1 //===-- SIOptimizeExecMasking.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AMDGPU.h" 10 #include "GCNSubtarget.h" 11 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 12 #include "llvm/CodeGen/MachineFunctionPass.h" 13 #include "llvm/InitializePasses.h" 14 15 using namespace llvm; 16 17 #define DEBUG_TYPE "si-optimize-exec-masking" 18 19 namespace { 20 21 class SIOptimizeExecMasking : public MachineFunctionPass { 22 public: 23 static char ID; 24 25 public: 26 SIOptimizeExecMasking() : MachineFunctionPass(ID) { 27 initializeSIOptimizeExecMaskingPass(*PassRegistry::getPassRegistry()); 28 } 29 30 bool runOnMachineFunction(MachineFunction &MF) override; 31 32 StringRef getPassName() const override { 33 return "SI optimize exec mask operations"; 34 } 35 36 void getAnalysisUsage(AnalysisUsage &AU) const override { 37 AU.setPreservesCFG(); 38 MachineFunctionPass::getAnalysisUsage(AU); 39 } 40 }; 41 42 } // End anonymous namespace. 43 44 INITIALIZE_PASS_BEGIN(SIOptimizeExecMasking, DEBUG_TYPE, 45 "SI optimize exec mask operations", false, false) 46 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 47 INITIALIZE_PASS_END(SIOptimizeExecMasking, DEBUG_TYPE, 48 "SI optimize exec mask operations", false, false) 49 50 char SIOptimizeExecMasking::ID = 0; 51 52 char &llvm::SIOptimizeExecMaskingID = SIOptimizeExecMasking::ID; 53 54 /// If \p MI is a copy from exec, return the register copied to. 55 static Register isCopyFromExec(const MachineInstr &MI, const GCNSubtarget &ST) { 56 switch (MI.getOpcode()) { 57 case AMDGPU::COPY: 58 case AMDGPU::S_MOV_B64: 59 case AMDGPU::S_MOV_B64_term: 60 case AMDGPU::S_MOV_B32: 61 case AMDGPU::S_MOV_B32_term: { 62 const MachineOperand &Src = MI.getOperand(1); 63 if (Src.isReg() && 64 Src.getReg() == (ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC)) 65 return MI.getOperand(0).getReg(); 66 } 67 } 68 69 return AMDGPU::NoRegister; 70 } 71 72 /// If \p MI is a copy to exec, return the register copied from. 73 static Register isCopyToExec(const MachineInstr &MI, const GCNSubtarget &ST) { 74 switch (MI.getOpcode()) { 75 case AMDGPU::COPY: 76 case AMDGPU::S_MOV_B64: 77 case AMDGPU::S_MOV_B32: { 78 const MachineOperand &Dst = MI.getOperand(0); 79 if (Dst.isReg() && 80 Dst.getReg() == (ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC) && 81 MI.getOperand(1).isReg()) 82 return MI.getOperand(1).getReg(); 83 break; 84 } 85 case AMDGPU::S_MOV_B64_term: 86 case AMDGPU::S_MOV_B32_term: 87 llvm_unreachable("should have been replaced"); 88 } 89 90 return Register(); 91 } 92 93 /// If \p MI is a logical operation on an exec value, 94 /// return the register copied to. 95 static Register isLogicalOpOnExec(const MachineInstr &MI) { 96 switch (MI.getOpcode()) { 97 case AMDGPU::S_AND_B64: 98 case AMDGPU::S_OR_B64: 99 case AMDGPU::S_XOR_B64: 100 case AMDGPU::S_ANDN2_B64: 101 case AMDGPU::S_ORN2_B64: 102 case AMDGPU::S_NAND_B64: 103 case AMDGPU::S_NOR_B64: 104 case AMDGPU::S_XNOR_B64: { 105 const MachineOperand &Src1 = MI.getOperand(1); 106 if (Src1.isReg() && Src1.getReg() == AMDGPU::EXEC) 107 return MI.getOperand(0).getReg(); 108 const MachineOperand &Src2 = MI.getOperand(2); 109 if (Src2.isReg() && Src2.getReg() == AMDGPU::EXEC) 110 return MI.getOperand(0).getReg(); 111 break; 112 } 113 case AMDGPU::S_AND_B32: 114 case AMDGPU::S_OR_B32: 115 case AMDGPU::S_XOR_B32: 116 case AMDGPU::S_ANDN2_B32: 117 case AMDGPU::S_ORN2_B32: 118 case AMDGPU::S_NAND_B32: 119 case AMDGPU::S_NOR_B32: 120 case AMDGPU::S_XNOR_B32: { 121 const MachineOperand &Src1 = MI.getOperand(1); 122 if (Src1.isReg() && Src1.getReg() == AMDGPU::EXEC_LO) 123 return MI.getOperand(0).getReg(); 124 const MachineOperand &Src2 = MI.getOperand(2); 125 if (Src2.isReg() && Src2.getReg() == AMDGPU::EXEC_LO) 126 return MI.getOperand(0).getReg(); 127 break; 128 } 129 } 130 131 return AMDGPU::NoRegister; 132 } 133 134 static unsigned getSaveExecOp(unsigned Opc) { 135 switch (Opc) { 136 case AMDGPU::S_AND_B64: 137 return AMDGPU::S_AND_SAVEEXEC_B64; 138 case AMDGPU::S_OR_B64: 139 return AMDGPU::S_OR_SAVEEXEC_B64; 140 case AMDGPU::S_XOR_B64: 141 return AMDGPU::S_XOR_SAVEEXEC_B64; 142 case AMDGPU::S_ANDN2_B64: 143 return AMDGPU::S_ANDN2_SAVEEXEC_B64; 144 case AMDGPU::S_ORN2_B64: 145 return AMDGPU::S_ORN2_SAVEEXEC_B64; 146 case AMDGPU::S_NAND_B64: 147 return AMDGPU::S_NAND_SAVEEXEC_B64; 148 case AMDGPU::S_NOR_B64: 149 return AMDGPU::S_NOR_SAVEEXEC_B64; 150 case AMDGPU::S_XNOR_B64: 151 return AMDGPU::S_XNOR_SAVEEXEC_B64; 152 case AMDGPU::S_AND_B32: 153 return AMDGPU::S_AND_SAVEEXEC_B32; 154 case AMDGPU::S_OR_B32: 155 return AMDGPU::S_OR_SAVEEXEC_B32; 156 case AMDGPU::S_XOR_B32: 157 return AMDGPU::S_XOR_SAVEEXEC_B32; 158 case AMDGPU::S_ANDN2_B32: 159 return AMDGPU::S_ANDN2_SAVEEXEC_B32; 160 case AMDGPU::S_ORN2_B32: 161 return AMDGPU::S_ORN2_SAVEEXEC_B32; 162 case AMDGPU::S_NAND_B32: 163 return AMDGPU::S_NAND_SAVEEXEC_B32; 164 case AMDGPU::S_NOR_B32: 165 return AMDGPU::S_NOR_SAVEEXEC_B32; 166 case AMDGPU::S_XNOR_B32: 167 return AMDGPU::S_XNOR_SAVEEXEC_B32; 168 default: 169 return AMDGPU::INSTRUCTION_LIST_END; 170 } 171 } 172 173 // These are only terminators to get correct spill code placement during 174 // register allocation, so turn them back into normal instructions. 175 static bool removeTerminatorBit(const SIInstrInfo &TII, MachineInstr &MI) { 176 switch (MI.getOpcode()) { 177 case AMDGPU::S_MOV_B32_term: { 178 bool RegSrc = MI.getOperand(1).isReg(); 179 MI.setDesc(TII.get(RegSrc ? AMDGPU::COPY : AMDGPU::S_MOV_B32)); 180 return true; 181 } 182 case AMDGPU::S_MOV_B64_term: { 183 bool RegSrc = MI.getOperand(1).isReg(); 184 MI.setDesc(TII.get(RegSrc ? AMDGPU::COPY : AMDGPU::S_MOV_B64)); 185 return true; 186 } 187 case AMDGPU::S_XOR_B64_term: { 188 // This is only a terminator to get the correct spill code placement during 189 // register allocation. 190 MI.setDesc(TII.get(AMDGPU::S_XOR_B64)); 191 return true; 192 } 193 case AMDGPU::S_XOR_B32_term: { 194 // This is only a terminator to get the correct spill code placement during 195 // register allocation. 196 MI.setDesc(TII.get(AMDGPU::S_XOR_B32)); 197 return true; 198 } 199 case AMDGPU::S_OR_B64_term: { 200 // This is only a terminator to get the correct spill code placement during 201 // register allocation. 202 MI.setDesc(TII.get(AMDGPU::S_OR_B64)); 203 return true; 204 } 205 case AMDGPU::S_OR_B32_term: { 206 // This is only a terminator to get the correct spill code placement during 207 // register allocation. 208 MI.setDesc(TII.get(AMDGPU::S_OR_B32)); 209 return true; 210 } 211 case AMDGPU::S_ANDN2_B64_term: { 212 // This is only a terminator to get the correct spill code placement during 213 // register allocation. 214 MI.setDesc(TII.get(AMDGPU::S_ANDN2_B64)); 215 return true; 216 } 217 case AMDGPU::S_ANDN2_B32_term: { 218 // This is only a terminator to get the correct spill code placement during 219 // register allocation. 220 MI.setDesc(TII.get(AMDGPU::S_ANDN2_B32)); 221 return true; 222 } 223 case AMDGPU::S_AND_B64_term: { 224 // This is only a terminator to get the correct spill code placement during 225 // register allocation. 226 MI.setDesc(TII.get(AMDGPU::S_AND_B64)); 227 return true; 228 } 229 case AMDGPU::S_AND_B32_term: { 230 // This is only a terminator to get the correct spill code placement during 231 // register allocation. 232 MI.setDesc(TII.get(AMDGPU::S_AND_B32)); 233 return true; 234 } 235 default: 236 return false; 237 } 238 } 239 240 // Turn all pseudoterminators in the block into their equivalent non-terminator 241 // instructions. Returns the reverse iterator to the first non-terminator 242 // instruction in the block. 243 static MachineBasicBlock::reverse_iterator fixTerminators( 244 const SIInstrInfo &TII, 245 MachineBasicBlock &MBB) { 246 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend(); 247 248 bool Seen = false; 249 MachineBasicBlock::reverse_iterator FirstNonTerm = I; 250 for (; I != E; ++I) { 251 if (!I->isTerminator()) 252 return Seen ? FirstNonTerm : I; 253 254 if (removeTerminatorBit(TII, *I)) { 255 if (!Seen) { 256 FirstNonTerm = I; 257 Seen = true; 258 } 259 } 260 } 261 262 return FirstNonTerm; 263 } 264 265 static MachineBasicBlock::reverse_iterator findExecCopy( 266 const SIInstrInfo &TII, 267 const GCNSubtarget &ST, 268 MachineBasicBlock &MBB, 269 MachineBasicBlock::reverse_iterator I, 270 unsigned CopyToExec) { 271 const unsigned InstLimit = 25; 272 273 auto E = MBB.rend(); 274 for (unsigned N = 0; N <= InstLimit && I != E; ++I, ++N) { 275 Register CopyFromExec = isCopyFromExec(*I, ST); 276 if (CopyFromExec.isValid()) 277 return I; 278 } 279 280 return E; 281 } 282 283 // XXX - Seems LivePhysRegs doesn't work correctly since it will incorrectly 284 // report the register as unavailable because a super-register with a lane mask 285 // is unavailable. 286 static bool isLiveOut(const MachineBasicBlock &MBB, unsigned Reg) { 287 for (MachineBasicBlock *Succ : MBB.successors()) { 288 if (Succ->isLiveIn(Reg)) 289 return true; 290 } 291 292 return false; 293 } 294 295 // Backwards-iterate from Origin (for n=MaxInstructions iterations) until either 296 // the beginning of the BB is reached or Pred evaluates to true - which can be 297 // an arbitrary condition based on the current MachineInstr, for instance an 298 // target instruction. Breaks prematurely by returning nullptr if one of the 299 // registers given in NonModifiableRegs is modified by the current instruction. 300 static MachineInstr * 301 findInstrBackwards(MachineInstr &Origin, 302 std::function<bool(MachineInstr *)> Pred, 303 ArrayRef<MCRegister> NonModifiableRegs, 304 const SIRegisterInfo *TRI, unsigned MaxInstructions = 5) { 305 MachineBasicBlock::reverse_iterator A = Origin.getReverseIterator(), 306 E = Origin.getParent()->rend(); 307 unsigned CurrentIteration = 0; 308 309 for (++A; CurrentIteration < MaxInstructions && A != E; ++A) { 310 if (Pred(&*A)) 311 return &*A; 312 313 for (MCRegister Reg : NonModifiableRegs) { 314 if (A->modifiesRegister(Reg, TRI)) 315 return nullptr; 316 } 317 318 ++CurrentIteration; 319 } 320 321 return nullptr; 322 } 323 324 // Determine if a register Reg is not re-defined and still in use 325 // in the range (Stop..BB.end]. 326 // It does so by backwards calculating liveness from the end of the BB until 327 // either Stop or the beginning of the BB is reached. 328 // After liveness is calculated, we can determine if Reg is still in use and not 329 // defined inbetween the instructions. 330 static bool isRegisterInUseAfter(MachineInstr &Stop, MCRegister Reg, 331 const SIRegisterInfo *TRI, 332 MachineRegisterInfo &MRI) { 333 LivePhysRegs LR(*TRI); 334 LR.addLiveOuts(*Stop.getParent()); 335 336 for (auto A = Stop.getParent()->rbegin(); 337 A != Stop.getParent()->rend() && A != Stop; ++A) { 338 LR.stepBackward(*A); 339 } 340 341 return !LR.available(MRI, Reg); 342 } 343 344 // Tries to find a possibility to optimize a v_cmp ..., s_and_saveexec sequence 345 // by looking at an instance of a s_and_saveexec instruction. Returns a pointer 346 // to the v_cmp instruction if it is safe to replace the sequence (see the 347 // conditions in the function body). This is after register allocation, so some 348 // checks on operand dependencies need to be considered. 349 static MachineInstr *findPossibleVCMPVCMPXOptimization( 350 MachineInstr &SaveExec, MCRegister Exec, const SIRegisterInfo *TRI, 351 const SIInstrInfo *TII, MachineRegisterInfo &MRI) { 352 353 MachineInstr *VCmp = nullptr; 354 355 Register SaveExecDest = SaveExec.getOperand(0).getReg(); 356 if (!TRI->isSGPRReg(MRI, SaveExecDest)) 357 return nullptr; 358 359 MachineOperand *SaveExecSrc0 = 360 TII->getNamedOperand(SaveExec, AMDGPU::OpName::src0); 361 if (!SaveExecSrc0->isReg()) 362 return nullptr; 363 364 // Try to find the last v_cmp instruction that defs the saveexec input 365 // operand without any write to Exec inbetween. 366 VCmp = findInstrBackwards( 367 SaveExec, 368 [&](MachineInstr *Check) { 369 return AMDGPU::getVCMPXOpFromVCMP(Check->getOpcode()) != -1 && 370 Check->modifiesRegister(SaveExecSrc0->getReg(), TRI); 371 }, 372 {Exec, SaveExecSrc0->getReg()}, TRI); 373 374 if (!VCmp) 375 return nullptr; 376 377 MachineOperand *VCmpDest = TII->getNamedOperand(*VCmp, AMDGPU::OpName::sdst); 378 assert(VCmpDest && "Should have an sdst operand!"); 379 380 // Check if any of the v_cmp source operands is written by the saveexec. 381 MachineOperand *Src0 = TII->getNamedOperand(*VCmp, AMDGPU::OpName::src0); 382 if (Src0->isReg() && TRI->isSGPRReg(MRI, Src0->getReg()) && 383 SaveExec.modifiesRegister(Src0->getReg(), TRI)) 384 return nullptr; 385 386 MachineOperand *Src1 = TII->getNamedOperand(*VCmp, AMDGPU::OpName::src1); 387 if (Src1->isReg() && TRI->isSGPRReg(MRI, Src1->getReg()) && 388 SaveExec.modifiesRegister(Src1->getReg(), TRI)) 389 return nullptr; 390 391 // Don't do the transformation if the destination operand is included in 392 // it's MBB Live-outs, meaning it's used in any of it's successors, leading 393 // to incorrect code if the v_cmp and therefore the def of 394 // the dest operand is removed. 395 if (isLiveOut(*VCmp->getParent(), VCmpDest->getReg())) 396 return nullptr; 397 398 // If the v_cmp target is in use after the s_and_saveexec, skip the 399 // optimization. 400 if (isRegisterInUseAfter(SaveExec, VCmpDest->getReg(), TRI, 401 MRI)) 402 return nullptr; 403 404 // Try to determine if there is a write to any of the VCmp 405 // operands between the saveexec and the vcmp. 406 // If yes, additional VGPR spilling might need to be inserted. In this case, 407 // it's not worth replacing the instruction sequence. 408 SmallVector<MCRegister, 2> NonDefRegs; 409 if (Src0->isReg()) 410 NonDefRegs.push_back(Src0->getReg()); 411 412 if (Src1->isReg()) 413 NonDefRegs.push_back(Src1->getReg()); 414 415 if (!findInstrBackwards( 416 SaveExec, [&](MachineInstr *Check) { return Check == VCmp; }, 417 NonDefRegs, TRI)) 418 return nullptr; 419 420 return VCmp; 421 } 422 423 // Inserts the optimized s_mov_b32 / v_cmpx sequence based on the 424 // operands extracted from a v_cmp ..., s_and_saveexec pattern. 425 static bool optimizeVCMPSaveExecSequence(MachineInstr &SaveExecInstr, 426 MachineInstr &VCmp, MCRegister Exec, 427 const SIInstrInfo *TII, 428 const SIRegisterInfo *TRI, 429 MachineRegisterInfo &MRI) { 430 const int NewOpcode = AMDGPU::getVCMPXOpFromVCMP(VCmp.getOpcode()); 431 432 if (NewOpcode == -1) 433 return false; 434 435 MachineOperand *Src0 = TII->getNamedOperand(VCmp, AMDGPU::OpName::src0); 436 MachineOperand *Src1 = TII->getNamedOperand(VCmp, AMDGPU::OpName::src1); 437 438 Register MoveDest = SaveExecInstr.getOperand(0).getReg(); 439 440 MachineBasicBlock::instr_iterator InsertPosIt = SaveExecInstr.getIterator(); 441 if (!SaveExecInstr.uses().empty()) { 442 bool isSGPR32 = TRI->getRegSizeInBits(MoveDest, MRI) == 32; 443 unsigned MovOpcode = isSGPR32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 444 BuildMI(*SaveExecInstr.getParent(), InsertPosIt, 445 SaveExecInstr.getDebugLoc(), TII->get(MovOpcode), MoveDest) 446 .addReg(Exec); 447 } 448 449 // Omit dst as V_CMPX is implicitly writing to EXEC. 450 // Add dummy src and clamp modifiers, if needed. 451 auto Builder = BuildMI(*VCmp.getParent(), std::next(InsertPosIt), 452 VCmp.getDebugLoc(), TII->get(NewOpcode)); 453 454 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::src0_modifiers) != 455 -1) 456 Builder.addImm(0); 457 458 Builder.add(*Src0); 459 460 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::src1_modifiers) != 461 -1) 462 Builder.addImm(0); 463 464 Builder.add(*Src1); 465 466 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::clamp) != -1) 467 Builder.addImm(0); 468 469 return true; 470 } 471 472 bool SIOptimizeExecMasking::runOnMachineFunction(MachineFunction &MF) { 473 if (skipFunction(MF.getFunction())) 474 return false; 475 476 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 477 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 478 const SIInstrInfo *TII = ST.getInstrInfo(); 479 MachineRegisterInfo *MRI = &MF.getRegInfo(); 480 MCRegister Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 481 482 // Optimize sequences emitted for control flow lowering. They are originally 483 // emitted as the separate operations because spill code may need to be 484 // inserted for the saved copy of exec. 485 // 486 // x = copy exec 487 // z = s_<op>_b64 x, y 488 // exec = copy z 489 // => 490 // x = s_<op>_saveexec_b64 y 491 // 492 493 bool Changed = false; 494 for (MachineBasicBlock &MBB : MF) { 495 MachineBasicBlock::reverse_iterator I = fixTerminators(*TII, MBB); 496 MachineBasicBlock::reverse_iterator E = MBB.rend(); 497 if (I == E) 498 continue; 499 500 // It's possible to see other terminator copies after the exec copy. This 501 // can happen if control flow pseudos had their outputs used by phis. 502 Register CopyToExec; 503 504 unsigned SearchCount = 0; 505 const unsigned SearchLimit = 5; 506 while (I != E && SearchCount++ < SearchLimit) { 507 CopyToExec = isCopyToExec(*I, ST); 508 if (CopyToExec) 509 break; 510 ++I; 511 } 512 513 if (!CopyToExec) 514 continue; 515 516 // Scan backwards to find the def. 517 auto CopyToExecInst = &*I; 518 auto CopyFromExecInst = findExecCopy(*TII, ST, MBB, I, CopyToExec); 519 if (CopyFromExecInst == E) { 520 auto PrepareExecInst = std::next(I); 521 if (PrepareExecInst == E) 522 continue; 523 // Fold exec = COPY (S_AND_B64 reg, exec) -> exec = S_AND_B64 reg, exec 524 if (CopyToExecInst->getOperand(1).isKill() && 525 isLogicalOpOnExec(*PrepareExecInst) == CopyToExec) { 526 LLVM_DEBUG(dbgs() << "Fold exec copy: " << *PrepareExecInst); 527 528 PrepareExecInst->getOperand(0).setReg(Exec); 529 530 LLVM_DEBUG(dbgs() << "into: " << *PrepareExecInst << '\n'); 531 532 CopyToExecInst->eraseFromParent(); 533 Changed = true; 534 } 535 536 continue; 537 } 538 539 if (isLiveOut(MBB, CopyToExec)) { 540 // The copied register is live out and has a second use in another block. 541 LLVM_DEBUG(dbgs() << "Exec copy source register is live out\n"); 542 continue; 543 } 544 545 Register CopyFromExec = CopyFromExecInst->getOperand(0).getReg(); 546 MachineInstr *SaveExecInst = nullptr; 547 SmallVector<MachineInstr *, 4> OtherUseInsts; 548 549 for (MachineBasicBlock::iterator J 550 = std::next(CopyFromExecInst->getIterator()), JE = I->getIterator(); 551 J != JE; ++J) { 552 if (SaveExecInst && J->readsRegister(Exec, TRI)) { 553 LLVM_DEBUG(dbgs() << "exec read prevents saveexec: " << *J << '\n'); 554 // Make sure this is inserted after any VALU ops that may have been 555 // scheduled in between. 556 SaveExecInst = nullptr; 557 break; 558 } 559 560 bool ReadsCopyFromExec = J->readsRegister(CopyFromExec, TRI); 561 562 if (J->modifiesRegister(CopyToExec, TRI)) { 563 if (SaveExecInst) { 564 LLVM_DEBUG(dbgs() << "Multiple instructions modify " 565 << printReg(CopyToExec, TRI) << '\n'); 566 SaveExecInst = nullptr; 567 break; 568 } 569 570 unsigned SaveExecOp = getSaveExecOp(J->getOpcode()); 571 if (SaveExecOp == AMDGPU::INSTRUCTION_LIST_END) 572 break; 573 574 if (ReadsCopyFromExec) { 575 SaveExecInst = &*J; 576 LLVM_DEBUG(dbgs() << "Found save exec op: " << *SaveExecInst << '\n'); 577 continue; 578 } else { 579 LLVM_DEBUG(dbgs() 580 << "Instruction does not read exec copy: " << *J << '\n'); 581 break; 582 } 583 } else if (ReadsCopyFromExec && !SaveExecInst) { 584 // Make sure no other instruction is trying to use this copy, before it 585 // will be rewritten by the saveexec, i.e. hasOneUse. There may have 586 // been another use, such as an inserted spill. For example: 587 // 588 // %sgpr0_sgpr1 = COPY %exec 589 // spill %sgpr0_sgpr1 590 // %sgpr2_sgpr3 = S_AND_B64 %sgpr0_sgpr1 591 // 592 LLVM_DEBUG(dbgs() << "Found second use of save inst candidate: " << *J 593 << '\n'); 594 break; 595 } 596 597 if (SaveExecInst && J->readsRegister(CopyToExec, TRI)) { 598 assert(SaveExecInst != &*J); 599 OtherUseInsts.push_back(&*J); 600 } 601 } 602 603 if (!SaveExecInst) 604 continue; 605 606 LLVM_DEBUG(dbgs() << "Insert save exec op: " << *SaveExecInst << '\n'); 607 608 MachineOperand &Src0 = SaveExecInst->getOperand(1); 609 MachineOperand &Src1 = SaveExecInst->getOperand(2); 610 611 MachineOperand *OtherOp = nullptr; 612 613 if (Src0.isReg() && Src0.getReg() == CopyFromExec) { 614 OtherOp = &Src1; 615 } else if (Src1.isReg() && Src1.getReg() == CopyFromExec) { 616 if (!SaveExecInst->isCommutable()) 617 break; 618 619 OtherOp = &Src0; 620 } else 621 llvm_unreachable("unexpected"); 622 623 CopyFromExecInst->eraseFromParent(); 624 625 auto InsPt = SaveExecInst->getIterator(); 626 const DebugLoc &DL = SaveExecInst->getDebugLoc(); 627 628 BuildMI(MBB, InsPt, DL, TII->get(getSaveExecOp(SaveExecInst->getOpcode())), 629 CopyFromExec) 630 .addReg(OtherOp->getReg()); 631 SaveExecInst->eraseFromParent(); 632 633 CopyToExecInst->eraseFromParent(); 634 635 for (MachineInstr *OtherInst : OtherUseInsts) { 636 OtherInst->substituteRegister(CopyToExec, Exec, 637 AMDGPU::NoSubRegister, *TRI); 638 } 639 640 Changed = true; 641 } 642 643 // After all s_op_saveexec instructions are inserted, 644 // replace (on GFX10.3 and later) 645 // v_cmp_* SGPR, IMM, VGPR 646 // s_and_saveexec_b32 EXEC_SGPR_DEST, SGPR 647 // with 648 // s_mov_b32 EXEC_SGPR_DEST, exec_lo 649 // v_cmpx_* IMM, VGPR 650 // to reduce pipeline stalls. 651 if (ST.hasGFX10_3Insts()) { 652 DenseMap<MachineInstr *, MachineInstr *> SaveExecVCmpMapping; 653 const unsigned AndSaveExecOpcode = 654 ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64; 655 656 for (MachineBasicBlock &MBB : MF) { 657 for (MachineInstr &MI : MBB) { 658 // Record relevant v_cmp / s_and_saveexec instruction pairs for 659 // replacement. 660 if (MI.getOpcode() != AndSaveExecOpcode) 661 continue; 662 663 if (MachineInstr *VCmp = 664 findPossibleVCMPVCMPXOptimization(MI, Exec, TRI, TII, *MRI)) 665 SaveExecVCmpMapping[&MI] = VCmp; 666 } 667 } 668 669 for (const auto &Entry : SaveExecVCmpMapping) { 670 MachineInstr *SaveExecInstr = Entry.getFirst(); 671 MachineInstr *VCmpInstr = Entry.getSecond(); 672 673 if (optimizeVCMPSaveExecSequence(*SaveExecInstr, *VCmpInstr, Exec, TII, 674 TRI, *MRI)) { 675 SaveExecInstr->eraseFromParent(); 676 VCmpInstr->eraseFromParent(); 677 678 Changed = true; 679 } 680 } 681 } 682 683 return Changed; 684 } 685