1 //===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass adds instructions to enable whole quad mode (strict or non-strict) 11 /// for pixel shaders, and strict whole wavefront mode for all programs. 12 /// 13 /// The "strict" prefix indicates that inactive lanes do not take part in 14 /// control flow, specifically an inactive lane enabled by a strict WQM/WWM will 15 /// always be enabled irrespective of control flow decisions. Conversely in 16 /// non-strict WQM inactive lanes may control flow decisions. 17 /// 18 /// Whole quad mode is required for derivative computations, but it interferes 19 /// with shader side effects (stores and atomics). It ensures that WQM is 20 /// enabled when necessary, but disabled around stores and atomics. 21 /// 22 /// When necessary, this pass creates a function prolog 23 /// 24 /// S_MOV_B64 LiveMask, EXEC 25 /// S_WQM_B64 EXEC, EXEC 26 /// 27 /// to enter WQM at the top of the function and surrounds blocks of Exact 28 /// instructions by 29 /// 30 /// S_AND_SAVEEXEC_B64 Tmp, LiveMask 31 /// ... 32 /// S_MOV_B64 EXEC, Tmp 33 /// 34 /// We also compute when a sequence of instructions requires strict whole 35 /// wavefront mode (StrictWWM) and insert instructions to save and restore it: 36 /// 37 /// S_OR_SAVEEXEC_B64 Tmp, -1 38 /// ... 39 /// S_MOV_B64 EXEC, Tmp 40 /// 41 /// When a sequence of instructions requires strict whole quad mode (StrictWQM) 42 /// we use a similar save and restore mechanism and force whole quad mode for 43 /// those instructions: 44 /// 45 /// S_MOV_B64 Tmp, EXEC 46 /// S_WQM_B64 EXEC, EXEC 47 /// ... 48 /// S_MOV_B64 EXEC, Tmp 49 /// 50 /// In order to avoid excessive switching during sequences of Exact 51 /// instructions, the pass first analyzes which instructions must be run in WQM 52 /// (aka which instructions produce values that lead to derivative 53 /// computations). 54 /// 55 /// Basic blocks are always exited in WQM as long as some successor needs WQM. 56 /// 57 /// There is room for improvement given better control flow analysis: 58 /// 59 /// (1) at the top level (outside of control flow statements, and as long as 60 /// kill hasn't been used), one SGPR can be saved by recovering WQM from 61 /// the LiveMask (this is implemented for the entry block). 62 /// 63 /// (2) when entire regions (e.g. if-else blocks or entire loops) only 64 /// consist of exact and don't-care instructions, the switch only has to 65 /// be done at the entry and exit points rather than potentially in each 66 /// block of the region. 67 /// 68 //===----------------------------------------------------------------------===// 69 70 #include "AMDGPU.h" 71 #include "GCNSubtarget.h" 72 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 73 #include "llvm/ADT/MapVector.h" 74 #include "llvm/ADT/PostOrderIterator.h" 75 #include "llvm/CodeGen/LiveIntervals.h" 76 #include "llvm/CodeGen/MachineBasicBlock.h" 77 #include "llvm/CodeGen/MachineDominators.h" 78 #include "llvm/CodeGen/MachineFunctionPass.h" 79 #include "llvm/CodeGen/MachineInstr.h" 80 #include "llvm/CodeGen/MachinePostDominators.h" 81 #include "llvm/IR/CallingConv.h" 82 #include "llvm/InitializePasses.h" 83 #include "llvm/Support/raw_ostream.h" 84 85 using namespace llvm; 86 87 #define DEBUG_TYPE "si-wqm" 88 89 namespace { 90 91 enum { 92 StateWQM = 0x1, 93 StateStrictWWM = 0x2, 94 StateStrictWQM = 0x4, 95 StateExact = 0x8, 96 StateStrict = StateStrictWWM | StateStrictWQM, 97 }; 98 99 struct PrintState { 100 public: 101 int State; 102 103 explicit PrintState(int State) : State(State) {} 104 }; 105 106 #ifndef NDEBUG 107 static raw_ostream &operator<<(raw_ostream &OS, const PrintState &PS) { 108 109 static const std::pair<char, const char *> Mapping[] = { 110 std::pair(StateWQM, "WQM"), std::pair(StateStrictWWM, "StrictWWM"), 111 std::pair(StateStrictWQM, "StrictWQM"), std::pair(StateExact, "Exact")}; 112 char State = PS.State; 113 for (auto M : Mapping) { 114 if (State & M.first) { 115 OS << M.second; 116 State &= ~M.first; 117 118 if (State) 119 OS << '|'; 120 } 121 } 122 assert(State == 0); 123 return OS; 124 } 125 #endif 126 127 struct InstrInfo { 128 char Needs = 0; 129 char Disabled = 0; 130 char OutNeeds = 0; 131 }; 132 133 struct BlockInfo { 134 char Needs = 0; 135 char InNeeds = 0; 136 char OutNeeds = 0; 137 char InitialState = 0; 138 bool NeedsLowering = false; 139 }; 140 141 struct WorkItem { 142 MachineBasicBlock *MBB = nullptr; 143 MachineInstr *MI = nullptr; 144 145 WorkItem() = default; 146 WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {} 147 WorkItem(MachineInstr *MI) : MI(MI) {} 148 }; 149 150 class SIWholeQuadMode : public MachineFunctionPass { 151 private: 152 const SIInstrInfo *TII; 153 const SIRegisterInfo *TRI; 154 const GCNSubtarget *ST; 155 MachineRegisterInfo *MRI; 156 LiveIntervals *LIS; 157 MachineDominatorTree *MDT; 158 MachinePostDominatorTree *PDT; 159 160 unsigned AndOpc; 161 unsigned AndTermOpc; 162 unsigned AndN2Opc; 163 unsigned XorOpc; 164 unsigned AndSaveExecOpc; 165 unsigned AndSaveExecTermOpc; 166 unsigned WQMOpc; 167 Register Exec; 168 Register LiveMaskReg; 169 170 DenseMap<const MachineInstr *, InstrInfo> Instructions; 171 MapVector<MachineBasicBlock *, BlockInfo> Blocks; 172 173 // Tracks state (WQM/StrictWWM/StrictWQM/Exact) after a given instruction 174 DenseMap<const MachineInstr *, char> StateTransition; 175 176 SmallVector<MachineInstr *, 2> LiveMaskQueries; 177 SmallVector<MachineInstr *, 4> LowerToMovInstrs; 178 SmallVector<MachineInstr *, 4> LowerToCopyInstrs; 179 SmallVector<MachineInstr *, 4> KillInstrs; 180 SmallVector<MachineInstr *, 4> InitExecInstrs; 181 182 void printInfo(); 183 184 void markInstruction(MachineInstr &MI, char Flag, 185 std::vector<WorkItem> &Worklist); 186 void markDefs(const MachineInstr &UseMI, LiveRange &LR, Register Reg, 187 unsigned SubReg, char Flag, std::vector<WorkItem> &Worklist); 188 void markOperand(const MachineInstr &MI, const MachineOperand &Op, char Flag, 189 std::vector<WorkItem> &Worklist); 190 void markInstructionUses(const MachineInstr &MI, char Flag, 191 std::vector<WorkItem> &Worklist); 192 char scanInstructions(MachineFunction &MF, std::vector<WorkItem> &Worklist); 193 void propagateInstruction(MachineInstr &MI, std::vector<WorkItem> &Worklist); 194 void propagateBlock(MachineBasicBlock &MBB, std::vector<WorkItem> &Worklist); 195 char analyzeFunction(MachineFunction &MF); 196 197 MachineBasicBlock::iterator saveSCC(MachineBasicBlock &MBB, 198 MachineBasicBlock::iterator Before); 199 MachineBasicBlock::iterator 200 prepareInsertion(MachineBasicBlock &MBB, MachineBasicBlock::iterator First, 201 MachineBasicBlock::iterator Last, bool PreferLast, 202 bool SaveSCC); 203 void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 204 Register SaveWQM); 205 void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 206 Register SavedWQM); 207 void toStrictMode(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 208 Register SaveOrig, char StrictStateNeeded); 209 void fromStrictMode(MachineBasicBlock &MBB, 210 MachineBasicBlock::iterator Before, Register SavedOrig, 211 char NonStrictState, char CurrentStrictState); 212 213 MachineBasicBlock *splitBlock(MachineBasicBlock *BB, MachineInstr *TermMI); 214 215 MachineInstr *lowerKillI1(MachineBasicBlock &MBB, MachineInstr &MI, 216 bool IsWQM); 217 MachineInstr *lowerKillF32(MachineBasicBlock &MBB, MachineInstr &MI); 218 219 void lowerBlock(MachineBasicBlock &MBB); 220 void processBlock(MachineBasicBlock &MBB, bool IsEntry); 221 222 void lowerLiveMaskQueries(); 223 void lowerCopyInstrs(); 224 void lowerKillInstrs(bool IsWQM); 225 void lowerInitExec(MachineInstr &MI); 226 MachineBasicBlock::iterator lowerInitExecInstrs(MachineBasicBlock &Entry); 227 228 public: 229 static char ID; 230 231 SIWholeQuadMode() : 232 MachineFunctionPass(ID) { } 233 234 bool runOnMachineFunction(MachineFunction &MF) override; 235 236 StringRef getPassName() const override { return "SI Whole Quad Mode"; } 237 238 void getAnalysisUsage(AnalysisUsage &AU) const override { 239 AU.addRequired<LiveIntervals>(); 240 AU.addPreserved<SlotIndexes>(); 241 AU.addPreserved<LiveIntervals>(); 242 AU.addPreserved<MachineDominatorTreeWrapperPass>(); 243 AU.addPreserved<MachinePostDominatorTreeWrapperPass>(); 244 MachineFunctionPass::getAnalysisUsage(AU); 245 } 246 247 MachineFunctionProperties getClearedProperties() const override { 248 return MachineFunctionProperties().set( 249 MachineFunctionProperties::Property::IsSSA); 250 } 251 }; 252 253 } // end anonymous namespace 254 255 char SIWholeQuadMode::ID = 0; 256 257 INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, 258 false) 259 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 260 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 261 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTreeWrapperPass) 262 INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, 263 false) 264 265 char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID; 266 267 FunctionPass *llvm::createSIWholeQuadModePass() { 268 return new SIWholeQuadMode; 269 } 270 271 #ifndef NDEBUG 272 LLVM_DUMP_METHOD void SIWholeQuadMode::printInfo() { 273 for (const auto &BII : Blocks) { 274 dbgs() << "\n" 275 << printMBBReference(*BII.first) << ":\n" 276 << " InNeeds = " << PrintState(BII.second.InNeeds) 277 << ", Needs = " << PrintState(BII.second.Needs) 278 << ", OutNeeds = " << PrintState(BII.second.OutNeeds) << "\n\n"; 279 280 for (const MachineInstr &MI : *BII.first) { 281 auto III = Instructions.find(&MI); 282 if (III != Instructions.end()) { 283 dbgs() << " " << MI << " Needs = " << PrintState(III->second.Needs) 284 << ", OutNeeds = " << PrintState(III->second.OutNeeds) << '\n'; 285 } 286 } 287 } 288 } 289 #endif 290 291 void SIWholeQuadMode::markInstruction(MachineInstr &MI, char Flag, 292 std::vector<WorkItem> &Worklist) { 293 InstrInfo &II = Instructions[&MI]; 294 295 assert(!(Flag & StateExact) && Flag != 0); 296 297 // Remove any disabled states from the flag. The user that required it gets 298 // an undefined value in the helper lanes. For example, this can happen if 299 // the result of an atomic is used by instruction that requires WQM, where 300 // ignoring the request for WQM is correct as per the relevant specs. 301 Flag &= ~II.Disabled; 302 303 // Ignore if the flag is already encompassed by the existing needs, or we 304 // just disabled everything. 305 if ((II.Needs & Flag) == Flag) 306 return; 307 308 LLVM_DEBUG(dbgs() << "markInstruction " << PrintState(Flag) << ": " << MI); 309 II.Needs |= Flag; 310 Worklist.push_back(&MI); 311 } 312 313 /// Mark all relevant definitions of register \p Reg in usage \p UseMI. 314 void SIWholeQuadMode::markDefs(const MachineInstr &UseMI, LiveRange &LR, 315 Register Reg, unsigned SubReg, char Flag, 316 std::vector<WorkItem> &Worklist) { 317 LLVM_DEBUG(dbgs() << "markDefs " << PrintState(Flag) << ": " << UseMI); 318 319 LiveQueryResult UseLRQ = LR.Query(LIS->getInstructionIndex(UseMI)); 320 const VNInfo *Value = UseLRQ.valueIn(); 321 if (!Value) 322 return; 323 324 // Note: this code assumes that lane masks on AMDGPU completely 325 // cover registers. 326 const LaneBitmask UseLanes = 327 SubReg ? TRI->getSubRegIndexLaneMask(SubReg) 328 : (Reg.isVirtual() ? MRI->getMaxLaneMaskForVReg(Reg) 329 : LaneBitmask::getNone()); 330 331 // Perform a depth-first iteration of the LiveRange graph marking defs. 332 // Stop processing of a given branch when all use lanes have been defined. 333 // The first definition stops processing for a physical register. 334 struct PhiEntry { 335 const VNInfo *Phi; 336 unsigned PredIdx; 337 LaneBitmask DefinedLanes; 338 339 PhiEntry(const VNInfo *Phi, unsigned PredIdx, LaneBitmask DefinedLanes) 340 : Phi(Phi), PredIdx(PredIdx), DefinedLanes(DefinedLanes) {} 341 }; 342 using VisitKey = std::pair<const VNInfo *, LaneBitmask>; 343 SmallVector<PhiEntry, 2> PhiStack; 344 SmallSet<VisitKey, 4> Visited; 345 LaneBitmask DefinedLanes; 346 unsigned NextPredIdx = 0; // Only used for processing phi nodes 347 do { 348 const VNInfo *NextValue = nullptr; 349 const VisitKey Key(Value, DefinedLanes); 350 351 if (Visited.insert(Key).second) { 352 // On first visit to a phi then start processing first predecessor 353 NextPredIdx = 0; 354 } 355 356 if (Value->isPHIDef()) { 357 // Each predecessor node in the phi must be processed as a subgraph 358 const MachineBasicBlock *MBB = LIS->getMBBFromIndex(Value->def); 359 assert(MBB && "Phi-def has no defining MBB"); 360 361 // Find next predecessor to process 362 unsigned Idx = NextPredIdx; 363 auto PI = MBB->pred_begin() + Idx; 364 auto PE = MBB->pred_end(); 365 for (; PI != PE && !NextValue; ++PI, ++Idx) { 366 if (const VNInfo *VN = LR.getVNInfoBefore(LIS->getMBBEndIdx(*PI))) { 367 if (!Visited.count(VisitKey(VN, DefinedLanes))) 368 NextValue = VN; 369 } 370 } 371 372 // If there are more predecessors to process; add phi to stack 373 if (PI != PE) 374 PhiStack.emplace_back(Value, Idx, DefinedLanes); 375 } else { 376 MachineInstr *MI = LIS->getInstructionFromIndex(Value->def); 377 assert(MI && "Def has no defining instruction"); 378 379 if (Reg.isVirtual()) { 380 // Iterate over all operands to find relevant definitions 381 bool HasDef = false; 382 for (const MachineOperand &Op : MI->all_defs()) { 383 if (Op.getReg() != Reg) 384 continue; 385 386 // Compute lanes defined and overlap with use 387 LaneBitmask OpLanes = 388 Op.isUndef() ? LaneBitmask::getAll() 389 : TRI->getSubRegIndexLaneMask(Op.getSubReg()); 390 LaneBitmask Overlap = (UseLanes & OpLanes); 391 392 // Record if this instruction defined any of use 393 HasDef |= Overlap.any(); 394 395 // Mark any lanes defined 396 DefinedLanes |= OpLanes; 397 } 398 399 // Check if all lanes of use have been defined 400 if ((DefinedLanes & UseLanes) != UseLanes) { 401 // Definition not complete; need to process input value 402 LiveQueryResult LRQ = LR.Query(LIS->getInstructionIndex(*MI)); 403 if (const VNInfo *VN = LRQ.valueIn()) { 404 if (!Visited.count(VisitKey(VN, DefinedLanes))) 405 NextValue = VN; 406 } 407 } 408 409 // Only mark the instruction if it defines some part of the use 410 if (HasDef) 411 markInstruction(*MI, Flag, Worklist); 412 } else { 413 // For physical registers simply mark the defining instruction 414 markInstruction(*MI, Flag, Worklist); 415 } 416 } 417 418 if (!NextValue && !PhiStack.empty()) { 419 // Reach end of chain; revert to processing last phi 420 PhiEntry &Entry = PhiStack.back(); 421 NextValue = Entry.Phi; 422 NextPredIdx = Entry.PredIdx; 423 DefinedLanes = Entry.DefinedLanes; 424 PhiStack.pop_back(); 425 } 426 427 Value = NextValue; 428 } while (Value); 429 } 430 431 void SIWholeQuadMode::markOperand(const MachineInstr &MI, 432 const MachineOperand &Op, char Flag, 433 std::vector<WorkItem> &Worklist) { 434 assert(Op.isReg()); 435 Register Reg = Op.getReg(); 436 437 // Ignore some hardware registers 438 switch (Reg) { 439 case AMDGPU::EXEC: 440 case AMDGPU::EXEC_LO: 441 return; 442 default: 443 break; 444 } 445 446 LLVM_DEBUG(dbgs() << "markOperand " << PrintState(Flag) << ": " << Op 447 << " for " << MI); 448 if (Reg.isVirtual()) { 449 LiveRange &LR = LIS->getInterval(Reg); 450 markDefs(MI, LR, Reg, Op.getSubReg(), Flag, Worklist); 451 } else { 452 // Handle physical registers that we need to track; this is mostly relevant 453 // for VCC, which can appear as the (implicit) input of a uniform branch, 454 // e.g. when a loop counter is stored in a VGPR. 455 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) { 456 LiveRange &LR = LIS->getRegUnit(Unit); 457 const VNInfo *Value = LR.Query(LIS->getInstructionIndex(MI)).valueIn(); 458 if (Value) 459 markDefs(MI, LR, Unit, AMDGPU::NoSubRegister, Flag, Worklist); 460 } 461 } 462 } 463 464 /// Mark all instructions defining the uses in \p MI with \p Flag. 465 void SIWholeQuadMode::markInstructionUses(const MachineInstr &MI, char Flag, 466 std::vector<WorkItem> &Worklist) { 467 LLVM_DEBUG(dbgs() << "markInstructionUses " << PrintState(Flag) << ": " 468 << MI); 469 470 for (const MachineOperand &Use : MI.all_uses()) 471 markOperand(MI, Use, Flag, Worklist); 472 } 473 474 // Scan instructions to determine which ones require an Exact execmask and 475 // which ones seed WQM requirements. 476 char SIWholeQuadMode::scanInstructions(MachineFunction &MF, 477 std::vector<WorkItem> &Worklist) { 478 char GlobalFlags = 0; 479 bool WQMOutputs = MF.getFunction().hasFnAttribute("amdgpu-ps-wqm-outputs"); 480 SmallVector<MachineInstr *, 4> SetInactiveInstrs; 481 SmallVector<MachineInstr *, 4> SoftWQMInstrs; 482 bool HasImplicitDerivatives = 483 MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS; 484 485 // We need to visit the basic blocks in reverse post-order so that we visit 486 // defs before uses, in particular so that we don't accidentally mark an 487 // instruction as needing e.g. WQM before visiting it and realizing it needs 488 // WQM disabled. 489 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 490 for (MachineBasicBlock *MBB : RPOT) { 491 BlockInfo &BBI = Blocks[MBB]; 492 493 for (MachineInstr &MI : *MBB) { 494 InstrInfo &III = Instructions[&MI]; 495 unsigned Opcode = MI.getOpcode(); 496 char Flags = 0; 497 498 if (TII->isWQM(Opcode)) { 499 // If LOD is not supported WQM is not needed. 500 // Only generate implicit WQM if implicit derivatives are required. 501 // This avoids inserting unintended WQM if a shader type without 502 // implicit derivatives uses an image sampling instruction. 503 if (ST->hasExtendedImageInsts() && HasImplicitDerivatives) { 504 // Sampling instructions don't need to produce results for all pixels 505 // in a quad, they just require all inputs of a quad to have been 506 // computed for derivatives. 507 markInstructionUses(MI, StateWQM, Worklist); 508 GlobalFlags |= StateWQM; 509 } 510 } else if (Opcode == AMDGPU::WQM) { 511 // The WQM intrinsic requires its output to have all the helper lanes 512 // correct, so we need it to be in WQM. 513 Flags = StateWQM; 514 LowerToCopyInstrs.push_back(&MI); 515 } else if (Opcode == AMDGPU::SOFT_WQM) { 516 LowerToCopyInstrs.push_back(&MI); 517 SoftWQMInstrs.push_back(&MI); 518 } else if (Opcode == AMDGPU::STRICT_WWM) { 519 // The STRICT_WWM intrinsic doesn't make the same guarantee, and plus 520 // it needs to be executed in WQM or Exact so that its copy doesn't 521 // clobber inactive lanes. 522 markInstructionUses(MI, StateStrictWWM, Worklist); 523 GlobalFlags |= StateStrictWWM; 524 LowerToMovInstrs.push_back(&MI); 525 } else if (Opcode == AMDGPU::STRICT_WQM || 526 TII->isDualSourceBlendEXP(MI)) { 527 // STRICT_WQM is similar to STRICTWWM, but instead of enabling all 528 // threads of the wave like STRICTWWM, STRICT_WQM enables all threads in 529 // quads that have at least one active thread. 530 markInstructionUses(MI, StateStrictWQM, Worklist); 531 GlobalFlags |= StateStrictWQM; 532 533 if (Opcode == AMDGPU::STRICT_WQM) { 534 LowerToMovInstrs.push_back(&MI); 535 } else { 536 // Dual source blend export acts as implicit strict-wqm, its sources 537 // need to be shuffled in strict wqm, but the export itself needs to 538 // run in exact mode. 539 BBI.Needs |= StateExact; 540 if (!(BBI.InNeeds & StateExact)) { 541 BBI.InNeeds |= StateExact; 542 Worklist.push_back(MBB); 543 } 544 GlobalFlags |= StateExact; 545 III.Disabled = StateWQM | StateStrict; 546 } 547 } else if (Opcode == AMDGPU::LDS_PARAM_LOAD || 548 Opcode == AMDGPU::DS_PARAM_LOAD || 549 Opcode == AMDGPU::LDS_DIRECT_LOAD || 550 Opcode == AMDGPU::DS_DIRECT_LOAD) { 551 // Mark these STRICTWQM, but only for the instruction, not its operands. 552 // This avoid unnecessarily marking M0 as requiring WQM. 553 InstrInfo &II = Instructions[&MI]; 554 II.Needs |= StateStrictWQM; 555 GlobalFlags |= StateStrictWQM; 556 } else if (Opcode == AMDGPU::V_SET_INACTIVE_B32 || 557 Opcode == AMDGPU::V_SET_INACTIVE_B64) { 558 III.Disabled = StateStrict; 559 MachineOperand &Inactive = MI.getOperand(2); 560 if (Inactive.isReg()) { 561 if (Inactive.isUndef()) { 562 LowerToCopyInstrs.push_back(&MI); 563 } else { 564 markOperand(MI, Inactive, StateStrictWWM, Worklist); 565 } 566 } 567 SetInactiveInstrs.push_back(&MI); 568 } else if (TII->isDisableWQM(MI)) { 569 BBI.Needs |= StateExact; 570 if (!(BBI.InNeeds & StateExact)) { 571 BBI.InNeeds |= StateExact; 572 Worklist.push_back(MBB); 573 } 574 GlobalFlags |= StateExact; 575 III.Disabled = StateWQM | StateStrict; 576 } else if (Opcode == AMDGPU::SI_PS_LIVE || 577 Opcode == AMDGPU::SI_LIVE_MASK) { 578 LiveMaskQueries.push_back(&MI); 579 } else if (Opcode == AMDGPU::SI_KILL_I1_TERMINATOR || 580 Opcode == AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR || 581 Opcode == AMDGPU::SI_DEMOTE_I1) { 582 KillInstrs.push_back(&MI); 583 BBI.NeedsLowering = true; 584 } else if (Opcode == AMDGPU::SI_INIT_EXEC || 585 Opcode == AMDGPU::SI_INIT_EXEC_FROM_INPUT) { 586 InitExecInstrs.push_back(&MI); 587 } else if (WQMOutputs) { 588 // The function is in machine SSA form, which means that physical 589 // VGPRs correspond to shader inputs and outputs. Inputs are 590 // only used, outputs are only defined. 591 // FIXME: is this still valid? 592 for (const MachineOperand &MO : MI.defs()) { 593 Register Reg = MO.getReg(); 594 if (Reg.isPhysical() && 595 TRI->hasVectorRegisters(TRI->getPhysRegBaseClass(Reg))) { 596 Flags = StateWQM; 597 break; 598 } 599 } 600 } 601 602 if (Flags) { 603 markInstruction(MI, Flags, Worklist); 604 GlobalFlags |= Flags; 605 } 606 } 607 } 608 609 // Mark sure that any SET_INACTIVE instructions are computed in WQM if WQM is 610 // ever used anywhere in the function. This implements the corresponding 611 // semantics of @llvm.amdgcn.set.inactive. 612 // Similarly for SOFT_WQM instructions, implementing @llvm.amdgcn.softwqm. 613 if (GlobalFlags & StateWQM) { 614 for (MachineInstr *MI : SetInactiveInstrs) 615 markInstruction(*MI, StateWQM, Worklist); 616 for (MachineInstr *MI : SoftWQMInstrs) 617 markInstruction(*MI, StateWQM, Worklist); 618 } 619 620 return GlobalFlags; 621 } 622 623 void SIWholeQuadMode::propagateInstruction(MachineInstr &MI, 624 std::vector<WorkItem>& Worklist) { 625 MachineBasicBlock *MBB = MI.getParent(); 626 InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references 627 BlockInfo &BI = Blocks[MBB]; 628 629 // Control flow-type instructions and stores to temporary memory that are 630 // followed by WQM computations must themselves be in WQM. 631 if ((II.OutNeeds & StateWQM) && !(II.Disabled & StateWQM) && 632 (MI.isTerminator() || (TII->usesVM_CNT(MI) && MI.mayStore()))) { 633 Instructions[&MI].Needs = StateWQM; 634 II.Needs = StateWQM; 635 } 636 637 // Propagate to block level 638 if (II.Needs & StateWQM) { 639 BI.Needs |= StateWQM; 640 if (!(BI.InNeeds & StateWQM)) { 641 BI.InNeeds |= StateWQM; 642 Worklist.push_back(MBB); 643 } 644 } 645 646 // Propagate backwards within block 647 if (MachineInstr *PrevMI = MI.getPrevNode()) { 648 char InNeeds = (II.Needs & ~StateStrict) | II.OutNeeds; 649 if (!PrevMI->isPHI()) { 650 InstrInfo &PrevII = Instructions[PrevMI]; 651 if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) { 652 PrevII.OutNeeds |= InNeeds; 653 Worklist.push_back(PrevMI); 654 } 655 } 656 } 657 658 // Propagate WQM flag to instruction inputs 659 assert(!(II.Needs & StateExact)); 660 661 if (II.Needs != 0) 662 markInstructionUses(MI, II.Needs, Worklist); 663 664 // Ensure we process a block containing StrictWWM/StrictWQM, even if it does 665 // not require any WQM transitions. 666 if (II.Needs & StateStrictWWM) 667 BI.Needs |= StateStrictWWM; 668 if (II.Needs & StateStrictWQM) 669 BI.Needs |= StateStrictWQM; 670 } 671 672 void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB, 673 std::vector<WorkItem>& Worklist) { 674 BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references. 675 676 // Propagate through instructions 677 if (!MBB.empty()) { 678 MachineInstr *LastMI = &*MBB.rbegin(); 679 InstrInfo &LastII = Instructions[LastMI]; 680 if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) { 681 LastII.OutNeeds |= BI.OutNeeds; 682 Worklist.push_back(LastMI); 683 } 684 } 685 686 // Predecessor blocks must provide for our WQM/Exact needs. 687 for (MachineBasicBlock *Pred : MBB.predecessors()) { 688 BlockInfo &PredBI = Blocks[Pred]; 689 if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds) 690 continue; 691 692 PredBI.OutNeeds |= BI.InNeeds; 693 PredBI.InNeeds |= BI.InNeeds; 694 Worklist.push_back(Pred); 695 } 696 697 // All successors must be prepared to accept the same set of WQM/Exact data. 698 for (MachineBasicBlock *Succ : MBB.successors()) { 699 BlockInfo &SuccBI = Blocks[Succ]; 700 if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds) 701 continue; 702 703 SuccBI.InNeeds |= BI.OutNeeds; 704 Worklist.push_back(Succ); 705 } 706 } 707 708 char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) { 709 std::vector<WorkItem> Worklist; 710 char GlobalFlags = scanInstructions(MF, Worklist); 711 712 while (!Worklist.empty()) { 713 WorkItem WI = Worklist.back(); 714 Worklist.pop_back(); 715 716 if (WI.MI) 717 propagateInstruction(*WI.MI, Worklist); 718 else 719 propagateBlock(*WI.MBB, Worklist); 720 } 721 722 return GlobalFlags; 723 } 724 725 MachineBasicBlock::iterator 726 SIWholeQuadMode::saveSCC(MachineBasicBlock &MBB, 727 MachineBasicBlock::iterator Before) { 728 Register SaveReg = MRI->createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 729 730 MachineInstr *Save = 731 BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), SaveReg) 732 .addReg(AMDGPU::SCC); 733 MachineInstr *Restore = 734 BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::SCC) 735 .addReg(SaveReg); 736 737 LIS->InsertMachineInstrInMaps(*Save); 738 LIS->InsertMachineInstrInMaps(*Restore); 739 LIS->createAndComputeVirtRegInterval(SaveReg); 740 741 return Restore; 742 } 743 744 MachineBasicBlock *SIWholeQuadMode::splitBlock(MachineBasicBlock *BB, 745 MachineInstr *TermMI) { 746 LLVM_DEBUG(dbgs() << "Split block " << printMBBReference(*BB) << " @ " 747 << *TermMI << "\n"); 748 749 MachineBasicBlock *SplitBB = 750 BB->splitAt(*TermMI, /*UpdateLiveIns*/ true, LIS); 751 752 // Convert last instruction in block to a terminator. 753 // Note: this only covers the expected patterns 754 unsigned NewOpcode = 0; 755 switch (TermMI->getOpcode()) { 756 case AMDGPU::S_AND_B32: 757 NewOpcode = AMDGPU::S_AND_B32_term; 758 break; 759 case AMDGPU::S_AND_B64: 760 NewOpcode = AMDGPU::S_AND_B64_term; 761 break; 762 case AMDGPU::S_MOV_B32: 763 NewOpcode = AMDGPU::S_MOV_B32_term; 764 break; 765 case AMDGPU::S_MOV_B64: 766 NewOpcode = AMDGPU::S_MOV_B64_term; 767 break; 768 default: 769 break; 770 } 771 if (NewOpcode) 772 TermMI->setDesc(TII->get(NewOpcode)); 773 774 if (SplitBB != BB) { 775 // Update dominator trees 776 using DomTreeT = DomTreeBase<MachineBasicBlock>; 777 SmallVector<DomTreeT::UpdateType, 16> DTUpdates; 778 for (MachineBasicBlock *Succ : SplitBB->successors()) { 779 DTUpdates.push_back({DomTreeT::Insert, SplitBB, Succ}); 780 DTUpdates.push_back({DomTreeT::Delete, BB, Succ}); 781 } 782 DTUpdates.push_back({DomTreeT::Insert, BB, SplitBB}); 783 if (MDT) 784 MDT->getBase().applyUpdates(DTUpdates); 785 if (PDT) 786 PDT->applyUpdates(DTUpdates); 787 788 // Link blocks 789 MachineInstr *MI = 790 BuildMI(*BB, BB->end(), DebugLoc(), TII->get(AMDGPU::S_BRANCH)) 791 .addMBB(SplitBB); 792 LIS->InsertMachineInstrInMaps(*MI); 793 } 794 795 return SplitBB; 796 } 797 798 MachineInstr *SIWholeQuadMode::lowerKillF32(MachineBasicBlock &MBB, 799 MachineInstr &MI) { 800 const DebugLoc &DL = MI.getDebugLoc(); 801 unsigned Opcode = 0; 802 803 assert(MI.getOperand(0).isReg()); 804 805 // Comparison is for live lanes; however here we compute the inverse 806 // (killed lanes). This is because VCMP will always generate 0 bits 807 // for inactive lanes so a mask of live lanes would not be correct 808 // inside control flow. 809 // Invert the comparison by swapping the operands and adjusting 810 // the comparison codes. 811 812 switch (MI.getOperand(2).getImm()) { 813 case ISD::SETUEQ: 814 Opcode = AMDGPU::V_CMP_LG_F32_e64; 815 break; 816 case ISD::SETUGT: 817 Opcode = AMDGPU::V_CMP_GE_F32_e64; 818 break; 819 case ISD::SETUGE: 820 Opcode = AMDGPU::V_CMP_GT_F32_e64; 821 break; 822 case ISD::SETULT: 823 Opcode = AMDGPU::V_CMP_LE_F32_e64; 824 break; 825 case ISD::SETULE: 826 Opcode = AMDGPU::V_CMP_LT_F32_e64; 827 break; 828 case ISD::SETUNE: 829 Opcode = AMDGPU::V_CMP_EQ_F32_e64; 830 break; 831 case ISD::SETO: 832 Opcode = AMDGPU::V_CMP_O_F32_e64; 833 break; 834 case ISD::SETUO: 835 Opcode = AMDGPU::V_CMP_U_F32_e64; 836 break; 837 case ISD::SETOEQ: 838 case ISD::SETEQ: 839 Opcode = AMDGPU::V_CMP_NEQ_F32_e64; 840 break; 841 case ISD::SETOGT: 842 case ISD::SETGT: 843 Opcode = AMDGPU::V_CMP_NLT_F32_e64; 844 break; 845 case ISD::SETOGE: 846 case ISD::SETGE: 847 Opcode = AMDGPU::V_CMP_NLE_F32_e64; 848 break; 849 case ISD::SETOLT: 850 case ISD::SETLT: 851 Opcode = AMDGPU::V_CMP_NGT_F32_e64; 852 break; 853 case ISD::SETOLE: 854 case ISD::SETLE: 855 Opcode = AMDGPU::V_CMP_NGE_F32_e64; 856 break; 857 case ISD::SETONE: 858 case ISD::SETNE: 859 Opcode = AMDGPU::V_CMP_NLG_F32_e64; 860 break; 861 default: 862 llvm_unreachable("invalid ISD:SET cond code"); 863 } 864 865 // Pick opcode based on comparison type. 866 MachineInstr *VcmpMI; 867 const MachineOperand &Op0 = MI.getOperand(0); 868 const MachineOperand &Op1 = MI.getOperand(1); 869 870 // VCC represents lanes killed. 871 Register VCC = ST->isWave32() ? AMDGPU::VCC_LO : AMDGPU::VCC; 872 873 if (TRI->isVGPR(*MRI, Op0.getReg())) { 874 Opcode = AMDGPU::getVOPe32(Opcode); 875 VcmpMI = BuildMI(MBB, &MI, DL, TII->get(Opcode)).add(Op1).add(Op0); 876 } else { 877 VcmpMI = BuildMI(MBB, &MI, DL, TII->get(Opcode)) 878 .addReg(VCC, RegState::Define) 879 .addImm(0) // src0 modifiers 880 .add(Op1) 881 .addImm(0) // src1 modifiers 882 .add(Op0) 883 .addImm(0); // omod 884 } 885 886 MachineInstr *MaskUpdateMI = 887 BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) 888 .addReg(LiveMaskReg) 889 .addReg(VCC); 890 891 // State of SCC represents whether any lanes are live in mask, 892 // if SCC is 0 then no lanes will be alive anymore. 893 MachineInstr *EarlyTermMI = 894 BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_EARLY_TERMINATE_SCC0)); 895 896 MachineInstr *ExecMaskMI = 897 BuildMI(MBB, MI, DL, TII->get(AndN2Opc), Exec).addReg(Exec).addReg(VCC); 898 899 assert(MBB.succ_size() == 1); 900 MachineInstr *NewTerm = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_BRANCH)) 901 .addMBB(*MBB.succ_begin()); 902 903 // Update live intervals 904 LIS->ReplaceMachineInstrInMaps(MI, *VcmpMI); 905 MBB.remove(&MI); 906 907 LIS->InsertMachineInstrInMaps(*MaskUpdateMI); 908 LIS->InsertMachineInstrInMaps(*ExecMaskMI); 909 LIS->InsertMachineInstrInMaps(*EarlyTermMI); 910 LIS->InsertMachineInstrInMaps(*NewTerm); 911 912 return NewTerm; 913 } 914 915 MachineInstr *SIWholeQuadMode::lowerKillI1(MachineBasicBlock &MBB, 916 MachineInstr &MI, bool IsWQM) { 917 const DebugLoc &DL = MI.getDebugLoc(); 918 MachineInstr *MaskUpdateMI = nullptr; 919 920 const bool IsDemote = IsWQM && (MI.getOpcode() == AMDGPU::SI_DEMOTE_I1); 921 const MachineOperand &Op = MI.getOperand(0); 922 int64_t KillVal = MI.getOperand(1).getImm(); 923 MachineInstr *ComputeKilledMaskMI = nullptr; 924 Register CndReg = !Op.isImm() ? Op.getReg() : Register(); 925 Register TmpReg; 926 927 // Is this a static or dynamic kill? 928 if (Op.isImm()) { 929 if (Op.getImm() == KillVal) { 930 // Static: all active lanes are killed 931 MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) 932 .addReg(LiveMaskReg) 933 .addReg(Exec); 934 } else { 935 // Static: kill does nothing 936 MachineInstr *NewTerm = nullptr; 937 if (MI.getOpcode() == AMDGPU::SI_DEMOTE_I1) { 938 LIS->RemoveMachineInstrFromMaps(MI); 939 } else { 940 assert(MBB.succ_size() == 1); 941 NewTerm = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_BRANCH)) 942 .addMBB(*MBB.succ_begin()); 943 LIS->ReplaceMachineInstrInMaps(MI, *NewTerm); 944 } 945 MBB.remove(&MI); 946 return NewTerm; 947 } 948 } else { 949 if (!KillVal) { 950 // Op represents live lanes after kill, 951 // so exec mask needs to be factored in. 952 TmpReg = MRI->createVirtualRegister(TRI->getBoolRC()); 953 ComputeKilledMaskMI = 954 BuildMI(MBB, MI, DL, TII->get(XorOpc), TmpReg).add(Op).addReg(Exec); 955 MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) 956 .addReg(LiveMaskReg) 957 .addReg(TmpReg); 958 } else { 959 // Op represents lanes to kill 960 MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) 961 .addReg(LiveMaskReg) 962 .add(Op); 963 } 964 } 965 966 // State of SCC represents whether any lanes are live in mask, 967 // if SCC is 0 then no lanes will be alive anymore. 968 MachineInstr *EarlyTermMI = 969 BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_EARLY_TERMINATE_SCC0)); 970 971 // In the case we got this far some lanes are still live, 972 // update EXEC to deactivate lanes as appropriate. 973 MachineInstr *NewTerm; 974 MachineInstr *WQMMaskMI = nullptr; 975 Register LiveMaskWQM; 976 if (IsDemote) { 977 // Demote - deactivate quads with only helper lanes 978 LiveMaskWQM = MRI->createVirtualRegister(TRI->getBoolRC()); 979 WQMMaskMI = 980 BuildMI(MBB, MI, DL, TII->get(WQMOpc), LiveMaskWQM).addReg(LiveMaskReg); 981 NewTerm = BuildMI(MBB, MI, DL, TII->get(AndOpc), Exec) 982 .addReg(Exec) 983 .addReg(LiveMaskWQM); 984 } else { 985 // Kill - deactivate lanes no longer in live mask 986 if (Op.isImm()) { 987 unsigned MovOpc = ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 988 NewTerm = BuildMI(MBB, &MI, DL, TII->get(MovOpc), Exec).addImm(0); 989 } else if (!IsWQM) { 990 NewTerm = BuildMI(MBB, &MI, DL, TII->get(AndOpc), Exec) 991 .addReg(Exec) 992 .addReg(LiveMaskReg); 993 } else { 994 unsigned Opcode = KillVal ? AndN2Opc : AndOpc; 995 NewTerm = 996 BuildMI(MBB, &MI, DL, TII->get(Opcode), Exec).addReg(Exec).add(Op); 997 } 998 } 999 1000 // Update live intervals 1001 LIS->RemoveMachineInstrFromMaps(MI); 1002 MBB.remove(&MI); 1003 assert(EarlyTermMI); 1004 assert(MaskUpdateMI); 1005 assert(NewTerm); 1006 if (ComputeKilledMaskMI) 1007 LIS->InsertMachineInstrInMaps(*ComputeKilledMaskMI); 1008 LIS->InsertMachineInstrInMaps(*MaskUpdateMI); 1009 LIS->InsertMachineInstrInMaps(*EarlyTermMI); 1010 if (WQMMaskMI) 1011 LIS->InsertMachineInstrInMaps(*WQMMaskMI); 1012 LIS->InsertMachineInstrInMaps(*NewTerm); 1013 1014 if (CndReg) { 1015 LIS->removeInterval(CndReg); 1016 LIS->createAndComputeVirtRegInterval(CndReg); 1017 } 1018 if (TmpReg) 1019 LIS->createAndComputeVirtRegInterval(TmpReg); 1020 if (LiveMaskWQM) 1021 LIS->createAndComputeVirtRegInterval(LiveMaskWQM); 1022 1023 return NewTerm; 1024 } 1025 1026 // Replace (or supplement) instructions accessing live mask. 1027 // This can only happen once all the live mask registers have been created 1028 // and the execute state (WQM/StrictWWM/Exact) of instructions is known. 1029 void SIWholeQuadMode::lowerBlock(MachineBasicBlock &MBB) { 1030 auto BII = Blocks.find(&MBB); 1031 if (BII == Blocks.end()) 1032 return; 1033 1034 const BlockInfo &BI = BII->second; 1035 if (!BI.NeedsLowering) 1036 return; 1037 1038 LLVM_DEBUG(dbgs() << "\nLowering block " << printMBBReference(MBB) << ":\n"); 1039 1040 SmallVector<MachineInstr *, 4> SplitPoints; 1041 char State = BI.InitialState; 1042 1043 for (MachineInstr &MI : llvm::make_early_inc_range( 1044 llvm::make_range(MBB.getFirstNonPHI(), MBB.end()))) { 1045 if (StateTransition.count(&MI)) 1046 State = StateTransition[&MI]; 1047 1048 MachineInstr *SplitPoint = nullptr; 1049 switch (MI.getOpcode()) { 1050 case AMDGPU::SI_DEMOTE_I1: 1051 case AMDGPU::SI_KILL_I1_TERMINATOR: 1052 SplitPoint = lowerKillI1(MBB, MI, State == StateWQM); 1053 break; 1054 case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: 1055 SplitPoint = lowerKillF32(MBB, MI); 1056 break; 1057 default: 1058 break; 1059 } 1060 if (SplitPoint) 1061 SplitPoints.push_back(SplitPoint); 1062 } 1063 1064 // Perform splitting after instruction scan to simplify iteration. 1065 if (!SplitPoints.empty()) { 1066 MachineBasicBlock *BB = &MBB; 1067 for (MachineInstr *MI : SplitPoints) { 1068 BB = splitBlock(BB, MI); 1069 } 1070 } 1071 } 1072 1073 // Return an iterator in the (inclusive) range [First, Last] at which 1074 // instructions can be safely inserted, keeping in mind that some of the 1075 // instructions we want to add necessarily clobber SCC. 1076 MachineBasicBlock::iterator SIWholeQuadMode::prepareInsertion( 1077 MachineBasicBlock &MBB, MachineBasicBlock::iterator First, 1078 MachineBasicBlock::iterator Last, bool PreferLast, bool SaveSCC) { 1079 if (!SaveSCC) 1080 return PreferLast ? Last : First; 1081 1082 LiveRange &LR = 1083 LIS->getRegUnit(*TRI->regunits(MCRegister::from(AMDGPU::SCC)).begin()); 1084 auto MBBE = MBB.end(); 1085 SlotIndex FirstIdx = First != MBBE ? LIS->getInstructionIndex(*First) 1086 : LIS->getMBBEndIdx(&MBB); 1087 SlotIndex LastIdx = 1088 Last != MBBE ? LIS->getInstructionIndex(*Last) : LIS->getMBBEndIdx(&MBB); 1089 SlotIndex Idx = PreferLast ? LastIdx : FirstIdx; 1090 const LiveRange::Segment *S; 1091 1092 for (;;) { 1093 S = LR.getSegmentContaining(Idx); 1094 if (!S) 1095 break; 1096 1097 if (PreferLast) { 1098 SlotIndex Next = S->start.getBaseIndex(); 1099 if (Next < FirstIdx) 1100 break; 1101 Idx = Next; 1102 } else { 1103 MachineInstr *EndMI = LIS->getInstructionFromIndex(S->end.getBaseIndex()); 1104 assert(EndMI && "Segment does not end on valid instruction"); 1105 auto NextI = std::next(EndMI->getIterator()); 1106 if (NextI == MBB.end()) 1107 break; 1108 SlotIndex Next = LIS->getInstructionIndex(*NextI); 1109 if (Next > LastIdx) 1110 break; 1111 Idx = Next; 1112 } 1113 } 1114 1115 MachineBasicBlock::iterator MBBI; 1116 1117 if (MachineInstr *MI = LIS->getInstructionFromIndex(Idx)) 1118 MBBI = MI; 1119 else { 1120 assert(Idx == LIS->getMBBEndIdx(&MBB)); 1121 MBBI = MBB.end(); 1122 } 1123 1124 // Move insertion point past any operations modifying EXEC. 1125 // This assumes that the value of SCC defined by any of these operations 1126 // does not need to be preserved. 1127 while (MBBI != Last) { 1128 bool IsExecDef = false; 1129 for (const MachineOperand &MO : MBBI->all_defs()) { 1130 IsExecDef |= 1131 MO.getReg() == AMDGPU::EXEC_LO || MO.getReg() == AMDGPU::EXEC; 1132 } 1133 if (!IsExecDef) 1134 break; 1135 MBBI++; 1136 S = nullptr; 1137 } 1138 1139 if (S) 1140 MBBI = saveSCC(MBB, MBBI); 1141 1142 return MBBI; 1143 } 1144 1145 void SIWholeQuadMode::toExact(MachineBasicBlock &MBB, 1146 MachineBasicBlock::iterator Before, 1147 Register SaveWQM) { 1148 bool IsTerminator = Before == MBB.end(); 1149 if (!IsTerminator) { 1150 auto FirstTerm = MBB.getFirstTerminator(); 1151 if (FirstTerm != MBB.end()) { 1152 SlotIndex FirstTermIdx = LIS->getInstructionIndex(*FirstTerm); 1153 SlotIndex BeforeIdx = LIS->getInstructionIndex(*Before); 1154 IsTerminator = BeforeIdx > FirstTermIdx; 1155 } 1156 } 1157 1158 MachineInstr *MI; 1159 1160 if (SaveWQM) { 1161 unsigned Opcode = IsTerminator ? AndSaveExecTermOpc : AndSaveExecOpc; 1162 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(Opcode), SaveWQM) 1163 .addReg(LiveMaskReg); 1164 } else { 1165 unsigned Opcode = IsTerminator ? AndTermOpc : AndOpc; 1166 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(Opcode), Exec) 1167 .addReg(Exec) 1168 .addReg(LiveMaskReg); 1169 } 1170 1171 LIS->InsertMachineInstrInMaps(*MI); 1172 StateTransition[MI] = StateExact; 1173 } 1174 1175 void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB, 1176 MachineBasicBlock::iterator Before, 1177 Register SavedWQM) { 1178 MachineInstr *MI; 1179 1180 if (SavedWQM) { 1181 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), Exec) 1182 .addReg(SavedWQM); 1183 } else { 1184 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(WQMOpc), Exec).addReg(Exec); 1185 } 1186 1187 LIS->InsertMachineInstrInMaps(*MI); 1188 StateTransition[MI] = StateWQM; 1189 } 1190 1191 void SIWholeQuadMode::toStrictMode(MachineBasicBlock &MBB, 1192 MachineBasicBlock::iterator Before, 1193 Register SaveOrig, char StrictStateNeeded) { 1194 MachineInstr *MI; 1195 assert(SaveOrig); 1196 assert(StrictStateNeeded == StateStrictWWM || 1197 StrictStateNeeded == StateStrictWQM); 1198 1199 if (StrictStateNeeded == StateStrictWWM) { 1200 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_STRICT_WWM), 1201 SaveOrig) 1202 .addImm(-1); 1203 } else { 1204 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_STRICT_WQM), 1205 SaveOrig) 1206 .addImm(-1); 1207 } 1208 LIS->InsertMachineInstrInMaps(*MI); 1209 StateTransition[MI] = StrictStateNeeded; 1210 } 1211 1212 void SIWholeQuadMode::fromStrictMode(MachineBasicBlock &MBB, 1213 MachineBasicBlock::iterator Before, 1214 Register SavedOrig, char NonStrictState, 1215 char CurrentStrictState) { 1216 MachineInstr *MI; 1217 1218 assert(SavedOrig); 1219 assert(CurrentStrictState == StateStrictWWM || 1220 CurrentStrictState == StateStrictWQM); 1221 1222 if (CurrentStrictState == StateStrictWWM) { 1223 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_STRICT_WWM), 1224 Exec) 1225 .addReg(SavedOrig); 1226 } else { 1227 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_STRICT_WQM), 1228 Exec) 1229 .addReg(SavedOrig); 1230 } 1231 LIS->InsertMachineInstrInMaps(*MI); 1232 StateTransition[MI] = NonStrictState; 1233 } 1234 1235 void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, bool IsEntry) { 1236 auto BII = Blocks.find(&MBB); 1237 if (BII == Blocks.end()) 1238 return; 1239 1240 BlockInfo &BI = BII->second; 1241 1242 // This is a non-entry block that is WQM throughout, so no need to do 1243 // anything. 1244 if (!IsEntry && BI.Needs == StateWQM && BI.OutNeeds != StateExact) { 1245 BI.InitialState = StateWQM; 1246 return; 1247 } 1248 1249 LLVM_DEBUG(dbgs() << "\nProcessing block " << printMBBReference(MBB) 1250 << ":\n"); 1251 1252 Register SavedWQMReg; 1253 Register SavedNonStrictReg; 1254 bool WQMFromExec = IsEntry; 1255 char State = (IsEntry || !(BI.InNeeds & StateWQM)) ? StateExact : StateWQM; 1256 char NonStrictState = 0; 1257 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 1258 1259 auto II = MBB.getFirstNonPHI(), IE = MBB.end(); 1260 if (IsEntry) { 1261 // Skip the instruction that saves LiveMask 1262 if (II != IE && II->getOpcode() == AMDGPU::COPY && 1263 II->getOperand(1).getReg() == TRI->getExec()) 1264 ++II; 1265 } 1266 1267 // This stores the first instruction where it's safe to switch from WQM to 1268 // Exact or vice versa. 1269 MachineBasicBlock::iterator FirstWQM = IE; 1270 1271 // This stores the first instruction where it's safe to switch from Strict 1272 // mode to Exact/WQM or to switch to Strict mode. It must always be the same 1273 // as, or after, FirstWQM since if it's safe to switch to/from Strict, it must 1274 // be safe to switch to/from WQM as well. 1275 MachineBasicBlock::iterator FirstStrict = IE; 1276 1277 // Record initial state is block information. 1278 BI.InitialState = State; 1279 1280 for (;;) { 1281 MachineBasicBlock::iterator Next = II; 1282 char Needs = StateExact | StateWQM; // Strict mode is disabled by default. 1283 char OutNeeds = 0; 1284 1285 if (FirstWQM == IE) 1286 FirstWQM = II; 1287 1288 if (FirstStrict == IE) 1289 FirstStrict = II; 1290 1291 // First, figure out the allowed states (Needs) based on the propagated 1292 // flags. 1293 if (II != IE) { 1294 MachineInstr &MI = *II; 1295 1296 if (MI.isTerminator() || TII->mayReadEXEC(*MRI, MI)) { 1297 auto III = Instructions.find(&MI); 1298 if (III != Instructions.end()) { 1299 if (III->second.Needs & StateStrictWWM) 1300 Needs = StateStrictWWM; 1301 else if (III->second.Needs & StateStrictWQM) 1302 Needs = StateStrictWQM; 1303 else if (III->second.Needs & StateWQM) 1304 Needs = StateWQM; 1305 else 1306 Needs &= ~III->second.Disabled; 1307 OutNeeds = III->second.OutNeeds; 1308 } 1309 } else { 1310 // If the instruction doesn't actually need a correct EXEC, then we can 1311 // safely leave Strict mode enabled. 1312 Needs = StateExact | StateWQM | StateStrict; 1313 } 1314 1315 // Exact mode exit can occur in terminators, but must be before branches. 1316 if (MI.isBranch() && OutNeeds == StateExact) 1317 Needs = StateExact; 1318 1319 ++Next; 1320 } else { 1321 // End of basic block 1322 if (BI.OutNeeds & StateWQM) 1323 Needs = StateWQM; 1324 else if (BI.OutNeeds == StateExact) 1325 Needs = StateExact; 1326 else 1327 Needs = StateWQM | StateExact; 1328 } 1329 1330 // Now, transition if necessary. 1331 if (!(Needs & State)) { 1332 MachineBasicBlock::iterator First; 1333 if (State == StateStrictWWM || Needs == StateStrictWWM || 1334 State == StateStrictWQM || Needs == StateStrictWQM) { 1335 // We must switch to or from Strict mode. 1336 First = FirstStrict; 1337 } else { 1338 // We only need to switch to/from WQM, so we can use FirstWQM. 1339 First = FirstWQM; 1340 } 1341 1342 // Whether we need to save SCC depends on start and end states. 1343 bool SaveSCC = false; 1344 switch (State) { 1345 case StateExact: 1346 case StateStrictWWM: 1347 case StateStrictWQM: 1348 // Exact/Strict -> Strict: save SCC 1349 // Exact/Strict -> WQM: save SCC if WQM mask is generated from exec 1350 // Exact/Strict -> Exact: no save 1351 SaveSCC = (Needs & StateStrict) || ((Needs & StateWQM) && WQMFromExec); 1352 break; 1353 case StateWQM: 1354 // WQM -> Exact/Strict: save SCC 1355 SaveSCC = !(Needs & StateWQM); 1356 break; 1357 default: 1358 llvm_unreachable("Unknown state"); 1359 break; 1360 } 1361 MachineBasicBlock::iterator Before = 1362 prepareInsertion(MBB, First, II, Needs == StateWQM, SaveSCC); 1363 1364 if (State & StateStrict) { 1365 assert(State == StateStrictWWM || State == StateStrictWQM); 1366 assert(SavedNonStrictReg); 1367 fromStrictMode(MBB, Before, SavedNonStrictReg, NonStrictState, State); 1368 1369 LIS->createAndComputeVirtRegInterval(SavedNonStrictReg); 1370 SavedNonStrictReg = 0; 1371 State = NonStrictState; 1372 } 1373 1374 if (Needs & StateStrict) { 1375 NonStrictState = State; 1376 assert(Needs == StateStrictWWM || Needs == StateStrictWQM); 1377 assert(!SavedNonStrictReg); 1378 SavedNonStrictReg = MRI->createVirtualRegister(BoolRC); 1379 1380 toStrictMode(MBB, Before, SavedNonStrictReg, Needs); 1381 State = Needs; 1382 1383 } else { 1384 if (State == StateWQM && (Needs & StateExact) && !(Needs & StateWQM)) { 1385 if (!WQMFromExec && (OutNeeds & StateWQM)) { 1386 assert(!SavedWQMReg); 1387 SavedWQMReg = MRI->createVirtualRegister(BoolRC); 1388 } 1389 1390 toExact(MBB, Before, SavedWQMReg); 1391 State = StateExact; 1392 } else if (State == StateExact && (Needs & StateWQM) && 1393 !(Needs & StateExact)) { 1394 assert(WQMFromExec == (SavedWQMReg == 0)); 1395 1396 toWQM(MBB, Before, SavedWQMReg); 1397 1398 if (SavedWQMReg) { 1399 LIS->createAndComputeVirtRegInterval(SavedWQMReg); 1400 SavedWQMReg = 0; 1401 } 1402 State = StateWQM; 1403 } else { 1404 // We can get here if we transitioned from StrictWWM to a 1405 // non-StrictWWM state that already matches our needs, but we 1406 // shouldn't need to do anything. 1407 assert(Needs & State); 1408 } 1409 } 1410 } 1411 1412 if (Needs != (StateExact | StateWQM | StateStrict)) { 1413 if (Needs != (StateExact | StateWQM)) 1414 FirstWQM = IE; 1415 FirstStrict = IE; 1416 } 1417 1418 if (II == IE) 1419 break; 1420 1421 II = Next; 1422 } 1423 assert(!SavedWQMReg); 1424 assert(!SavedNonStrictReg); 1425 } 1426 1427 void SIWholeQuadMode::lowerLiveMaskQueries() { 1428 for (MachineInstr *MI : LiveMaskQueries) { 1429 const DebugLoc &DL = MI->getDebugLoc(); 1430 Register Dest = MI->getOperand(0).getReg(); 1431 1432 MachineInstr *Copy = 1433 BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest) 1434 .addReg(LiveMaskReg); 1435 1436 LIS->ReplaceMachineInstrInMaps(*MI, *Copy); 1437 MI->eraseFromParent(); 1438 } 1439 } 1440 1441 void SIWholeQuadMode::lowerCopyInstrs() { 1442 for (MachineInstr *MI : LowerToMovInstrs) { 1443 assert(MI->getNumExplicitOperands() == 2); 1444 1445 const Register Reg = MI->getOperand(0).getReg(); 1446 1447 const TargetRegisterClass *regClass = 1448 TRI->getRegClassForOperandReg(*MRI, MI->getOperand(0)); 1449 if (TRI->isVGPRClass(regClass)) { 1450 const unsigned MovOp = TII->getMovOpcode(regClass); 1451 MI->setDesc(TII->get(MovOp)); 1452 1453 // Check that it already implicitly depends on exec (like all VALU movs 1454 // should do). 1455 assert(any_of(MI->implicit_operands(), [](const MachineOperand &MO) { 1456 return MO.isUse() && MO.getReg() == AMDGPU::EXEC; 1457 })); 1458 } else { 1459 // Remove early-clobber and exec dependency from simple SGPR copies. 1460 // This allows some to be eliminated during/post RA. 1461 LLVM_DEBUG(dbgs() << "simplify SGPR copy: " << *MI); 1462 if (MI->getOperand(0).isEarlyClobber()) { 1463 LIS->removeInterval(Reg); 1464 MI->getOperand(0).setIsEarlyClobber(false); 1465 LIS->createAndComputeVirtRegInterval(Reg); 1466 } 1467 int Index = MI->findRegisterUseOperandIdx(AMDGPU::EXEC, /*TRI=*/nullptr); 1468 while (Index >= 0) { 1469 MI->removeOperand(Index); 1470 Index = MI->findRegisterUseOperandIdx(AMDGPU::EXEC, /*TRI=*/nullptr); 1471 } 1472 MI->setDesc(TII->get(AMDGPU::COPY)); 1473 LLVM_DEBUG(dbgs() << " -> " << *MI); 1474 } 1475 } 1476 for (MachineInstr *MI : LowerToCopyInstrs) { 1477 if (MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B32 || 1478 MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B64) { 1479 assert(MI->getNumExplicitOperands() == 3); 1480 // the only reason we should be here is V_SET_INACTIVE has 1481 // an undef input so it is being replaced by a simple copy. 1482 // There should be a second undef source that we should remove. 1483 assert(MI->getOperand(2).isUndef()); 1484 MI->removeOperand(2); 1485 MI->untieRegOperand(1); 1486 } else { 1487 assert(MI->getNumExplicitOperands() == 2); 1488 } 1489 1490 unsigned CopyOp = MI->getOperand(1).isReg() 1491 ? (unsigned)AMDGPU::COPY 1492 : TII->getMovOpcode(TRI->getRegClassForOperandReg( 1493 *MRI, MI->getOperand(0))); 1494 MI->setDesc(TII->get(CopyOp)); 1495 } 1496 } 1497 1498 void SIWholeQuadMode::lowerKillInstrs(bool IsWQM) { 1499 for (MachineInstr *MI : KillInstrs) { 1500 MachineBasicBlock *MBB = MI->getParent(); 1501 MachineInstr *SplitPoint = nullptr; 1502 switch (MI->getOpcode()) { 1503 case AMDGPU::SI_DEMOTE_I1: 1504 case AMDGPU::SI_KILL_I1_TERMINATOR: 1505 SplitPoint = lowerKillI1(*MBB, *MI, IsWQM); 1506 break; 1507 case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: 1508 SplitPoint = lowerKillF32(*MBB, *MI); 1509 break; 1510 } 1511 if (SplitPoint) 1512 splitBlock(MBB, SplitPoint); 1513 } 1514 } 1515 1516 void SIWholeQuadMode::lowerInitExec(MachineInstr &MI) { 1517 MachineBasicBlock *MBB = MI.getParent(); 1518 bool IsWave32 = ST->isWave32(); 1519 1520 if (MI.getOpcode() == AMDGPU::SI_INIT_EXEC) { 1521 // This should be before all vector instructions. 1522 MachineInstr *InitMI = 1523 BuildMI(*MBB, MBB->begin(), MI.getDebugLoc(), 1524 TII->get(IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64), 1525 Exec) 1526 .addImm(MI.getOperand(0).getImm()); 1527 if (LIS) { 1528 LIS->RemoveMachineInstrFromMaps(MI); 1529 LIS->InsertMachineInstrInMaps(*InitMI); 1530 } 1531 MI.eraseFromParent(); 1532 return; 1533 } 1534 1535 // Extract the thread count from an SGPR input and set EXEC accordingly. 1536 // Since BFM can't shift by 64, handle that case with CMP + CMOV. 1537 // 1538 // S_BFE_U32 count, input, {shift, 7} 1539 // S_BFM_B64 exec, count, 0 1540 // S_CMP_EQ_U32 count, 64 1541 // S_CMOV_B64 exec, -1 1542 Register InputReg = MI.getOperand(0).getReg(); 1543 MachineInstr *FirstMI = &*MBB->begin(); 1544 if (InputReg.isVirtual()) { 1545 MachineInstr *DefInstr = MRI->getVRegDef(InputReg); 1546 assert(DefInstr && DefInstr->isCopy()); 1547 if (DefInstr->getParent() == MBB) { 1548 if (DefInstr != FirstMI) { 1549 // If the `InputReg` is defined in current block, we also need to 1550 // move that instruction to the beginning of the block. 1551 DefInstr->removeFromParent(); 1552 MBB->insert(FirstMI, DefInstr); 1553 if (LIS) 1554 LIS->handleMove(*DefInstr); 1555 } else { 1556 // If first instruction is definition then move pointer after it. 1557 FirstMI = &*std::next(FirstMI->getIterator()); 1558 } 1559 } 1560 } 1561 1562 // Insert instruction sequence at block beginning (before vector operations). 1563 const DebugLoc DL = MI.getDebugLoc(); 1564 const unsigned WavefrontSize = ST->getWavefrontSize(); 1565 const unsigned Mask = (WavefrontSize << 1) - 1; 1566 Register CountReg = MRI->createVirtualRegister(&AMDGPU::SGPR_32RegClass); 1567 auto BfeMI = BuildMI(*MBB, FirstMI, DL, TII->get(AMDGPU::S_BFE_U32), CountReg) 1568 .addReg(InputReg) 1569 .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000); 1570 auto BfmMI = 1571 BuildMI(*MBB, FirstMI, DL, 1572 TII->get(IsWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64), Exec) 1573 .addReg(CountReg) 1574 .addImm(0); 1575 auto CmpMI = BuildMI(*MBB, FirstMI, DL, TII->get(AMDGPU::S_CMP_EQ_U32)) 1576 .addReg(CountReg, RegState::Kill) 1577 .addImm(WavefrontSize); 1578 auto CmovMI = 1579 BuildMI(*MBB, FirstMI, DL, 1580 TII->get(IsWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64), 1581 Exec) 1582 .addImm(-1); 1583 1584 if (!LIS) { 1585 MI.eraseFromParent(); 1586 return; 1587 } 1588 1589 LIS->RemoveMachineInstrFromMaps(MI); 1590 MI.eraseFromParent(); 1591 1592 LIS->InsertMachineInstrInMaps(*BfeMI); 1593 LIS->InsertMachineInstrInMaps(*BfmMI); 1594 LIS->InsertMachineInstrInMaps(*CmpMI); 1595 LIS->InsertMachineInstrInMaps(*CmovMI); 1596 1597 LIS->removeInterval(InputReg); 1598 LIS->createAndComputeVirtRegInterval(InputReg); 1599 LIS->createAndComputeVirtRegInterval(CountReg); 1600 } 1601 1602 /// Lower INIT_EXEC instructions. Return a suitable insert point in \p Entry 1603 /// for instructions that depend on EXEC. 1604 MachineBasicBlock::iterator 1605 SIWholeQuadMode::lowerInitExecInstrs(MachineBasicBlock &Entry) { 1606 MachineBasicBlock::iterator InsertPt = Entry.getFirstNonPHI(); 1607 1608 for (MachineInstr *MI : InitExecInstrs) { 1609 // Try to handle undefined cases gracefully: 1610 // - multiple INIT_EXEC instructions 1611 // - INIT_EXEC instructions not in the entry block 1612 if (MI->getParent() == &Entry) 1613 InsertPt = std::next(MI->getIterator()); 1614 1615 lowerInitExec(*MI); 1616 } 1617 1618 return InsertPt; 1619 } 1620 1621 bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) { 1622 LLVM_DEBUG(dbgs() << "SI Whole Quad Mode on " << MF.getName() 1623 << " ------------- \n"); 1624 LLVM_DEBUG(MF.dump();); 1625 1626 Instructions.clear(); 1627 Blocks.clear(); 1628 LiveMaskQueries.clear(); 1629 LowerToCopyInstrs.clear(); 1630 LowerToMovInstrs.clear(); 1631 KillInstrs.clear(); 1632 InitExecInstrs.clear(); 1633 StateTransition.clear(); 1634 1635 ST = &MF.getSubtarget<GCNSubtarget>(); 1636 1637 TII = ST->getInstrInfo(); 1638 TRI = &TII->getRegisterInfo(); 1639 MRI = &MF.getRegInfo(); 1640 LIS = &getAnalysis<LiveIntervals>(); 1641 auto *MDTWrapper = getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>(); 1642 MDT = MDTWrapper ? &MDTWrapper->getDomTree() : nullptr; 1643 auto *PDTWrapper = 1644 getAnalysisIfAvailable<MachinePostDominatorTreeWrapperPass>(); 1645 PDT = PDTWrapper ? &PDTWrapper->getPostDomTree() : nullptr; 1646 1647 if (ST->isWave32()) { 1648 AndOpc = AMDGPU::S_AND_B32; 1649 AndTermOpc = AMDGPU::S_AND_B32_term; 1650 AndN2Opc = AMDGPU::S_ANDN2_B32; 1651 XorOpc = AMDGPU::S_XOR_B32; 1652 AndSaveExecOpc = AMDGPU::S_AND_SAVEEXEC_B32; 1653 AndSaveExecTermOpc = AMDGPU::S_AND_SAVEEXEC_B32_term; 1654 WQMOpc = AMDGPU::S_WQM_B32; 1655 Exec = AMDGPU::EXEC_LO; 1656 } else { 1657 AndOpc = AMDGPU::S_AND_B64; 1658 AndTermOpc = AMDGPU::S_AND_B64_term; 1659 AndN2Opc = AMDGPU::S_ANDN2_B64; 1660 XorOpc = AMDGPU::S_XOR_B64; 1661 AndSaveExecOpc = AMDGPU::S_AND_SAVEEXEC_B64; 1662 AndSaveExecTermOpc = AMDGPU::S_AND_SAVEEXEC_B64_term; 1663 WQMOpc = AMDGPU::S_WQM_B64; 1664 Exec = AMDGPU::EXEC; 1665 } 1666 1667 const char GlobalFlags = analyzeFunction(MF); 1668 const bool NeedsLiveMask = !(KillInstrs.empty() && LiveMaskQueries.empty()); 1669 1670 LiveMaskReg = Exec; 1671 1672 MachineBasicBlock &Entry = MF.front(); 1673 MachineBasicBlock::iterator EntryMI = lowerInitExecInstrs(Entry); 1674 1675 // Shader is simple does not need any state changes or any complex lowering 1676 if (!(GlobalFlags & (StateWQM | StateStrict)) && LowerToCopyInstrs.empty() && 1677 LowerToMovInstrs.empty() && KillInstrs.empty()) { 1678 lowerLiveMaskQueries(); 1679 return !InitExecInstrs.empty() || !LiveMaskQueries.empty(); 1680 } 1681 1682 // Store a copy of the original live mask when required 1683 if (NeedsLiveMask || (GlobalFlags & StateWQM)) { 1684 LiveMaskReg = MRI->createVirtualRegister(TRI->getBoolRC()); 1685 MachineInstr *MI = 1686 BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::COPY), LiveMaskReg) 1687 .addReg(Exec); 1688 LIS->InsertMachineInstrInMaps(*MI); 1689 } 1690 1691 LLVM_DEBUG(printInfo()); 1692 1693 lowerLiveMaskQueries(); 1694 lowerCopyInstrs(); 1695 1696 // Shader only needs WQM 1697 if (GlobalFlags == StateWQM) { 1698 auto MI = BuildMI(Entry, EntryMI, DebugLoc(), TII->get(WQMOpc), Exec) 1699 .addReg(Exec); 1700 LIS->InsertMachineInstrInMaps(*MI); 1701 lowerKillInstrs(true); 1702 } else { 1703 for (auto BII : Blocks) 1704 processBlock(*BII.first, BII.first == &Entry); 1705 // Lowering blocks causes block splitting so perform as a second pass. 1706 for (auto BII : Blocks) 1707 lowerBlock(*BII.first); 1708 } 1709 1710 // Compute live range for live mask 1711 if (LiveMaskReg != Exec) 1712 LIS->createAndComputeVirtRegInterval(LiveMaskReg); 1713 1714 // Physical registers like SCC aren't tracked by default anyway, so just 1715 // removing the ranges we computed is the simplest option for maintaining 1716 // the analysis results. 1717 LIS->removeAllRegUnitsForPhysReg(AMDGPU::SCC); 1718 1719 // If we performed any kills then recompute EXEC 1720 if (!KillInstrs.empty()) 1721 LIS->removeAllRegUnitsForPhysReg(AMDGPU::EXEC); 1722 1723 return true; 1724 } 1725