1 //===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass adds instructions to enable whole quad mode (strict or non-strict) 11 /// for pixel shaders, and strict whole wavefront mode for all programs. 12 /// 13 /// The "strict" prefix indicates that inactive lanes do not take part in 14 /// control flow, specifically an inactive lane enabled by a strict WQM/WWM will 15 /// always be enabled irrespective of control flow decisions. Conversely in 16 /// non-strict WQM inactive lanes may control flow decisions. 17 /// 18 /// Whole quad mode is required for derivative computations, but it interferes 19 /// with shader side effects (stores and atomics). It ensures that WQM is 20 /// enabled when necessary, but disabled around stores and atomics. 21 /// 22 /// When necessary, this pass creates a function prolog 23 /// 24 /// S_MOV_B64 LiveMask, EXEC 25 /// S_WQM_B64 EXEC, EXEC 26 /// 27 /// to enter WQM at the top of the function and surrounds blocks of Exact 28 /// instructions by 29 /// 30 /// S_AND_SAVEEXEC_B64 Tmp, LiveMask 31 /// ... 32 /// S_MOV_B64 EXEC, Tmp 33 /// 34 /// We also compute when a sequence of instructions requires strict whole 35 /// wavefront mode (StrictWWM) and insert instructions to save and restore it: 36 /// 37 /// S_OR_SAVEEXEC_B64 Tmp, -1 38 /// ... 39 /// S_MOV_B64 EXEC, Tmp 40 /// 41 /// When a sequence of instructions requires strict whole quad mode (StrictWQM) 42 /// we use a similar save and restore mechanism and force whole quad mode for 43 /// those instructions: 44 /// 45 /// S_MOV_B64 Tmp, EXEC 46 /// S_WQM_B64 EXEC, EXEC 47 /// ... 48 /// S_MOV_B64 EXEC, Tmp 49 /// 50 /// In order to avoid excessive switching during sequences of Exact 51 /// instructions, the pass first analyzes which instructions must be run in WQM 52 /// (aka which instructions produce values that lead to derivative 53 /// computations). 54 /// 55 /// Basic blocks are always exited in WQM as long as some successor needs WQM. 56 /// 57 /// There is room for improvement given better control flow analysis: 58 /// 59 /// (1) at the top level (outside of control flow statements, and as long as 60 /// kill hasn't been used), one SGPR can be saved by recovering WQM from 61 /// the LiveMask (this is implemented for the entry block). 62 /// 63 /// (2) when entire regions (e.g. if-else blocks or entire loops) only 64 /// consist of exact and don't-care instructions, the switch only has to 65 /// be done at the entry and exit points rather than potentially in each 66 /// block of the region. 67 /// 68 //===----------------------------------------------------------------------===// 69 70 #include "AMDGPU.h" 71 #include "GCNSubtarget.h" 72 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 73 #include "llvm/ADT/MapVector.h" 74 #include "llvm/ADT/PostOrderIterator.h" 75 #include "llvm/CodeGen/LiveIntervals.h" 76 #include "llvm/CodeGen/MachineBasicBlock.h" 77 #include "llvm/CodeGen/MachineDominators.h" 78 #include "llvm/CodeGen/MachineFunctionPass.h" 79 #include "llvm/CodeGen/MachineInstr.h" 80 #include "llvm/CodeGen/MachinePostDominators.h" 81 #include "llvm/IR/CallingConv.h" 82 #include "llvm/InitializePasses.h" 83 #include "llvm/Support/raw_ostream.h" 84 85 using namespace llvm; 86 87 #define DEBUG_TYPE "si-wqm" 88 89 namespace { 90 91 enum { 92 StateWQM = 0x1, 93 StateStrictWWM = 0x2, 94 StateStrictWQM = 0x4, 95 StateExact = 0x8, 96 StateStrict = StateStrictWWM | StateStrictWQM, 97 }; 98 99 struct PrintState { 100 public: 101 int State; 102 103 explicit PrintState(int State) : State(State) {} 104 }; 105 106 #ifndef NDEBUG 107 static raw_ostream &operator<<(raw_ostream &OS, const PrintState &PS) { 108 109 static const std::pair<char, const char *> Mapping[] = { 110 std::pair(StateWQM, "WQM"), std::pair(StateStrictWWM, "StrictWWM"), 111 std::pair(StateStrictWQM, "StrictWQM"), std::pair(StateExact, "Exact")}; 112 char State = PS.State; 113 for (auto M : Mapping) { 114 if (State & M.first) { 115 OS << M.second; 116 State &= ~M.first; 117 118 if (State) 119 OS << '|'; 120 } 121 } 122 assert(State == 0); 123 return OS; 124 } 125 #endif 126 127 struct InstrInfo { 128 char Needs = 0; 129 char Disabled = 0; 130 char OutNeeds = 0; 131 }; 132 133 struct BlockInfo { 134 char Needs = 0; 135 char InNeeds = 0; 136 char OutNeeds = 0; 137 char InitialState = 0; 138 bool NeedsLowering = false; 139 }; 140 141 struct WorkItem { 142 MachineBasicBlock *MBB = nullptr; 143 MachineInstr *MI = nullptr; 144 145 WorkItem() = default; 146 WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {} 147 WorkItem(MachineInstr *MI) : MI(MI) {} 148 }; 149 150 class SIWholeQuadMode : public MachineFunctionPass { 151 private: 152 const SIInstrInfo *TII; 153 const SIRegisterInfo *TRI; 154 const GCNSubtarget *ST; 155 MachineRegisterInfo *MRI; 156 LiveIntervals *LIS; 157 MachineDominatorTree *MDT; 158 MachinePostDominatorTree *PDT; 159 160 unsigned AndOpc; 161 unsigned AndTermOpc; 162 unsigned AndN2Opc; 163 unsigned XorOpc; 164 unsigned AndSaveExecOpc; 165 unsigned AndSaveExecTermOpc; 166 unsigned WQMOpc; 167 Register Exec; 168 Register LiveMaskReg; 169 170 DenseMap<const MachineInstr *, InstrInfo> Instructions; 171 MapVector<MachineBasicBlock *, BlockInfo> Blocks; 172 173 // Tracks state (WQM/StrictWWM/StrictWQM/Exact) after a given instruction 174 DenseMap<const MachineInstr *, char> StateTransition; 175 176 SmallVector<MachineInstr *, 2> LiveMaskQueries; 177 SmallVector<MachineInstr *, 4> LowerToMovInstrs; 178 SmallVector<MachineInstr *, 4> LowerToCopyInstrs; 179 SmallVector<MachineInstr *, 4> KillInstrs; 180 181 void printInfo(); 182 183 void markInstruction(MachineInstr &MI, char Flag, 184 std::vector<WorkItem> &Worklist); 185 void markDefs(const MachineInstr &UseMI, LiveRange &LR, Register Reg, 186 unsigned SubReg, char Flag, std::vector<WorkItem> &Worklist); 187 void markOperand(const MachineInstr &MI, const MachineOperand &Op, char Flag, 188 std::vector<WorkItem> &Worklist); 189 void markInstructionUses(const MachineInstr &MI, char Flag, 190 std::vector<WorkItem> &Worklist); 191 char scanInstructions(MachineFunction &MF, std::vector<WorkItem> &Worklist); 192 void propagateInstruction(MachineInstr &MI, std::vector<WorkItem> &Worklist); 193 void propagateBlock(MachineBasicBlock &MBB, std::vector<WorkItem> &Worklist); 194 char analyzeFunction(MachineFunction &MF); 195 196 MachineBasicBlock::iterator saveSCC(MachineBasicBlock &MBB, 197 MachineBasicBlock::iterator Before); 198 MachineBasicBlock::iterator 199 prepareInsertion(MachineBasicBlock &MBB, MachineBasicBlock::iterator First, 200 MachineBasicBlock::iterator Last, bool PreferLast, 201 bool SaveSCC); 202 void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 203 Register SaveWQM); 204 void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 205 Register SavedWQM); 206 void toStrictMode(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 207 Register SaveOrig, char StrictStateNeeded); 208 void fromStrictMode(MachineBasicBlock &MBB, 209 MachineBasicBlock::iterator Before, Register SavedOrig, 210 char NonStrictState, char CurrentStrictState); 211 212 MachineBasicBlock *splitBlock(MachineBasicBlock *BB, MachineInstr *TermMI); 213 214 MachineInstr *lowerKillI1(MachineBasicBlock &MBB, MachineInstr &MI, 215 bool IsWQM); 216 MachineInstr *lowerKillF32(MachineBasicBlock &MBB, MachineInstr &MI); 217 void lowerPseudoStrictMode(MachineBasicBlock &MBB, MachineInstr *Entry, 218 MachineInstr *Exit); 219 220 void lowerBlock(MachineBasicBlock &MBB); 221 void processBlock(MachineBasicBlock &MBB, bool IsEntry); 222 223 void lowerLiveMaskQueries(); 224 void lowerCopyInstrs(); 225 void lowerKillInstrs(bool IsWQM); 226 227 public: 228 static char ID; 229 230 SIWholeQuadMode() : 231 MachineFunctionPass(ID) { } 232 233 bool runOnMachineFunction(MachineFunction &MF) override; 234 235 StringRef getPassName() const override { return "SI Whole Quad Mode"; } 236 237 void getAnalysisUsage(AnalysisUsage &AU) const override { 238 AU.addRequired<LiveIntervals>(); 239 AU.addPreserved<SlotIndexes>(); 240 AU.addPreserved<LiveIntervals>(); 241 AU.addRequired<MachineDominatorTree>(); 242 AU.addPreserved<MachineDominatorTree>(); 243 AU.addRequired<MachinePostDominatorTree>(); 244 AU.addPreserved<MachinePostDominatorTree>(); 245 MachineFunctionPass::getAnalysisUsage(AU); 246 } 247 248 MachineFunctionProperties getClearedProperties() const override { 249 return MachineFunctionProperties().set( 250 MachineFunctionProperties::Property::IsSSA); 251 } 252 }; 253 254 } // end anonymous namespace 255 256 char SIWholeQuadMode::ID = 0; 257 258 INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, 259 false) 260 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 261 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 262 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 263 INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, 264 false) 265 266 char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID; 267 268 FunctionPass *llvm::createSIWholeQuadModePass() { 269 return new SIWholeQuadMode; 270 } 271 272 #ifndef NDEBUG 273 LLVM_DUMP_METHOD void SIWholeQuadMode::printInfo() { 274 for (const auto &BII : Blocks) { 275 dbgs() << "\n" 276 << printMBBReference(*BII.first) << ":\n" 277 << " InNeeds = " << PrintState(BII.second.InNeeds) 278 << ", Needs = " << PrintState(BII.second.Needs) 279 << ", OutNeeds = " << PrintState(BII.second.OutNeeds) << "\n\n"; 280 281 for (const MachineInstr &MI : *BII.first) { 282 auto III = Instructions.find(&MI); 283 if (III == Instructions.end()) 284 continue; 285 286 dbgs() << " " << MI << " Needs = " << PrintState(III->second.Needs) 287 << ", OutNeeds = " << PrintState(III->second.OutNeeds) << '\n'; 288 } 289 } 290 } 291 #endif 292 293 void SIWholeQuadMode::markInstruction(MachineInstr &MI, char Flag, 294 std::vector<WorkItem> &Worklist) { 295 InstrInfo &II = Instructions[&MI]; 296 297 assert(!(Flag & StateExact) && Flag != 0); 298 299 // Remove any disabled states from the flag. The user that required it gets 300 // an undefined value in the helper lanes. For example, this can happen if 301 // the result of an atomic is used by instruction that requires WQM, where 302 // ignoring the request for WQM is correct as per the relevant specs. 303 Flag &= ~II.Disabled; 304 305 // Ignore if the flag is already encompassed by the existing needs, or we 306 // just disabled everything. 307 if ((II.Needs & Flag) == Flag) 308 return; 309 310 LLVM_DEBUG(dbgs() << "markInstruction " << PrintState(Flag) << ": " << MI); 311 II.Needs |= Flag; 312 Worklist.push_back(&MI); 313 } 314 315 /// Mark all relevant definitions of register \p Reg in usage \p UseMI. 316 void SIWholeQuadMode::markDefs(const MachineInstr &UseMI, LiveRange &LR, 317 Register Reg, unsigned SubReg, char Flag, 318 std::vector<WorkItem> &Worklist) { 319 LLVM_DEBUG(dbgs() << "markDefs " << PrintState(Flag) << ": " << UseMI); 320 321 LiveQueryResult UseLRQ = LR.Query(LIS->getInstructionIndex(UseMI)); 322 const VNInfo *Value = UseLRQ.valueIn(); 323 if (!Value) 324 return; 325 326 // Note: this code assumes that lane masks on AMDGPU completely 327 // cover registers. 328 const LaneBitmask UseLanes = 329 SubReg ? TRI->getSubRegIndexLaneMask(SubReg) 330 : (Reg.isVirtual() ? MRI->getMaxLaneMaskForVReg(Reg) 331 : LaneBitmask::getNone()); 332 333 // Perform a depth-first iteration of the LiveRange graph marking defs. 334 // Stop processing of a given branch when all use lanes have been defined. 335 // The first definition stops processing for a physical register. 336 struct PhiEntry { 337 const VNInfo *Phi; 338 unsigned PredIdx; 339 LaneBitmask DefinedLanes; 340 341 PhiEntry(const VNInfo *Phi, unsigned PredIdx, LaneBitmask DefinedLanes) 342 : Phi(Phi), PredIdx(PredIdx), DefinedLanes(DefinedLanes) {} 343 }; 344 using VisitKey = std::pair<const VNInfo *, LaneBitmask>; 345 SmallVector<PhiEntry, 2> PhiStack; 346 SmallSet<VisitKey, 4> Visited; 347 LaneBitmask DefinedLanes; 348 unsigned NextPredIdx = 0; // Only used for processing phi nodes 349 do { 350 const VNInfo *NextValue = nullptr; 351 const VisitKey Key(Value, DefinedLanes); 352 353 if (Visited.insert(Key).second) { 354 // On first visit to a phi then start processing first predecessor 355 NextPredIdx = 0; 356 } 357 358 if (Value->isPHIDef()) { 359 // Each predecessor node in the phi must be processed as a subgraph 360 const MachineBasicBlock *MBB = LIS->getMBBFromIndex(Value->def); 361 assert(MBB && "Phi-def has no defining MBB"); 362 363 // Find next predecessor to process 364 unsigned Idx = NextPredIdx; 365 auto PI = MBB->pred_begin() + Idx; 366 auto PE = MBB->pred_end(); 367 for (; PI != PE && !NextValue; ++PI, ++Idx) { 368 if (const VNInfo *VN = LR.getVNInfoBefore(LIS->getMBBEndIdx(*PI))) { 369 if (!Visited.count(VisitKey(VN, DefinedLanes))) 370 NextValue = VN; 371 } 372 } 373 374 // If there are more predecessors to process; add phi to stack 375 if (PI != PE) 376 PhiStack.emplace_back(Value, Idx, DefinedLanes); 377 } else { 378 MachineInstr *MI = LIS->getInstructionFromIndex(Value->def); 379 assert(MI && "Def has no defining instruction"); 380 381 if (Reg.isVirtual()) { 382 // Iterate over all operands to find relevant definitions 383 bool HasDef = false; 384 for (const MachineOperand &Op : MI->all_defs()) { 385 if (Op.getReg() != Reg) 386 continue; 387 388 // Compute lanes defined and overlap with use 389 LaneBitmask OpLanes = 390 Op.isUndef() ? LaneBitmask::getAll() 391 : TRI->getSubRegIndexLaneMask(Op.getSubReg()); 392 LaneBitmask Overlap = (UseLanes & OpLanes); 393 394 // Record if this instruction defined any of use 395 HasDef |= Overlap.any(); 396 397 // Mark any lanes defined 398 DefinedLanes |= OpLanes; 399 } 400 401 // Check if all lanes of use have been defined 402 if ((DefinedLanes & UseLanes) != UseLanes) { 403 // Definition not complete; need to process input value 404 LiveQueryResult LRQ = LR.Query(LIS->getInstructionIndex(*MI)); 405 if (const VNInfo *VN = LRQ.valueIn()) { 406 if (!Visited.count(VisitKey(VN, DefinedLanes))) 407 NextValue = VN; 408 } 409 } 410 411 // Only mark the instruction if it defines some part of the use 412 if (HasDef) 413 markInstruction(*MI, Flag, Worklist); 414 } else { 415 // For physical registers simply mark the defining instruction 416 markInstruction(*MI, Flag, Worklist); 417 } 418 } 419 420 if (!NextValue && !PhiStack.empty()) { 421 // Reach end of chain; revert to processing last phi 422 PhiEntry &Entry = PhiStack.back(); 423 NextValue = Entry.Phi; 424 NextPredIdx = Entry.PredIdx; 425 DefinedLanes = Entry.DefinedLanes; 426 PhiStack.pop_back(); 427 } 428 429 Value = NextValue; 430 } while (Value); 431 } 432 433 void SIWholeQuadMode::markOperand(const MachineInstr &MI, 434 const MachineOperand &Op, char Flag, 435 std::vector<WorkItem> &Worklist) { 436 assert(Op.isReg()); 437 Register Reg = Op.getReg(); 438 439 // Ignore some hardware registers 440 switch (Reg) { 441 case AMDGPU::EXEC: 442 case AMDGPU::EXEC_LO: 443 return; 444 default: 445 break; 446 } 447 448 LLVM_DEBUG(dbgs() << "markOperand " << PrintState(Flag) << ": " << Op 449 << " for " << MI); 450 if (Reg.isVirtual()) { 451 LiveRange &LR = LIS->getInterval(Reg); 452 markDefs(MI, LR, Reg, Op.getSubReg(), Flag, Worklist); 453 } else { 454 // Handle physical registers that we need to track; this is mostly relevant 455 // for VCC, which can appear as the (implicit) input of a uniform branch, 456 // e.g. when a loop counter is stored in a VGPR. 457 for (MCRegUnitIterator RegUnit(Reg.asMCReg(), TRI); RegUnit.isValid(); 458 ++RegUnit) { 459 LiveRange &LR = LIS->getRegUnit(*RegUnit); 460 const VNInfo *Value = LR.Query(LIS->getInstructionIndex(MI)).valueIn(); 461 if (!Value) 462 continue; 463 464 markDefs(MI, LR, *RegUnit, AMDGPU::NoSubRegister, Flag, Worklist); 465 } 466 } 467 } 468 469 /// Mark all instructions defining the uses in \p MI with \p Flag. 470 void SIWholeQuadMode::markInstructionUses(const MachineInstr &MI, char Flag, 471 std::vector<WorkItem> &Worklist) { 472 LLVM_DEBUG(dbgs() << "markInstructionUses " << PrintState(Flag) << ": " 473 << MI); 474 475 for (const MachineOperand &Use : MI.all_uses()) 476 markOperand(MI, Use, Flag, Worklist); 477 } 478 479 // Scan instructions to determine which ones require an Exact execmask and 480 // which ones seed WQM requirements. 481 char SIWholeQuadMode::scanInstructions(MachineFunction &MF, 482 std::vector<WorkItem> &Worklist) { 483 char GlobalFlags = 0; 484 bool WQMOutputs = MF.getFunction().hasFnAttribute("amdgpu-ps-wqm-outputs"); 485 SmallVector<MachineInstr *, 4> SetInactiveInstrs; 486 SmallVector<MachineInstr *, 4> SoftWQMInstrs; 487 bool HasImplicitDerivatives = 488 MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS; 489 490 // We need to visit the basic blocks in reverse post-order so that we visit 491 // defs before uses, in particular so that we don't accidentally mark an 492 // instruction as needing e.g. WQM before visiting it and realizing it needs 493 // WQM disabled. 494 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 495 for (MachineBasicBlock *MBB : RPOT) { 496 BlockInfo &BBI = Blocks[MBB]; 497 498 for (MachineInstr &MI : *MBB) { 499 InstrInfo &III = Instructions[&MI]; 500 unsigned Opcode = MI.getOpcode(); 501 char Flags = 0; 502 503 if (TII->isWQM(Opcode)) { 504 // If LOD is not supported WQM is not needed. 505 if (!ST->hasExtendedImageInsts()) 506 continue; 507 // Only generate implicit WQM if implicit derivatives are required. 508 // This avoids inserting unintended WQM if a shader type without 509 // implicit derivatives uses an image sampling instruction. 510 if (!HasImplicitDerivatives) 511 continue; 512 // Sampling instructions don't need to produce results for all pixels 513 // in a quad, they just require all inputs of a quad to have been 514 // computed for derivatives. 515 markInstructionUses(MI, StateWQM, Worklist); 516 GlobalFlags |= StateWQM; 517 continue; 518 } else if (Opcode == AMDGPU::WQM) { 519 // The WQM intrinsic requires its output to have all the helper lanes 520 // correct, so we need it to be in WQM. 521 Flags = StateWQM; 522 LowerToCopyInstrs.push_back(&MI); 523 } else if (Opcode == AMDGPU::SOFT_WQM) { 524 LowerToCopyInstrs.push_back(&MI); 525 SoftWQMInstrs.push_back(&MI); 526 continue; 527 } else if (Opcode == AMDGPU::STRICT_WWM) { 528 // The STRICT_WWM intrinsic doesn't make the same guarantee, and plus 529 // it needs to be executed in WQM or Exact so that its copy doesn't 530 // clobber inactive lanes. 531 markInstructionUses(MI, StateStrictWWM, Worklist); 532 GlobalFlags |= StateStrictWWM; 533 LowerToMovInstrs.push_back(&MI); 534 continue; 535 } else if (Opcode == AMDGPU::STRICT_WQM || 536 TII->isDualSourceBlendEXP(MI)) { 537 // STRICT_WQM is similar to STRICTWWM, but instead of enabling all 538 // threads of the wave like STRICTWWM, STRICT_WQM enables all threads in 539 // quads that have at least one active thread. 540 markInstructionUses(MI, StateStrictWQM, Worklist); 541 GlobalFlags |= StateStrictWQM; 542 543 if (Opcode == AMDGPU::STRICT_WQM) { 544 LowerToMovInstrs.push_back(&MI); 545 } else { 546 // Dual source blend export acts as implicit strict-wqm, its sources 547 // need to be shuffled in strict wqm, but the export itself needs to 548 // run in exact mode. 549 BBI.Needs |= StateExact; 550 if (!(BBI.InNeeds & StateExact)) { 551 BBI.InNeeds |= StateExact; 552 Worklist.push_back(MBB); 553 } 554 GlobalFlags |= StateExact; 555 III.Disabled = StateWQM | StateStrict; 556 } 557 continue; 558 } else if (Opcode == AMDGPU::LDS_PARAM_LOAD || 559 Opcode == AMDGPU::LDS_DIRECT_LOAD) { 560 // Mark these STRICTWQM, but only for the instruction, not its operands. 561 // This avoid unnecessarily marking M0 as requiring WQM. 562 InstrInfo &II = Instructions[&MI]; 563 II.Needs |= StateStrictWQM; 564 GlobalFlags |= StateStrictWQM; 565 continue; 566 } else if (Opcode == AMDGPU::V_SET_INACTIVE_B32 || 567 Opcode == AMDGPU::V_SET_INACTIVE_B64) { 568 III.Disabled = StateStrict; 569 MachineOperand &Inactive = MI.getOperand(2); 570 if (Inactive.isReg()) { 571 if (Inactive.isUndef()) { 572 LowerToCopyInstrs.push_back(&MI); 573 } else { 574 markOperand(MI, Inactive, StateStrictWWM, Worklist); 575 } 576 } 577 SetInactiveInstrs.push_back(&MI); 578 continue; 579 } else if (TII->isDisableWQM(MI)) { 580 BBI.Needs |= StateExact; 581 if (!(BBI.InNeeds & StateExact)) { 582 BBI.InNeeds |= StateExact; 583 Worklist.push_back(MBB); 584 } 585 GlobalFlags |= StateExact; 586 III.Disabled = StateWQM | StateStrict; 587 continue; 588 } else { 589 if (Opcode == AMDGPU::SI_PS_LIVE || Opcode == AMDGPU::SI_LIVE_MASK) { 590 LiveMaskQueries.push_back(&MI); 591 } else if (Opcode == AMDGPU::SI_KILL_I1_TERMINATOR || 592 Opcode == AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR || 593 Opcode == AMDGPU::SI_DEMOTE_I1) { 594 KillInstrs.push_back(&MI); 595 BBI.NeedsLowering = true; 596 } else if (WQMOutputs) { 597 // The function is in machine SSA form, which means that physical 598 // VGPRs correspond to shader inputs and outputs. Inputs are 599 // only used, outputs are only defined. 600 // FIXME: is this still valid? 601 for (const MachineOperand &MO : MI.defs()) { 602 if (!MO.isReg()) 603 continue; 604 605 Register Reg = MO.getReg(); 606 607 if (!Reg.isVirtual() && 608 TRI->hasVectorRegisters(TRI->getPhysRegBaseClass(Reg))) { 609 Flags = StateWQM; 610 break; 611 } 612 } 613 } 614 615 if (!Flags) 616 continue; 617 } 618 619 markInstruction(MI, Flags, Worklist); 620 GlobalFlags |= Flags; 621 } 622 } 623 624 // Mark sure that any SET_INACTIVE instructions are computed in WQM if WQM is 625 // ever used anywhere in the function. This implements the corresponding 626 // semantics of @llvm.amdgcn.set.inactive. 627 // Similarly for SOFT_WQM instructions, implementing @llvm.amdgcn.softwqm. 628 if (GlobalFlags & StateWQM) { 629 for (MachineInstr *MI : SetInactiveInstrs) 630 markInstruction(*MI, StateWQM, Worklist); 631 for (MachineInstr *MI : SoftWQMInstrs) 632 markInstruction(*MI, StateWQM, Worklist); 633 } 634 635 return GlobalFlags; 636 } 637 638 void SIWholeQuadMode::propagateInstruction(MachineInstr &MI, 639 std::vector<WorkItem>& Worklist) { 640 MachineBasicBlock *MBB = MI.getParent(); 641 InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references 642 BlockInfo &BI = Blocks[MBB]; 643 644 // Control flow-type instructions and stores to temporary memory that are 645 // followed by WQM computations must themselves be in WQM. 646 if ((II.OutNeeds & StateWQM) && !(II.Disabled & StateWQM) && 647 (MI.isTerminator() || (TII->usesVM_CNT(MI) && MI.mayStore()))) { 648 Instructions[&MI].Needs = StateWQM; 649 II.Needs = StateWQM; 650 } 651 652 // Propagate to block level 653 if (II.Needs & StateWQM) { 654 BI.Needs |= StateWQM; 655 if (!(BI.InNeeds & StateWQM)) { 656 BI.InNeeds |= StateWQM; 657 Worklist.push_back(MBB); 658 } 659 } 660 661 // Propagate backwards within block 662 if (MachineInstr *PrevMI = MI.getPrevNode()) { 663 char InNeeds = (II.Needs & ~StateStrict) | II.OutNeeds; 664 if (!PrevMI->isPHI()) { 665 InstrInfo &PrevII = Instructions[PrevMI]; 666 if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) { 667 PrevII.OutNeeds |= InNeeds; 668 Worklist.push_back(PrevMI); 669 } 670 } 671 } 672 673 // Propagate WQM flag to instruction inputs 674 assert(!(II.Needs & StateExact)); 675 676 if (II.Needs != 0) 677 markInstructionUses(MI, II.Needs, Worklist); 678 679 // Ensure we process a block containing StrictWWM/StrictWQM, even if it does 680 // not require any WQM transitions. 681 if (II.Needs & StateStrictWWM) 682 BI.Needs |= StateStrictWWM; 683 if (II.Needs & StateStrictWQM) 684 BI.Needs |= StateStrictWQM; 685 } 686 687 void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB, 688 std::vector<WorkItem>& Worklist) { 689 BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references. 690 691 // Propagate through instructions 692 if (!MBB.empty()) { 693 MachineInstr *LastMI = &*MBB.rbegin(); 694 InstrInfo &LastII = Instructions[LastMI]; 695 if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) { 696 LastII.OutNeeds |= BI.OutNeeds; 697 Worklist.push_back(LastMI); 698 } 699 } 700 701 // Predecessor blocks must provide for our WQM/Exact needs. 702 for (MachineBasicBlock *Pred : MBB.predecessors()) { 703 BlockInfo &PredBI = Blocks[Pred]; 704 if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds) 705 continue; 706 707 PredBI.OutNeeds |= BI.InNeeds; 708 PredBI.InNeeds |= BI.InNeeds; 709 Worklist.push_back(Pred); 710 } 711 712 // All successors must be prepared to accept the same set of WQM/Exact data. 713 for (MachineBasicBlock *Succ : MBB.successors()) { 714 BlockInfo &SuccBI = Blocks[Succ]; 715 if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds) 716 continue; 717 718 SuccBI.InNeeds |= BI.OutNeeds; 719 Worklist.push_back(Succ); 720 } 721 } 722 723 char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) { 724 std::vector<WorkItem> Worklist; 725 char GlobalFlags = scanInstructions(MF, Worklist); 726 727 while (!Worklist.empty()) { 728 WorkItem WI = Worklist.back(); 729 Worklist.pop_back(); 730 731 if (WI.MI) 732 propagateInstruction(*WI.MI, Worklist); 733 else 734 propagateBlock(*WI.MBB, Worklist); 735 } 736 737 return GlobalFlags; 738 } 739 740 MachineBasicBlock::iterator 741 SIWholeQuadMode::saveSCC(MachineBasicBlock &MBB, 742 MachineBasicBlock::iterator Before) { 743 Register SaveReg = MRI->createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 744 745 MachineInstr *Save = 746 BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), SaveReg) 747 .addReg(AMDGPU::SCC); 748 MachineInstr *Restore = 749 BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::SCC) 750 .addReg(SaveReg); 751 752 LIS->InsertMachineInstrInMaps(*Save); 753 LIS->InsertMachineInstrInMaps(*Restore); 754 LIS->createAndComputeVirtRegInterval(SaveReg); 755 756 return Restore; 757 } 758 759 MachineBasicBlock *SIWholeQuadMode::splitBlock(MachineBasicBlock *BB, 760 MachineInstr *TermMI) { 761 LLVM_DEBUG(dbgs() << "Split block " << printMBBReference(*BB) << " @ " 762 << *TermMI << "\n"); 763 764 MachineBasicBlock *SplitBB = 765 BB->splitAt(*TermMI, /*UpdateLiveIns*/ true, LIS); 766 767 // Convert last instruction in block to a terminator. 768 // Note: this only covers the expected patterns 769 unsigned NewOpcode = 0; 770 switch (TermMI->getOpcode()) { 771 case AMDGPU::S_AND_B32: 772 NewOpcode = AMDGPU::S_AND_B32_term; 773 break; 774 case AMDGPU::S_AND_B64: 775 NewOpcode = AMDGPU::S_AND_B64_term; 776 break; 777 case AMDGPU::S_MOV_B32: 778 NewOpcode = AMDGPU::S_MOV_B32_term; 779 break; 780 case AMDGPU::S_MOV_B64: 781 NewOpcode = AMDGPU::S_MOV_B64_term; 782 break; 783 default: 784 break; 785 } 786 if (NewOpcode) 787 TermMI->setDesc(TII->get(NewOpcode)); 788 789 if (SplitBB != BB) { 790 // Update dominator trees 791 using DomTreeT = DomTreeBase<MachineBasicBlock>; 792 SmallVector<DomTreeT::UpdateType, 16> DTUpdates; 793 for (MachineBasicBlock *Succ : SplitBB->successors()) { 794 DTUpdates.push_back({DomTreeT::Insert, SplitBB, Succ}); 795 DTUpdates.push_back({DomTreeT::Delete, BB, Succ}); 796 } 797 DTUpdates.push_back({DomTreeT::Insert, BB, SplitBB}); 798 if (MDT) 799 MDT->getBase().applyUpdates(DTUpdates); 800 if (PDT) 801 PDT->getBase().applyUpdates(DTUpdates); 802 803 // Link blocks 804 MachineInstr *MI = 805 BuildMI(*BB, BB->end(), DebugLoc(), TII->get(AMDGPU::S_BRANCH)) 806 .addMBB(SplitBB); 807 LIS->InsertMachineInstrInMaps(*MI); 808 } 809 810 return SplitBB; 811 } 812 813 MachineInstr *SIWholeQuadMode::lowerKillF32(MachineBasicBlock &MBB, 814 MachineInstr &MI) { 815 const DebugLoc &DL = MI.getDebugLoc(); 816 unsigned Opcode = 0; 817 818 assert(MI.getOperand(0).isReg()); 819 820 // Comparison is for live lanes; however here we compute the inverse 821 // (killed lanes). This is because VCMP will always generate 0 bits 822 // for inactive lanes so a mask of live lanes would not be correct 823 // inside control flow. 824 // Invert the comparison by swapping the operands and adjusting 825 // the comparison codes. 826 827 switch (MI.getOperand(2).getImm()) { 828 case ISD::SETUEQ: 829 Opcode = AMDGPU::V_CMP_LG_F32_e64; 830 break; 831 case ISD::SETUGT: 832 Opcode = AMDGPU::V_CMP_GE_F32_e64; 833 break; 834 case ISD::SETUGE: 835 Opcode = AMDGPU::V_CMP_GT_F32_e64; 836 break; 837 case ISD::SETULT: 838 Opcode = AMDGPU::V_CMP_LE_F32_e64; 839 break; 840 case ISD::SETULE: 841 Opcode = AMDGPU::V_CMP_LT_F32_e64; 842 break; 843 case ISD::SETUNE: 844 Opcode = AMDGPU::V_CMP_EQ_F32_e64; 845 break; 846 case ISD::SETO: 847 Opcode = AMDGPU::V_CMP_O_F32_e64; 848 break; 849 case ISD::SETUO: 850 Opcode = AMDGPU::V_CMP_U_F32_e64; 851 break; 852 case ISD::SETOEQ: 853 case ISD::SETEQ: 854 Opcode = AMDGPU::V_CMP_NEQ_F32_e64; 855 break; 856 case ISD::SETOGT: 857 case ISD::SETGT: 858 Opcode = AMDGPU::V_CMP_NLT_F32_e64; 859 break; 860 case ISD::SETOGE: 861 case ISD::SETGE: 862 Opcode = AMDGPU::V_CMP_NLE_F32_e64; 863 break; 864 case ISD::SETOLT: 865 case ISD::SETLT: 866 Opcode = AMDGPU::V_CMP_NGT_F32_e64; 867 break; 868 case ISD::SETOLE: 869 case ISD::SETLE: 870 Opcode = AMDGPU::V_CMP_NGE_F32_e64; 871 break; 872 case ISD::SETONE: 873 case ISD::SETNE: 874 Opcode = AMDGPU::V_CMP_NLG_F32_e64; 875 break; 876 default: 877 llvm_unreachable("invalid ISD:SET cond code"); 878 } 879 880 // Pick opcode based on comparison type. 881 MachineInstr *VcmpMI; 882 const MachineOperand &Op0 = MI.getOperand(0); 883 const MachineOperand &Op1 = MI.getOperand(1); 884 885 // VCC represents lanes killed. 886 Register VCC = ST->isWave32() ? AMDGPU::VCC_LO : AMDGPU::VCC; 887 888 if (TRI->isVGPR(*MRI, Op0.getReg())) { 889 Opcode = AMDGPU::getVOPe32(Opcode); 890 VcmpMI = BuildMI(MBB, &MI, DL, TII->get(Opcode)).add(Op1).add(Op0); 891 } else { 892 VcmpMI = BuildMI(MBB, &MI, DL, TII->get(Opcode)) 893 .addReg(VCC, RegState::Define) 894 .addImm(0) // src0 modifiers 895 .add(Op1) 896 .addImm(0) // src1 modifiers 897 .add(Op0) 898 .addImm(0); // omod 899 } 900 901 MachineInstr *MaskUpdateMI = 902 BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) 903 .addReg(LiveMaskReg) 904 .addReg(VCC); 905 906 // State of SCC represents whether any lanes are live in mask, 907 // if SCC is 0 then no lanes will be alive anymore. 908 MachineInstr *EarlyTermMI = 909 BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_EARLY_TERMINATE_SCC0)); 910 911 MachineInstr *ExecMaskMI = 912 BuildMI(MBB, MI, DL, TII->get(AndN2Opc), Exec).addReg(Exec).addReg(VCC); 913 914 assert(MBB.succ_size() == 1); 915 MachineInstr *NewTerm = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_BRANCH)) 916 .addMBB(*MBB.succ_begin()); 917 918 // Update live intervals 919 LIS->ReplaceMachineInstrInMaps(MI, *VcmpMI); 920 MBB.remove(&MI); 921 922 LIS->InsertMachineInstrInMaps(*MaskUpdateMI); 923 LIS->InsertMachineInstrInMaps(*ExecMaskMI); 924 LIS->InsertMachineInstrInMaps(*EarlyTermMI); 925 LIS->InsertMachineInstrInMaps(*NewTerm); 926 927 return NewTerm; 928 } 929 930 MachineInstr *SIWholeQuadMode::lowerKillI1(MachineBasicBlock &MBB, 931 MachineInstr &MI, bool IsWQM) { 932 const DebugLoc &DL = MI.getDebugLoc(); 933 MachineInstr *MaskUpdateMI = nullptr; 934 935 const bool IsDemote = IsWQM && (MI.getOpcode() == AMDGPU::SI_DEMOTE_I1); 936 const MachineOperand &Op = MI.getOperand(0); 937 int64_t KillVal = MI.getOperand(1).getImm(); 938 MachineInstr *ComputeKilledMaskMI = nullptr; 939 Register CndReg = !Op.isImm() ? Op.getReg() : Register(); 940 Register TmpReg; 941 942 // Is this a static or dynamic kill? 943 if (Op.isImm()) { 944 if (Op.getImm() == KillVal) { 945 // Static: all active lanes are killed 946 MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) 947 .addReg(LiveMaskReg) 948 .addReg(Exec); 949 } else { 950 // Static: kill does nothing 951 MachineInstr *NewTerm = nullptr; 952 if (MI.getOpcode() == AMDGPU::SI_DEMOTE_I1) { 953 LIS->RemoveMachineInstrFromMaps(MI); 954 } else { 955 assert(MBB.succ_size() == 1); 956 NewTerm = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_BRANCH)) 957 .addMBB(*MBB.succ_begin()); 958 LIS->ReplaceMachineInstrInMaps(MI, *NewTerm); 959 } 960 MBB.remove(&MI); 961 return NewTerm; 962 } 963 } else { 964 if (!KillVal) { 965 // Op represents live lanes after kill, 966 // so exec mask needs to be factored in. 967 TmpReg = MRI->createVirtualRegister(TRI->getBoolRC()); 968 ComputeKilledMaskMI = 969 BuildMI(MBB, MI, DL, TII->get(XorOpc), TmpReg).add(Op).addReg(Exec); 970 MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) 971 .addReg(LiveMaskReg) 972 .addReg(TmpReg); 973 } else { 974 // Op represents lanes to kill 975 MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) 976 .addReg(LiveMaskReg) 977 .add(Op); 978 } 979 } 980 981 // State of SCC represents whether any lanes are live in mask, 982 // if SCC is 0 then no lanes will be alive anymore. 983 MachineInstr *EarlyTermMI = 984 BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_EARLY_TERMINATE_SCC0)); 985 986 // In the case we got this far some lanes are still live, 987 // update EXEC to deactivate lanes as appropriate. 988 MachineInstr *NewTerm; 989 MachineInstr *WQMMaskMI = nullptr; 990 Register LiveMaskWQM; 991 if (IsDemote) { 992 // Demote - deactivate quads with only helper lanes 993 LiveMaskWQM = MRI->createVirtualRegister(TRI->getBoolRC()); 994 WQMMaskMI = 995 BuildMI(MBB, MI, DL, TII->get(WQMOpc), LiveMaskWQM).addReg(LiveMaskReg); 996 NewTerm = BuildMI(MBB, MI, DL, TII->get(AndOpc), Exec) 997 .addReg(Exec) 998 .addReg(LiveMaskWQM); 999 } else { 1000 // Kill - deactivate lanes no longer in live mask 1001 if (Op.isImm()) { 1002 unsigned MovOpc = ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 1003 NewTerm = BuildMI(MBB, &MI, DL, TII->get(MovOpc), Exec).addImm(0); 1004 } else if (!IsWQM) { 1005 NewTerm = BuildMI(MBB, &MI, DL, TII->get(AndOpc), Exec) 1006 .addReg(Exec) 1007 .addReg(LiveMaskReg); 1008 } else { 1009 unsigned Opcode = KillVal ? AndN2Opc : AndOpc; 1010 NewTerm = 1011 BuildMI(MBB, &MI, DL, TII->get(Opcode), Exec).addReg(Exec).add(Op); 1012 } 1013 } 1014 1015 // Update live intervals 1016 LIS->RemoveMachineInstrFromMaps(MI); 1017 MBB.remove(&MI); 1018 assert(EarlyTermMI); 1019 assert(MaskUpdateMI); 1020 assert(NewTerm); 1021 if (ComputeKilledMaskMI) 1022 LIS->InsertMachineInstrInMaps(*ComputeKilledMaskMI); 1023 LIS->InsertMachineInstrInMaps(*MaskUpdateMI); 1024 LIS->InsertMachineInstrInMaps(*EarlyTermMI); 1025 if (WQMMaskMI) 1026 LIS->InsertMachineInstrInMaps(*WQMMaskMI); 1027 LIS->InsertMachineInstrInMaps(*NewTerm); 1028 1029 if (CndReg) { 1030 LIS->removeInterval(CndReg); 1031 LIS->createAndComputeVirtRegInterval(CndReg); 1032 } 1033 if (TmpReg) 1034 LIS->createAndComputeVirtRegInterval(TmpReg); 1035 if (LiveMaskWQM) 1036 LIS->createAndComputeVirtRegInterval(LiveMaskWQM); 1037 1038 return NewTerm; 1039 } 1040 1041 // Convert a strict mode transition to a pseudo transition. 1042 // This still pre-allocates registers to prevent clobbering, 1043 // but avoids any EXEC mask changes. 1044 void SIWholeQuadMode::lowerPseudoStrictMode(MachineBasicBlock &MBB, 1045 MachineInstr *Entry, 1046 MachineInstr *Exit) { 1047 assert(Entry->getOpcode() == AMDGPU::ENTER_STRICT_WQM); 1048 assert(Exit->getOpcode() == AMDGPU::EXIT_STRICT_WQM); 1049 1050 Register SaveOrig = Entry->getOperand(0).getReg(); 1051 1052 MachineInstr *NewEntry = 1053 BuildMI(MBB, Entry, DebugLoc(), TII->get(AMDGPU::ENTER_PSEUDO_WM)); 1054 MachineInstr *NewExit = 1055 BuildMI(MBB, Exit, DebugLoc(), TII->get(AMDGPU::EXIT_PSEUDO_WM)); 1056 1057 LIS->ReplaceMachineInstrInMaps(*Exit, *NewExit); 1058 Exit->eraseFromParent(); 1059 1060 LIS->ReplaceMachineInstrInMaps(*Entry, *NewEntry); 1061 Entry->eraseFromParent(); 1062 1063 LIS->removeInterval(SaveOrig); 1064 } 1065 1066 // Replace (or supplement) instructions accessing live mask. 1067 // This can only happen once all the live mask registers have been created 1068 // and the execute state (WQM/StrictWWM/Exact) of instructions is known. 1069 void SIWholeQuadMode::lowerBlock(MachineBasicBlock &MBB) { 1070 auto BII = Blocks.find(&MBB); 1071 if (BII == Blocks.end()) 1072 return; 1073 1074 const BlockInfo &BI = BII->second; 1075 if (!BI.NeedsLowering) 1076 return; 1077 1078 LLVM_DEBUG(dbgs() << "\nLowering block " << printMBBReference(MBB) << ":\n"); 1079 1080 SmallVector<MachineInstr *, 4> SplitPoints; 1081 char State = BI.InitialState; 1082 MachineInstr *StrictEntry = nullptr; 1083 1084 for (MachineInstr &MI : llvm::make_early_inc_range( 1085 llvm::make_range(MBB.getFirstNonPHI(), MBB.end()))) { 1086 char PreviousState = State; 1087 1088 if (StateTransition.count(&MI)) 1089 State = StateTransition[&MI]; 1090 1091 MachineInstr *SplitPoint = nullptr; 1092 switch (MI.getOpcode()) { 1093 case AMDGPU::SI_DEMOTE_I1: 1094 case AMDGPU::SI_KILL_I1_TERMINATOR: 1095 SplitPoint = lowerKillI1(MBB, MI, State == StateWQM); 1096 break; 1097 case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: 1098 SplitPoint = lowerKillF32(MBB, MI); 1099 break; 1100 case AMDGPU::ENTER_STRICT_WQM: 1101 StrictEntry = PreviousState == StateWQM ? &MI : nullptr; 1102 break; 1103 case AMDGPU::EXIT_STRICT_WQM: 1104 if (State == StateWQM && StrictEntry) { 1105 // Transition WQM -> StrictWQM -> WQM detected. 1106 lowerPseudoStrictMode(MBB, StrictEntry, &MI); 1107 } 1108 StrictEntry = nullptr; 1109 break; 1110 case AMDGPU::ENTER_STRICT_WWM: 1111 case AMDGPU::EXIT_STRICT_WWM: 1112 StrictEntry = nullptr; 1113 break; 1114 default: 1115 break; 1116 } 1117 if (SplitPoint) 1118 SplitPoints.push_back(SplitPoint); 1119 } 1120 1121 // Perform splitting after instruction scan to simplify iteration. 1122 if (!SplitPoints.empty()) { 1123 MachineBasicBlock *BB = &MBB; 1124 for (MachineInstr *MI : SplitPoints) { 1125 BB = splitBlock(BB, MI); 1126 } 1127 } 1128 } 1129 1130 // Return an iterator in the (inclusive) range [First, Last] at which 1131 // instructions can be safely inserted, keeping in mind that some of the 1132 // instructions we want to add necessarily clobber SCC. 1133 MachineBasicBlock::iterator SIWholeQuadMode::prepareInsertion( 1134 MachineBasicBlock &MBB, MachineBasicBlock::iterator First, 1135 MachineBasicBlock::iterator Last, bool PreferLast, bool SaveSCC) { 1136 if (!SaveSCC) 1137 return PreferLast ? Last : First; 1138 1139 LiveRange &LR = 1140 LIS->getRegUnit(*MCRegUnitIterator(MCRegister::from(AMDGPU::SCC), TRI)); 1141 auto MBBE = MBB.end(); 1142 SlotIndex FirstIdx = First != MBBE ? LIS->getInstructionIndex(*First) 1143 : LIS->getMBBEndIdx(&MBB); 1144 SlotIndex LastIdx = 1145 Last != MBBE ? LIS->getInstructionIndex(*Last) : LIS->getMBBEndIdx(&MBB); 1146 SlotIndex Idx = PreferLast ? LastIdx : FirstIdx; 1147 const LiveRange::Segment *S; 1148 1149 for (;;) { 1150 S = LR.getSegmentContaining(Idx); 1151 if (!S) 1152 break; 1153 1154 if (PreferLast) { 1155 SlotIndex Next = S->start.getBaseIndex(); 1156 if (Next < FirstIdx) 1157 break; 1158 Idx = Next; 1159 } else { 1160 MachineInstr *EndMI = LIS->getInstructionFromIndex(S->end.getBaseIndex()); 1161 assert(EndMI && "Segment does not end on valid instruction"); 1162 auto NextI = std::next(EndMI->getIterator()); 1163 if (NextI == MBB.end()) 1164 break; 1165 SlotIndex Next = LIS->getInstructionIndex(*NextI); 1166 if (Next > LastIdx) 1167 break; 1168 Idx = Next; 1169 } 1170 } 1171 1172 MachineBasicBlock::iterator MBBI; 1173 1174 if (MachineInstr *MI = LIS->getInstructionFromIndex(Idx)) 1175 MBBI = MI; 1176 else { 1177 assert(Idx == LIS->getMBBEndIdx(&MBB)); 1178 MBBI = MBB.end(); 1179 } 1180 1181 // Move insertion point past any operations modifying EXEC. 1182 // This assumes that the value of SCC defined by any of these operations 1183 // does not need to be preserved. 1184 while (MBBI != Last) { 1185 bool IsExecDef = false; 1186 for (const MachineOperand &MO : MBBI->all_defs()) { 1187 IsExecDef |= 1188 MO.getReg() == AMDGPU::EXEC_LO || MO.getReg() == AMDGPU::EXEC; 1189 } 1190 if (!IsExecDef) 1191 break; 1192 MBBI++; 1193 S = nullptr; 1194 } 1195 1196 if (S) 1197 MBBI = saveSCC(MBB, MBBI); 1198 1199 return MBBI; 1200 } 1201 1202 void SIWholeQuadMode::toExact(MachineBasicBlock &MBB, 1203 MachineBasicBlock::iterator Before, 1204 Register SaveWQM) { 1205 bool IsTerminator = Before == MBB.end(); 1206 if (!IsTerminator) { 1207 auto FirstTerm = MBB.getFirstTerminator(); 1208 if (FirstTerm != MBB.end()) { 1209 SlotIndex FirstTermIdx = LIS->getInstructionIndex(*FirstTerm); 1210 SlotIndex BeforeIdx = LIS->getInstructionIndex(*Before); 1211 IsTerminator = BeforeIdx > FirstTermIdx; 1212 } 1213 } 1214 1215 MachineInstr *MI; 1216 1217 if (SaveWQM) { 1218 unsigned Opcode = IsTerminator ? AndSaveExecTermOpc : AndSaveExecOpc; 1219 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(Opcode), SaveWQM) 1220 .addReg(LiveMaskReg); 1221 } else { 1222 unsigned Opcode = IsTerminator ? AndTermOpc : AndOpc; 1223 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(Opcode), Exec) 1224 .addReg(Exec) 1225 .addReg(LiveMaskReg); 1226 } 1227 1228 LIS->InsertMachineInstrInMaps(*MI); 1229 StateTransition[MI] = StateExact; 1230 } 1231 1232 void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB, 1233 MachineBasicBlock::iterator Before, 1234 Register SavedWQM) { 1235 MachineInstr *MI; 1236 1237 if (SavedWQM) { 1238 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), Exec) 1239 .addReg(SavedWQM); 1240 } else { 1241 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(WQMOpc), Exec).addReg(Exec); 1242 } 1243 1244 LIS->InsertMachineInstrInMaps(*MI); 1245 StateTransition[MI] = StateWQM; 1246 } 1247 1248 void SIWholeQuadMode::toStrictMode(MachineBasicBlock &MBB, 1249 MachineBasicBlock::iterator Before, 1250 Register SaveOrig, char StrictStateNeeded) { 1251 MachineInstr *MI; 1252 assert(SaveOrig); 1253 assert(StrictStateNeeded == StateStrictWWM || 1254 StrictStateNeeded == StateStrictWQM); 1255 1256 if (StrictStateNeeded == StateStrictWWM) { 1257 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_STRICT_WWM), 1258 SaveOrig) 1259 .addImm(-1); 1260 } else { 1261 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_STRICT_WQM), 1262 SaveOrig) 1263 .addImm(-1); 1264 } 1265 LIS->InsertMachineInstrInMaps(*MI); 1266 StateTransition[MI] = StrictStateNeeded; 1267 1268 // Mark block as needing lower so it will be checked for unnecessary transitions. 1269 auto BII = Blocks.find(&MBB); 1270 if (BII != Blocks.end()) 1271 BII->second.NeedsLowering = true; 1272 } 1273 1274 void SIWholeQuadMode::fromStrictMode(MachineBasicBlock &MBB, 1275 MachineBasicBlock::iterator Before, 1276 Register SavedOrig, char NonStrictState, 1277 char CurrentStrictState) { 1278 MachineInstr *MI; 1279 1280 assert(SavedOrig); 1281 assert(CurrentStrictState == StateStrictWWM || 1282 CurrentStrictState == StateStrictWQM); 1283 1284 if (CurrentStrictState == StateStrictWWM) { 1285 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_STRICT_WWM), 1286 Exec) 1287 .addReg(SavedOrig); 1288 } else { 1289 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_STRICT_WQM), 1290 Exec) 1291 .addReg(SavedOrig); 1292 } 1293 LIS->InsertMachineInstrInMaps(*MI); 1294 StateTransition[MI] = NonStrictState; 1295 } 1296 1297 void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, bool IsEntry) { 1298 auto BII = Blocks.find(&MBB); 1299 if (BII == Blocks.end()) 1300 return; 1301 1302 BlockInfo &BI = BII->second; 1303 1304 // This is a non-entry block that is WQM throughout, so no need to do 1305 // anything. 1306 if (!IsEntry && BI.Needs == StateWQM && BI.OutNeeds != StateExact) { 1307 BI.InitialState = StateWQM; 1308 return; 1309 } 1310 1311 LLVM_DEBUG(dbgs() << "\nProcessing block " << printMBBReference(MBB) 1312 << ":\n"); 1313 1314 Register SavedWQMReg; 1315 Register SavedNonStrictReg; 1316 bool WQMFromExec = IsEntry; 1317 char State = (IsEntry || !(BI.InNeeds & StateWQM)) ? StateExact : StateWQM; 1318 char NonStrictState = 0; 1319 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 1320 1321 auto II = MBB.getFirstNonPHI(), IE = MBB.end(); 1322 if (IsEntry) { 1323 // Skip the instruction that saves LiveMask 1324 if (II != IE && II->getOpcode() == AMDGPU::COPY) 1325 ++II; 1326 } 1327 1328 // This stores the first instruction where it's safe to switch from WQM to 1329 // Exact or vice versa. 1330 MachineBasicBlock::iterator FirstWQM = IE; 1331 1332 // This stores the first instruction where it's safe to switch from Strict 1333 // mode to Exact/WQM or to switch to Strict mode. It must always be the same 1334 // as, or after, FirstWQM since if it's safe to switch to/from Strict, it must 1335 // be safe to switch to/from WQM as well. 1336 MachineBasicBlock::iterator FirstStrict = IE; 1337 1338 // Record initial state is block information. 1339 BI.InitialState = State; 1340 1341 for (;;) { 1342 MachineBasicBlock::iterator Next = II; 1343 char Needs = StateExact | StateWQM; // Strict mode is disabled by default. 1344 char OutNeeds = 0; 1345 1346 if (FirstWQM == IE) 1347 FirstWQM = II; 1348 1349 if (FirstStrict == IE) 1350 FirstStrict = II; 1351 1352 // First, figure out the allowed states (Needs) based on the propagated 1353 // flags. 1354 if (II != IE) { 1355 MachineInstr &MI = *II; 1356 1357 if (MI.isTerminator() || TII->mayReadEXEC(*MRI, MI)) { 1358 auto III = Instructions.find(&MI); 1359 if (III != Instructions.end()) { 1360 if (III->second.Needs & StateStrictWWM) 1361 Needs = StateStrictWWM; 1362 else if (III->second.Needs & StateStrictWQM) 1363 Needs = StateStrictWQM; 1364 else if (III->second.Needs & StateWQM) 1365 Needs = StateWQM; 1366 else 1367 Needs &= ~III->second.Disabled; 1368 OutNeeds = III->second.OutNeeds; 1369 } 1370 } else { 1371 // If the instruction doesn't actually need a correct EXEC, then we can 1372 // safely leave Strict mode enabled. 1373 Needs = StateExact | StateWQM | StateStrict; 1374 } 1375 1376 // Exact mode exit can occur in terminators, but must be before branches. 1377 if (MI.isBranch() && OutNeeds == StateExact) 1378 Needs = StateExact; 1379 1380 ++Next; 1381 } else { 1382 // End of basic block 1383 if (BI.OutNeeds & StateWQM) 1384 Needs = StateWQM; 1385 else if (BI.OutNeeds == StateExact) 1386 Needs = StateExact; 1387 else 1388 Needs = StateWQM | StateExact; 1389 } 1390 1391 // Now, transition if necessary. 1392 if (!(Needs & State)) { 1393 MachineBasicBlock::iterator First; 1394 if (State == StateStrictWWM || Needs == StateStrictWWM || 1395 State == StateStrictWQM || Needs == StateStrictWQM) { 1396 // We must switch to or from Strict mode. 1397 First = FirstStrict; 1398 } else { 1399 // We only need to switch to/from WQM, so we can use FirstWQM. 1400 First = FirstWQM; 1401 } 1402 1403 // Whether we need to save SCC depends on start and end states. 1404 bool SaveSCC = false; 1405 switch (State) { 1406 case StateExact: 1407 case StateStrictWWM: 1408 case StateStrictWQM: 1409 // Exact/Strict -> Strict: save SCC 1410 // Exact/Strict -> WQM: save SCC if WQM mask is generated from exec 1411 // Exact/Strict -> Exact: no save 1412 SaveSCC = (Needs & StateStrict) || ((Needs & StateWQM) && WQMFromExec); 1413 break; 1414 case StateWQM: 1415 // WQM -> Exact/Strict: save SCC 1416 SaveSCC = !(Needs & StateWQM); 1417 break; 1418 default: 1419 llvm_unreachable("Unknown state"); 1420 break; 1421 } 1422 MachineBasicBlock::iterator Before = 1423 prepareInsertion(MBB, First, II, Needs == StateWQM, SaveSCC); 1424 1425 if (State & StateStrict) { 1426 assert(State == StateStrictWWM || State == StateStrictWQM); 1427 assert(SavedNonStrictReg); 1428 fromStrictMode(MBB, Before, SavedNonStrictReg, NonStrictState, State); 1429 1430 LIS->createAndComputeVirtRegInterval(SavedNonStrictReg); 1431 SavedNonStrictReg = 0; 1432 State = NonStrictState; 1433 } 1434 1435 if (Needs & StateStrict) { 1436 NonStrictState = State; 1437 assert(Needs == StateStrictWWM || Needs == StateStrictWQM); 1438 assert(!SavedNonStrictReg); 1439 SavedNonStrictReg = MRI->createVirtualRegister(BoolRC); 1440 1441 toStrictMode(MBB, Before, SavedNonStrictReg, Needs); 1442 State = Needs; 1443 1444 } else { 1445 if (State == StateWQM && (Needs & StateExact) && !(Needs & StateWQM)) { 1446 if (!WQMFromExec && (OutNeeds & StateWQM)) { 1447 assert(!SavedWQMReg); 1448 SavedWQMReg = MRI->createVirtualRegister(BoolRC); 1449 } 1450 1451 toExact(MBB, Before, SavedWQMReg); 1452 State = StateExact; 1453 } else if (State == StateExact && (Needs & StateWQM) && 1454 !(Needs & StateExact)) { 1455 assert(WQMFromExec == (SavedWQMReg == 0)); 1456 1457 toWQM(MBB, Before, SavedWQMReg); 1458 1459 if (SavedWQMReg) { 1460 LIS->createAndComputeVirtRegInterval(SavedWQMReg); 1461 SavedWQMReg = 0; 1462 } 1463 State = StateWQM; 1464 } else { 1465 // We can get here if we transitioned from StrictWWM to a 1466 // non-StrictWWM state that already matches our needs, but we 1467 // shouldn't need to do anything. 1468 assert(Needs & State); 1469 } 1470 } 1471 } 1472 1473 if (Needs != (StateExact | StateWQM | StateStrict)) { 1474 if (Needs != (StateExact | StateWQM)) 1475 FirstWQM = IE; 1476 FirstStrict = IE; 1477 } 1478 1479 if (II == IE) 1480 break; 1481 1482 II = Next; 1483 } 1484 assert(!SavedWQMReg); 1485 assert(!SavedNonStrictReg); 1486 } 1487 1488 void SIWholeQuadMode::lowerLiveMaskQueries() { 1489 for (MachineInstr *MI : LiveMaskQueries) { 1490 const DebugLoc &DL = MI->getDebugLoc(); 1491 Register Dest = MI->getOperand(0).getReg(); 1492 1493 MachineInstr *Copy = 1494 BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest) 1495 .addReg(LiveMaskReg); 1496 1497 LIS->ReplaceMachineInstrInMaps(*MI, *Copy); 1498 MI->eraseFromParent(); 1499 } 1500 } 1501 1502 void SIWholeQuadMode::lowerCopyInstrs() { 1503 for (MachineInstr *MI : LowerToMovInstrs) { 1504 assert(MI->getNumExplicitOperands() == 2); 1505 1506 const Register Reg = MI->getOperand(0).getReg(); 1507 1508 const TargetRegisterClass *regClass = 1509 TRI->getRegClassForOperandReg(*MRI, MI->getOperand(0)); 1510 if (TRI->isVGPRClass(regClass)) { 1511 const unsigned MovOp = TII->getMovOpcode(regClass); 1512 MI->setDesc(TII->get(MovOp)); 1513 1514 // Check that it already implicitly depends on exec (like all VALU movs 1515 // should do). 1516 assert(any_of(MI->implicit_operands(), [](const MachineOperand &MO) { 1517 return MO.isUse() && MO.getReg() == AMDGPU::EXEC; 1518 })); 1519 } else { 1520 // Remove early-clobber and exec dependency from simple SGPR copies. 1521 // This allows some to be eliminated during/post RA. 1522 LLVM_DEBUG(dbgs() << "simplify SGPR copy: " << *MI); 1523 if (MI->getOperand(0).isEarlyClobber()) { 1524 LIS->removeInterval(Reg); 1525 MI->getOperand(0).setIsEarlyClobber(false); 1526 LIS->createAndComputeVirtRegInterval(Reg); 1527 } 1528 int Index = MI->findRegisterUseOperandIdx(AMDGPU::EXEC); 1529 while (Index >= 0) { 1530 MI->removeOperand(Index); 1531 Index = MI->findRegisterUseOperandIdx(AMDGPU::EXEC); 1532 } 1533 MI->setDesc(TII->get(AMDGPU::COPY)); 1534 LLVM_DEBUG(dbgs() << " -> " << *MI); 1535 } 1536 } 1537 for (MachineInstr *MI : LowerToCopyInstrs) { 1538 if (MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B32 || 1539 MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B64) { 1540 assert(MI->getNumExplicitOperands() == 3); 1541 // the only reason we should be here is V_SET_INACTIVE has 1542 // an undef input so it is being replaced by a simple copy. 1543 // There should be a second undef source that we should remove. 1544 assert(MI->getOperand(2).isUndef()); 1545 MI->removeOperand(2); 1546 MI->untieRegOperand(1); 1547 } else { 1548 assert(MI->getNumExplicitOperands() == 2); 1549 } 1550 1551 unsigned CopyOp = MI->getOperand(1).isReg() 1552 ? (unsigned)AMDGPU::COPY 1553 : TII->getMovOpcode(TRI->getRegClassForOperandReg( 1554 *MRI, MI->getOperand(0))); 1555 MI->setDesc(TII->get(CopyOp)); 1556 } 1557 } 1558 1559 void SIWholeQuadMode::lowerKillInstrs(bool IsWQM) { 1560 for (MachineInstr *MI : KillInstrs) { 1561 MachineBasicBlock *MBB = MI->getParent(); 1562 MachineInstr *SplitPoint = nullptr; 1563 switch (MI->getOpcode()) { 1564 case AMDGPU::SI_DEMOTE_I1: 1565 case AMDGPU::SI_KILL_I1_TERMINATOR: 1566 SplitPoint = lowerKillI1(*MBB, *MI, IsWQM); 1567 break; 1568 case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: 1569 SplitPoint = lowerKillF32(*MBB, *MI); 1570 break; 1571 default: 1572 continue; 1573 } 1574 if (SplitPoint) 1575 splitBlock(MBB, SplitPoint); 1576 } 1577 } 1578 1579 bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) { 1580 LLVM_DEBUG(dbgs() << "SI Whole Quad Mode on " << MF.getName() 1581 << " ------------- \n"); 1582 LLVM_DEBUG(MF.dump();); 1583 1584 Instructions.clear(); 1585 Blocks.clear(); 1586 LiveMaskQueries.clear(); 1587 LowerToCopyInstrs.clear(); 1588 LowerToMovInstrs.clear(); 1589 KillInstrs.clear(); 1590 StateTransition.clear(); 1591 1592 ST = &MF.getSubtarget<GCNSubtarget>(); 1593 1594 TII = ST->getInstrInfo(); 1595 TRI = &TII->getRegisterInfo(); 1596 MRI = &MF.getRegInfo(); 1597 LIS = &getAnalysis<LiveIntervals>(); 1598 MDT = &getAnalysis<MachineDominatorTree>(); 1599 PDT = &getAnalysis<MachinePostDominatorTree>(); 1600 1601 if (ST->isWave32()) { 1602 AndOpc = AMDGPU::S_AND_B32; 1603 AndTermOpc = AMDGPU::S_AND_B32_term; 1604 AndN2Opc = AMDGPU::S_ANDN2_B32; 1605 XorOpc = AMDGPU::S_XOR_B32; 1606 AndSaveExecOpc = AMDGPU::S_AND_SAVEEXEC_B32; 1607 AndSaveExecTermOpc = AMDGPU::S_AND_SAVEEXEC_B32_term; 1608 WQMOpc = AMDGPU::S_WQM_B32; 1609 Exec = AMDGPU::EXEC_LO; 1610 } else { 1611 AndOpc = AMDGPU::S_AND_B64; 1612 AndTermOpc = AMDGPU::S_AND_B64_term; 1613 AndN2Opc = AMDGPU::S_ANDN2_B64; 1614 XorOpc = AMDGPU::S_XOR_B64; 1615 AndSaveExecOpc = AMDGPU::S_AND_SAVEEXEC_B64; 1616 AndSaveExecTermOpc = AMDGPU::S_AND_SAVEEXEC_B64_term; 1617 WQMOpc = AMDGPU::S_WQM_B64; 1618 Exec = AMDGPU::EXEC; 1619 } 1620 1621 const char GlobalFlags = analyzeFunction(MF); 1622 const bool NeedsLiveMask = !(KillInstrs.empty() && LiveMaskQueries.empty()); 1623 1624 LiveMaskReg = Exec; 1625 1626 // Shader is simple does not need any state changes or any complex lowering 1627 if (!(GlobalFlags & (StateWQM | StateStrict)) && LowerToCopyInstrs.empty() && 1628 LowerToMovInstrs.empty() && KillInstrs.empty()) { 1629 lowerLiveMaskQueries(); 1630 return !LiveMaskQueries.empty(); 1631 } 1632 1633 MachineBasicBlock &Entry = MF.front(); 1634 MachineBasicBlock::iterator EntryMI = Entry.getFirstNonPHI(); 1635 1636 // Store a copy of the original live mask when required 1637 if (NeedsLiveMask || (GlobalFlags & StateWQM)) { 1638 LiveMaskReg = MRI->createVirtualRegister(TRI->getBoolRC()); 1639 MachineInstr *MI = 1640 BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::COPY), LiveMaskReg) 1641 .addReg(Exec); 1642 LIS->InsertMachineInstrInMaps(*MI); 1643 } 1644 1645 LLVM_DEBUG(printInfo()); 1646 1647 lowerLiveMaskQueries(); 1648 lowerCopyInstrs(); 1649 1650 // Shader only needs WQM 1651 if (GlobalFlags == StateWQM) { 1652 auto MI = BuildMI(Entry, EntryMI, DebugLoc(), TII->get(WQMOpc), Exec) 1653 .addReg(Exec); 1654 LIS->InsertMachineInstrInMaps(*MI); 1655 lowerKillInstrs(true); 1656 } else { 1657 for (auto BII : Blocks) 1658 processBlock(*BII.first, BII.first == &Entry); 1659 // Lowering blocks causes block splitting so perform as a second pass. 1660 for (auto BII : Blocks) 1661 lowerBlock(*BII.first); 1662 } 1663 1664 // Compute live range for live mask 1665 if (LiveMaskReg != Exec) 1666 LIS->createAndComputeVirtRegInterval(LiveMaskReg); 1667 1668 // Physical registers like SCC aren't tracked by default anyway, so just 1669 // removing the ranges we computed is the simplest option for maintaining 1670 // the analysis results. 1671 LIS->removeAllRegUnitsForPhysReg(AMDGPU::SCC); 1672 1673 // If we performed any kills then recompute EXEC 1674 if (!KillInstrs.empty()) 1675 LIS->removeAllRegUnitsForPhysReg(AMDGPU::EXEC); 1676 1677 return true; 1678 } 1679