted for large stack alignment for a target " 305 "without BFC."); 306 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 307 .addReg(Reg, RegState::Kill) 308 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 309 .add(predOps(ARMCC::AL)) 310 .add(condCodeOp()); 311 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 312 .addReg(Reg, RegState::Kill) 313 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 314 .add(predOps(ARMCC::AL)) 315 .add(condCodeOp()); 316 } 317 } else { 318 // Since this is only reached for Thumb-2 targets, the BFC instruction 319 // should always be available. 320 assert(CanUseBFC); 321 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 322 .addReg(Reg, RegState::Kill) 323 .addImm(~AlignMask) 324 .add(predOps(ARMCC::AL)); 325 } 326 } 327 328 /// We need the offset of the frame pointer relative to other MachineFrameInfo 329 /// offsets which are encoded relative to SP at function begin. 330 /// See also emitPrologue() for how the FP is set up. 331 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet 332 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use 333 /// this to produce a conservative estimate that we check in an assert() later. 334 static int getMaxFPOffset(const Function &F, const ARMFunctionInfo &AFI) { 335 // This is a conservative estimation: Assume the frame pointer being r7 and 336 // pc("r15") up to r8 getting spilled before (= 8 registers). 337 return -AFI.getArgRegsSaveSize() - (8 * 4); 338 } 339 340 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 341 MachineBasicBlock &MBB) const { 342 MachineBasicBlock::iterator MBBI = MBB.begin(); 343 MachineFrameInfo &MFI = MF.getFrameInfo(); 344 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 345 MachineModuleInfo &MMI = MF.getMMI(); 346 MCContext &Context = MMI.getContext(); 347 const TargetMachine &TM = MF.getTarget(); 348 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 349 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 350 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 351 assert(!AFI->isThumb1OnlyFunction() && 352 "This emitPrologue does not support Thumb1!"); 353 bool isARM = !AFI->isThumbFunction(); 354 unsigned Align = STI.getFrameLowering()->getStackAlignment(); 355 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 356 unsigned NumBytes = MFI.getStackSize(); 357 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 358 359 // Debug location must be unknown since the first debug location is used 360 // to determine the end of the prologue. 361 DebugLoc dl; 362 363 unsigned FramePtr = RegInfo->getFrameRegister(MF); 364 365 // Determine the sizes of each callee-save spill areas and record which frame 366 // belongs to which callee-save spill areas. 367 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 368 int FramePtrSpillFI = 0; 369 int D8SpillFI = 0; 370 371 // All calls are tail calls in GHC calling conv, and functions have no 372 // prologue/epilogue. 373 if (MF.getFunction()->getCallingConv() == CallingConv::GHC) 374 return; 375 376 StackAdjustingInsts DefCFAOffsetCandidates; 377 bool HasFP = hasFP(MF); 378 379 // Allocate the vararg register save area. 380 if (ArgRegsSaveSize) { 381 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 382 MachineInstr::FrameSetup); 383 DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true); 384 } 385 386 if (!AFI->hasStackFrame() && 387 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 388 if (NumBytes - ArgRegsSaveSize != 0) { 389 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize), 390 MachineInstr::FrameSetup); 391 DefCFAOffsetCandidates.addInst(std::prev(MBBI), 392 NumBytes - ArgRegsSaveSize, true); 393 } 394 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 395 return; 396 } 397 398 // Determine spill area sizes. 399 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 400 unsigned Reg = CSI[i].getReg(); 401 int FI = CSI[i].getFrameIdx(); 402 switch (Reg) { 403 case ARM::R8: 404 case ARM::R9: 405 case ARM::R10: 406 case ARM::R11: 407 case ARM::R12: 408 if (STI.splitFramePushPop(MF)) { 409 GPRCS2Size += 4; 410 break; 411 } 412 LLVM_FALLTHROUGH; 413 case ARM::R0: 414 case ARM::R1: 415 case ARM::R2: 416 case ARM::R3: 417 case ARM::R4: 418 case ARM::R5: 419 case ARM::R6: 420 case ARM::R7: 421 case ARM::LR: 422 if (Reg == FramePtr) 423 FramePtrSpillFI = FI; 424 GPRCS1Size += 4; 425 break; 426 default: 427 // This is a DPR. Exclude the aligned DPRCS2 spills. 428 if (Reg == ARM::D8) 429 D8SpillFI = FI; 430 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) 431 DPRCSSize += 8; 432 } 433 } 434 435 // Move past area 1. 436 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 437 if (GPRCS1Size > 0) { 438 GPRCS1Push = LastPush = MBBI++; 439 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); 440 } 441 442 // Determine starting offsets of spill areas. 443 unsigned GPRCS1Offset = NumBytes - ArgRegsSaveSize - GPRCS1Size; 444 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 445 unsigned DPRAlign = DPRCSSize ? std::min(8U, Align) : 4U; 446 unsigned DPRGapSize = (GPRCS1Size + GPRCS2Size + ArgRegsSaveSize) % DPRAlign; 447 unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 448 int FramePtrOffsetInPush = 0; 449 if (HasFP) { 450 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); 451 assert(getMaxFPOffset(*MF.getFunction(), *AFI) <= FPOffset && 452 "Max FP estimation is wrong"); 453 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize; 454 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 455 NumBytes); 456 } 457 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 458 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 459 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 460 461 // Move past area 2. 462 if (GPRCS2Size > 0) { 463 GPRCS2Push = LastPush = MBBI++; 464 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 465 } 466 467 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 468 // .cfi_offset operations will reflect that. 469 if (DPRGapSize) { 470 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 471 if (LastPush != MBB.end() && 472 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 473 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 474 else { 475 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 476 MachineInstr::FrameSetup); 477 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); 478 } 479 } 480 481 // Move past area 3. 482 if (DPRCSSize > 0) { 483 // Since vpush register list cannot have gaps, there may be multiple vpush 484 // instructions in the prologue. 485 while (MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 486 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); 487 LastPush = MBBI++; 488 } 489 } 490 491 // Move past the aligned DPRCS2 area. 492 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 493 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 494 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 495 // leaves the stack pointer pointing to the DPRCS2 area. 496 // 497 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 498 NumBytes += MFI.getObjectOffset(D8SpillFI); 499 } else 500 NumBytes = DPRCSOffset; 501 502 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 503 uint32_t NumWords = NumBytes >> 2; 504 505 if (NumWords < 65536) 506 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 507 .addImm(NumWords) 508 .setMIFlags(MachineInstr::FrameSetup) 509 .add(predOps(ARMCC::AL)); 510 else 511 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4) 512 .addImm(NumWords) 513 .setMIFlags(MachineInstr::FrameSetup); 514 515 switch (TM.getCodeModel()) { 516 case CodeModel::Small: 517 case CodeModel::Medium: 518 case CodeModel::Kernel: 519 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 520 .add(predOps(ARMCC::AL)) 521 .addExternalSymbol("__chkstk") 522 .addReg(ARM::R4, RegState::Implicit) 523 .setMIFlags(MachineInstr::FrameSetup); 524 break; 525 case CodeModel::Large: 526 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 527 .addExternalSymbol("__chkstk") 528 .setMIFlags(MachineInstr::FrameSetup); 529 530 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 531 .add(predOps(ARMCC::AL)) 532 .addReg(ARM::R12, RegState::Kill) 533 .addReg(ARM::R4, RegState::Implicit) 534 .setMIFlags(MachineInstr::FrameSetup); 535 break; 536 } 537 538 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 539 .addReg(ARM::SP, RegState::Kill) 540 .addReg(ARM::R4, RegState::Kill) 541 .setMIFlags(MachineInstr::FrameSetup) 542 .add(predOps(ARMCC::AL)) 543 .add(condCodeOp()); 544 NumBytes = 0; 545 } 546 547 if (NumBytes) { 548 // Adjust SP after all the callee-save spills. 549 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 550 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 551 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 552 else { 553 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 554 MachineInstr::FrameSetup); 555 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 556 } 557 558 if (HasFP && isARM) 559 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 560 // Note it's not safe to do this in Thumb2 mode because it would have 561 // taken two instructions: 562 // mov sp, r7 563 // sub sp, #24 564 // If an interrupt is taken between the two instructions, then sp is in 565 // an inconsistent state (pointing to the middle of callee-saved area). 566 // The interrupt handler can end up clobbering the registers. 567 AFI->setShouldRestoreSPFromFP(true); 568 } 569 570 // Set FP to point to the stack slot that contains the previous FP. 571 // For iOS, FP is R7, which has now been stored in spill area 1. 572 // Otherwise, if this is not iOS, all the callee-saved registers go 573 // into spill area 1, including the FP in R11. In either case, it 574 // is in area one and the adjustment needs to take place just after 575 // that push. 576 if (HasFP) { 577 MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push); 578 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); 579 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, 580 dl, TII, FramePtr, ARM::SP, 581 PushSize + FramePtrOffsetInPush, 582 MachineInstr::FrameSetup); 583 if (FramePtrOffsetInPush + PushSize != 0) { 584 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa( 585 nullptr, MRI->getDwarfRegNum(FramePtr, true), 586 -(ArgRegsSaveSize - FramePtrOffsetInPush))); 587 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 588 .addCFIIndex(CFIIndex) 589 .setMIFlags(MachineInstr::FrameSetup); 590 } else { 591 unsigned CFIIndex = 592 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 593 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 594 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 595 .addCFIIndex(CFIIndex) 596 .setMIFlags(MachineInstr::FrameSetup); 597 } 598 } 599 600 // Now that the prologue's actual instructions are finalised, we can insert 601 // the necessary DWARF cf instructions to describe the situation. Start by 602 // recording where each register ended up: 603 if (GPRCS1Size > 0) { 604 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push); 605 int CFIIndex; 606 for (const auto &Entry : CSI) { 607 unsigned Reg = Entry.getReg(); 608 int FI = Entry.getFrameIdx(); 609 switch (Reg) { 610 case ARM::R8: 611 case ARM::R9: 612 case ARM::R10: 613 case ARM::R11: 614 case ARM::R12: 615 if (STI.splitFramePushPop(MF)) 616 break; 617 LLVM_FALLTHROUGH; 618 case ARM::R0: 619 case ARM::R1: 620 case ARM::R2: 621 case ARM::R3: 622 case ARM::R4: 623 case ARM::R5: 624 case ARM::R6: 625 case ARM::R7: 626 case ARM::LR: 627 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 628 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI))); 629 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 630 .addCFIIndex(CFIIndex) 631 .setMIFlags(MachineInstr::FrameSetup); 632 break; 633 } 634 } 635 } 636 637 if (GPRCS2Size > 0) { 638 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push); 639 for (const auto &Entry : CSI) { 640 unsigned Reg = Entry.getReg(); 641 int FI = Entry.getFrameIdx(); 642 switch (Reg) { 643 case ARM::R8: 644 case ARM::R9: 645 case ARM::R10: 646 case ARM::R11: 647 case ARM::R12: 648 if (STI.splitFramePushPop(MF)) { 649 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 650 unsigned Offset = MFI.getObjectOffset(FI); 651 unsigned CFIIndex = MF.addFrameInst( 652 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 653 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 654 .addCFIIndex(CFIIndex) 655 .setMIFlags(MachineInstr::FrameSetup); 656 } 657 break; 658 } 659 } 660 } 661 662 if (DPRCSSize > 0) { 663 // Since vpush register list cannot have gaps, there may be multiple vpush 664 // instructions in the prologue. 665 MachineBasicBlock::iterator Pos = std::next(LastPush); 666 for (const auto &Entry : CSI) { 667 unsigned Reg = Entry.getReg(); 668 int FI = Entry.getFrameIdx(); 669 if ((Reg >= ARM::D0 && Reg <= ARM::D31) && 670 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) { 671 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 672 unsigned Offset = MFI.getObjectOffset(FI); 673 unsigned CFIIndex = MF.addFrameInst( 674 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 675 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 676 .addCFIIndex(CFIIndex) 677 .setMIFlags(MachineInstr::FrameSetup); 678 } 679 } 680 } 681 682 // Now we can emit descriptions of where the canonical frame address was 683 // throughout the process. If we have a frame pointer, it takes over the job 684 // half-way through, so only the first few .cfi_def_cfa_offset instructions 685 // actually get emitted. 686 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 687 688 if (STI.isTargetELF() && hasFP(MF)) 689 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 690 AFI->getFramePtrSpillOffset()); 691 692 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 693 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 694 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 695 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 696 697 // If we need dynamic stack realignment, do it here. Be paranoid and make 698 // sure if we also have VLAs, we have a base pointer for frame access. 699 // If aligned NEON registers were spilled, the stack has already been 700 // realigned. 701 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) { 702 unsigned MaxAlign = MFI.getMaxAlignment(); 703 assert(!AFI->isThumb1OnlyFunction()); 704 if (!AFI->isThumbFunction()) { 705 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 706 false); 707 } else { 708 // We cannot use sp as source/dest register here, thus we're using r4 to 709 // perform the calculations. We're emitting the following sequence: 710 // mov r4, sp 711 // -- use emitAligningInstructions to produce best sequence to zero 712 // -- out lower bits in r4 713 // mov sp, r4 714 // FIXME: It will be better just to find spare register here. 715 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 716 .addReg(ARM::SP, RegState::Kill) 717 .add(predOps(ARMCC::AL)); 718 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 719 false); 720 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 721 .addReg(ARM::R4, RegState::Kill) 722 .add(predOps(ARMCC::AL)); 723 } 724 725 AFI->setShouldRestoreSPFromFP(true); 726 } 727 728 // If we need a base pointer, set it up here. It's whatever the value 729 // of the stack pointer is at this point. Any variable size objects 730 // will be allocated after this, so we can still use the base pointer 731 // to reference locals. 732 // FIXME: Clarify FrameSetup flags here. 733 if (RegInfo->hasBasePointer(MF)) { 734 if (isARM) 735 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 736 .addReg(ARM::SP) 737 .add(predOps(ARMCC::AL)) 738 .add(condCodeOp()); 739 else 740 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 741 .addReg(ARM::SP) 742 .add(predOps(ARMCC::AL)); 743 } 744 745 // If the frame has variable sized objects then the epilogue must restore 746 // the sp from fp. We can assume there's an FP here since hasFP already 747 // checks for hasVarSizedObjects. 748 if (MFI.hasVarSizedObjects()) 749 AFI->setShouldRestoreSPFromFP(true); 750 } 751 752 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 753 MachineBasicBlock &MBB) const { 754 MachineFrameInfo &MFI = MF.getFrameInfo(); 755 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 756 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 757 const ARMBaseInstrInfo &TII = 758 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 759 assert(!AFI->isThumb1OnlyFunction() && 760 "This emitEpilogue does not support Thumb1!"); 761 bool isARM = !AFI->isThumbFunction(); 762 763 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 764 int NumBytes = (int)MFI.getStackSize(); 765 unsigned FramePtr = RegInfo->getFrameRegister(MF); 766 767 // All calls are tail calls in GHC calling conv, and functions have no 768 // prologue/epilogue. 769 if (MF.getFunction()->getCallingConv() == CallingConv::GHC) 770 return; 771 772 // First put ourselves on the first (from top) terminator instructions. 773 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 774 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 775 776 if (!AFI->hasStackFrame()) { 777 if (NumBytes - ArgRegsSaveSize != 0) 778 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize); 779 } else { 780 // Unwind MBBI to point to first LDR / VLDRD. 781 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 782 if (MBBI != MBB.begin()) { 783 do { 784 --MBBI; 785 } while (MBBI != MBB.begin() && isCSRestore(*MBBI, TII, CSRegs)); 786 if (!isCSRestore(*MBBI, TII, CSRegs)) 787 ++MBBI; 788 } 789 790 // Move SP to start of FP callee save spill area. 791 NumBytes -= (ArgRegsSaveSize + 792 AFI->getGPRCalleeSavedArea1Size() + 793 AFI->getGPRCalleeSavedArea2Size() + 794 AFI->getDPRCalleeSavedGapSize() + 795 AFI->getDPRCalleeSavedAreaSize()); 796 797 // Reset SP based on frame pointer only if the stack frame extends beyond 798 // frame pointer stack slot or target is ELF and the function has FP. 799 if (AFI->shouldRestoreSPFromFP()) { 800 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 801 if (NumBytes) { 802 if (isARM) 803 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 804 ARMCC::AL, 0, TII); 805 else { 806 // It's not possible to restore SP from FP in a single instruction. 807 // For iOS, this looks like: 808 // mov sp, r7 809 // sub sp, #24 810 // This is bad, if an interrupt is taken after the mov, sp is in an 811 // inconsistent state. 812 // Use the first callee-saved register as a scratch register. 813 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 814 "No scratch register to restore SP from FP!"); 815 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 816 ARMCC::AL, 0, TII); 817 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 818 .addReg(ARM::R4) 819 .add(predOps(ARMCC::AL)); 820 } 821 } else { 822 // Thumb2 or ARM. 823 if (isARM) 824 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 825 .addReg(FramePtr) 826 .add(predOps(ARMCC::AL)) 827 .add(condCodeOp()); 828 else 829 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 830 .addReg(FramePtr) 831 .add(predOps(ARMCC::AL)); 832 } 833 } else if (NumBytes && 834 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 835 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes); 836 837 // Increment past our save areas. 838 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { 839 MBBI++; 840 // Since vpop register list cannot have gaps, there may be multiple vpop 841 // instructions in the epilogue. 842 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 843 MBBI++; 844 } 845 if (AFI->getDPRCalleeSavedGapSize()) { 846 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 847 "unexpected DPR alignment gap"); 848 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize()); 849 } 850 851 if (AFI->getGPRCalleeSavedArea2Size()) MBBI++; 852 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 853 } 854 855 if (ArgRegsSaveSize) 856 emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize); 857 } 858 859 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 860 /// debug info. It's the same as what we use for resolving the code-gen 861 /// references for now. FIXME: This can go wrong when references are 862 /// SP-relative and simple call frames aren't used. 863 int 864 ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 865 unsigned &FrameReg) const { 866 return ResolveFrameIndexReference(MF, FI, FrameReg, 0); 867 } 868 869 int 870 ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 871 int FI, unsigned &FrameReg, 872 int SPAdj) const { 873 const MachineFrameInfo &MFI = MF.getFrameInfo(); 874 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 875 MF.getSubtarget().getRegisterInfo()); 876 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 877 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 878 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 879 bool isFixed = MFI.isFixedObjectIndex(FI); 880 881 FrameReg = ARM::SP; 882 Offset += SPAdj; 883 884 // SP can move around if there are allocas. We may also lose track of SP 885 // when emergency spilling inside a non-reserved call frame setup. 886 bool hasMovingSP = !hasReservedCallFrame(MF); 887 888 // When dynamically realigning the stack, use the frame pointer for 889 // parameters, and the stack/base pointer for locals. 890 if (RegInfo->needsStackRealignment(MF)) { 891 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 892 if (isFixed) { 893 FrameReg = RegInfo->getFrameRegister(MF); 894 Offset = FPOffset; 895 } else if (hasMovingSP) { 896 assert(RegInfo->hasBasePointer(MF) && 897 "VLAs and dynamic stack alignment, but missing base pointer!"); 898 FrameReg = RegInfo->getBaseRegister(); 899 } 900 return Offset; 901 } 902 903 // If there is a frame pointer, use it when we can. 904 if (hasFP(MF) && AFI->hasStackFrame()) { 905 // Use frame pointer to reference fixed objects. Use it for locals if 906 // there are VLAs (and thus the SP isn't reliable as a base). 907 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 908 FrameReg = RegInfo->getFrameRegister(MF); 909 return FPOffset; 910 } else if (hasMovingSP) { 911 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 912 if (AFI->isThumb2Function()) { 913 // Try to use the frame pointer if we can, else use the base pointer 914 // since it's available. This is handy for the emergency spill slot, in 915 // particular. 916 if (FPOffset >= -255 && FPOffset < 0) { 917 FrameReg = RegInfo->getFrameRegister(MF); 918 return FPOffset; 919 } 920 } 921 } else if (AFI->isThumb2Function()) { 922 // Use add <rd>, sp, #<imm8> 923 // ldr <rd>, [sp, #<imm8>] 924 // if at all possible to save space. 925 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 926 return Offset; 927 // In Thumb2 mode, the negative offset is very limited. Try to avoid 928 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 929 if (FPOffset >= -255 && FPOffset < 0) { 930 FrameReg = RegInfo->getFrameRegister(MF); 931 return FPOffset; 932 } 933 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 934 // Otherwise, use SP or FP, whichever is closer to the stack slot. 935 FrameReg = RegInfo->getFrameRegister(MF); 936 return FPOffset; 937 } 938 } 939 // Use the base pointer if we have one. 940 if (RegInfo->hasBasePointer(MF)) 941 FrameReg = RegInfo->getBaseRegister(); 942 return Offset; 943 } 944 945 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 946 MachineBasicBlock::iterator MI, 947 const std::vector<CalleeSavedInfo> &CSI, 948 unsigned StmOpc, unsigned StrOpc, 949 bool NoGap, 950 bool(*Func)(unsigned, bool), 951 unsigned NumAlignedDPRCS2Regs, 952 unsigned MIFlags) const { 953 MachineFunction &MF = *MBB.getParent(); 954 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 955 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 956 957 DebugLoc DL; 958 959 using RegAndKill = std::pair<unsigned, bool>; 960 961 SmallVector<RegAndKill, 4> Regs; 962 unsigned i = CSI.size(); 963 while (i != 0) { 964 unsigned LastReg = 0; 965 for (; i != 0; --i) { 966 unsigned Reg = CSI[i-1].getReg(); 967 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 968 969 // D-registers in the aligned area DPRCS2 are NOT spilled here. 970 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 971 continue; 972 973 const MachineRegisterInfo &MRI = MF.getRegInfo(); 974 bool isLiveIn = MRI.isLiveIn(Reg); 975 if (!isLiveIn && !MRI.isReserved(Reg)) 976 MBB.addLiveIn(Reg); 977 // If NoGap is true, push consecutive registers and then leave the rest 978 // for other instructions. e.g. 979 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 980 if (NoGap && LastReg && LastReg != Reg-1) 981 break; 982 LastReg = Reg; 983 // Do not set a kill flag on values that are also marked as live-in. This 984 // happens with the @llvm-returnaddress intrinsic and with arguments 985 // passed in callee saved registers. 986 // Omitting the kill flags is conservatively correct even if the live-in 987 // is not used after all. 988 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 989 } 990 991 if (Regs.empty()) 992 continue; 993 994 std::sort(Regs.begin(), Regs.end(), [&](const RegAndKill &LHS, 995 const RegAndKill &RHS) { 996 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 997 }); 998 999 if (Regs.size() > 1 || StrOpc== 0) { 1000 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 1001 .addReg(ARM::SP) 1002 .setMIFlags(MIFlags) 1003 .add(predOps(ARMCC::AL)); 1004 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1005 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 1006 } else if (Regs.size() == 1) { 1007 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 1008 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 1009 .addReg(ARM::SP) 1010 .setMIFlags(MIFlags) 1011 .addImm(-4) 1012 .add(predOps(ARMCC::AL)); 1013 } 1014 Regs.clear(); 1015 1016 // Put any subsequent vpush instructions before this one: they will refer to 1017 // higher register numbers so need to be pushed first in order to preserve 1018 // monotonicity. 1019 if (MI != MBB.begin()) 1020 --MI; 1021 } 1022 } 1023 1024 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1025 MachineBasicBlock::iterator MI, 1026 std::vector<CalleeSavedInfo> &CSI, 1027 unsigned LdmOpc, unsigned LdrOpc, 1028 bool isVarArg, bool NoGap, 1029 bool(*Func)(unsigned, bool), 1030 unsigned NumAlignedDPRCS2Regs) const { 1031 MachineFunction &MF = *MBB.getParent(); 1032 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1033 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1034 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1035 DebugLoc DL; 1036 bool isTailCall = false; 1037 bool isInterrupt = false; 1038 bool isTrap = false; 1039 if (MBB.end() != MI) { 1040 DL = MI->getDebugLoc(); 1041 unsigned RetOpcode = MI->getOpcode(); 1042 isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri); 1043 isInterrupt = 1044 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1045 isTrap = 1046 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1047 RetOpcode == ARM::tTRAP; 1048 } 1049 1050 SmallVector<unsigned, 4> Regs; 1051 unsigned i = CSI.size(); 1052 while (i != 0) { 1053 unsigned LastReg = 0; 1054 bool DeleteRet = false; 1055 for (; i != 0; --i) { 1056 unsigned Reg = CSI[i-1].getReg(); 1057 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1058 1059 // The aligned reloads from area DPRCS2 are not inserted here. 1060 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1061 continue; 1062 1063 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1064 !isTrap && STI.hasV5TOps()) { 1065 if (MBB.succ_empty()) { 1066 Reg = ARM::PC; 1067 DeleteRet = true; 1068 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1069 } else 1070 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1071 // Fold the return instruction into the LDM. 1072 } 1073 1074 // If NoGap is true, pop consecutive registers and then leave the rest 1075 // for other instructions. e.g. 1076 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1077 if (NoGap && LastReg && LastReg != Reg-1) 1078 break; 1079 1080 LastReg = Reg; 1081 Regs.push_back(Reg); 1082 } 1083 1084 if (Regs.empty()) 1085 continue; 1086 1087 std::sort(Regs.begin(), Regs.end(), [&](unsigned LHS, unsigned RHS) { 1088 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1089 }); 1090 1091 if (Regs.size() > 1 || LdrOpc == 0) { 1092 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1093 .addReg(ARM::SP) 1094 .add(predOps(ARMCC::AL)); 1095 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1096 MIB.addReg(Regs[i], getDefRegState(true)); 1097 if (DeleteRet) { 1098 if (MI != MBB.end()) { 1099 MIB.copyImplicitOps(*MI); 1100 MI->eraseFromParent(); 1101 } 1102 // If LR is not restored, mark it in CSI. 1103 for (CalleeSavedInfo &I : CSI) { 1104 if (I.getReg() != ARM::LR) 1105 continue; 1106 I.setRestored(false); 1107 break; 1108 } 1109 } 1110 MI = MIB; 1111 } else if (Regs.size() == 1) { 1112 // If we adjusted the reg to PC from LR above, switch it back here. We 1113 // only do that for LDM. 1114 if (Regs[0] == ARM::PC) 1115 Regs[0] = ARM::LR; 1116 MachineInstrBuilder MIB = 1117 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1118 .addReg(ARM::SP, RegState::Define) 1119 .addReg(ARM::SP); 1120 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1121 // that refactoring is complete (eventually). 1122 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1123 MIB.addReg(0); 1124 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1125 } else 1126 MIB.addImm(4); 1127 MIB.add(predOps(ARMCC::AL)); 1128 } 1129 Regs.clear(); 1130 1131 // Put any subsequent vpop instructions after this one: they will refer to 1132 // higher register numbers so need to be popped afterwards. 1133 if (MI != MBB.end()) 1134 ++MI; 1135 } 1136 } 1137 1138 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1139 /// starting from d8. Also insert stack realignment code and leave the stack 1140 /// pointer pointing to the d8 spill slot. 1141 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1142 MachineBasicBlock::iterator MI, 1143 unsigned NumAlignedDPRCS2Regs, 1144 const std::vector<CalleeSavedInfo> &CSI, 1145 const TargetRegisterInfo *TRI) { 1146 MachineFunction &MF = *MBB.getParent(); 1147 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1148 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1149 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1150 MachineFrameInfo &MFI = MF.getFrameInfo(); 1151 1152 // Mark the D-register spill slots as properly aligned. Since MFI computes 1153 // stack slot layout backwards, this can actually mean that the d-reg stack 1154 // slot offsets can be wrong. The offset for d8 will always be correct. 1155 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 1156 unsigned DNum = CSI[i].getReg() - ARM::D8; 1157 if (DNum > NumAlignedDPRCS2Regs - 1) 1158 continue; 1159 int FI = CSI[i].getFrameIdx(); 1160 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1161 // registers will be 8-byte aligned. 1162 MFI.setObjectAlignment(FI, DNum % 2 ? 8 : 16); 1163 1164 // The stack slot for D8 needs to be maximally aligned because this is 1165 // actually the point where we align the stack pointer. MachineFrameInfo 1166 // computes all offsets relative to the incoming stack pointer which is a 1167 // bit weird when realigning the stack. Any extra padding for this 1168 // over-alignment is not realized because the code inserted below adjusts 1169 // the stack pointer by numregs * 8 before aligning the stack pointer. 1170 if (DNum == 0) 1171 MFI.setObjectAlignment(FI, MFI.getMaxAlignment()); 1172 } 1173 1174 // Move the stack pointer to the d8 spill slot, and align it at the same 1175 // time. Leave the stack slot address in the scratch register r4. 1176 // 1177 // sub r4, sp, #numregs * 8 1178 // bic r4, r4, #align - 1 1179 // mov sp, r4 1180 // 1181 bool isThumb = AFI->isThumbFunction(); 1182 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1183 AFI->setShouldRestoreSPFromFP(true); 1184 1185 // sub r4, sp, #numregs * 8 1186 // The immediate is <= 64, so it doesn't need any special encoding. 1187 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1188 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1189 .addReg(ARM::SP) 1190 .addImm(8 * NumAlignedDPRCS2Regs) 1191 .add(predOps(ARMCC::AL)) 1192 .add(condCodeOp()); 1193 1194 unsigned MaxAlign = MF.getFrameInfo().getMaxAlignment(); 1195 // We must set parameter MustBeSingleInstruction to true, since 1196 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1197 // stack alignment. Luckily, this can always be done since all ARM 1198 // architecture versions that support Neon also support the BFC 1199 // instruction. 1200 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1201 1202 // mov sp, r4 1203 // The stack pointer must be adjusted before spilling anything, otherwise 1204 // the stack slots could be clobbered by an interrupt handler. 1205 // Leave r4 live, it is used below. 1206 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1207 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1208 .addReg(ARM::R4) 1209 .add(predOps(ARMCC::AL)); 1210 if (!isThumb) 1211 MIB.add(condCodeOp()); 1212 1213 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1214 // r4 holds the stack slot address. 1215 unsigned NextReg = ARM::D8; 1216 1217 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1218 // The writeback is only needed when emitting two vst1.64 instructions. 1219 if (NumAlignedDPRCS2Regs >= 6) { 1220 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1221 &ARM::QQPRRegClass); 1222 MBB.addLiveIn(SupReg); 1223 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1224 .addReg(ARM::R4, RegState::Kill) 1225 .addImm(16) 1226 .addReg(NextReg) 1227 .addReg(SupReg, RegState::ImplicitKill) 1228 .add(predOps(ARMCC::AL)); 1229 NextReg += 4; 1230 NumAlignedDPRCS2Regs -= 4; 1231 } 1232 1233 // We won't modify r4 beyond this point. It currently points to the next 1234 // register to be spilled. 1235 unsigned R4BaseReg = NextReg; 1236 1237 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1238 if (NumAlignedDPRCS2Regs >= 4) { 1239 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1240 &ARM::QQPRRegClass); 1241 MBB.addLiveIn(SupReg); 1242 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1243 .addReg(ARM::R4) 1244 .addImm(16) 1245 .addReg(NextReg) 1246 .addReg(SupReg, RegState::ImplicitKill) 1247 .add(predOps(ARMCC::AL)); 1248 NextReg += 4; 1249 NumAlignedDPRCS2Regs -= 4; 1250 } 1251 1252 // 16-byte aligned vst1.64 with 2 d-regs. 1253 if (NumAlignedDPRCS2Regs >= 2) { 1254 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1255 &ARM::QPRRegClass); 1256 MBB.addLiveIn(SupReg); 1257 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1258 .addReg(ARM::R4) 1259 .addImm(16) 1260 .addReg(SupReg) 1261 .add(predOps(ARMCC::AL)); 1262 NextReg += 2; 1263 NumAlignedDPRCS2Regs -= 2; 1264 } 1265 1266 // Finally, use a vanilla vstr.64 for the odd last register. 1267 if (NumAlignedDPRCS2Regs) { 1268 MBB.addLiveIn(NextReg); 1269 // vstr.64 uses addrmode5 which has an offset scale of 4. 1270 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1271 .addReg(NextReg) 1272 .addReg(ARM::R4) 1273 .addImm((NextReg - R4BaseReg) * 2) 1274 .add(predOps(ARMCC::AL)); 1275 } 1276 1277 // The last spill instruction inserted should kill the scratch register r4. 1278 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1279 } 1280 1281 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1282 /// iterator to the following instruction. 1283 static MachineBasicBlock::iterator 1284 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1285 unsigned NumAlignedDPRCS2Regs) { 1286 // sub r4, sp, #numregs * 8 1287 // bic r4, r4, #align - 1 1288 // mov sp, r4 1289 ++MI; ++MI; ++MI; 1290 assert(MI->mayStore() && "Expecting spill instruction"); 1291 1292 // These switches all fall through. 1293 switch(NumAlignedDPRCS2Regs) { 1294 case 7: 1295 ++MI; 1296 assert(MI->mayStore() && "Expecting spill instruction"); 1297 LLVM_FALLTHROUGH; 1298 default: 1299 ++MI; 1300 assert(MI->mayStore() && "Expecting spill instruction"); 1301 LLVM_FALLTHROUGH; 1302 case 1: 1303 case 2: 1304 case 4: 1305 assert(MI->killsRegister(ARM::R4) && "Missed kill flag"); 1306 ++MI; 1307 } 1308 return MI; 1309 } 1310 1311 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1312 /// starting from d8. These instructions are assumed to execute while the 1313 /// stack is still aligned, unlike the code inserted by emitPopInst. 1314 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1315 MachineBasicBlock::iterator MI, 1316 unsigned NumAlignedDPRCS2Regs, 1317 const std::vector<CalleeSavedInfo> &CSI, 1318 const TargetRegisterInfo *TRI) { 1319 MachineFunction &MF = *MBB.getParent(); 1320 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1321 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1322 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1323 1324 // Find the frame index assigned to d8. 1325 int D8SpillFI = 0; 1326 for (unsigned i = 0, e = CSI.size(); i != e; ++i) 1327 if (CSI[i].getReg() == ARM::D8) { 1328 D8SpillFI = CSI[i].getFrameIdx(); 1329 break; 1330 } 1331 1332 // Materialize the address of the d8 spill slot into the scratch register r4. 1333 // This can be fairly complicated if the stack frame is large, so just use 1334 // the normal frame index elimination mechanism to do it. This code runs as 1335 // the initial part of the epilog where the stack and base pointers haven't 1336 // been changed yet. 1337 bool isThumb = AFI->isThumbFunction(); 1338 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1339 1340 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 1341 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1342 .addFrameIndex(D8SpillFI) 1343 .addImm(0) 1344 .add(predOps(ARMCC::AL)) 1345 .add(condCodeOp()); 1346 1347 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 1348 unsigned NextReg = ARM::D8; 1349 1350 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 1351 if (NumAlignedDPRCS2Regs >= 6) { 1352 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1353 &ARM::QQPRRegClass); 1354 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 1355 .addReg(ARM::R4, RegState::Define) 1356 .addReg(ARM::R4, RegState::Kill) 1357 .addImm(16) 1358 .addReg(SupReg, RegState::ImplicitDefine) 1359 .add(predOps(ARMCC::AL)); 1360 NextReg += 4; 1361 NumAlignedDPRCS2Regs -= 4; 1362 } 1363 1364 // We won't modify r4 beyond this point. It currently points to the next 1365 // register to be spilled. 1366 unsigned R4BaseReg = NextReg; 1367 1368 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 1369 if (NumAlignedDPRCS2Regs >= 4) { 1370 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1371 &ARM::QQPRRegClass); 1372 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 1373 .addReg(ARM::R4) 1374 .addImm(16) 1375 .addReg(SupReg, RegState::ImplicitDefine) 1376 .add(predOps(ARMCC::AL)); 1377 NextReg += 4; 1378 NumAlignedDPRCS2Regs -= 4; 1379 } 1380 1381 // 16-byte aligned vld1.64 with 2 d-regs. 1382 if (NumAlignedDPRCS2Regs >= 2) { 1383 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1384 &ARM::QPRRegClass); 1385 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 1386 .addReg(ARM::R4) 1387 .addImm(16) 1388 .add(predOps(ARMCC::AL)); 1389 NextReg += 2; 1390 NumAlignedDPRCS2Regs -= 2; 1391 } 1392 1393 // Finally, use a vanilla vldr.64 for the remaining odd register. 1394 if (NumAlignedDPRCS2Regs) 1395 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 1396 .addReg(ARM::R4) 1397 .addImm(2 * (NextReg - R4BaseReg)) 1398 .add(predOps(ARMCC::AL)); 1399 1400 // Last store kills r4. 1401 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1402 } 1403 1404 bool ARMFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB, 1405 MachineBasicBlock::iterator MI, 1406 const std::vector<CalleeSavedInfo> &CSI, 1407 const TargetRegisterInfo *TRI) const { 1408 if (CSI.empty()) 1409 return false; 1410 1411 MachineFunction &MF = *MBB.getParent(); 1412 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1413 1414 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 1415 unsigned PushOneOpc = AFI->isThumbFunction() ? 1416 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 1417 unsigned FltOpc = ARM::VSTMDDB_UPD; 1418 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1419 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0, 1420 MachineInstr::FrameSetup); 1421 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0, 1422 MachineInstr::FrameSetup); 1423 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 1424 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 1425 1426 // The code above does not insert spill code for the aligned DPRCS2 registers. 1427 // The stack realignment code will be inserted between the push instructions 1428 // and these spills. 1429 if (NumAlignedDPRCS2Regs) 1430 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1431 1432 return true; 1433 } 1434 1435 bool ARMFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, 1436 MachineBasicBlock::iterator MI, 1437 std::vector<CalleeSavedInfo> &CSI, 1438 const TargetRegisterInfo *TRI) const { 1439 if (CSI.empty()) 1440 return false; 1441 1442 MachineFunction &MF = *MBB.getParent(); 1443 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1444 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 1445 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1446 1447 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 1448 // registers. Do that here instead. 1449 if (NumAlignedDPRCS2Regs) 1450 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1451 1452 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1453 unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM; 1454 unsigned FltOpc = ARM::VLDMDIA_UPD; 1455 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 1456 NumAlignedDPRCS2Regs); 1457 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1458 &isARMArea2Register, 0); 1459 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1460 &isARMArea1Register, 0); 1461 1462 return true; 1463 } 1464 1465 // FIXME: Make generic? 1466 static unsigned GetFunctionSizeInBytes(const MachineFunction &MF, 1467 const ARMBaseInstrInfo &TII) { 1468 unsigned FnSize = 0; 1469 for (auto &MBB : MF) { 1470 for (auto &MI : MBB) 1471 FnSize += TII.getInstSizeInBytes(MI); 1472 } 1473 return FnSize; 1474 } 1475 1476 /// estimateRSStackSizeLimit - Look at each instruction that references stack 1477 /// frames and return the stack size limit beyond which some of these 1478 /// instructions will require a scratch register during their expansion later. 1479 // FIXME: Move to TII? 1480 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 1481 const TargetFrameLowering *TFI) { 1482 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1483 unsigned Limit = (1 << 12) - 1; 1484 for (auto &MBB : MF) { 1485 for (auto &MI : MBB) { 1486 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1487 if (!MI.getOperand(i).isFI()) 1488 continue; 1489 1490 // When using ADDri to get the address of a stack object, 255 is the 1491 // largest offset guaranteed to fit in the immediate offset. 1492 if (MI.getOpcode() == ARM::ADDri) { 1493 Limit = std::min(Limit, (1U << 8) - 1); 1494 break; 1495 } 1496 1497 // Otherwise check the addressing mode. 1498 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 1499 case ARMII::AddrMode3: 1500 case ARMII::AddrModeT2_i8: 1501 Limit = std::min(Limit, (1U << 8) - 1); 1502 break; 1503 case ARMII::AddrMode5: 1504 case ARMII::AddrModeT2_i8s4: 1505 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 1506 break; 1507 case ARMII::AddrModeT2_i12: 1508 // i12 supports only positive offset so these will be converted to 1509 // i8 opcodes. See llvm::rewriteT2FrameIndex. 1510 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 1511 Limit = std::min(Limit, (1U << 8) - 1); 1512 break; 1513 case ARMII::AddrMode4: 1514 case ARMII::AddrMode6: 1515 // Addressing modes 4 & 6 (load/store) instructions can't encode an 1516 // immediate offset for stack references. 1517 return 0; 1518 default: 1519 break; 1520 } 1521 break; // At most one FI per instruction 1522 } 1523 } 1524 } 1525 1526 return Limit; 1527 } 1528 1529 // In functions that realign the stack, it can be an advantage to spill the 1530 // callee-saved vector registers after realigning the stack. The vst1 and vld1 1531 // instructions take alignment hints that can improve performance. 1532 static void 1533 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 1534 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 1535 if (!SpillAlignedNEONRegs) 1536 return; 1537 1538 // Naked functions don't spill callee-saved registers. 1539 if (MF.getFunction()->hasFnAttribute(Attribute::Naked)) 1540 return; 1541 1542 // We are planning to use NEON instructions vst1 / vld1. 1543 if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON()) 1544 return; 1545 1546 // Don't bother if the default stack alignment is sufficiently high. 1547 if (MF.getSubtarget().getFrameLowering()->getStackAlignment() >= 8) 1548 return; 1549 1550 // Aligned spills require stack realignment. 1551 if (!static_cast<const ARMBaseRegisterInfo *>( 1552 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 1553 return; 1554 1555 // We always spill contiguous d-registers starting from d8. Count how many 1556 // needs spilling. The register allocator will almost always use the 1557 // callee-saved registers in order, but it can happen that there are holes in 1558 // the range. Registers above the hole will be spilled to the standard DPRCS 1559 // area. 1560 unsigned NumSpills = 0; 1561 for (; NumSpills < 8; ++NumSpills) 1562 if (!SavedRegs.test(ARM::D8 + NumSpills)) 1563 break; 1564 1565 // Don't do this for just one d-register. It's not worth it. 1566 if (NumSpills < 2) 1567 return; 1568 1569 // Spill the first NumSpills D-registers after realigning the stack. 1570 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 1571 1572 // A scratch register is required for the vst1 / vld1 instructions. 1573 SavedRegs.set(ARM::R4); 1574 } 1575 1576 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 1577 BitVector &SavedRegs, 1578 RegScavenger *RS) const { 1579 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1580 // This tells PEI to spill the FP as if it is any other callee-save register 1581 // to take advantage the eliminateFrameIndex machinery. This also ensures it 1582 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 1583 // to combine multiple loads / stores. 1584 bool CanEliminateFrame = true; 1585 bool CS1Spilled = false; 1586 bool LRSpilled = false; 1587 unsigned NumGPRSpills = 0; 1588 unsigned NumFPRSpills = 0; 1589 SmallVector<unsigned, 4> UnspilledCS1GPRs; 1590 SmallVector<unsigned, 4> UnspilledCS2GPRs; 1591 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1592 MF.getSubtarget().getRegisterInfo()); 1593 const ARMBaseInstrInfo &TII = 1594 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1595 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1596 MachineFrameInfo &MFI = MF.getFrameInfo(); 1597 MachineRegisterInfo &MRI = MF.getRegInfo(); 1598 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1599 (void)TRI; // Silence unused warning in non-assert builds. 1600 unsigned FramePtr = RegInfo->getFrameRegister(MF); 1601 1602 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 1603 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 1604 // since it's not always possible to restore sp from fp in a single 1605 // instruction. 1606 // FIXME: It will be better just to find spare register here. 1607 if (AFI->isThumb2Function() && 1608 (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF))) 1609 SavedRegs.set(ARM::R4); 1610 1611 if (AFI->isThumb1OnlyFunction()) { 1612 // Spill LR if Thumb1 function uses variable length argument lists. 1613 if (AFI->getArgRegsSaveSize() > 0) 1614 SavedRegs.set(ARM::LR); 1615 1616 // Spill R4 if Thumb1 epilogue has to restore SP from FP. We don't know 1617 // for sure what the stack size will be, but for this, an estimate is good 1618 // enough. If there anything changes it, it'll be a spill, which implies 1619 // we've used all the registers and so R4 is already used, so not marking 1620 // it here will be OK. 1621 // FIXME: It will be better just to find spare register here. 1622 unsigned StackSize = MFI.estimateStackSize(MF); 1623 if (MFI.hasVarSizedObjects() || StackSize > 508) 1624 SavedRegs.set(ARM::R4); 1625 } 1626 1627 // See if we can spill vector registers to aligned stack. 1628 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 1629 1630 // Spill the BasePtr if it's used. 1631 if (RegInfo->hasBasePointer(MF)) 1632 SavedRegs.set(RegInfo->getBaseRegister()); 1633 1634 // Don't spill FP if the frame can be eliminated. This is determined 1635 // by scanning the callee-save registers to see if any is modified. 1636 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 1637 for (unsigned i = 0; CSRegs[i]; ++i) { 1638 unsigned Reg = CSRegs[i]; 1639 bool Spilled = false; 1640 if (SavedRegs.test(Reg)) { 1641 Spilled = true; 1642 CanEliminateFrame = false; 1643 } 1644 1645 if (!ARM::GPRRegClass.contains(Reg)) { 1646 if (Spilled) { 1647 if (ARM::SPRRegClass.contains(Reg)) 1648 NumFPRSpills++; 1649 else if (ARM::DPRRegClass.contains(Reg)) 1650 NumFPRSpills += 2; 1651 else if (ARM::QPRRegClass.contains(Reg)) 1652 NumFPRSpills += 4; 1653 } 1654 continue; 1655 } 1656 1657 if (Spilled) { 1658 NumGPRSpills++; 1659 1660 if (!STI.splitFramePushPop(MF)) { 1661 if (Reg == ARM::LR) 1662 LRSpilled = true; 1663 CS1Spilled = true; 1664 continue; 1665 } 1666 1667 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 1668 switch (Reg) { 1669 case ARM::LR: 1670 LRSpilled = true; 1671 LLVM_FALLTHROUGH; 1672 case ARM::R0: case ARM::R1: 1673 case ARM::R2: case ARM::R3: 1674 case ARM::R4: case ARM::R5: 1675 case ARM::R6: case ARM::R7: 1676 CS1Spilled = true; 1677 break; 1678 default: 1679 break; 1680 } 1681 } else { 1682 if (!STI.splitFramePushPop(MF)) { 1683 UnspilledCS1GPRs.push_back(Reg); 1684 continue; 1685 } 1686 1687 switch (Reg) { 1688 case ARM::R0: case ARM::R1: 1689 case ARM::R2: case ARM::R3: 1690 case ARM::R4: case ARM::R5: 1691 case ARM::R6: case ARM::R7: 1692 case ARM::LR: 1693 UnspilledCS1GPRs.push_back(Reg); 1694 break; 1695 default: 1696 UnspilledCS2GPRs.push_back(Reg); 1697 break; 1698 } 1699 } 1700 } 1701 1702 bool ForceLRSpill = false; 1703 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 1704 unsigned FnSize = GetFunctionSizeInBytes(MF, TII); 1705 // Force LR to be spilled if the Thumb function size is > 2048. This enables 1706 // use of BL to implement far jump. If it turns out that it's not needed 1707 // then the branch fix up path will undo it. 1708 if (FnSize >= (1 << 11)) { 1709 CanEliminateFrame = false; 1710 ForceLRSpill = true; 1711 } 1712 } 1713 1714 // If any of the stack slot references may be out of range of an immediate 1715 // offset, make sure a register (or a spill slot) is available for the 1716 // register scavenger. Note that if we're indexing off the frame pointer, the 1717 // effective stack size is 4 bytes larger since the FP points to the stack 1718 // slot of the previous FP. Also, if we have variable sized objects in the 1719 // function, stack slot references will often be negative, and some of 1720 // our instructions are positive-offset only, so conservatively consider 1721 // that case to want a spill slot (or register) as well. Similarly, if 1722 // the function adjusts the stack pointer during execution and the 1723 // adjustments aren't already part of our stack size estimate, our offset 1724 // calculations may be off, so be conservative. 1725 // FIXME: We could add logic to be more precise about negative offsets 1726 // and which instructions will need a scratch register for them. Is it 1727 // worth the effort and added fragility? 1728 unsigned EstimatedStackSize = 1729 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 1730 1731 // Determine biggest (positive) SP offset in MachineFrameInfo. 1732 int MaxFixedOffset = 0; 1733 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 1734 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); 1735 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); 1736 } 1737 1738 bool HasFP = hasFP(MF); 1739 if (HasFP) { 1740 if (AFI->hasStackFrame()) 1741 EstimatedStackSize += 4; 1742 } else { 1743 // If FP is not used, SP will be used to access arguments, so count the 1744 // size of arguments into the estimation. 1745 EstimatedStackSize += MaxFixedOffset; 1746 } 1747 EstimatedStackSize += 16; // For possible paddings. 1748 1749 unsigned EstimatedRSStackSizeLimit = estimateRSStackSizeLimit(MF, this); 1750 int MaxFPOffset = getMaxFPOffset(*MF.getFunction(), *AFI); 1751 bool BigFrameOffsets = EstimatedStackSize >= EstimatedRSStackSizeLimit || 1752 MFI.hasVarSizedObjects() || 1753 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)) || 1754 // For large argument stacks fp relative addressed may overflow. 1755 (HasFP && (MaxFixedOffset - MaxFPOffset) >= (int)EstimatedRSStackSizeLimit); 1756 if (BigFrameOffsets || 1757 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 1758 AFI->setHasStackFrame(true); 1759 1760 if (HasFP) { 1761 SavedRegs.set(FramePtr); 1762 // If the frame pointer is required by the ABI, also spill LR so that we 1763 // emit a complete frame record. 1764 if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) { 1765 SavedRegs.set(ARM::LR); 1766 LRSpilled = true; 1767 NumGPRSpills++; 1768 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 1769 if (LRPos != UnspilledCS1GPRs.end()) 1770 UnspilledCS1GPRs.erase(LRPos); 1771 } 1772 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 1773 if (FPPos != UnspilledCS1GPRs.end()) 1774 UnspilledCS1GPRs.erase(FPPos); 1775 NumGPRSpills++; 1776 if (FramePtr == ARM::R7) 1777 CS1Spilled = true; 1778 } 1779 1780 // This is true when we inserted a spill for an unused register that can now 1781 // be used for register scavenging. 1782 bool ExtraCSSpill = false; 1783 1784 if (AFI->isThumb1OnlyFunction()) { 1785 // For Thumb1-only targets, we need some low registers when we save and 1786 // restore the high registers (which aren't allocatable, but could be 1787 // used by inline assembly) because the push/pop instructions can not 1788 // access high registers. If necessary, we might need to push more low 1789 // registers to ensure that there is at least one free that can be used 1790 // for the saving & restoring, and preferably we should ensure that as 1791 // many as are needed are available so that fewer push/pop instructions 1792 // are required. 1793 1794 // Low registers which are not currently pushed, but could be (r4-r7). 1795 SmallVector<unsigned, 4> AvailableRegs; 1796 1797 // Unused argument registers (r0-r3) can be clobbered in the prologue for 1798 // free. 1799 int EntryRegDeficit = 0; 1800 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 1801 if (!MF.getRegInfo().isLiveIn(Reg)) { 1802 --EntryRegDeficit; 1803 DEBUG(dbgs() << PrintReg(Reg, TRI) 1804 << " is unused argument register, EntryRegDeficit = " 1805 << EntryRegDeficit << "\n"); 1806 } 1807 } 1808 1809 // Unused return registers can be clobbered in the epilogue for free. 1810 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 1811 DEBUG(dbgs() << AFI->getReturnRegsCount() 1812 << " return regs used, ExitRegDeficit = " << ExitRegDeficit 1813 << "\n"); 1814 1815 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 1816 DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 1817 1818 // r4-r6 can be used in the prologue if they are pushed by the first push 1819 // instruction. 1820 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 1821 if (SavedRegs.test(Reg)) { 1822 --RegDeficit; 1823 DEBUG(dbgs() << PrintReg(Reg, TRI) 1824 << " is saved low register, RegDeficit = " << RegDeficit 1825 << "\n"); 1826 } else { 1827 AvailableRegs.push_back(Reg); 1828 DEBUG(dbgs() 1829 << PrintReg(Reg, TRI) 1830 << " is non-saved low register, adding to AvailableRegs\n"); 1831 } 1832 } 1833 1834 // r7 can be used if it is not being used as the frame pointer. 1835 if (!HasFP) { 1836 if (SavedRegs.test(ARM::R7)) { 1837 --RegDeficit; 1838 DEBUG(dbgs() << "%R7 is saved low register, RegDeficit = " 1839 << RegDeficit << "\n"); 1840 } else { 1841 AvailableRegs.push_back(ARM::R7); 1842 DEBUG(dbgs() 1843 << "%R7 is non-saved low register, adding to AvailableRegs\n"); 1844 } 1845 } 1846 1847 // Each of r8-r11 needs to be copied to a low register, then pushed. 1848 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 1849 if (SavedRegs.test(Reg)) { 1850 ++RegDeficit; 1851 DEBUG(dbgs() << PrintReg(Reg, TRI) 1852 << " is saved high register, RegDeficit = " << RegDeficit 1853 << "\n"); 1854 } 1855 } 1856 1857 // LR can only be used by PUSH, not POP, and can't be used at all if the 1858 // llvm.returnaddress intrinsic is used. This is only worth doing if we 1859 // are more limited at function entry than exit. 1860 if ((EntryRegDeficit > ExitRegDeficit) && 1861 !(MF.getRegInfo().isLiveIn(ARM::LR) && 1862 MF.getFrameInfo().isReturnAddressTaken())) { 1863 if (SavedRegs.test(ARM::LR)) { 1864 --RegDeficit; 1865 DEBUG(dbgs() << "%LR is saved register, RegDeficit = " << RegDeficit 1866 << "\n"); 1867 } else { 1868 AvailableRegs.push_back(ARM::LR); 1869 DEBUG(dbgs() << "%LR is not saved, adding to AvailableRegs\n"); 1870 } 1871 } 1872 1873 // If there are more high registers that need pushing than low registers 1874 // available, push some more low registers so that we can use fewer push 1875 // instructions. This might not reduce RegDeficit all the way to zero, 1876 // because we can only guarantee that r4-r6 are available, but r8-r11 may 1877 // need saving. 1878 DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 1879 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 1880 unsigned Reg = AvailableRegs.pop_back_val(); 1881 DEBUG(dbgs() << "Spilling " << PrintReg(Reg, TRI) 1882 << " to make up reg deficit\n"); 1883 SavedRegs.set(Reg); 1884 NumGPRSpills++; 1885 CS1Spilled = true; 1886 assert(!MRI.isReserved(Reg) && "Should not be reserved"); 1887 if (!MRI.isPhysRegUsed(Reg)) 1888 ExtraCSSpill = true; 1889 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 1890 if (Reg == ARM::LR) 1891 LRSpilled = true; 1892 } 1893 DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit << "\n"); 1894 } 1895 1896 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 1897 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 1898 if (!LRSpilled && CS1Spilled) { 1899 SavedRegs.set(ARM::LR); 1900 NumGPRSpills++; 1901 SmallVectorImpl<unsigned>::iterator LRPos; 1902 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 1903 if (LRPos != UnspilledCS1GPRs.end()) 1904 UnspilledCS1GPRs.erase(LRPos); 1905 1906 ForceLRSpill = false; 1907 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR)) 1908 ExtraCSSpill = true; 1909 } 1910 1911 // If stack and double are 8-byte aligned and we are spilling an odd number 1912 // of GPRs, spill one extra callee save GPR so we won't have to pad between 1913 // the integer and double callee save areas. 1914 DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 1915 unsigned TargetAlign = getStackAlignment(); 1916 if (TargetAlign >= 8 && (NumGPRSpills & 1)) { 1917 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 1918 for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) { 1919 unsigned Reg = UnspilledCS1GPRs[i]; 1920 // Don't spill high register if the function is thumb. In the case of 1921 // Windows on ARM, accept R11 (frame pointer) 1922 if (!AFI->isThumbFunction() || 1923 (STI.isTargetWindows() && Reg == ARM::R11) || 1924 isARMLowRegister(Reg) || Reg == ARM::LR) { 1925 SavedRegs.set(Reg); 1926 DEBUG(dbgs() << "Spilling " << PrintReg(Reg, TRI) 1927 << " to make up alignment\n"); 1928 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 1929 ExtraCSSpill = true; 1930 break; 1931 } 1932 } 1933 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 1934 unsigned Reg = UnspilledCS2GPRs.front(); 1935 SavedRegs.set(Reg); 1936 DEBUG(dbgs() << "Spilling " << PrintReg(Reg, TRI) 1937 << " to make up alignment\n"); 1938 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 1939 ExtraCSSpill = true; 1940 } 1941 } 1942 1943 // Estimate if we might need to scavenge a register at some point in order 1944 // to materialize a stack offset. If so, either spill one additional 1945 // callee-saved register or reserve a special spill slot to facilitate 1946 // register scavenging. Thumb1 needs a spill slot for stack pointer 1947 // adjustments also, even when the frame itself is small. 1948 if (BigFrameOffsets && !ExtraCSSpill) { 1949 // If any non-reserved CS register isn't spilled, just spill one or two 1950 // extra. That should take care of it! 1951 unsigned NumExtras = TargetAlign / 4; 1952 SmallVector<unsigned, 2> Extras; 1953 while (NumExtras && !UnspilledCS1GPRs.empty()) { 1954 unsigned Reg = UnspilledCS1GPRs.back(); 1955 UnspilledCS1GPRs.pop_back(); 1956 if (!MRI.isReserved(Reg) && 1957 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg) || 1958 Reg == ARM::LR)) { 1959 Extras.push_back(Reg); 1960 NumExtras--; 1961 } 1962 } 1963 // For non-Thumb1 functions, also check for hi-reg CS registers 1964 if (!AFI->isThumb1OnlyFunction()) { 1965 while (NumExtras && !UnspilledCS2GPRs.empty()) { 1966 unsigned Reg = UnspilledCS2GPRs.back(); 1967 UnspilledCS2GPRs.pop_back(); 1968 if (!MRI.isReserved(Reg)) { 1969 Extras.push_back(Reg); 1970 NumExtras--; 1971 } 1972 } 1973 } 1974 if (NumExtras == 0) { 1975 for (unsigned Reg : Extras) { 1976 SavedRegs.set(Reg); 1977 if (!MRI.isPhysRegUsed(Reg)) 1978 ExtraCSSpill = true; 1979 } 1980 } 1981 if (!ExtraCSSpill && !AFI->isThumb1OnlyFunction()) { 1982 // note: Thumb1 functions spill to R12, not the stack. Reserve a slot 1983 // closest to SP or frame pointer. 1984 assert(RS && "Register scavenging not provided"); 1985 const TargetRegisterClass &RC = ARM::GPRRegClass; 1986 unsigned Size = TRI->getSpillSize(RC); 1987 unsigned Align = TRI->getSpillAlignment(RC); 1988 RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Align, false)); 1989 } 1990 } 1991 } 1992 1993 if (ForceLRSpill) { 1994 SavedRegs.set(ARM::LR); 1995 AFI->setLRIsSpilledForFarJump(true); 1996 } 1997 } 1998 1999 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 2000 MachineFunction &MF, MachineBasicBlock &MBB, 2001 MachineBasicBlock::iterator I) const { 2002 const ARMBaseInstrInfo &TII = 2003 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2004 if (!hasReservedCallFrame(MF)) { 2005 // If we have alloca, convert as follows: 2006 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 2007 // ADJCALLSTACKUP -> add, sp, sp, amount 2008 MachineInstr &Old = *I; 2009 DebugLoc dl = Old.getDebugLoc(); 2010 unsigned Amount = TII.getFrameSize(Old); 2011 if (Amount != 0) { 2012 // We need to keep the stack aligned properly. To do this, we round the 2013 // amount of space needed for the outgoing arguments up to the next 2014 // alignment boundary. 2015 Amount = alignSPAdjust(Amount); 2016 2017 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2018 assert(!AFI->isThumb1OnlyFunction() && 2019 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 2020 bool isARM = !AFI->isThumbFunction(); 2021 2022 // Replace the pseudo instruction with a new instruction... 2023 unsigned Opc = Old.getOpcode(); 2024 int PIdx = Old.findFirstPredOperandIdx(); 2025 ARMCC::CondCodes Pred = 2026 (PIdx == -1) ? ARMCC::AL 2027 : (ARMCC::CondCodes)Old.getOperand(PIdx).getImm(); 2028 unsigned PredReg = TII.getFramePred(Old); 2029 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 2030 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 2031 Pred, PredReg); 2032 } else { 2033 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 2034 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 2035 Pred, PredReg); 2036 } 2037 } 2038 } 2039 return MBB.erase(I); 2040 } 2041 2042 /// Get the minimum constant for ARM that is greater than or equal to the 2043 /// argument. In ARM, constants can have any value that can be produced by 2044 /// rotating an 8-bit value to the right by an even number of bits within a 2045 /// 32-bit word. 2046 static uint32_t alignToARMConstant(uint32_t Value) { 2047 unsigned Shifted = 0; 2048 2049 if (Value == 0) 2050 return 0; 2051 2052 while (!(Value & 0xC0000000)) { 2053 Value = Value << 2; 2054 Shifted += 2; 2055 } 2056 2057 bool Carry = (Value & 0x00FFFFFF); 2058 Value = ((Value & 0xFF000000) >> 24) + Carry; 2059 2060 if (Value & 0x0000100) 2061 Value = Value & 0x000001FC; 2062 2063 if (Shifted > 24) 2064 Value = Value >> (Shifted - 24); 2065 else 2066 Value = Value << (24 - Shifted); 2067 2068 return Value; 2069 } 2070 2071 // The stack limit in the TCB is set to this many bytes above the actual 2072 // stack limit. 2073 static const uint64_t kSplitStackAvailable = 256; 2074 2075 // Adjust the function prologue to enable split stacks. This currently only 2076 // supports android and linux. 2077 // 2078 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 2079 // must be well defined in order to allow for consistent implementations of the 2080 // __morestack helper function. The ABI is also not a normal ABI in that it 2081 // doesn't follow the normal calling conventions because this allows the 2082 // prologue of each function to be optimized further. 2083 // 2084 // Currently, the ABI looks like (when calling __morestack) 2085 // 2086 // * r4 holds the minimum stack size requested for this function call 2087 // * r5 holds the stack size of the arguments to the function 2088 // * the beginning of the function is 3 instructions after the call to 2089 // __morestack 2090 // 2091 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 2092 // place the arguments on to the new stack, and the 3-instruction knowledge to 2093 // jump directly to the body of the function when working on the new stack. 2094 // 2095 // An old (and possibly no longer compatible) implementation of __morestack for 2096 // ARM can be found at [1]. 2097 // 2098 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 2099 void ARMFrameLowering::adjustForSegmentedStacks( 2100 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2101 unsigned Opcode; 2102 unsigned CFIIndex; 2103 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 2104 bool Thumb = ST->isThumb(); 2105 2106 // Sadly, this currently doesn't support varargs, platforms other than 2107 // android/linux. Note that thumb1/thumb2 are support for android/linux. 2108 if (MF.getFunction()->isVarArg()) 2109 report_fatal_error("Segmented stacks do not support vararg functions."); 2110 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 2111 report_fatal_error("Segmented stacks not supported on this platform."); 2112 2113 MachineFrameInfo &MFI = MF.getFrameInfo(); 2114 MachineModuleInfo &MMI = MF.getMMI(); 2115 MCContext &Context = MMI.getContext(); 2116 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 2117 const ARMBaseInstrInfo &TII = 2118 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2119 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 2120 DebugLoc DL; 2121 2122 uint64_t StackSize = MFI.getStackSize(); 2123 2124 // Do not generate a prologue for functions with a stack of size zero 2125 if (StackSize == 0) 2126 return; 2127 2128 // Use R4 and R5 as scratch registers. 2129 // We save R4 and R5 before use and restore them before leaving the function. 2130 unsigned ScratchReg0 = ARM::R4; 2131 unsigned ScratchReg1 = ARM::R5; 2132 uint64_t AlignedStackSize; 2133 2134 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 2135 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 2136 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 2137 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 2138 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 2139 2140 // Grab everything that reaches PrologueMBB to update there liveness as well. 2141 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 2142 SmallVector<MachineBasicBlock *, 2> WalkList; 2143 WalkList.push_back(&PrologueMBB); 2144 2145 do { 2146 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 2147 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 2148 if (BeforePrologueRegion.insert(PredBB).second) 2149 WalkList.push_back(PredBB); 2150 } 2151 } while (!WalkList.empty()); 2152 2153 // The order in that list is important. 2154 // The blocks will all be inserted before PrologueMBB using that order. 2155 // Therefore the block that should appear first in the CFG should appear 2156 // first in the list. 2157 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 2158 PostStackMBB}; 2159 2160 for (MachineBasicBlock *B : AddedBlocks) 2161 BeforePrologueRegion.insert(B); 2162 2163 for (const auto &LI : PrologueMBB.liveins()) { 2164 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 2165 PredBB->addLiveIn(LI); 2166 } 2167 2168 // Remove the newly added blocks from the list, since we know 2169 // we do not have to do the following updates for them. 2170 for (MachineBasicBlock *B : AddedBlocks) { 2171 BeforePrologueRegion.erase(B); 2172 MF.insert(PrologueMBB.getIterator(), B); 2173 } 2174 2175 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 2176 // Make sure the LiveIns are still sorted and unique. 2177 MBB->sortUniqueLiveIns(); 2178 // Replace the edges to PrologueMBB by edges to the sequences 2179 // we are about to add. 2180 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 2181 } 2182 2183 // The required stack size that is aligned to ARM constant criterion. 2184 AlignedStackSize = alignToARMConstant(StackSize); 2185 2186 // When the frame size is less than 256 we just compare the stack 2187 // boundary directly to the value of the stack pointer, per gcc. 2188 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 2189 2190 // We will use two of the callee save registers as scratch registers so we 2191 // need to save those registers onto the stack. 2192 // We will use SR0 to hold stack limit and SR1 to hold the stack size 2193 // requested and arguments for __morestack(). 2194 // SR0: Scratch Register #0 2195 // SR1: Scratch Register #1 2196 // push {SR0, SR1} 2197 if (Thumb) { 2198 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 2199 .add(predOps(ARMCC::AL)) 2200 .addReg(ScratchReg0) 2201 .addReg(ScratchReg1); 2202 } else { 2203 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 2204 .addReg(ARM::SP, RegState::Define) 2205 .addReg(ARM::SP) 2206 .add(predOps(ARMCC::AL)) 2207 .addReg(ScratchReg0) 2208 .addReg(ScratchReg1); 2209 } 2210 2211 // Emit the relevant DWARF information about the change in stack pointer as 2212 // well as where to find both r4 and r5 (the callee-save registers) 2213 CFIIndex = 2214 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -8)); 2215 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2216 .addCFIIndex(CFIIndex); 2217 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2218 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 2219 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2220 .addCFIIndex(CFIIndex); 2221 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2222 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 2223 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2224 .addCFIIndex(CFIIndex); 2225 2226 // mov SR1, sp 2227 if (Thumb) { 2228 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 2229 .addReg(ARM::SP) 2230 .add(predOps(ARMCC::AL)); 2231 } else if (CompareStackPointer) { 2232 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 2233 .addReg(ARM::SP) 2234 .add(predOps(ARMCC::AL)) 2235 .add(condCodeOp()); 2236 } 2237 2238 // sub SR1, sp, #StackSize 2239 if (!CompareStackPointer && Thumb) { 2240 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 2241 .add(condCodeOp()) 2242 .addReg(ScratchReg1) 2243 .addImm(AlignedStackSize) 2244 .add(predOps(ARMCC::AL)); 2245 } else if (!CompareStackPointer) { 2246 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 2247 .addReg(ARM::SP) 2248 .addImm(AlignedStackSize) 2249 .add(predOps(ARMCC::AL)) 2250 .add(condCodeOp()); 2251 } 2252 2253 if (Thumb && ST->isThumb1Only()) { 2254 unsigned PCLabelId = ARMFI->createPICLabelUId(); 2255 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 2256 MF.getFunction()->getContext(), "__STACK_LIMIT", PCLabelId, 0); 2257 MachineConstantPool *MCP = MF.getConstantPool(); 2258 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, 4); 2259 2260 // ldr SR0, [pc, offset(STACK_LIMIT)] 2261 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 2262 .addConstantPoolIndex(CPI) 2263 .add(predOps(ARMCC::AL)); 2264 2265 // ldr SR0, [SR0] 2266 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 2267 .addReg(ScratchReg0) 2268 .addImm(0) 2269 .add(predOps(ARMCC::AL)); 2270 } else { 2271 // Get TLS base address from the coprocessor 2272 // mrc p15, #0, SR0, c13, c0, #3 2273 BuildMI(McrMBB, DL, TII.get(ARM::MRC), ScratchReg0) 2274 .addImm(15) 2275 .addImm(0) 2276 .addImm(13) 2277 .addImm(0) 2278 .addImm(3) 2279 .add(predOps(ARMCC::AL)); 2280 2281 // Use the last tls slot on android and a private field of the TCP on linux. 2282 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 2283 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 2284 2285 // Get the stack limit from the right offset 2286 // ldr SR0, [sr0, #4 * TlsOffset] 2287 BuildMI(GetMBB, DL, TII.get(ARM::LDRi12), ScratchReg0) 2288 .addReg(ScratchReg0) 2289 .addImm(4 * TlsOffset) 2290 .add(predOps(ARMCC::AL)); 2291 } 2292 2293 // Compare stack limit with stack size requested. 2294 // cmp SR0, SR1 2295 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 2296 BuildMI(GetMBB, DL, TII.get(Opcode)) 2297 .addReg(ScratchReg0) 2298 .addReg(ScratchReg1) 2299 .add(predOps(ARMCC::AL)); 2300 2301 // This jump is taken if StackLimit < SP - stack required. 2302 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 2303 BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB) 2304 .addImm(ARMCC::LO) 2305 .addReg(ARM::CPSR); 2306 2307 2308 // Calling __morestack(StackSize, Size of stack arguments). 2309 // __morestack knows that the stack size requested is in SR0(r4) 2310 // and amount size of stack arguments is in SR1(r5). 2311 2312 // Pass first argument for the __morestack by Scratch Register #0. 2313 // The amount size of stack required 2314 if (Thumb) { 2315 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 2316 .add(condCodeOp()) 2317 .addImm(AlignedStackSize) 2318 .add(predOps(ARMCC::AL)); 2319 } else { 2320 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 2321 .addImm(AlignedStackSize) 2322 .add(predOps(ARMCC::AL)) 2323 .add(condCodeOp()); 2324 } 2325 // Pass second argument for the __morestack by Scratch Register #1. 2326 // The amount size of stack consumed to save function arguments. 2327 if (Thumb) { 2328 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 2329 .add(condCodeOp()) 2330 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2331 .add(predOps(ARMCC::AL)); 2332 } else { 2333 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 2334 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2335 .add(predOps(ARMCC::AL)) 2336 .add(condCodeOp()); 2337 } 2338 2339 // push {lr} - Save return address of this function. 2340 if (Thumb) { 2341 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 2342 .add(predOps(ARMCC::AL)) 2343 .addReg(ARM::LR); 2344 } else { 2345 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 2346 .addReg(ARM::SP, RegState::Define) 2347 .addReg(ARM::SP) 2348 .add(predOps(ARMCC::AL)) 2349 .addReg(ARM::LR); 2350 } 2351 2352 // Emit the DWARF info about the change in stack as well as where to find the 2353 // previous link register 2354 CFIIndex = 2355 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -12)); 2356 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2357 .addCFIIndex(CFIIndex); 2358 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2359 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 2360 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2361 .addCFIIndex(CFIIndex); 2362 2363 // Call __morestack(). 2364 if (Thumb) { 2365 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 2366 .add(predOps(ARMCC::AL)) 2367 .addExternalSymbol("__morestack"); 2368 } else { 2369 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 2370 .addExternalSymbol("__morestack"); 2371 } 2372 2373 // pop {lr} - Restore return address of this original function. 2374 if (Thumb) { 2375 if (ST->isThumb1Only()) { 2376 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2377 .add(predOps(ARMCC::AL)) 2378 .addReg(ScratchReg0); 2379 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 2380 .addReg(ScratchReg0) 2381 .add(predOps(ARMCC::AL)); 2382 } else { 2383 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 2384 .addReg(ARM::LR, RegState::Define) 2385 .addReg(ARM::SP, RegState::Define) 2386 .addReg(ARM::SP) 2387 .addImm(4) 2388 .add(predOps(ARMCC::AL)); 2389 } 2390 } else { 2391 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2392 .addReg(ARM::SP, RegState::Define) 2393 .addReg(ARM::SP) 2394 .add(predOps(ARMCC::AL)) 2395 .addReg(ARM::LR); 2396 } 2397 2398 // Restore SR0 and SR1 in case of __morestack() was called. 2399 // __morestack() will skip PostStackMBB block so we need to restore 2400 // scratch registers from here. 2401 // pop {SR0, SR1} 2402 if (Thumb) { 2403 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2404 .add(predOps(ARMCC::AL)) 2405 .addReg(ScratchReg0) 2406 .addReg(ScratchReg1); 2407 } else { 2408 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2409 .addReg(ARM::SP, RegState::Define) 2410 .addReg(ARM::SP) 2411 .add(predOps(ARMCC::AL)) 2412 .addReg(ScratchReg0) 2413 .addReg(ScratchReg1); 2414 } 2415 2416 // Update the CFA offset now that we've popped 2417 CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); 2418 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2419 .addCFIIndex(CFIIndex); 2420 2421 // Return from this function. 2422 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL)); 2423 2424 // Restore SR0 and SR1 in case of __morestack() was not called. 2425 // pop {SR0, SR1} 2426 if (Thumb) { 2427 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 2428 .add(predOps(ARMCC::AL)) 2429 .addReg(ScratchReg0) 2430 .addReg(ScratchReg1); 2431 } else { 2432 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 2433 .addReg(ARM::SP, RegState::Define) 2434 .addReg(ARM::SP) 2435 .add(predOps(ARMCC::AL)) 2436 .addReg(ScratchReg0) 2437 .addReg(ScratchReg1); 2438 } 2439 2440 // Update the CFA offset now that we've popped 2441 CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); 2442 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2443 .addCFIIndex(CFIIndex); 2444 2445 // Tell debuggers that r4 and r5 are now the same as they were in the 2446 // previous function, that they're the "Same Value". 2447 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2448 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 2449 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2450 .addCFIIndex(CFIIndex); 2451 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2452 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 2453 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2454 .addCFIIndex(CFIIndex); 2455 2456 // Organizing MBB lists 2457 PostStackMBB->addSuccessor(&PrologueMBB); 2458 2459 AllocMBB->addSuccessor(PostStackMBB); 2460 2461 GetMBB->addSuccessor(PostStackMBB); 2462 GetMBB->addSuccessor(AllocMBB); 2463 2464 McrMBB->addSuccessor(GetMBB); 2465 2466 PrevStackMBB->addSuccessor(McrMBB); 2467 2468 #ifdef EXPENSIVE_CHECKS 2469 MF.verify(); 2470 #endif 2471 } 2472